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In current engineering practice, computer-aided

design (CAD) tools play a key role in the design and

fabrication of most mechanical systems, including

the design of most vehicles. This software tends

to rely heavily on human designers to provide the

basic design concept, with the software being used

to computationally render an existing design, or

to perform modifications to a design to achieve

incremental improvements in performance. However,

an emerging class of computational methods, known

as topology optimization methods, offers the potential

for true black box computational design. Under

this general framework, practitioners provide the

algorithm with the constitutive properties of the

design materials, and the mechanical function being

designed for (e.g. maximum stiffness under a given

loading condition), and the algorithm autonomously

generates a description of the corresponding structure.

With some exceptions, existing topology optimization

methods are limited to generating static, single-body

designs. In this study, we present a novel method that

builds upon the current state of the art by combining

multiple collocated planar design domains to achieve

automated computational synthesis of multi-body

wheeled vehicles. This capability represents an

important step on the path toward automated

computational design of increasingly complex,

innovative and impactful mechanical systems.

2023 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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Figure 1. The four levels of mechanical complexity. Current structural design algorithms take Level 0 complexity information

as input and generate Level I complexity structures. Our algorithmmakes the leap to Level II, given only Level 0 information.

1. Introduction

(a) Background

Wheeled transport mechanisms represent a crucial frontier in mechanical design. At its core,

engineering design can be understood as a process of creating purposeful complexity. Design

algorithms receive input information that describes the physics and behaviour of the design

materials or design components, and they use the input to generate a more complex system with

a specific engineering function. In the context of purely mechanical systems (i.e. those not reliant

on electrical or chemical processes), there exist four broad levels of complexity: the lowest level

includes raw materials in their natural form, having no organization or structure beyond their

natural heterogeneity and molecular composition. Hereafter, we refer to this class of systems as

having Level 0 complexity. The next stage of complexity (Level I) includes single-body structures

and architected materials. Level I systems are largely static, with all motion caused by elastic and

inelastic material deformations or strains. Systems with Level II complexity contain two or three

moving parts that are combined to perform a basic mechanical function. This class of systems

includes compound machines like a wheelbarrow or a pair of pliers. Lastly, we have Level III

complexity, which refers to complex machines containing chains of many (often 10 or more)

Level I and Level II components (figure 1). This class of systems includes bicycles and mechanical

clocks (table 1).

Current mechanical design algorithms generally fall within one of two categories. In one camp,

we have structural design algorithms, which receive Level 0 input and generate Level I designs.

These algorithms typically use gradient-based optimization to tailor the size, shape and topology

[1] of the structural features to produce highly specialized structures [2,3], mechanisms [4,5] and

materials [6]. In the other camp, we have algorithms that receive Level II information describing
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Table 1. Nomenclature.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AT maximum elevation of terrain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a, b arbitrary constants
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a axle location
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ay y-coordinate of axle location
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cmax maximum allowable compliance
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F global vector of applied forces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g acceleration due to gravity
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g1, g2 constraint functions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�h change in height of axle
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K global stiffness matrix
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KB contribution of barrow layer to global stiffness matrix
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KW contribution of wheel layer to global stiffness matrix
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KC contribution of contact springs to global stiffness matrix
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k effective stiffness matrix of element
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k0 nominal stiffness matrix of element
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kc contact stiffness matrix
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k′ rotated stiffness matrix
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m total mass of the axle, carriage and cargo
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ne number of elements
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ns number of spokes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nv number of wheel vertices
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P perimeter of wheel
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pmin minimum allowable perimeter of wheel
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p contact point of wheel on terrain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

py y-coordinate of contact point
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p stiffness penalization constant
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R rotation matrix
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R spoke length
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r line segment joining the ends of two neighbouring spokes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s arc length of terrain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T terrain height
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U global vector of nodal displacements
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vmax maximum allowable material volume
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

W total work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X horizontal spatial coordinate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x set of optimal spoke lengths
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Continued.)
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Table 1. (Continued.)



xn nodal x coordinate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Y vertical spatial coordinate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yn nodal y-coordinate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α set of optimal spoke orientation angles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β angle from the horizontal to the line segment r after the rotation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ angle from the horizontal to the line segment r before the rotation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ζ ∗
x , ζ

∗
y contact point within the design domain

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ rotation angle
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ0 nominal contact stiffness
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λT terrain wavelength
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ element relative material density
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ steepness of contact stiffness decay
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a set of rudimentary building blocks. The algorithm then synthesizes complex kinematic chains

(Level III) by systematically selecting and assembling the various components [7–9]. Figure 1

contains an illustration of the complexity categories and the role of the various algorithms in

producing purposeful complexity. Existing algorithms are very efficient at solving these two

distinct design problems. However, we currently lack effective means of automatically making

the leap from Level 0 to Level II complexity. Traversing this barrier represents a significant

advancement in design automation. For this reason, we seek to create an algorithm that can

autonomously synthesize a wheeled vehicle (Level II complexity) using a series of level 0

building blocks. The algorithm is given only the mechanical properties of the design material,

the boundary conditions of the black box domain within which the design must be created, and a

mathematical description of the desired mechanical function.

This approach to computational design in which the design domain is treated as a black box

has its roots in topology optimization [10,11]. This term refers to a class of methods in which

the algorithm generates an optimal structure by systematically distributing material within the

design domain to create a design that performs optimally with respect to a given objective

(figure 2). Topology optimization algorithms are typically used to generate level I systems (i.e.

single-bodied static structures and metamaterials) [12,13]. Several authors have noted that the

designs obtained through topology optimization appear organic in their material pattern, and

their appearance has been compared to the microstructure of human bone tissue [14] and bird

beaks [15].

(b) Formulation of the design problem

We focus our investigation on a wheelbarrow-style vehicle. The wheelbarrow has two primary

components: the wheel and the ‘barrow’, which typically includes a container, a set of handles

and an axle. All parts that comprise the ‘barrow’ are fixed with respect to one another; therefore,

conceptually they can be treated as a single component. We solve the resulting two-body design

problem using numerical optimization whereby we mathematically represent the design as a set

of parameters which contain a full description of the design’s geometry, connectivity and material

distribution. We then define an objective function, which provides a quantitative measure of how

well each design performs. Optimization algorithms search the space of potential designs (i.e.

all possible combinations of all design parameter values) to find the precise set of values which

cause the objective function to be minimized, and this combination will correspond to the optimal

design for the prescribed performance objective. Using this general strategy, the algorithm must
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1) specify black box

    domain dimensions,

    boundary conditions and

    design objective

3) search design space

    using numerical

    optimization

4) graphically

    render optimized

    design geometry

2) discretize

    design domain for

    physics-based

    computational simulation

Figure 2. Black box design using topology optimization.

deduce the optimal structure for the barrow, and the optimal shape, size, location (relative to

the fixed axle) and spoke configuration of the wheel. This problem is particularly challenging

because we must model contact along a design-dependent surface (i.e. the circumference of the

wheel), and we must simultaneously optimize the structure of two distinct but inter-connected

elastic bodies, all while maintaining the continuity and smoothness of the optimization problem.

The objective of our design problem is to minimize energy expenditure. We seek a design for

our wheelbarrow that requires the operator to use as little energy as possible in transporting cargo

from point A to point B. In our energy model, we assume a frictionless axle. This assumption is

consistent with the fact that, when bearings are used, frictional losses are negligible, with most

rolling resistance caused by hysteresis due to inelastic deformations within the wheel system [16].

The second assumption is that the rolling motion is slow and quasi-static; therefore, there is no

kinetic energy or coasting. We also assume a rigid rolling surface and pure rolling with no slippage

at the wheel–ground interface. With these assumptions in place, we can express the total energy

expenditure as a function of the wheel shape. We then instruct the design algorithm to search

for the optimal wheel shape and internal structural layout that yields the most energy-efficient

performance. Using this method, we can optimize for rolling over both flat and curved periodic

surfaces. The optimal wheel shape is that which causes the axle (and the cargo it supports) to

traverse a straight, level path throughout the rolling motion. Figure 3 illustrates the rolling motion

of a wheel whose shape has been optimized for sinusoidal terrain.

(c) Literature survey

Topology optimization has been successfully applied to the design of a variety of structures

ranging from aircraft wings [15,17–19] to biomedical devices [20,21]. Several studies have also

applied topology optimization to the design of wheel structures [22,23]; however, in all of these

studies the wheel shape was given to the algorithm as input, and topology optimization was
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Figure 3. Motion of a shape-optimized wheelbarrow rolling over sinusoidal terrain, with the trajectory of the axle represented

by the green dashed line. Because the wheel is optimized for the terrain topography, the axle and cargo remain at a constant

height throughout the motion, thus minimizing energy expenditure.

used to create the stiffest possible structure within this prescribed shape. The current study differs

from its predecessors in that we assume nothing about the wheel’s shape, leaving the algorithm

to deduce the optimal shape and internal structural geometry autonomously. Therefore, our

proposed method combines shape and topology optimization along with a novel contact model

that captures the interaction between the ground and the wheel’s outer surface.

Combining shape and topology optimization into single simultaneous algorithms has been

done before in various ways. Some approaches optimize topology using an explicit representation

of a structure’s shape [24,25]. Others simultaneously optimize the three-dimensional shape of

a surface and the two-dimensional material topology within it, such as for the design of shell

structures [26,27]. There are also methods where explicitly defined shapes are combined with

completely free-form topology optimization, such as for shape optimization of a pre-stressing

tendon embedded within a topology optimized concrete beam [28], for shape and positioning

optimization of a battery pack within a structural frame [29] or for finding the optimal shapes

and locations of boundary conditions in topology optimization [5]. Previous studies have also

used numerical optimization methods to synthesize multi-body dynamic systems [30,31], or

individual components with loading conditions based on analysis of the system [32]. Notable

among these efforts is an August 2000 study authored by Lipson and Pollack in which they used

a genetic algorithm (an optimization method that mimics the process of evolution by natural

selection) together with additive manufacturing to autonomously synthesize and fabricate self-

sustaining robots [7]. This algorithm used a series of pre-defined structural building blocks that

were assembled to create robots with optimal locomotive performance.

Topology optimization has also been used to generate rigid body mechanisms. One study by

Luo et al. [33] synthesizes mechanisms by optimizing the number, type and location of joints

connecting overlapping planes. Another by Kim et al. uses topology optimization to design the

rear suspension linkage of a vehicle using simple bar and spring elements [34], and in one study

by Briot & Goldszetejn [35] the structural topology of the links in a five bar mechanism were

optimized. Here the rigid body representation was defined beforehand and the link sizes were

not optimized by the algorithm.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 3

0
 J

u
ly

 2
0
2
4
 



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

479:20230221
..........................................................

(d) Scope and contributions of this study

All of the studies described above use iterative procedures to systematically search the design

space, with the actual design gradually evolving toward a desirable solution. However, the

current study is the first to attempt iterative black box design to create a multi-body wheeled

vehicle. In this way, we seek to advance an emerging paradigm in computational design, where

algorithms autonomously create complex systems with minimal input from human designers.

The ability of the proposed algorithm to synthesize a multi-body wheeled transport

mechanism represents an important capability in computational design and design automation.

The design framework presented in this study contains several key contributions. These

include a unique design representation scheme that enables simultaneous shape and topology

optimization, an original contact model that preserves the continuity of the design space and

therefore allows for gradient-based optimization, an optimization problem formulation that

frames the design task as an energy minimization problem, and a new multi-layer topology

optimization formulation that accommodates 360° rigid body rotation. Together, these features

enable new design capabilities that can be applied to the design and synthesis of a variety

of mechanical components that rely on relative rotational motion between attached bodies.

Furthermore, by providing increased autonomy and design freedom to the algorithm, this

paradigm can yield improvements in system performance, as the final design depends less on

human intuition, and is instead determined mathematically based on optimality criteria.

(e) Organization of the paper

The remaining sections of the paper are organized as follows. In §2, we provide a detailed

description of methodology used to implement the algorithm, including the underlying

mathematical theory. In §3, we present the results of the proposed computational design process

along with some discussion on the significance of these results. Lastly, §4 contains concluding

remarks, including a summary of the study and directions for future work.

2. Methods
Shape optimization, along with sizing and topology optimization, is one of three foundational

approaches to structural optimization. It is regularly used to improve both structural performance

and aerodynamic performance [36], since small changes in shape can lead to significant increases

in aerodynamic drag. In the current study, we represent the wheel shape parametrically by a series

of ns spokes emanating from a central point that corresponds to the location of the axle within the

plane of the wheel. Each spoke is allowed to rotate freely within an assigned sector or wedge, as

shown in figure 4. For each spoke, we optimize the orientation angle as well as the spoke length,

which is defined as the distance from the spoke tip to the axle location. The wheel’s outer shape is

given by the polygon obtained when we connect the spoke tips in a clockwise sequence. Note that

the spokes are not actual structural members, but rather, they are a series of virtual line segments

used to mathematically represent the wheel’s shape. The shape optimization is simply a matter of

finding the set of optimal spoke lengths, x, and orientation angles, α, that correspond to the most

energy-efficient wheel shape.

(a) Terrain representation

We consider both flat and curved rolling surfaces that can be represented as periodic sinusoidal

functions. Within the xy Cartesian plane occupied by the wheel, the terrain height is given by the

following function:

T(X) =
AT

2

[

1 − cos

(

2π

λT
X

)]

, (2.1)
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polygonal

‘wheel’

axle

spokes

spoke tips

perimeter

segments

angular

‘wedge’

Figure 4. Polygonal wheel representation containing spokes and wedges.

Y

X

A
T

λ
T

T (X) = 
A

T

λ
T2

1 – cos X
2π

Figure 5. Illustration of the sinusoidal terrain profile.

where AT is the maximum elevation (i.e. amplitude) and λT is the terrain’s wavelength, and X is

the position along the horizontal axis. Figure 5 contains an illustration of the resulting curve in

the xy-plane. In all cases, we assume that gravity is aligned with the y-axis.

Note that in the example problem presented above, we have chosen a sinusoidal terrain profile

because the optimal wheel shape for this terrain has a closed-form analytical solution (i.e. the

elliptical wheel). Therefore, we can validate the output of our numerical shape optimization

method by comparing it against the known analytical solution. The proposed method requires

that the terrain is continuous, periodic, and can be represented as a function Y(X) with one-to-one

mapping from X to Y.

(b) Simulation and evaluation of the work function

The goal of the optimization procedure is to find the wheel shape that causes the operator to

expend minimal energy per unit distance travelled. Therefore, we minimize the total energy

expenditure (i.e. mechanical work) associated with a single revolution of the wheel, while
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3

3

2

21 44

�h1 �h2 �h3 �h4

Figure6. Motion of a suboptimalwheel rolling over flat terrain,with the axle trajectory shown in green, and vertices numbered

according to the order of contact with the ground.

enforcing a lower bound on the total wheel circumference, which is equivalent to the distance

travelled during a single revolution. The total work is directly proportional to the cumulative

increase in the height of the axle during the rolling motion. For a suboptimal wheel shape, this

quantity will be non-zero as shown in figure 6, where we trace the path of the axle within a

square wheel rolling over a flat surface. For the four-sided polygonal wheel, there are four peaks

in the axle trajectory, one for each vertex in the wheel shape. For each peak, we can compute �h,

which is the increase in the height of the axle. For a frictionless axle, the total work is equal to the

total gravitational potential energy associated with lifting the axle (along with the cargo that it

supports) through a distance of �h. Therefore, the total work, W, is given by

W = mg

nv
∑

i=1

�hi, (2.2)

where m is the total mass of the axle-carriage component plus the cargo contained within the

carriage, g is the acceleration due to gravity, and nv is the number of wheel vertices. Note that

we have assumed slow, quasi-static motion, therefore the wheel is not allowed to coast during

the descent portions of the axle trajectory, and there is no kinetic energy available to offset the

required energy expenditure of the operator. This assumption corresponds to the hypothetical

scenario in which the wheelbarrow is being used to transport delicate cargo. We evaluate the

work function by simulating the rolling motion. A complete revolution can be broken down into

a sequence of pivots about the point where a given wheel vertex makes contact with the ground,

as shown in figure 7. The figure depicts the rotation of the wheel about the tip of spoke i in the

xy-plane. During this particular rotation increment, the triangle formed by spoke i and spoke i + 1

pivots until the tip of spoke i + 1 makes contact with the ground. During each rotation increment,

i, we implement the following four-step procedure to compute the amount of work required for

each rotation increment.

1. Compute the xy coordinate of the next contact point, pi+1, using an iterative Newton–

Raphson procedure, where pi+1 is given by the intersection of the terrain, T(X), and the

rotating line segment, ri, which connects the tips of spoke i and spoke i + 1.

2. Compute the rotation angle θ i using θ = γ − β, where γ and β are the angles from the

horizontal to the line segment ri before and after the rotation.

3. Compute the xy-coordinates of the new axle location ai.

4. Evaluate the peak change in the axle height during the rotation, �hi.

Note that in step 4 of the above procedure, we must account for three mutually exclusive cases:

in case I, the axle rises monotonically throughout the duration of the rotation increment, in which

case we have

�hi = ai+1
y − ai

y, (2.3)
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Y

X

T(X)

X'

Y'

pi

r
i

ai

ai+1

pi+1

γ i

Δh
i

βi

θi

Figure 7. Schematic depicting a single rotation increment during the rolling process, with the black triangle representing a

sector within a polygonal wheel. Here, a represents the axle location, p represents the pivot point at which the spoke tip makes

contact with the terrain, T(X), and�hi represents the peak change in axle height during the rotation.

where ai+1
y is the y-coordinate of the axle location when the tips of spoke i and spoke i + 1 are in

contact with the terrain. In case II, the axle rises only during the initial portion of the rotation.

It reaches a peak height when spoke i is in a vertical position, and then the axle descends until

contact is made at point pi+1 (figure 7). In this case, the peak change in the axle height is given by

�hi = pi
y + Ri − ai

y, (2.4)

where Ri is the length of spoke i. In case III, the axle descends monotonically during the entire

rotation increment. In this case, �hi = 0.

Because the suboptimal wheel is generally non-convex (prior to the completion of the

optimization procedure), it is possible that the position in which spoke i + 1 touches the

ground may cause subsequent spokes to penetrate the terrain. This corresponds to a non-

physical scenario; however, this does not affect the execution of the algorithm. The equations

presented above are applicable whether the wheel is rolling forward or backward. Therefore,

we allow spokes to penetrate the terrain during the simulation, and if the tip of spoke i + 1 is

below the terrain surface at the beginning of rotation increment i, then the wheel must rotate

backward until the tip reaches the terrain’s surface. Any subsequent increase in height that

follows the backward rotation is included in the total work computation. Therefore, during the

optimization search, the algorithm naturally penalizes non-convex wheel geometries that cause

penetration.

(c) Perimeter constraints

For the case of flat terrain, we enforce a lower bound on the total perimeter, since a small wheel

circumference will require less work per revolution. This is due to the fact that we approximate

the circumference of the wheel as a piecewise linear polygon. For a smooth circular wheel,

the total work expenditure due to gravitational losses will be zero regardless of wheel size. By

enforcing this perimeter constraint while minimizing the energy expenditure for one revolution,

we effectively minimize the work per unit distance travelled. In the case of sinusoidal terrain,

we constrain the total perimeter of the wheel to match the arc length of a single period within
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the wave pattern. This ensures that the total energy expenditure is minimized across multiple

revolutions of the wheel. We compute the arc length of the terrain, s, over one wavelength, λT,

using the integral given in equation (2.5).

s = 2

∫λT/2

0

√

1 +
(

dT

dX

)2

dX, (2.5)

where T is the terrain elevation as defined in equation (2.1). Evaluating the perimeter of the wheel,

P, is simply a matter of summing the lengths of all line segments, ri, that connect adjacent spoke

tips.

(d) Optimization problem formulation

Once we are able to evaluate the work function, the perimeter function and the arc length of the

terrain, we define the numerical optimization problem as follows:

min
x,α

W(x, α)

subject to: g1(x, α) = s − P(x, α) ≤ 0

g2(x, α) = P(x, α) − s ≤ 0.

⎫

⎪

⎬

⎪

⎭

(2.6)

Note that in the case of the flat terrain, we only enforce the constraint g1, which ensures that

P is greater than the prescribed lower bound, s, in the final design. When enforced together, the

two constraints g1 and g2 are mathematically equivalent to an equality constraint in which P = s,

thus ensuring that the wheel traverses exactly one wavelength with each revolution. The above

optimization problem is solved numerically using the method of moving asymptotes, a gradient-

based optimizer [37]. All gradients (i.e. design sensitivities) are computed analytically by direct

differentiation of the work and perimeter functions.

(i) The topology optimization procedure

Topology optimization is a mathematical method for obtaining optimal geometries and

configurations for the design of structures. The design task is framed as a material distribution

problem in which the algorithm must determine the optimal layout of material within a

prescribed design domain for a given set of loads and boundary conditions. The design domain is

initially discretized into a grid of finite elements, and the optimization algorithm must determine

which elements should be solid (i.e. containing material), and which elements should be void in

the optimal structure. The output of the algorithm is a pixelized or voxelized element-by-element

representation of the optimal structure as shown in figure 2.

We model the elastic deflection of the structural domain using finite-element analysis. From

the displacement field, we are then able to compute more meaningful quantities like tip deflection,

maximum stress and structural compliance. Using the discretized finite-element mesh, the global

vector of nodal displacements, U, is computed using equation (2.7)

KU = F ⇒ U = K−1F, (2.7)

where F is the global vector of applied forces and K is the global stiffness matrix. This governing

equilibrium equation is obtained from a discretization of the Navier–Lamé equations with

prescribed Dirichlet and Neumann boundary conditions. It assumes linear elasticity with small

strains. The global stiffness matrix is obtained by assembling the element stiffness matrices such

that

K =
∼
∑

i

ki. (2.8)

Here the summation operator, Σ̃ , denotes matrix assembly in which we sum the individual

stiffness contributions of all elements by adding them to the appropriate rows and columns of K
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according to their inter-element connectivity. The effective stiffness matrix, ki, of each element is

determined by an interpolation function as shown below.

ki = ρpk0. (2.9)

Here k0 is the nominal stiffness matrix corresponding to a solid element, ρ symbolizes the

element’s relative material density, and p denotes the penalization constant. Note that a material

density of ρ = 1 corresponds to a fully solid element, while a material density of ρ = 0 indicates a

void element. The material densities serve as the design parameters in the optimization problem,

and together they provide a complete description of the structural topology. This particular

interpolation strategy is known as the Solid Isotropic Material with Penalization (SIMP) formulation

[38]. It allows elements to assume hybrid states along the solid-void continuum, which is

necessary for efficient gradient-based optimization. However, when p > 1, the formulation

effectively penalizes intermediate density states with a reduced stiffness-to-weight ratio, thus

incentivizing the optimizer to select designs containing only fully solid or fully void elements.

When successful, the algorithm will converge to a binary design that can be easily interpreted

and fabricated via additive manufacturing.

The SIMP method is one of many methods used to mathematically represent the

material distribution within a topology optimization framework. It builds upon the original

homogenization-based design representation introduced by Bendsøe & Kikuchi [11]. The SIMP

method was introduced shortly thereafter, and soon came to dominate the topology optimization

landscape due to its conceptual simplicity and high degree of versatility, which allows it to be

deployed in the design of a wide range of structures governed by a variety of physics models,

from concrete structures subject to brittle damage [39] to aircraft structures subject to aerodynamic

loading and fluid–structure interaction [16].

Since the introduction of the SIMP method, researchers have developed other strategies for

solving the material distribution problem. These methods include the level set method [40],

sequential element rejection and admission (SERA) [41], evolutionary algorithms including

genetic algorithms [42], generative adversarial networks (GANS) [43] and geometry projection

[44]. Each of these approaches offers unique advantages and disadvantages. For example, the

level set method yields a sharp, well-defined material interface; however, the optimization

search can also be sensitive to the initial guess, and extra steps must be taken to allow the

algorithm to nucleate new holes in two-dimensional problems [45]. Gradient-free methods

like genetic algorithms are known to be highly computationally expensive and may be

impractical for high-dimensional problems [46]. Similarly, data-driven methods like GANS

require thousands of training examples, which must be generated using traditional gradient-

based methods [43]. This makes the total cost of the method highly computationally

expensive.

Like the methods described above, the SIMP method has its disadvantages. Specifically, the

optimized designs can be mesh-dependent [47] and they can contain fuzzy boundaries at the

material interface [48]. In the current study, we resolve these issues using density filtering

[49], and Heaviside projection [48], with little additional computational cost. Additionally,

the topology optimization problems solved in this study are non-convex. Consequently,

the proposed problem formulation is subject to local minima, and therefore it is possible

to converge to different designs if one were to change the initial values of the design

parameters. This issue is present in all topology optimization methods [46,47], including those

mentioned above. It can be mitigated by choosing an appropriate initial material distribution.

Here we begin all topology optimizations with a fully solid design domain in which all

elements have full material density. Research has indicated that local minima occur at binary

locations within the design space (i.e. designs containing both solid and void regions in

which all elements have either fully solid or fully void density [50]). Hence, by starting

with a uniform material distribution, we are able to avoid convergence to in inferior local

minimum.
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Fcargo

handle location

wheel vertex

contact point

θ
i

axle

y

x

Figure 8. Domain and boundary conditions for the multi-body wheelbarrow design problem, with the wheel layer shown in

red and the barrow layer shown in blue. The algorithm identifies the lowest vertex in the wheel layer and activates a contact

boundary condition at that location to simulate contact with the ground.

(e) Multi-body design

The multi-body design problem involves simultaneously optimizing the shape and topology

of multiple inter-connected elastic bodies. To perform this task, we use a multi-layer topology

optimization framework in which we define multiple two-dimensional design domains that

are collocated within the xy-plane [51]. Each domain comprises a layer that will evolve into an

optimized component during the design process. We perform concurrent topology optimization

of all layers by computing the global elastic response of the combined multi-body system.

The layers are connected via pin joints, which restrict relative translational motion, but allow

connected bodies to undergo rigid body rotation with respect to one another. For the wheelbarrow

design problem, the axle is modelled as a pin joint.

In the current problem formulation, we include one layer each for the wheel and barrow

components. We then apply appropriate boundary conditions to each layer according to the

desired functionality (figure 8). To simulate the loading caused by the rolling of the wheel we

discretize the rolling motion into a series of evenly spaced rotation increments. Each increment is

characterized by the angle, θ i, that the wheel layer forms with the x-axis at the end of the rotation

increment.

(f) The contact model

There have been several previous efforts for contact modelling in topology optimization, for

example, modelling sliding contact between two-component structure interfaces [52], contact of

elastic bodies against rigid obstacles [53], contact between multiple interlocking components [54],

and internal contact modeling for large-strain structures [55]. Here we seek to model a dynamic

rotating component in contact with another rigid surface, and therefore have developed our own

contact model specifically for this kind of problem.

For each rotation increment, given the corresponding orientation of the wheel layer, the

algorithm computes the rotated position of all vertices using rotation matrices. The algorithm then

identifies which wheel vertex is in contact with the ground by finding the vertex with the lowest

y-coordinate expressed in the global reference frame. We then insert a virtual spring, connecting
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the contact vertex to a fixed support, as shown in figure 8. The contact spring provides stiffness in

both the x- and y-directions. This is designed to capture the effect of a static friction force exerted

by the ground on the wheel. In this way, we mimic the effect of the polygonal wheel pivoting

about the fixed contact point with the ground during the rotation increment. The outcome is a

numerical simulation of a no-slip rolling condition.

If the stiffness of the contact spring is infinite, this corresponds to a rigid ground. However, for

practical and numerical purposes we keep the spring stiffness finite, which maintains continuity

and smoothness of the optimization problem. Furthermore, rather than treating the contact

location as an infinitesimal point in the xy-plane, we model the contact point as a finite region

whose stiffness follows a Gaussian distribution as shown in figure 8. The peak of the distribution

function is located at the actual contact point (ζ ∗
x , ζ ∗

y ) and the contact stiffness exhibits a Gaussian

decay as one moves further from the contact point. Within the finite-element model, we add a

contact stiffness, kc, to all nodes in the wheel’s finite-element mesh, with each node’s contact

stiffness computed according to its distance from the current contact point. Therefore, for a node

located at a point (xn, yn), that node’s contact stiffness is computed as

kc =
[

1 0

0 1

]

κ0σ
√

2π exp

(

−
[

(ζ ∗
x − xn)2 + (ζ ∗

y − yn)2

2σ 2

])

, (2.10)

where σ is a constant used to control the steepness of the decay in the stiffness distribution, and

κ0 is the nominal stiffness of the pin joint used to simulate contact.

(g) Multi-body structural analysis

To account for the changing orientation of the wheel layer with respect to the rotationally fixed

barrow layer, we apply a rotation operation to the stiffness matrices of the elements in the wheel

mesh. For a given element with stiffness matrix k and orientation angle θ the rotated stiffness

matrix, k′, is given by

k′ = R(θi)kR(θi)
T, (2.11)

where the rotation matrix R is computed as

R(θi) =

⎡

⎢

⎢

⎢

⎣

RW 0 0 0

0 RW 0 0

0 0 RW 0

0 0 0 RW

⎤

⎥

⎥

⎥

⎦

, RW(θ ) =
[

cos(θ ) − sin(θ )

sin(θ ) cos(θ )

]

. (2.12)

During each rotation increment, i, we compute the global stiffness matrix, K, as the sum of the

stiffness contributions from the barrow layer KB, the wheel layer KW , and the contact springs KC,

so that

K =
[

KB 0

0 KW + KC

]

, (2.13)

where KC is a global assembly of the contact stiffnesses associated with all nodes in the wheel

mesh. When solving for the nodal displacements, U = K−1F, we treat the axle location as a shared

node at which the two layers have identical displacement. Note that the contact stiffness model

can also be used to model inter-layer pin joints. In this way, we could also optimize the axle

location; however, in the examples presented, the axle location is fixed within the two layers.

Because the optimizer is free to move the wheel relative to the axle, optimizing the axle location

would be redundant. Note also that this method results in a linear algebraic system, which we use

to solve for the displacement state during each rotation increment. This is in contrast to previous

methods for optimizing multi-part mechanisms, in which the algorithm performs nonlinear

analysis of flexible multi-body systems [51,56]. With this linear model, the numerical accuracy

is determined by the accuracy of the solution of the linear system, which we solve using a direct

method. Therefore, with modest computational effort, we obtain accurate displacement fields,
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which we can use to compute the design sensitivities. This also ensures reliable convergence of

the optimization method.

The optimization problem statement for the multi-body structural topology design problem

is given in equation (2.14). We minimize the weight of the combined wheelbarrow system,

while constraining the structural compliance during each load increment. Here, the compliance

is proportional to the total elastic strain energy within the structure, and by constraining this

quantity, we enforce a lower bound on the structural stiffness [57].

The numerical optimization problem is solved using the method of moving asymptotes,

the source code for which is available for academic use. We compute all constraint function

derivatives using the adjoint method, a full description of which can be found in [51].

min
ρ

ne
∑

j=1

ρj

subject to:FTUi − Cmax ≤ 0; for i = 1, 2, . . . , ns.

⎫

⎪

⎬

⎪

⎭

(2.14)

Note that the maximum allowable compliance, Cmax, must be chosen based on the maximum

expected vertical deflection of the wheelbarrow along the surface to which the cargo load is

applied. Based on this deflection, the size of the wheelbarrow, and the mass density of the

intended cargo, we can compute the corresponding maximum compliance.

(h) Simultaneous shape and topology design

To simultaneously design the wheel shape and the structural topology of the wheelbarrow

system, we simply combine the shape and topology optimization formulations described

above. The Gaussian-based distributed contact model described in equation (2.10) enables us

to continuously map discrete contact points onto the finite-element mesh, while maintaining

smoothness within the design space. This is essential for solving the combined shape and

topology design problem in which the location of the contact point within the wheel is subject

to design, and therefore must be treated as a design variable. Note that there is one-way coupling

between the shape and topology design modules, as the structural loads depend on the location of

the wheel vertices. We account for this coupling when minimizing the work function with respect

to the spoke lengths (x), the spoke angles (α), and the element densities (ρ). This minimization

is subject to constraints on the structural compliance (C) caused by each load case (i.e. rotation

increment), the total structural volume (V) of both the wheel and barrow components, and the

perimeter (P) of the wheel. The resulting coupled shape and topology optimization problem

statement is given below.

min
x,α,ρ

W(x, α, ρ)

subject to: FTUi − Cmax ≤ 0
ne
∑

j=1

ρj − Vmax ≤ 0

Pmin − P(x) ≤ 0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

, (2.15)

where Vmax is the maximum allowable volume of material and Pmin is the minimum allowable

wheel perimeter. The structural (i.e. topology) design sensitivities are computed analytically

using the adjoint method, and the numerical optimization problem is solved iteratively using

the method of moving asymptotes.

3. Results

(a) Shape optimization

Figure 9 shows the evolution of a wheel designed for rolling over a sinusoidal terrain. The red

dot indicates the location of the axle, and the dashed blue line represents the analytical solution

of the shape optimization problem (i.e. the theoretical optimum). The optimizer controls the
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0 iterations 100 iterations 200 iterations 400 iterations

800 iterations 1000 iterations 1200 iterations 1778 iterations

Figure 9. Evolution of the elliptical wheel shape during optimization. The design begins as an arbitrary polygonwhose vertices

are randomly distributed throughout the xy-plane. Through an iterative process, the design converges to the optimal wheel

shape indicated by the dashed blue line.

wheel shape by moving the vertices of the polygon, which is used to approximate the elliptical

wheel. Note that the vertices are initially scattered randomly in the xy-plane with the wheel shape

obtained by connecting these points in a clockwise sequence.

(b) Structural topology optimization

To obtain the internal structural design of the wheel and the barrow, we use a multi-layer topology

optimization formulation. Here the internal structure of the wheel component and the barrow

component are optimized simultaneously, with loads being transmitted from the barrow to the

wheel via the axle. Figure 10 (rows 1–4) shows the evolution of the wheel and barrow components

for both the circular (flat terrain) and the elliptical (sinusoidal terrain) wheel shapes. Note that in

the topology optimization phase, all structures begin as a black box in which the entire design

domain is populated with material. Within each iteration of the optimization procedure, the

algorithm simulates the rolling motion of the current design by breaking the motion down into a

series of rotational increments.

During the topology optimization, we assume a fixed wheel shape, which has been passed

down from the shape optimization algorithm, and we optimize for a series of discrete load cases

corresponding to different orientations assumed by the wheel during each rolling increment, with

the ground serving as a fixed reference frame. The objective of the topology optimization problem

is to minimize the mass of the wheelbarrow while ensuring that the system is sufficiently stiff with

respect to all loading scenarios. Enforcing a lower bound on structural stiffness helps to mitigate

inelastic deformations during rolling, thereby reducing energy dissipation due to hysteresis.

(c) Combined shape and topology optimization

We also created a combined shape and topology optimization algorithm that allows us to

simultaneously optimize the outer wheel shape along with the internal topologies of both the

wheel and barrow components. This problem is particularly challenging because as the wheel’s

outer shape evolves, the location of the contact point for each orientation angle (i.e. load case) also

changes from one iteration to the next. The contact model presented in §2(f) allows us to ensure

that the function used to define the design objective remains smooth and continuous despite the

changing contact point location. Figure 10 (rows 5 and 6) shows the evolution of the wheel and

barrow components for the combined shape and topology optimization problem. Note that the

red markers indicate the locations of the control points that form the outer shape of the wheel.
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elliptical

wheel and

barrow

(curved

terrain)

circular

wheel and

barrow

(flat

terrain)

shape +

topology

design

(flat

terrain)

iterations 0 5 10 50 200 1000

5 50 200 500 750 1000

5 20 50 200 400 1000

iterations

iterations

Figure 10. Evolution of the structural topology of the wheelbarrow system. For each the design, the barrow component is

shown on the top row and the wheel component is shown below. The algorithm iteratively progresses toward an optimal

structure by systematically removing material from the black box domain. Note that in the early stages of the algorithm, the

black box is fully populated with material, hence the appearance of solid black and solid grey boxes in the far left column.

These points are initially distributed randomly throughout the design domain, and the optimizer

prioritizes arranging these points into a circular formation before proceeding to optimize the

wheel’s internal structure.

From the material distributions shown in figure 10, we can extract the precise location of the

material surface. We then extrude the resulting contour in the z-axis to obtain a three-dimensional

interpretation of the computationally generated wheelbarrow designs. Figure 11 shows three-

dimensional CAD (computer-aided design) renderings of all three wheelbarrow designs, along

with a 3D printed prototype of the circular wheelbarrow.

(d) Additional terrain profiles

To demonstrate the applicability of our algorithm to more complex terrains, we present two

additional examples. The first is for a terrain in the shape of a triangle wave:

T(X) =
2AT

λT

∣

∣

∣

∣

mod

((

X −
λT

2

)

, λT

)

−
λT

2

∣

∣

∣

∣

, (3.1)
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(a)

(c) (d )

(b)

Figure 11. CAD renderings and 3D printed prototype of computationally designed wheelbarrow mechanisms. The 3D printed

wheelbarrow is fully functional with the wheel able to rotate freely about the axle. (a) Elliptical wheelbarrow. (b) Circular

wheelbarrow. (c) Shape and topology optimized wheelbarrow. (d) Three-dimensional printed circular wheelbarrow.

where, again, AT is the maximum elevation (i.e. amplitude), and λT is the terrain’s wavelength,

as in equation (2.1). The second pattern is that of an elliptical wave defined by:

T(X) =
b

√

1 − ((a2 − b2)/a2)sin2(πX/λT)
− b, (3.2)

where a and b are chosen constants. The optimal wheelbarrow topologies for each of these terrain

shapes are shown in figure 12.

The optimal wheel shapes rolling over their respective terrains are depicted in figure 13. The

images in figures 11–13 are notable in that they reveal a series of mechanisms whose function is

unlike anything found in nature, yet their material patterns have a highly organic appearance,

which distinguishes them from conventional wheeled vehicles. The ability of the algorithm

to autonomously synthesize a system with this type of complexity represents a significant

advancement in computational design and design automation.

4. Conclusion
In this study, we have introduced a novel method for automated computational synthesis

of multi-body wheeled mechanisms. We implemented structural topology optimization to

simultaneously generate the optimal geometry and material layout of the various components

of the mechanism, which include a wheel and a carriage component. The topology optimization

is coupled to a shape optimization scheme used to obtain the optimal wheel shape for a given
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elliptical

terrain

triangular

terrain

iterations 0 20 30 50 100 1000

Figure 12. Evolution of the structural topology of the wheelbarrow systems designed for periodic terrain. The solution for the

elliptical terrain is shown in the top two rows, and the triangular terrain in the bottom two rows.

Figure 13. Optimal wheel shapes rolling over their elliptical and triangular terrains.

terrain profile. We also devised an original stiffness-based contact model that simulated the

interaction between the wheel circumference and the ground. We demonstrated the method using

examples containing flat, level terrain as well as several topographically periodic terrains. In each

example, the algorithm converged to a feasible design whose wheel shape was consistent with

analytical solutions, and whose structural topology satisfied the imposed stiffness constraints.

This study demonstrates how gradient-based methods can be used to generate designs for

complex mechanical systems while starting from a black box. Additionally, the results show that

gradient-based methods can succeed even in contexts where the physics of the system being

designed contains nonlinear and discontinuous phenomena such as variable surface contact.

Future investigation will seek to expand the method to synthesize similarly complex and
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foundational mechanical systems containing multiple rotating components, such as pulleys and

gearboxes.
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