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In current engineering practice, computer-aided
design (CAD) tools play a key role in the design and
fabrication of most mechanical systems, including
the design of most vehicles. This software tends
to rely heavily on human designers to provide the
basic design concept, with the software being used
to computationally render an existing design, or
to perform modifications to a design to achieve
incremental improvements in performance. However,
an emerging class of computational methods, known
as topology optimization methods, offers the potential
for true black box computational design. Under
this general framework, practitioners provide the
algorithm with the constitutive properties of the
design materials, and the mechanical function being
designed for (e.g. maximum stiffness under a given
loading condition), and the algorithm autonomously
generates a description of the corresponding structure.
With some exceptions, existing topology optimization
methods are limited to generating static, single-body
designs. In this study, we present a novel method that
builds upon the current state of the art by combining
multiple collocated planar design domains to achieve
automated computational synthesis of multi-body
wheeled vehicles. This capability represents an
important step on the path toward automated
computational design of increasingly complex,
innovative and impactful mechanical systems.
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by/4.0/, which permits unrestricted use, provided the original author and
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Figure 1. The four levels of mechanical complexity. Current structural design algorithms take Level 0 complexity information
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1. Introduction

(a) Background

Wheeled transport mechanisms represent a crucial frontier in mechanical design. At its core,
engineering design can be understood as a process of creating purposeful complexity. Design
algorithms receive input information that describes the physics and behaviour of the design
materials or design components, and they use the input to generate a more complex system with
a specific engineering function. In the context of purely mechanical systems (i.e. those not reliant
on electrical or chemical processes), there exist four broad levels of complexity: the lowest level
includes raw materials in their natural form, having no organization or structure beyond their
natural heterogeneity and molecular composition. Hereafter, we refer to this class of systems as
having Level 0 complexity. The next stage of complexity (Level I) includes single-body structures
and architected materials. Level I systems are largely static, with all motion caused by elastic and
inelastic material deformations or strains. Systems with Level II complexity contain two or three
moving parts that are combined to perform a basic mechanical function. This class of systems
includes compound machines like a wheelbarrow or a pair of pliers. Lastly, we have Level III
complexity, which refers to complex machines containing chains of many (often 10 or more)
Level I and Level IT components (figure 1). This class of systems includes bicycles and mechanical
clocks (table 1).

Current mechanical design algorithms generally fall within one of two categories. In one camp,
we have structural design algorithms, which receive Level 0 input and generate Level I designs.
These algorithms typically use gradient-based optimization to tailor the size, shape and topology
[1] of the structural features to produce highly specialized structures [2,3], mechanisms [4,5] and
materials [6]. In the other camp, we have algorithms that receive Level Il information describing
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Table 1. Nomenclature.

(Continued.)
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Table 1. (Continued.)

a set of rudimentary building blocks. The algorithm then synthesizes complex kinematic chains
(Level III) by systematically selecting and assembling the various components [7-9]. Figure 1
contains an illustration of the complexity categories and the role of the various algorithms in
producing purposeful complexity. Existing algorithms are very efficient at solving these two
distinct design problems. However, we currently lack effective means of automatically making
the leap from Level 0 to Level II complexity. Traversing this barrier represents a significant
advancement in design automation. For this reason, we seek to create an algorithm that can
autonomously synthesize a wheeled vehicle (Level II complexity) using a series of level 0
building blocks. The algorithm is given only the mechanical properties of the design material,
the boundary conditions of the black box domain within which the design must be created, and a
mathematical description of the desired mechanical function.

This approach to computational design in which the design domain is treated as a black box
has its roots in topology optimization [10,11]. This term refers to a class of methods in which
the algorithm generates an optimal structure by systematically distributing material within the
design domain to create a design that performs optimally with respect to a given objective
(figure 2). Topology optimization algorithms are typically used to generate level I systems (i.e.
single-bodied static structures and metamaterials) [12,13]. Several authors have noted that the
designs obtained through topology optimization appear organic in their material pattern, and
their appearance has been compared to the microstructure of human bone tissue [14] and bird
beaks [15].

(b) Formulation of the design problem

We focus our investigation on a wheelbarrow-style vehicle. The wheelbarrow has two primary
components: the wheel and the ‘barrow’, which typically includes a container, a set of handles
and an axle. All parts that comprise the ‘barrow” are fixed with respect to one another; therefore,
conceptually they can be treated as a single component. We solve the resulting two-body design
problem using numerical optimization whereby we mathematically represent the design as a set
of parameters which contain a full description of the design’s geometry, connectivity and material
distribution. We then define an objective function, which provides a quantitative measure of how
well each design performs. Optimization algorithms search the space of potential designs (i.e.
all possible combinations of all design parameter values) to find the precise set of values which
cause the objective function to be minimized, and this combination will correspond to the optimal
design for the prescribed performance objective. Using this general strategy, the algorithm must
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Figure 2. Black box design using topology optimization.

deduce the optimal structure for the barrow, and the optimal shape, size, location (relative to
the fixed axle) and spoke configuration of the wheel. This problem is particularly challenging
because we must model contact along a design-dependent surface (i.e. the circumference of the
wheel), and we must simultaneously optimize the structure of two distinct but inter-connected
elastic bodies, all while maintaining the continuity and smoothness of the optimization problem.

The objective of our design problem is to minimize energy expenditure. We seek a design for
our wheelbarrow that requires the operator to use as little energy as possible in transporting cargo
from point A to point B. In our energy model, we assume a frictionless axle. This assumption is
consistent with the fact that, when bearings are used, frictional losses are negligible, with most
rolling resistance caused by hysteresis due to inelastic deformations within the wheel system [16].
The second assumption is that the rolling motion is slow and quasi-static; therefore, there is no
kinetic energy or coasting. We also assume a rigid rolling surface and pure rolling with no slippage
at the wheel-ground interface. With these assumptions in place, we can express the total energy
expenditure as a function of the wheel shape. We then instruct the design algorithm to search
for the optimal wheel shape and internal structural layout that yields the most energy-efficient
performance. Using this method, we can optimize for rolling over both flat and curved periodic
surfaces. The optimal wheel shape is that which causes the axle (and the cargo it supports) to
traverse a straight, level path throughout the rolling motion. Figure 3 illustrates the rolling motion
of a wheel whose shape has been optimized for sinusoidal terrain.

(c) Literature survey

Topology optimization has been successfully applied to the design of a variety of structures
ranging from aircraft wings [15,17-19] to biomedical devices [20,21]. Several studies have also
applied topology optimization to the design of wheel structures [22,23]; however, in all of these
studies the wheel shape was given to the algorithm as input, and topology optimization was
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Figure 3. Motion of a shape-optimized wheelbarrow rolling over sinusoidal terrain, with the trajectory of the axle represented
by the green dashed line. Because the wheel is optimized for the terrain topography, the axle and cargo remain at a constant
height throughout the motion, thus minimizing energy expenditure.

used to create the stiffest possible structure within this prescribed shape. The current study differs
from its predecessors in that we assume nothing about the wheel’s shape, leaving the algorithm
to deduce the optimal shape and internal structural geometry autonomously. Therefore, our
proposed method combines shape and topology optimization along with a novel contact model
that captures the interaction between the ground and the wheel’s outer surface.

Combining shape and topology optimization into single simultaneous algorithms has been
done before in various ways. Some approaches optimize topology using an explicit representation
of a structure’s shape [24,25]. Others simultaneously optimize the three-dimensional shape of
a surface and the two-dimensional material topology within it, such as for the design of shell
structures [26,27]. There are also methods where explicitly defined shapes are combined with
completely free-form topology optimization, such as for shape optimization of a pre-stressing
tendon embedded within a topology optimized concrete beam [28], for shape and positioning
optimization of a battery pack within a structural frame [29] or for finding the optimal shapes
and locations of boundary conditions in topology optimization [5]. Previous studies have also
used numerical optimization methods to synthesize multi-body dynamic systems [30,31], or
individual components with loading conditions based on analysis of the system [32]. Notable
among these efforts is an August 2000 study authored by Lipson and Pollack in which they used
a genetic algorithm (an optimization method that mimics the process of evolution by natural
selection) together with additive manufacturing to autonomously synthesize and fabricate self-
sustaining robots [7]. This algorithm used a series of pre-defined structural building blocks that
were assembled to create robots with optimal locomotive performance.

Topology optimization has also been used to generate rigid body mechanisms. One study by
Luo et al. [33] synthesizes mechanisms by optimizing the number, type and location of joints
connecting overlapping planes. Another by Kim et al. uses topology optimization to design the
rear suspension linkage of a vehicle using simple bar and spring elements [34], and in one study
by Briot & Goldszetejn [35] the structural topology of the links in a five bar mechanism were
optimized. Here the rigid body representation was defined beforehand and the link sizes were
not optimized by the algorithm.
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(d) Scope and contributions of this study

All of the studies described above use iterative procedures to systematically search the design
space, with the actual design gradually evolving toward a desirable solution. However, the
current study is the first to attempt iterative black box design to create a multi-body wheeled
vehicle. In this way, we seek to advance an emerging paradigm in computational design, where
algorithms autonomously create complex systems with minimal input from human designers.

The ability of the proposed algorithm to synthesize a multi-body wheeled transport
mechanism represents an important capability in computational design and design automation.
The design framework presented in this study contains several key contributions. These
include a unique design representation scheme that enables simultaneous shape and topology
optimization, an original contact model that preserves the continuity of the design space and
therefore allows for gradient-based optimization, an optimization problem formulation that
frames the design task as an energy minimization problem, and a new multi-layer topology
optimization formulation that accommodates 360° rigid body rotation. Together, these features
enable new design capabilities that can be applied to the design and synthesis of a variety
of mechanical components that rely on relative rotational motion between attached bodies.
Furthermore, by providing increased autonomy and design freedom to the algorithm, this
paradigm can yield improvements in system performance, as the final design depends less on
human intuition, and is instead determined mathematically based on optimality criteria.

(e) Organization of the paper

The remaining sections of the paper are organized as follows. In §2, we provide a detailed
description of methodology used to implement the algorithm, including the underlying
mathematical theory. In §3, we present the results of the proposed computational design process
along with some discussion on the significance of these results. Lastly, §4 contains concluding
remarks, including a summary of the study and directions for future work.

2. Methods

Shape optimization, along with sizing and topology optimization, is one of three foundational
approaches to structural optimization. It is regularly used to improve both structural performance
and aerodynamic performance [36], since small changes in shape can lead to significant increases
in aerodynamic drag. In the current study, we represent the wheel shape parametrically by a series
of ns spokes emanating from a central point that corresponds to the location of the axle within the
plane of the wheel. Each spoke is allowed to rotate freely within an assigned sector or wedge, as
shown in figure 4. For each spoke, we optimize the orientation angle as well as the spoke length,
which is defined as the distance from the spoke tip to the axle location. The wheel’s outer shape is
given by the polygon obtained when we connect the spoke tips in a clockwise sequence. Note that
the spokes are not actual structural members, but rather, they are a series of virtual line segments
used to mathematically represent the wheel’s shape. The shape optimization is simply a matter of
finding the set of optimal spoke lengths, x, and orientation angles, «, that correspond to the most
energy-efficient wheel shape.

(a) Terrain representation

We consider both flat and curved rolling surfaces that can be represented as periodic sinusoidal
functions. Within the xy Cartesian plane occupied by the wheel, the terrain height is given by the

following function:
A 2
Tx) = 2L [1 — cos (—”X)] ) 2.1)
2 AT
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Figure 5. lllustration of the sinusoidal terrain profile.

where At is the maximum elevation (i.e. amplitude) and At is the terrain’s wavelength, and X is
the position along the horizontal axis. Figure 5 contains an illustration of the resulting curve in
the xy-plane. In all cases, we assume that gravity is aligned with the y-axis.

Note that in the example problem presented above, we have chosen a sinusoidal terrain profile
because the optimal wheel shape for this terrain has a closed-form analytical solution (i.e. the
elliptical wheel). Therefore, we can validate the output of our numerical shape optimization
method by comparing it against the known analytical solution. The proposed method requires
that the terrain is continuous, periodic, and can be represented as a function Y(X) with one-to-one
mapping from X to Y.

(b) Simulation and evaluation of the work function

The goal of the optimization procedure is to find the wheel shape that causes the operator to
expend minimal energy per unit distance travelled. Therefore, we minimize the total energy
expenditure (i.e. mechanical work) associated with a single revolution of the wheel, while
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Figure 6. Motion of a suboptimal wheel rolling over flat terrain, with the axle trajectory shown in green, and vertices numbered
according to the order of contact with the ground.

enforcing a lower bound on the total wheel circumference, which is equivalent to the distance
travelled during a single revolution. The total work is directly proportional to the cumulative
increase in the height of the axle during the rolling motion. For a suboptimal wheel shape, this
quantity will be non-zero as shown in figure 6, where we trace the path of the axle within a
square wheel rolling over a flat surface. For the four-sided polygonal wheel, there are four peaks
in the axle trajectory, one for each vertex in the wheel shape. For each peak, we can compute A#,
which is the increase in the height of the axle. For a frictionless axle, the total work is equal to the
total gravitational potential energy associated with lifting the axle (along with the cargo that it
supports) through a distance of Ah. Therefore, the total work, W, is given by

n,

W=mg3 Ak, 22)
i=1

where m is the total mass of the axle-carriage component plus the cargo contained within the
carriage, g is the acceleration due to gravity, and 7, is the number of wheel vertices. Note that
we have assumed slow, quasi-static motion, therefore the wheel is not allowed to coast during
the descent portions of the axle trajectory, and there is no kinetic energy available to offset the
required energy expenditure of the operator. This assumption corresponds to the hypothetical
scenario in which the wheelbarrow is being used to transport delicate cargo. We evaluate the
work function by simulating the rolling motion. A complete revolution can be broken down into
a sequence of pivots about the point where a given wheel vertex makes contact with the ground,
as shown in figure 7. The figure depicts the rotation of the wheel about the tip of spoke i in the
xy-plane. During this particular rotation increment, the triangle formed by spoke i and spoke i + 1
pivots until the tip of spoke 7 + 1 makes contact with the ground. During each rotation increment,
i, we implement the following four-step procedure to compute the amount of work required for
each rotation increment.

1. Compute the xy coordinate of the next contact point, p'*!, using an iterative Newton-—
Raphson procedure, where pi“‘l is given by the intersection of the terrain, T(X), and the
rotating line segment, r;, which connects the tips of spoke i and spoke i + 1.

2. Compute the rotation angle #' using # =y — 8, where y and g are the angles from the
horizontal to the line segment r; before and after the rotation.

3. Compute the xy-coordinates of the new axle location a'.

4. Evaluate the peak change in the axle height during the rotation, Ah;.

Note that in step 4 of the above procedure, we must account for three mutually exclusive cases:
in case I, the axle rises monotonically throughout the duration of the rotation increment, in which
case we have

S = R
Ah; = a, ay, (2.3)
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Figure 7. Schematic depicting a single rotation increment during the rolling process, with the black triangle representing a
sector within a polygonal wheel. Here, a represents the axle location, p represents the pivot point at which the spoke tip makes
contact with the terrain, T(X), and Ah,; represents the peak change in axle height during the rotation.

where u;“ is the y-coordinate of the axle location when the tips of spoke i and spoke i + 1 are in
contact with the terrain. In case II, the axle rises only during the initial portion of the rotation.
It reaches a peak height when spoke i is in a vertical position, and then the axle descends until
contact is made at point p'*! (figure 7). In this case, the peak change in the axle height is given by

Ahi=p, +R; —a,, (2.4)

where R; is the length of spoke i. In case III, the axle descends monotonically during the entire
rotation increment. In this case, Ah; =0.

Because the suboptimal wheel is generally non-convex (prior to the completion of the
optimization procedure), it is possible that the position in which spoke i+1 touches the
ground may cause subsequent spokes to penetrate the terrain. This corresponds to a non-
physical scenario; however, this does not affect the execution of the algorithm. The equations
presented above are applicable whether the wheel is rolling forward or backward. Therefore,
we allow spokes to penetrate the terrain during the simulation, and if the tip of spoke i +1 is
below the terrain surface at the beginning of rotation increment i, then the wheel must rotate
backward until the tip reaches the terrain’s surface. Any subsequent increase in height that
follows the backward rotation is included in the total work computation. Therefore, during the
optimization search, the algorithm naturally penalizes non-convex wheel geometries that cause
penetration.

(c) Perimeter constraints

For the case of flat terrain, we enforce a lower bound on the total perimeter, since a small wheel
circumference will require less work per revolution. This is due to the fact that we approximate
the circumference of the wheel as a piecewise linear polygon. For a smooth circular wheel,
the total work expenditure due to gravitational losses will be zero regardless of wheel size. By
enforcing this perimeter constraint while minimizing the energy expenditure for one revolution,
we effectively minimize the work per unit distance travelled. In the case of sinusoidal terrain,
we constrain the total perimeter of the wheel to match the arc length of a single period within
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the wave pattern. This ensures that the total energy expenditure is minimized across multiple
revolutions of the wheel. We compute the arc length of the terrain, s, over one wavelength, Ar,
using the integral given in equation (2.5).

hr/2 dr\?
=2 1+ (=% ) dX 2.
s L +(dX) dx, (2.5)

where T is the terrain elevation as defined in equation (2.1). Evaluating the perimeter of the wheel,
P, is simply a matter of summing the lengths of all line segments, r;, that connect adjacent spoke
tips.

(d) Optimization problem formulation

Once we are able to evaluate the work function, the perimeter function and the arc length of the
terrain, we define the numerical optimization problem as follows:

min W(x, )
X,00
subject to:  g1(x, @) =5 — P(x, &) <0 (2.6)

$(x,0) =P(x, ) —s <0.

Note that in the case of the flat terrain, we only enforce the constraint g1, which ensures that
P is greater than the prescribed lower bound, s, in the final design. When enforced together, the
two constraints g1 and g, are mathematically equivalent to an equality constraint in which P =s,
thus ensuring that the wheel traverses exactly one wavelength with each revolution. The above
optimization problem is solved numerically using the method of moving asymptotes, a gradient-
based optimizer [37]. All gradients (i.e. design sensitivities) are computed analytically by direct
differentiation of the work and perimeter functions.

(i) The topology optimization procedure

Topology optimization is a mathematical method for obtaining optimal geometries and
configurations for the design of structures. The design task is framed as a material distribution
problem in which the algorithm must determine the optimal layout of material within a
prescribed design domain for a given set of loads and boundary conditions. The design domain is
initially discretized into a grid of finite elements, and the optimization algorithm must determine
which elements should be solid (i.e. containing material), and which elements should be void in
the optimal structure. The output of the algorithm is a pixelized or voxelized element-by-element
representation of the optimal structure as shown in figure 2.

We model the elastic deflection of the structural domain using finite-element analysis. From
the displacement field, we are then able to compute more meaningful quantities like tip deflection,
maximum stress and structural compliance. Using the discretized finite-element mesh, the global
vector of nodal displacements, U, is computed using equation (2.7)

KU=F=U=K"'F, (2.7)

where F is the global vector of applied forces and K is the global stiffness matrix. This governing
equilibrium equation is obtained from a discretization of the Navier-Lamé equations with
prescribed Dirichlet and Neumann boundary conditions. It assumes linear elasticity with small
strains. The global stiffness matrix is obtained by assembling the element stiffness matrices such
that

K=) ki (2.8)

Here the summation operator, ¥, denotes matrix assembly in which we sum the individual
stiffness contributions of all elements by adding them to the appropriate rows and columns of K

2206207 6L Y 205§ 204g edsyjeuinof/BioBuysiigndiaaposiefos



Downloaded from https://royalsocietypublishing.org/ on 30 July 2024

according to their inter-element connectivity. The effective stiffness matrix, k;, of each element is
determined by an interpolation function as shown below.

ki = p'ko. 2.9)

Here kg is the nominal stiffness matrix corresponding to a solid element, p symbolizes the
element’s relative material density, and p denotes the penalization constant. Note that a material
density of p =1 corresponds to a fully solid element, while a material density of p =0 indicates a
void element. The material densities serve as the design parameters in the optimization problem,
and together they provide a complete description of the structural topology. This particular
interpolation strategy is known as the Solid Isotropic Material with Penalization (SIMP) formulation
[38]. It allows elements to assume hybrid states along the solid-void continuum, which is
necessary for efficient gradient-based optimization. However, when p>1, the formulation
effectively penalizes intermediate density states with a reduced stiffness-to-weight ratio, thus
incentivizing the optimizer to select designs containing only fully solid or fully void elements.
When successful, the algorithm will converge to a binary design that can be easily interpreted
and fabricated via additive manufacturing.

The SIMP method is one of many methods used to mathematically represent the
material distribution within a topology optimization framework. It builds upon the original
homogenization-based design representation introduced by Bendsee & Kikuchi [11]. The SIMP
method was introduced shortly thereafter, and soon came to dominate the topology optimization
landscape due to its conceptual simplicity and high degree of versatility, which allows it to be
deployed in the design of a wide range of structures governed by a variety of physics models,
from concrete structures subject to brittle damage [39] to aircraft structures subject to aerodynamic
loading and fluid—structure interaction [16].

Since the introduction of the SIMP method, researchers have developed other strategies for
solving the material distribution problem. These methods include the level set method [40],
sequential element rejection and admission (SERA) [41], evolutionary algorithms including
genetic algorithms [42], generative adversarial networks (GANS) [43] and geometry projection
[44]. Each of these approaches offers unique advantages and disadvantages. For example, the
level set method yields a sharp, well-defined material interface; however, the optimization
search can also be sensitive to the initial guess, and extra steps must be taken to allow the
algorithm to nucleate new holes in two-dimensional problems [45]. Gradient-free methods
like genetic algorithms are known to be highly computationally expensive and may be
impractical for high-dimensional problems [46]. Similarly, data-driven methods like GANS
require thousands of training examples, which must be generated using traditional gradient-
based methods [43]. This makes the total cost of the method highly computationally
expensive.

Like the methods described above, the SIMP method has its disadvantages. Specifically, the
optimized designs can be mesh-dependent [47] and they can contain fuzzy boundaries at the
material interface [48]. In the current study, we resolve these issues using density filtering
[49], and Heaviside projection [48], with little additional computational cost. Additionally,
the topology optimization problems solved in this study are non-convex. Consequently,
the proposed problem formulation is subject to local minima, and therefore it is possible
to converge to different designs if one were to change the initial values of the design
parameters. This issue is present in all topology optimization methods [46,47], including those
mentioned above. It can be mitigated by choosing an appropriate initial material distribution.
Here we begin all topology optimizations with a fully solid design domain in which all
elements have full material density. Research has indicated that local minima occur at binary
locations within the design space (i.e. designs containing both solid and void regions in
which all elements have either fully solid or fully void density [50]). Hence, by starting
with a uniform material distribution, we are able to avoid convergence to in inferior local
minimum.
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Figure 8. Domain and boundary conditions for the multi-body wheelbarrow design problem, with the wheel layer shown in
red and the barrow layer shown in blue. The algorithm identifies the lowest vertex in the wheel layer and activates a contact
boundary condition at that location to simulate contact with the ground.

(e) Multi-body design

The multi-body design problem involves simultaneously optimizing the shape and topology
of multiple inter-connected elastic bodies. To perform this task, we use a multi-layer topology
optimization framework in which we define multiple two-dimensional design domains that
are collocated within the xy-plane [51]. Each domain comprises a layer that will evolve into an
optimized component during the design process. We perform concurrent topology optimization
of all layers by computing the global elastic response of the combined multi-body system.
The layers are connected via pin joints, which restrict relative translational motion, but allow
connected bodies to undergo rigid body rotation with respect to one another. For the wheelbarrow
design problem, the axle is modelled as a pin joint.

In the current problem formulation, we include one layer each for the wheel and barrow
components. We then apply appropriate boundary conditions to each layer according to the
desired functionality (figure 8). To simulate the loading caused by the rolling of the wheel we
discretize the rolling motion into a series of evenly spaced rotation increments. Each increment is
characterized by the angle, 6;, that the wheel layer forms with the x-axis at the end of the rotation
increment.

(f) The contact model

There have been several previous efforts for contact modelling in topology optimization, for
example, modelling sliding contact between two-component structure interfaces [52], contact of
elastic bodies against rigid obstacles [53], contact between multiple interlocking components [54],
and internal contact modeling for large-strain structures [55]. Here we seek to model a dynamic
rotating component in contact with another rigid surface, and therefore have developed our own
contact model specifically for this kind of problem.

For each rotation increment, given the corresponding orientation of the wheel layer, the
algorithm computes the rotated position of all vertices using rotation matrices. The algorithm then
identifies which wheel vertex is in contact with the ground by finding the vertex with the lowest
y-coordinate expressed in the global reference frame. We then insert a virtual spring, connecting

20620 6Lt y 205§ 204d edsyjeuinol/ioBuysiigndiaaosiefos



Downloaded from https://royalsocietypublishing.org/ on 30 July 2024

the contact vertex to a fixed support, as shown in figure 8. The contact spring provides stiffness in
both the x- and y-directions. This is designed to capture the effect of a static friction force exerted
by the ground on the wheel. In this way, we mimic the effect of the polygonal wheel pivoting
about the fixed contact point with the ground during the rotation increment. The outcome is a
numerical simulation of a no-slip rolling condition.

If the stiffness of the contact spring is infinite, this corresponds to a rigid ground. However, for
practical and numerical purposes we keep the spring stiffness finite, which maintains continuity
and smoothness of the optimization problem. Furthermore, rather than treating the contact
location as an infinitesimal point in the xy-plane, we model the contact point as a finite region
whose stiffness follows a Gaussian distribution as shown in figure 8. The peak of the distribution
function is located at the actual contact point (¢, ;‘y*) and the contact stiffness exhibits a Gaussian
decay as one moves further from the contact point. Within the finite-element model, we add a
contact stiffness, k., to all nodes in the wheel’s finite-element mesh, with each node’s contact
stiffness computed according to its distance from the current contact point. Therefore, for a node
located at a point (x;, i), that node’s contact stiffness is computed as

* 2 * 2
kC=|:1 O}Koamexp (_[(cx Xn)” + (& = yn) D 210)

0 1 202

where o is a constant used to control the steepness of the decay in the stiffness distribution, and
k¢ is the nominal stiffness of the pin joint used to simulate contact.

(g) Multi-body structural analysis

To account for the changing orientation of the wheel layer with respect to the rotationally fixed
barrow layer, we apply a rotation operation to the stiffness matrices of the elements in the wheel
mesh. For a given element with stiffness matrix k and orientation angle # the rotated stiffness
matrix, k', is given by

K =R(6)kR(6;)T, (2.11)

where the rotation matrix R is computed as

Ry 0 0 0
v | 0 Rw © 0 __ | cos(®) —sin()
R() = 0 0 Rw O 'RW(Q)_|:sin(9) cos(@)i|' (2.12)
0 0 0 Ry

During each rotation increment, i, we compute the global stiffness matrix, K, as the sum of the
stiffness contributions from the barrow layer Kp, the wheel layer Kyy, and the contact springs Kc,

so that
K;p 0
K= , 2.1
|: 0 Kw+ Kci| (2.13)

where K¢ is a global assembly of the contact stiffnesses associated with all nodes in the wheel
mesh. When solving for the nodal displacements, U = K~ !F, we treat the axle location as a shared
node at which the two layers have identical displacement. Note that the contact stiffness model
can also be used to model inter-layer pin joints. In this way, we could also optimize the axle
location; however, in the examples presented, the axle location is fixed within the two layers.
Because the optimizer is free to move the wheel relative to the axle, optimizing the axle location
would be redundant. Note also that this method results in a linear algebraic system, which we use
to solve for the displacement state during each rotation increment. This is in contrast to previous
methods for optimizing multi-part mechanisms, in which the algorithm performs nonlinear
analysis of flexible multi-body systems [51,56]. With this linear model, the numerical accuracy
is determined by the accuracy of the solution of the linear system, which we solve using a direct
method. Therefore, with modest computational effort, we obtain accurate displacement fields,
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which we can use to compute the design sensitivities. This also ensures reliable convergence of
the optimization method.

The optimization problem statement for the multi-body structural topology design problem
is given in equation (2.14). We minimize the weight of the combined wheelbarrow system,
while constraining the structural compliance during each load increment. Here, the compliance
is proportional to the total elastic strain energy within the structure, and by constraining this
quantity, we enforce a lower bound on the structural stiffness [57].

The numerical optimization problem is solved using the method of moving asymptotes,
the source code for which is available for academic use. We compute all constraint function
derivatives using the adjoint method, a full description of which can be found in [51].

e
min ) p;
[ (2.14)

subject to:FTU; — Cinax <0; fori=1,2,...,ns.

Note that the maximum allowable compliance, Cmax, must be chosen based on the maximum
expected vertical deflection of the wheelbarrow along the surface to which the cargo load is
applied. Based on this deflection, the size of the wheelbarrow, and the mass density of the
intended cargo, we can compute the corresponding maximum compliance.

(h) Simultaneous shape and topology design

To simultaneously design the wheel shape and the structural topology of the wheelbarrow
system, we simply combine the shape and topology optimization formulations described
above. The Gaussian-based distributed contact model described in equation (2.10) enables us
to continuously map discrete contact points onto the finite-element mesh, while maintaining
smoothness within the design space. This is essential for solving the combined shape and
topology design problem in which the location of the contact point within the wheel is subject
to design, and therefore must be treated as a design variable. Note that there is one-way coupling
between the shape and topology design modules, as the structural loads depend on the location of
the wheel vertices. We account for this coupling when minimizing the work function with respect
to the spoke lengths (x), the spoke angles («), and the element densities (p). This minimization
is subject to constraints on the structural compliance (C) caused by each load case (i.e. rotation
increment), the total structural volume (V) of both the wheel and barrow components, and the
perimeter (P) of the wheel. The resulting coupled shape and topology optimization problem
statement is given below.

min W(x, «, p)

x,0,0

subject to:  FTU; — Cpax <0

, (2.15)

]
Prin — P(x) <0

Me
pj— Vimax <0
=1

where Viax is the maximum allowable volume of material and P, is the minimum allowable
wheel perimeter. The structural (i.e. topology) design sensitivities are computed analytically
using the adjoint method, and the numerical optimization problem is solved iteratively using
the method of moving asymptotes.

3. Results

(a) Shape optimization

Figure 9 shows the evolution of a wheel designed for rolling over a sinusoidal terrain. The red
dot indicates the location of the axle, and the dashed blue line represents the analytical solution
of the shape optimization problem (i.e. the theoretical optimum). The optimizer controls the
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Figure 9. Evolution of the elliptical wheel shape during optimization. The design begins as an arbitrary polygon whose vertices
are randomly distributed throughout the xy-plane. Through an iterative process, the design converges to the optimal wheel
shape indicated by the dashed blue line.

wheel shape by moving the vertices of the polygon, which is used to approximate the elliptical
wheel. Note that the vertices are initially scattered randomly in the xy-plane with the wheel shape
obtained by connecting these points in a clockwise sequence.

(b) Structural topology optimization

To obtain the internal structural design of the wheel and the barrow, we use a multi-layer topology
optimization formulation. Here the internal structure of the wheel component and the barrow
component are optimized simultaneously, with loads being transmitted from the barrow to the
wheel via the axle. Figure 10 (rows 1-4) shows the evolution of the wheel and barrow components
for both the circular (flat terrain) and the elliptical (sinusoidal terrain) wheel shapes. Note that in
the topology optimization phase, all structures begin as a black box in which the entire design
domain is populated with material. Within each iteration of the optimization procedure, the
algorithm simulates the rolling motion of the current design by breaking the motion down into a
series of rotational increments.

During the topology optimization, we assume a fixed wheel shape, which has been passed
down from the shape optimization algorithm, and we optimize for a series of discrete load cases
corresponding to different orientations assumed by the wheel during each rolling increment, with
the ground serving as a fixed reference frame. The objective of the topology optimization problem
is to minimize the mass of the wheelbarrow while ensuring that the system is sufficiently stiff with
respect to all loading scenarios. Enforcing a lower bound on structural stiffness helps to mitigate
inelastic deformations during rolling, thereby reducing energy dissipation due to hysteresis.

(c) Combined shape and topology optimization

We also created a combined shape and topology optimization algorithm that allows us to
simultaneously optimize the outer wheel shape along with the internal topologies of both the
wheel and barrow components. This problem is particularly challenging because as the wheel’s
outer shape evolves, the location of the contact point for each orientation angle (i.e. load case) also
changes from one iteration to the next. The contact model presented in §2(f) allows us to ensure
that the function used to define the design objective remains smooth and continuous despite the
changing contact point location. Figure 10 (rows 5 and 6) shows the evolution of the wheel and
barrow components for the combined shape and topology optimization problem. Note that the
red markers indicate the locations of the control points that form the outer shape of the wheel.
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Figure 10. Evolution of the structural topology of the wheelbarrow system. For each the design, the barrow component is
shown on the top row and the wheel component is shown below. The algorithm iteratively progresses toward an optimal
structure by systematically removing material from the black box domain. Note that in the early stages of the algorithm, the
black box s fully populated with material, hence the appearance of solid black and solid grey boxes in the far left column.

These points are initially distributed randomly throughout the design domain, and the optimizer
prioritizes arranging these points into a circular formation before proceeding to optimize the
wheel’s internal structure.

From the material distributions shown in figure 10, we can extract the precise location of the
material surface. We then extrude the resulting contour in the z-axis to obtain a three-dimensional
interpretation of the computationally generated wheelbarrow designs. Figure 11 shows three-
dimensional CAD (computer-aided design) renderings of all three wheelbarrow designs, along
with a 3D printed prototype of the circular wheelbarrow.

(d) Additional terrain profiles

To demonstrate the applicability of our algorithm to more complex terrains, we present two
additional examples. The first is for a terrain in the shape of a triangle wave:

A A
mod ((X— %) ,AT> — ?T

o , G.1)
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Figure 11. CAD renderings and 3D printed prototype of computationally designed wheelbarrow mechanisms. The 3D printed
wheelbarrow is fully functional with the wheel able to rotate freely about the axle. (a) Elliptical wheelbarrow. (b) Circular
wheelbarrow. (c) Shape and topology optimized wheelbarrow. (d) Three-dimensional printed circular wheelbarrow.

where, again, At is the maximum elevation (i.e. amplitude), and A7 is the terrain’s wavelength,
as in equation (2.1). The second pattern is that of an elliptical wave defined by:
b
T(X) = —b, (3.2)
J1— (@ — 1) /a)sin?(x X /)

where a and b are chosen constants. The optimal wheelbarrow topologies for each of these terrain
shapes are shown in figure 12.

The optimal wheel shapes rolling over their respective terrains are depicted in figure 13. The
images in figures 11-13 are notable in that they reveal a series of mechanisms whose function is
unlike anything found in nature, yet their material patterns have a highly organic appearance,
which distinguishes them from conventional wheeled vehicles. The ability of the algorithm
to autonomously synthesize a system with this type of complexity represents a significant
advancement in computational design and design automation.

4. Conclusion

In this study, we have introduced a novel method for automated computational synthesis
of multi-body wheeled mechanisms. We implemented structural topology optimization to
simultaneously generate the optimal geometry and material layout of the various components
of the mechanism, which include a wheel and a carriage component. The topology optimization
is coupled to a shape optimization scheme used to obtain the optimal wheel shape for a given
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Figure 12. Evolution of the structural topology of the wheelbarrow systems designed for periodic terrain. The solution for the
elliptical terrain is shown in the top two rows, and the triangular terrain in the bottom two rows.

Figure 13. Optimal wheel shapes rolling over their elliptical and triangular terrains.

terrain profile. We also devised an original stiffness-based contact model that simulated the
interaction between the wheel circumference and the ground. We demonstrated the method using
examples containing flat, level terrain as well as several topographically periodic terrains. In each
example, the algorithm converged to a feasible design whose wheel shape was consistent with
analytical solutions, and whose structural topology satisfied the imposed stiffness constraints.
This study demonstrates how gradient-based methods can be used to generate designs for
complex mechanical systems while starting from a black box. Additionally, the results show that
gradient-based methods can succeed even in contexts where the physics of the system being
designed contains nonlinear and discontinuous phenomena such as variable surface contact.
Future investigation will seek to expand the method to synthesize similarly complex and
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foundational mechanical systems containing multiple rotating components, such as pulleys and
gearboxes.
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