Open-source data pipeline for street-view images: a case study
on community mobility during COVID-19 pandemic

Matthew Martell'™@, Nick Terry'@, Ribhu Sengupta', Chris Salazar®, Nicole A. Errett?,
Scott B. Miles?, Joseph Wartman®, Youngjun Choe!,

1 Industrial & Systems Engineering, University of Washington, Seattle, WA, United
States

2 Environmental & Occupational Health Sciences, University of Washington, Seattle,
WA, United States

3 Human Centered Design & Engineering, University of Washington, Seattle, WA,
United States

4 Civil & Environmental Engineering, University of Washington, Seattle, WA, United
States

@These authors contributed equally to this work.
* corresponding author marte292@Quw.edu

Abstract

Street View Images (SVI) are a common source of valuable data for researchers.
Researchers have used SVI data for estimating pedestrian volumes, demographic
surveillance, and to better understand built and natural environments in cityscapes.
However, the most common source of publicly available SVI data is Google Street View.
Google Street View images are collected infrequently, making temporal analysis
challenging, especially in low population density areas. Our main contribution is the
development of an open-source data pipeline for processing 360-degree video recorded
from a car-mounted camera. The video data is used to generate SVIs, which then can
be used as an input for longitudinal analysis. We demonstrate the use of the pipeline by
collecting an SVI dataset over a 38-month longitudinal survey of Seattle, WA, USA
during the COVID-19 pandemic. The output of our pipeline is validated through
statistical analyses of pedestrian traffic in the images. We confirm known results in the
literature and provide new insights into outdoor pedestrian traffic patterns. This study
demonstrates the feasibility and value of collecting and using SVI for research purposes
beyond what is possible with currently available SVI data. Our methods and dataset
represent a first of its kind longitudinal collection and application of SVI data for
research purposes. Limitations and future improvements to the data pipeline and case
study are also discussed.

Introduction

Street-level imagery is becoming an increasingly popular form of data for research [1].
Between 2009 and 2020, more than 200 publications utilized street-level imagery from
corporate sources in urban research [1]. Out of all these sources, Google Street View’s
Street View Images (SVI) were the most popular among academics |[1H3]. Uses for SVI
data include estimating demographics [4], evaluating the built environment [5],
surveying plant species 6], measuring pedestrian volume |7, among many other
applications [8H10].




While SVI data can provide many useful insights for researchers, it is not without its
flaws. For corporate-collected images such as Google Street View, or Tencent Street
View the availability of images depends on where the companies decide to collect data,
while the accessibility of these images hinges on the companies’ data provision policies.
For example, there is no Google Street View service in most parts of Africa. An
alternative to corporate-collected images are crowdsourced SVI databases such as
Mapillary |11]. These crowdsourced images sometimes may have better coverage or
temporal resolution than Google Street View, at the cost of varying image quality, field
of view, and positional accuracy [3l|12]. Perhaps the largest challenge with SVI data is
its temporal instability. Updates to these image datasets at specific locations are
infrequent, especially in rural areas [1L|13}[14]. Additionally, images frequently are not
collected at a consistent time of day, or season, even within the same city. These issues
make existing SVI data unreliable for temporal studies.

Typically, temporal studies involving image data use images (or video) from fixed
locations. This data is used to do things such as evaluate disaster recovery [15], monitor
ecological change [16], or measure urban flooding [17]. Data from fixed cameras is also
used to count people [18]. The challenge with these methods is that they are
fixed-location. In order to collect spatial image data for these methods, frequently a
large team is required to traverse areas on foot. This challenge, along with existing SVI
data’s temporal issues, demonstrate the potential value of collecting longitudinal SVI
data.

Our main contribution is demonstrating the feasibility of collecting longitudinal SVI
data. We demonstrate this through the creation of a complete data pipeline for
conducting pedestrian counts using car-based street-level imagery. The pipeline accepts
raw video collected by the camera as an input and outputs a record of each pedestrian
detection and their locations (latitude and longitude). This approach allows for analysis
of mobility patterns with high spatial resolution and a short lag time. It alleviates the
quality and field of view inconsistencies that come with crowdsourcing SVI data [3,/12],
generates data that is not corporately owned, eliminates the temporal instability
challenge of both kinds of data [1,|13}|14], while still maintaining the advantages of SVI
data over fixed-location methods [15].

Specifically, we use this pipeline to generate and analyze video from 37
video-collection runs in the city of Seattle, Washington, USA from May 2020 through
July 2023. The video data was converted into over 4 million high-resolution images,
with each data-collection run representing about 1.5 TB of image data. We used the
images to create a record containing the location of each detected pedestrian,
cross-referenced to the relevant GEOID [19]. To detect pedestrians in the still images,

our pipeline leverages the state-of-the-art convolutional neural network, Pedestron [20].
We used the cascade_hrnet architecture benchmarked on the CrowdHuman data set [21].

Our methods and dataset represent a first of its kind longitudinal collection and
application of SVI data for research purposes.

As a secondary contribution, we provide a case study based on the video data
collected throughout the COVID-19 pandemic. We examine the effect of vaccine
availability and local demographics on pedestrian detections, while accounting for
weekly and yearly seasonality. Community mobility became a key metric during the
height of the COVID-19 pandemic as government officials worked to halt the spread of
the virus [22,23]. Two of the largest and most widely used data sets for community
mobility during this time were the Google Community Mobility Reports [24] and Apple
Mobility Trends Reports |25]. Researchers used this data to study the incidence of
COVID-19 in the US [26] and the effectiveness of government lockdown policies [27}28|,
among other topics. Issues with these two data sets include mandatory opt-in, use of
specific map applications, a lack of independent verification, and no long-term data
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availability guarantees |26}28H30]. Our findings demonstrate the utility of our data
processing pipeline as an alternative for tracking community mobility over time and
show the potential for its use in a variety of research domains.

Methods

Data Collection

We collected our data as a part of the Seattle street-level imagery campaign, an ongoing
series of video surveys for the purposes of documenting mobility throughout the
COVID-19 pandemic. During each survey, a vehicle equipped with a 360° video camera
is driven along a pre-defined route through Seattle while collecting video data and GPS
metadata. The route incorporates broad neighborhood/area canvassing designed to
collect data useful to multidisciplinary researchers as well as capital transects. Full
details on the route design are available in Errett et al. [31]. The capital transects
specifically target capitals (social, cultural, built, economic, and public health) which
are theorized to be closely tied to community resilience [32]. Specific canvassing areas
and capitals within Seattle were chosen to ensure a representative sample of the overall
population of Seattle [31]. While the drivers try to make the surveys as consistent as
possible, occasionally exogenous factors caused deviations from standard protocols. For
example, during three of the surveys (05-29-2020, 06-18-2020, and 06-26-2020), protests
over the murder of George Floyd caused parts of the survey route to be unnavigable.

After consulting with the University of Washington Human Subjects Division, it was
determined that this study was not considered human subjects research and would not
require IRB approval. The data we captured was people in public places, where they
cannot expect personal privacy. As an added precaution, all data for this study was
published through Mapillary [11], which automatically obscures faces.

Data Processing Pipeline

After video collection, the raw data is segmented into image data. The images are
subsampled from video frames so that they are collected about every 4 meters. The
images are then uploaded into the DesignSafe-CI Data Depot [33|. From DesignSafe,
the images are transferred to the TACC Frontera high-performance computing

cluster [34]. We completed all file transfers between the two services using Globus [35].

Without access to these services, or similar ones, the storage and computing
requirements for this project would be intractable.

On Frontera, orthorectification is performed to the images, then pedestrian detection
is performed on the orthorectified images. The orthorectification transforms the images
from a single image in the equirectangular projection to two images in the rectilinear
(gnomonic) projection [36]. Pedestrians are detected on each of the new images using a
convolutional neural network (CNN) based on a pre-trained model from the Pedestron
repository [20]. Our data represents a highly challenging detection task, as there is great
variation in lighting, backgrounds, human poses, levels of occlusion and crowd density
from image to image and run to run. The Cascade Mask R-CNN architecture in the
Pedestron repository performed well on the CrowdHuman data set, representing a
similar challenge to our data [21]. All testing and use of the CNN was performed using
GPUs on the Frontera cluster. An example image after undergoing orthorectification
and pedestrian detection is shown in Fig

Using one GPU node on Frontera, with four NVIDIA Quadro RTX 5000 GPUs, the
entire process takes about 3 seconds per original 360° image. Given the 4 million images
we collected, this takes about 3,300 hours of computing time. While this is not a small
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Fig 1. Sample images from the pedestrian detection data pipeline. The left image is an
original 360° image from a data collection run. The image on the right is the right-hand
side of the original image after orthorectification and pedestrian detection (both sides of
the image are processed separately). There are two pedestrians that were detected by
the algorithm (in red bounding boxes).

number, when running in parallel, the whole process can be completed in a manner of 10

days. In comparison, a human taking 10s per orthorectified image to count all the 109
pedestrians would take over 22,000 hours to complete the same task. File 110
compression/decompression for file transfer also takes a substantial amount of time. 1
Since we used DesignSafe as our main data storage platform, we had to transfer files 12
to/from the Frontera supercomputer to perform our pedestrian detection. To avoid 13

overloading the file transfer system, we compressed the images from each run into a tar 1.
file prior to transferring the files to Frontera. This file compression/decompression can  us

take several hours per run, but can be performed in parallel with the detection 116
algorithm since they are on different systems. After compression, file transfer using 17
Globus takes minutes. 118

In post-processing, the pipeline filters out low-confidence detections (defined as any 1
detection with less than 80% confidence) and associates the remaining high-confidence 120
detections to U.S. Cenus Bureau GEOIDs . We arrived at this confidence level after 1z
tuning for the precision and recall of the CNN classifier. Specifically, the pipeline filters 12
based on the output of the second to last layer of the CNN, known as a softmazx layer. 12

For a k—class classification problem, the softmax layer will output a k—dimensional 124
probability vector, where each i*" entry of the vector gives the probability that the 125
original input to the CNN belongs to class i. 126

The final stage of post-processing is GEOID matching, where latitude and longitude 12
metadata are cross-referenced to disjoint geographic regions (e.g. U.S. census tracts or s
block groups) and their respective GEOID codes. The cross-referencing code assumes 129

the availability of shapefiles describing the geometry of the geographic regions. 130
Aggregating the pedestrian detections according to U.S. Census Bureau GEOIDs is
necessary for analyses using sociodemographic data collected by the census. 132
Additionally, the pedestrian detections can easily be cross-referenced with custom 133
geometry defined using popular geographic information system software, such as the 134
capitals data used in route construction and our analysis. 135

Following the GEOID matching step, the pedestrian detections data is written to a 1
tabular format file (e.g. comma separated values). This file is an “analysis-ready” data 1
product, in the sense that it is readable by most popular statistical analysis software (R, 13

SPSS, Stata, etc.) and can be easily merged with other datasets using the GEOID 139
column(s). A visual depiction of the entire pipeline is seen in Fig[2] Full code and a 140
manual for following our process is available at 141
https://github.com/marte292/rapid-data-pipeline. 142
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Data Collection TACC Frontera GPU Cluster
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Fig 2. Flowchart of the data processing pipeline. The parts of the flowchart in gray
occur on NHERI DesignSafe-CI, while the right-hand part in blue is done on the
Frontera cluster.

Case Study: Community Mobility in Seattle during the
COVID-19 Pandemic

Data Processing

All analysis is performed using the Python programming language version 3.11 [37].
The initial data product as outlined in the previous section is a list of detections,
alongside the date of collection, geolocation, and GEOID. We also utilized a similar list
of the images themselves with the same features. The last dataset we utilized is the
median household income data and racial demographic data from the 2019 American
Community Survey (ACS) 5-year estimates. We aggregated the detections and image
data for each data collection survey at the census tract level, then matched each census
tract’s total number of detections and images to its respective demographic and income
data.

We utilized the data from 36 of the 37 surveys, omitting data from 10-29-2020. A
heavy rain event caused the survey to be stopped early due to poor video quality. For
each survey, we divided the number of detections in each census tract by the number of
images collected in the tract to create a normalized ‘detections per image’ metric. This
is a necessary step as the number of images in each tract may change survey to survey
due to circumstances outside our control, such as construction or community events
altering the route.

The last step in data processing was to transform some of our data to be represented
by categorical variables. The date of each survey was coded both as either a weekend or
weekday, and by the season. The date was also coded as either being before, or after the
date that vaccines became publicly available. Income data was coded to be one of 5
levels that were used during route design. These brackets were $48,274 and below,

$48,275 to $80,819, $80,820, to $110,536, $110537 to $153,500, and $153,501 and above.

Lastly, the proportion of the census tract’s population that identifies as non-white was
coded as an indicator variable, with '1’ corresponding to areas that are 55.5% white or
more. We determined this threshold using Jenk’s natural breaks optimization. This left
us with a dataset of 3171 observations to be used for analysis. Each observation
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represented a census tract with a detections per image value, as well as values for each
of the categorical variables defined above.

Initial Regression Analysis

Using the processed data, we conducted a regression analysis to understand the
relationships between predictors of interest and pedestrian traffic. Based on the known
literature, we hypothesized that season, day of the week, COVID-19 vaccine availability,
income level, and demographics all would have an impact on pedestrian traffic. We
implemented a linear regression model to identify which of these factors are identified as
statistically significant (o = .05). We chose this modeling approach for its simple
interpretability, as our modeling goal is to describe. The regression model is detailed
below:

Y = BO + /61 X Ivaccine + 62..4 X Cseason + 65 X Iweek:end

+ﬁ6..9 X Cincomelevel + /810 X Idemographicindicator + €,

(1)

where Y is the detections per image for a date/census tract combination; I,ccine iS an
indicator for if the vaccine was available on that date; Cseqson iS a categorical variable
with 3 levels for summer, winter, and spring; I,eeckenq 1S an indicator for if it is the
weekend or not; Cincomelevel 1S @ categorical variable with 4 levels for the 4 income
brackets above the lowest bracket; Igemographicindicator is an indicator variable for if the
population is 55.5% white or more. (3 is the baseline detections per image on a weekday,
not in the summer, with the vaccine unavailable, in a census tract at the lowest income
level and a population less than 55.5% white. (31 represents the change in detections per
image from the vaccine becoming available, and (s 4 represent the change for different
seasons. (5 represents the change from a weekday to the weekend, and ¢, 9 represent
the change to other income brackets. Lastly, 81¢ represents the change in detections per
image to from an area that is less than 55.5% white to an area that is more.

In addition to the above analysis, we subset the data by only looking at detections
that occurred in an image with at least one other detection. Then we calculated
detections per image again, and fit the above model again with the new response
variable. This same process was followed for detections with at least two, three, and four
other detections in the same image. The goal of these analyses was to see if there were
different trends for larger groups of people when compared with the entire data set.

Results

Data pipeline

Our main contribution, the open-source data pipeline, is publicly available on
https://github.com/marte292/rapid-data-pipeline. The repository contains a
process manual with step-by-step instructions on how to implement the data pipeline in
Python [37]. The required Python libraries and system requirements are provided.
Additionally, we provide enough code for future researchers to implement the pipeline
on their own systems, with their own file structure. The pipeline is capable of
processing terabytes of image data and outputting an analysis-ready data product in a
matter of days (using high-performance computing, such as a single GPU node on
Frontera, an academic supercomputer) with minimal human input.
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https://github.com/marte292/rapid-data-pipeline

Case study

Using data from the Seattle street-level imagery campaign, we calculated the number of
detections per image across all data collection surveys. Fig[3]shows the detections per
image for each survey, as well as the detections per image for the subset of detections
sharing an image with at least 4 others. Fig[3|also displays the timestamp of COVID-19
vaccines becoming publicly available in Washington state.

—— Totals 5 or More

1.4+ r 0.050

F0.045
1.21 I 0.040
F0.035

1.0 1 Vaccine Rollout
F 0.030

0.025

0.8 q

r 0.020
/\/ \/\/ F0.015

0.6 q /

F0.010

Detections per Photo

Fig 3. Time series data of the total detections per image (solid blue line, left axis), and
detections per image for the subset of detections sharing an image with at least 4 others
(orange dashed line, right axis). As the survey dates are irregular, all dates are included

in the figure. Please note that the axis for total detections per image does not start at 0.

This was done purposefully to facilitate comparison between the trends of the two
graphs.

Fig[3] depicts the trends over time for detections per image and detections sharing an
image with at least 4 others. While both graphs exhibit similar trends overall, notably
after vaccine rollout the graph of detections sharing an image with at least 4 others
exceeds the graph of detections per image in all cases. The spike in detections seen in
June 2020 is due to the large scale protests of police brutality that took place in Seattle
in the aftermath of George Floyd’s murder.

The full results of the linear regression model for total detections per image are
displayed in Table[l} They show that the season being summer is the only significant
seasonal effect. Additionally, the income bracket is a significant predictor, with
wealthier areas seeing less pedestrian traffic. Finally, a census tract having a population
greater than 55.5% white is a significant positive predictor. All other variables are not
significant, including vaccine availability.

For the regression models using a subset of data, the results are similar to the initial
model. All models have the same significant predictors as the initial model. The model
using the detections sharing an image with at least one other also had the weekend as a
borderline significant, negative predictor. The models using detections sharing an image
with at least 3 and 4 others had vaccine availability as a significant, positive predictor.
The full results of the linear regression model for detections per image with at least 4
others are displayed in Table [2] with all other regression models available in the
supporting information.
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Dep. Variable: Detections_per_Image  R-squared: 0.086
Model: OLS Adj. R-squared: 0.083
Method: Least Squares F-statistic: 29.71
No. Observations: 3171 Prob (F-statistic): 3.20e-55
Df Residuals: 3160 Log-Likelihood: -4456.8
Df Model: 10
Covariance Type: nonrobust

coef  std err t P> |t| [0.025 0.975]
Intercept 1.1242 0.075 14.914  0.000 0.976 1.272
Spring 0.0783 0.053 1.471 0.141  -0.026  0.183
Summer 0.2527 0.055 4.599 0.000 0.145 0.360
Winter -0.0046  0.058 -0.079  0.937 -0.118  0.109
Vaccine Available 0.0061 0.036 0.172 0.863 -0.064  0.076
‘Weekend -0.0775  0.052 -1.483  0.138  -0.180  0.025
Income Bracket 2 -0.4689  0.081 -5.795  0.000 -0.628 -0.310
Income Bracket 3 -0.8688 0.079 -11.041  0.000 -1.023 -0.714
Income Bracket 4 -0.9938 0.086 -11.540  0.000 -1.163 -0.825
Income Bracket 5 -1.3752 0.116 -11.893  0.000 -1.602  -1.148
More than 55.5% White 0.6416 0.054 11.820  0.000 0.535 0.748

Table 1. OLS Regression Results for Detections per Image. The first three
non-intercept terms represent indicator variables for the different seasons, with fall
being the baseline. The Vaccine Available term represents a binary variable for whether
the COVID-19 initial vaccination series was publicly available or not. Weekend is a
binary variable for whether the data was collected on Saturday or Sunday. The four
Income Bracket terms are indicator variables for the median income level of the census
tract where the data was collected. The income brackets are defined in our methods.
Lastly, the More than 55.5% White term is an indicator variable for if the census tract
in question had a populace that is more than 55.5% White. Full documentation for the
Python package used to make this output is available from the developers [3§].




Dep. Variable: Five_Or_More_Peds_per_Image  R-squared: 0.059
Model: OLS Adj. R-squared: 0.056
Method: Least Squares F-statistic: 19.78
No. Observations: 3171 Prob (F-statistic): 7.09e-36
Df Residuals: 3160 Log-Likelihood: 4286.3
Df Model: 10
Covariance Type: nonrobust

coef  std err t P> [t| [0.025 0.975]
Intercept 0.0393 0.005 8.213  0.000 0.030 0.049
Spring 0.0006 0.003 0.180  0.857 -0.006  0.007
Summer 0.0100 0.003 2.870  0.004 0.003 0.017
Winter -0.0039  0.004  -1.057 0.291 -0.011  0.003
Vaccine Available 0.0093 0.002 4.109  0.000 0.005 0.014
Weekend 0.0009 0.003 0.270  0.787  -0.006  0.007
Income Bracket 2 -0.0289 0.005 -5.626  0.000 -0.039 -0.019
Income Bracket 3 -0.0468 0.005 -9.373  0.000 -0.057 -0.037
Income Bracket 4 -0.0541 0.005  -9.889 0.000 -0.065 -0.043
Income Bracket 5 -0.0688 0.007  -9.376 0.000 -0.083 -0.054
More than 55.5% White 0.0309 0.003 8.960  0.000 0.024 0.038

Table 2. OLS Regression Results for Detections per Image for the detections subset
sharing an image with at least 4 others. Coefficients are defined the same as in Table

Discussion

Comparison to Google Community Mobility Data

Given the ability to measure community mobility through pedestrian counts, there is
potential value of our pipeline for social sciences and public health research [2223]. At
an individual level, higher physical activity is known to predict better physical [39,/40]
and mental health [41H43|, and is associated with higher self-reported satisfaction and
quality of life [44}|45]. In an aggregate sense, mobility is theorized to be an intermediate
variable through which socioeconomic deprivation affects vulnerability to infectious
disease |46,47], resilience to disasters [48], and exposure to environmental hazards [49].
In light of this body of literature, we argue that the use of pedestrian counts to assess
mobility could be a differentiating factor in researching social and health inequity. One
extremely common source of mobility data during the COVID-19 Pandemic has been
Google Community Mobility Reports [24] and Apple Mobility Trends Reports [25].
While there have been improvements in recent years [50], there are known
representation and self-selection biases with existing mobility data captured by
smartphones and other internet-based data collection methods [51H55].

Given the large number of publications using smartphone data as the foundation for
their work, a natural question is how our data compares to smartphone mobility data.
Comparison between our data set and the still publicly available Google Community
Mobility Reports data can reveal some of the similarities and differences between the
two data sets [24]. Google Community Mobility data is reported at the county level in
the United States. Since Seattle is in King County, Washington, the King County data
is what we use to draw the comparison.

Google Community Mobility data does not provide raw mobility numbers, but
rather is reported as a percentage change from the five-week period of Jan 5-Feb 6,
2020. This data is collected from smartphones running the Android operating system
with location history turned on, which is off by default. The data is baselined by day of
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the week, so data from a given Monday is compared to the median of the five Mondays
in the baseline window to calculate a percent change. Additionally, it is unclear how
exactly Google quantifies mobility. It is mentioned that it combines number of visitors
to a location with amount of time spent in that location, but no specifics beyond that
are provided.

Google mobility data is broken down into different categories. The category that
most closely aligns with one of the categories used in our analysis is parks. Although
Google’s data classifies parks as official national parks and not the general outdoors, it
does not indicate how it accounts for city or state parks. Our own data for park
locations is based on the City of Seattle’s official classifications.

Fig 4] shows a comparison of our detections per image data against Google
Community Mobility data. Note that not all surveys are included because Google
Community Mobility data stopped being provided on October 15, 2022. Overall, the
trends between the two data sets are remarkably similar, lending further credibility to
our data collection procedure. The more notable differences in the graph are from the
months of November 2020 through August 2021, where the Google mobility data shows
a larger drop followed by an increase in community mobility than was visible through

our own data.
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-20 Google Community Mobility Data
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Fig 4. A depiction of our own detections per image data (blue, dashed; right axis)
against Google Community Mobility data (orange, solid; left axis). The Pearson
correlation between the two data sets is 0.387. The Google Community mobility data is
aggregated at King County, WA, while our data covers a survey route within Seattle,
which belongs to King County. As the dates of surveys were irregular (e.g., due to
weather conditions), all dates are included in the figure.

One plausible explanation for this is the upwards sampling bias that occurs when
using smartphone data [56L57]. Our data set captures anyone on the street, including
individuals experiencing homelessness, who are less likely to have smartphones. This
population was on the streets throughout the entirety of the pandemic, so they were
consistently captured by our data collection efforts. This consistent baseline pedestrian
count could lead to a lesser response to vaccine rollout and winter weather in our own
data in comparison with Google’s. Additionally, there is a known income gap in both
vaccination rates and smartphone ownership [58.59]. This gap could drive the increase
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in the Google Mobility data during vaccine rollout.

Implications, Limitations, and Extensions

Our results show that it is possible for researchers to collect and analyze longitudinal
SVI data. The presented methods can be used to collect and process SVI data from 8
hours worth of video in a manner of days. This time will only further decrease with
faster data processing infrastructure and methods. These methods will allow novel
longitudinal SVI data to be collected for research in a variety of application areas.

The results of the case study also bear further discussion. We demonstrated
expected relationships between seasonal effects like day of week and weather on
pedestrian traffic. Additionally, we showed that pedestrian traffic is inversely
proportional to income, a known result during the COVID-19 pandemic, as lower
income households are constrained in their capacity to work from home or take time off
of work [30}/60]. Our results also showed that more white areas had higher on average
pedestrian counts. This could be due to known trends, such as areas with larger
non-white populations being more likely to stay home in response to government
restrictions [61] and participate in other risk-reducing practices such as wearing a
mask [62], or just due to local trends, as racial mobility trends tend to vary between
cities |63]. These findings are consistent across all of our models, both looking at the
entire data set, and the subsets examining pedestrians sharing an image. These results
validate our method with respect to established literature, and provide a quantitative
confirmation of results that had previously been found using cell phone data.

One new finding from our case study is that while overall pedestrian counts did not
respond to vaccine availability, the subset of pedestrians who were in larger groups (4+
people in an image) did. Likely, the reason we did not see a response to the vaccine in
the aggregate data is because our data only captures people who are outdoors. There is
data that shows that outdoor pedestrian activity varied across cities, frequently
increasing at recreation locations like trails, during the early days of the
pandemic [64,/65]. Given these increases at some locations, a return to 'normal’
pedestrian traffic may not mean an increase, but rather a change in traffic patterns.
Our data captures this by showing that there was a significant increase in larger groups
of people after the vaccine became available. This implies that people were more willing
to be near each other outdoors after they had been vaccinated.

While the data pipeline presented here does represent a method for generating a
novel data product, there are implementation challenges worth further discussion. For
data collection, in addition to the time required to drive the route limiting the places of
interest the route could reach, there were also many tradeoffs that had to be made when
designing the route itself [31]. Despite having our survey route carefully designed to
assess a representative sample of the Seattle population, some bias in route design is
unavoidable. Since the route design included data from the American Community
Survey aggregated at the census tract level, there is an implicit assumption of spatial
homogeneity of the population within each census tract. Such bias is a manifestation of
the well-known modifiable areal unit problem [66]. Since the majority of the route was
primarily based on locations of interest throughout the city, this concern is somewhat
mitigated.

In terms of processing, the pre-trained model we used required a substantial amount
of high-performance computing time, and at times the data product generated was so
large as to be unwieldy. Given the challenge our data set represents, using a model
designed to be generalizable is necessary to attain good detection results. As many
state-of-the-art models perform substantially worse out of sample, we had to be careful
to choose a model that was designed to perform well in this situation, at the cost of
slower computing times [67]. Another unforeseen challenge was regular updates to the
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video camera’s software to process and segment the video data into images. Consistent
image formatting was vital for the data processing pipeline to function, so regular
quality checks are necessary to make sure the images are processed properly.

The data product created, pedestrian detections, has some limitations as well. First,
our method only captures pedestrians who are outdoors and near enough to the street
to be captured via camera. This means that our data set does not include people who
are indoors at these locations of interest, or who are too far from the street to be seen
by camera. While the changes over time in pedestrian traffic we observed are still
meaningful, it is important to recognize they don’t capture everything. Similarly, our
data cannot be interpreted as the actual number of pedestrians on the street. There is
overlap in the image data, even when subset at 4 meter intervals and cropped during
orthorectification. The orthorectified images only represent about 25% of the originals.
However, this natural cropping is not enough to avoid the image overlap and further
cropping would risk information loss. Pedestrians that appear in the foreground of one
image may end up in the background of another. There are also several known instances
of cyclists keeping relative pace with the street-view vehicle for several blocks, resulting
in numerous detections. These issues are easy to circumvent in analysis by comparing
the relative number of detections, although at the cost of interpretability.

Even with the above limitations, the data pipeline presented in this paper can be
directly applied or adapted to be used in a number of contexts. Potential applications of
longitudinal SVI data in assessing the built environment [14], broad urban
research [1,3/68], and health research [8] have been well-documented, as the temporal
instability of existing SVI data is discussed as a limitation in all of these fields. Beyond
this, it is possible to estimate population demographics [4], and other
neighborhood-level statistics [13/69] using SVI data. As our ability to quickly and
accurately parse scenes using computer vision improves [70], potential application areas
will only increase in number.

Another field where longitudinal SVI data could contribute a lot is disaster research.
There is a substantial body of research dedicated to empirical methods for modeling
various aspects of disaster recovery [71]. Our methods could be applied in this field to
quantify recovery using pedestrian detections as a metric for community mobility, or
another metric assessing the built environment as appropriate. Similar work has been
done using repeat photography after Hurricane Katrina [15] but our methods represent
a substantial increase in generated data, allowing for a wider range of analyses. Spatial
video data collection for disaster reconnaissance has also been done [72], but involves
manual assessment of the captured video. Our methods demonstrate that a
fully-automated approach is possible, which would allow for more frequent data
collection at a lower cost.

Conclusion

This article describes the creation of the first open-source SVI data pipeline for
longitudinal analysis. Regression analysis based on the resulting longitudinal SVI data
showed that pedestrian traffic patterns changed in response to the availability of the
COVID-19 vaccine, thereby demonstrating the data pipeline’s usefulness in research and
practice. In particular, we showed that there were statistically significant increases in
groups of people in proximity to each other after the vaccine became publicly available.
Our data also captured expected trends in pedestrian traffic based on annual seasonality
and socioeconomic factors. Our results demonstrate the feasibility and value in
collecting SVI data as part of a longitudinal study. Longitudinal SVI data is capable of
providing valuable insights in a variety of fields of study. Future work includes
applications of our methods in broader public health research, disaster research, and
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other fields of study that can benefit from longitudinal SVI data. Potential
methodological directions include study-specific route design process improvements and
newer pedestrian detection approaches, as further progress is made in this area.
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S3 Table. OLS Regression Results for Detections per Image for the
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S4 Dataset. Full dataset used for obtaining regression results presented in
this paper.

Acknowledgments

The authors gratefully acknowledge DesignSafe and the Texas Advanced Computing
Center (TACC) at The University of Texas at Austin for providing the
cyberinfrastructure that enabled the research results reported within this paper. The
U.S. National Science Foundation (Grant Number 2031119) provided financial support
for this research. Any opinions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of NSF.
Data was collected using instrumentation provided by NSF as part of the RAPID
Facility, a component of the Natural Hazards Engineering Research Infrastructure,
under Award No. CMMI: 2130997. There was no additional external funding received
for this study.

References

1. Cinnamon J, Jahiu L. Panoramic Street-Level Imagery in Data-Driven Urban
Research: A Comprehensive Global Review of Applications, Techniques, and
Practical Considerations. ISPRS International Journal of Geo-Information.
2021;10(7):471. doi:10.3390/ijgi10070471.

2. Gilge C. Google Street View and the Image as Experience. GeoHumanities.
2016;2(2):469-484. doi:10.1080/2373566X.2016.1217741.

3. LiY, Peng L, Wu C, Zhang J. Street View Imagery (SVI) in the Built

Environment: A Theoretical and Systematic Review. Buildings. 2022;12(8):1167.

do0i:10.3390/buildings12081167.

4. Gebru T, Krause J, Wang Y, Chen D, Deng J, Aiden EL, et al. Using deep
learning and Google Street View to estimate the demographic makeup of
neighborhoods across the United States. Proceedings of the National Academy of
Sciences - PNAS. 2017;114(50):13108-13113.

13/]18

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414



10.

11.

12.

13.

14.

15.

16.

17.

Badland HM, Opit S, Witten K, Kearns RA, Mavoa S. Can Virtual Streetscape
Audits Reliably Replace Physical Streetscape Audits? Journal of Urban Health.
2010;87(6):1007-1016. doi:10.1007/s11524-010-9505-x.

Ringland J, Bohm M, Baek SR, Eichhorn M. Automated survey of selected
common plant species in Thai homegardens using Google Street View imagery
and a deep neural network. Earth Science Informatics. 2021;14(1):179-191.
doi:10.1007 /s12145-020-00557-3.

Yin L, Cheng Q, Wang Z, Shao Z. ‘Big data’ for pedestrian volume: Exploring
the use of Google Street View images for pedestrian counts. Applied Geography.
2015;63:337-345. doi:10.1016/j.apgeog.2015.07.010.

Rzotkiewicz A, Pearson AL, Dougherty BV, Shortridge A, Wilson N. Systematic
review of the use of Google Street View in health research: Major themes,
strengths, weaknesses and possibilities for future research. Health & Place.
2018;52:240-246. doi:10.1016/j.healthplace.2018.07.001.

Wang R, Yuan Y, Liu Y, Zhang J, Liu P, Lu Y, et al. Using street view data and
machine learning to assess how perception of neighborhood safety influences
urban residents’ mental health. Health & Place. 2019;59:102186.
doi:10.1016/j.healthplace.2019.102186.

Novack T, Vorbeck L, Lorei H, Zipf A. Towards Detecting Building Facades with
Graffiti Artwork Based on Street View Images. ISPRS International Journal of
Geo-Information. 2020;9(2). doi:10.3390/ijgi9020098.

Mapillary. Mapillary; 2013. [Cited 2020 July 10]. Available from:
https://www.mapillary.coml

Mahabir R, Schuchard R, Crooks A, Croitoru A, Stefanidis A. Crowdsourcing
Street View Imagery: A Comparison of Mapillary and OpenStreetCam. ISPRS
International Journal of Geo-Information. 2020;9(6). doi:10.3390/1jgi9060341.

Suel E, Bhatt S, Brauer M, Flaxman S, Ezzati M. Multimodal deep learning from
satellite and street-level imagery for measuring income, overcrowding, and
environmental deprivation in urban areas. Remote Sensing of Environment.

2021;257:112339.

Smith CM, Kaufman JD, Mooney SJ. Google street view image availability in
the Bronx and San Diego, 2007-2020: Understanding potential biases in virtual
audits of urban built environments. Health & Place. 2021;72:102701.
d0i:10.1016/j.healthplace.2021.102701.

Burton C, Mitchell JT, Cutter SL. Evaluating post-Katrina recovery in
Mississippi using repeat photography. Disasters. 2011;35(3):488-509.
doi:10.1111/j.1467-7717.2010.01227 x.

Depauw L, Blondeel H, De Lombaerde E, De Pauw K, Landuyt D, Lorer E, et al.
The use of photos to investigate ecological change. Journal of Ecology.
2022;110(6):1220-1236. doi:10.1111/1365-2745.13876.

Hao X, Lyu H, Wang Z, Fu S, Zhang C. Estimating the spatial-temporal
distribution of urban street ponding levels from surveillance videos based on
computer vision. Water Resources Management. 2022;36(6):1799-1812.
doi:10.1007/s11269-022-03107-2.

14/18


https://www.mapillary.com

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Velastin SA, Fernandez R, Espinosa JE, Bay A. Detecting, Tracking and
Counting People Getting On/Off a Metropolitan Train Using a Standard Video
Camera. Sensors (Basel, Switzerland). 2020;20(21):6251. doi:10.3390/s20216251.

Bureau USC. Understanding Geographic Identifiers (GEOIDs); 2021. [Cited 2021
October 20]. Available from: https://www.census.gov/programs-surveys/
geography/guidance/geo-identifiers.htmll

Hasan I, Liao S, Li J, Akram SU, Shao L. Pedestrian Detection: Domain
Generalization, CNNs, Transformers and Beyond. arXiv preprint
arXiv:220103176. 2022;.

Shao S, Zhao Z, Li B, Xiao T, Yu G, Zhang X, et al. CrowdHuman: A Benchmark
for Detecting Human in a Crowd. arXiv preprint arXiv:180500123. 2018;.

Hou X, Gao S, Li Q, Kang Y, Chen N, Chen K, et al. Intracounty modeling of
COVID-19 infection with human mobility: Assessing spatial heterogeneity with
business traffic, age, and race. Proceedings of the National Academy of Sciences.
2021;118(24):€2020524118. doi:10.1073/pnas.2020524118.

Schlosser F, Maier BF, Jack O, Hinrichs D, Zachariae A, Brockmann D.
COVID-19 lockdown induces disease-mitigating structural changes in mobility
networks. Proceedings of the National Academy of Sciences.
2020;117(52):32883-32890. d0i:10.1073/pnas.2012326117.

Google COVID-19 Community Mobility Reports; 2020. [Cited 2020 April 15]
Available from: https://www.google.com/covidl9/mobility/.

Apple COVID-19 Mobility Trends Reports; 2020. [Cited 2020 April 15] Available
from: https://covidl9.apple.com/mobility.

Paez, A. Using Google Community Mobility Reports to investigate the incidence
of COVID-19 in the United States. Findings. 2020. doi: 10.32866/001c.12976

Loewenthal G, Abadi S, Avram O, Halabi K, Ecker N, Nagar N, et al. COVID-19
pandemic-related lockdown: response time is more important than its strictness.
EMBO Molecular Medicine. 2020;12(11):e13171. doi: 10.15252/emmm.202013171.

Jacobsen GD, Jacobsen KH. Statewide COVID-19 Stay-at-Home Orders and
Population Mobility in the United States. World Medical & Health Policy.
2020;12(4):347-356. doi 10.1002/wmh3.350.

Finazzi F. Replacing discontinued Big Tech mobility reports: a penetration-based
analysis. Scientific Reports. 2023;13(1):935-935. d0i:10.1038/s41598-023-28137-7.

Weill JA, Stigler M, Deschenes O, Springborn MR. Social distancing responses to
COVID-19 emergency declarations strongly differentiated by income. Proceedings
of the National Academy of Sciences. 2020;117(33):19658-19660.

doi:10.1073 /pnas.2009412117.

Errett NA, Wartman J, Miles SB, Silver B, Martell M, Choe Y. Street View Data
Collection Design for Disaster Reconnaissance. arXiv preprint arXiv:230806284.
2023;.

Miles SB. Foundations of community disaster resilience: Well-being, identity,
services, and capitals. Environmental Hazards. 2015;14(2):103-121.

15/18


https://www.census.gov/programs-surveys/geography/guidance/geo-identifiers.html
https://www.census.gov/programs-surveys/geography/guidance/geo-identifiers.html
https://www.google.com/covid19/mobility/
https://covid19.apple.com/mobility

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Rathje EM, Dawson C, Padgett JE, Pinelli JP, Stanzione D, Adair A, et al.
DesignSafe: New Cyberinfrastructure for Natural Hazards Engineering. Natural
hazards review. 2017;18(3).

Stanzione D, West J, Evans RT, Minyard T, Ghattas O, Panda DK. In: Frontera:
The Evolution of Leadership Computing at the National Science Foundation. New
York, NY, USA: Association for Computing Machinery; 2020. p. 106-111. doi:
10.1145/3311790.3396656.

Chard K, Foster I, Tuecke S. Globus: Research Data Management as Service and
Platform. PEARC17. New York, NY, USA: Association for Computing
Machinery; 2017. doi: 10.1145/3093338.3093367.

Yang W, Qian Y, Kamarainen JK, Cricri F, Fan L. Object Detection in
Equirectangular Panorama. 24th International Conference on Pattern
Recognition. IEEE; 2018. p. 2190-2195 doi: 10.1109/ICPR.2018.8546070.

Van Rossum G, Drake FL. Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace; 2009.

Seabold S, Perktold J. statsmodels: Econometric and statistical modeling with
python. 9th Python in Science Conference. 2010.

Baker PS, Bodner EV, Allman RM. Measuring life-space mobility in
community-dwelling older adults. Journal of the American Geriatrics Society.
2003;51(11):1610-1614.

Petersen J, Austin D, Mattek N, Kaye J. Time out-of-home and cognitive,
physical, and emotional wellbeing of older adults: a longitudinal mixed effects
model. PloS one. 2015;10(10):¢0139643.

Zhu J, Fan Y. Daily travel behavior and emotional well-being: Effects of trip
mode, duration, purpose, and companionship. Transportation Research Part A:
Policy and Practice. 2018;118:360-373.

Polku H, Mikkola TM, Portegijs E, Rantakokko M, Kokko K, Kauppinen M, et al.
Life-space mobility and dimensions of depressive symptoms among
community-dwelling older adults. Aging & Mental Health. 2015;19(9):781-789.

Vallée J, Cadot E, Roustit C, Parizot I, Chauvin P. The role of daily mobility in
mental health inequalities: the interactive influence of activity space and

neighbourhood of residence on depression. Social science & medicine.
2011;73(8):1133-1144.

Mulry C, Rivera G, Musini K, Rankin A, Astorini M. The relationship between
community mobility, health status, and quality of life (QOL) in older adults. The
American Journal of Occupational Therapy.
2019;73(4_Supplement_1):7311505078p1-7311505078p1.

Bergstad CJ, Gamble A, Gérling T, Hagman O, Polk M, Ettema D, et al.
Subjective well-being related to satisfaction with daily travel. Transportation.
2011;38(1):1-15.

Ossimetha A, Ossimetha A, Kosar CM, Rahman M. Socioeconomic disparities in
community mobility reduction and COVID-19 growth. In: Mayo Clinic
Proceedings. vol. 96. Elsevier; 2021. p. 78-85.

16/|18



47.

48.

49.

50.

51.

52.

93.

54.

95.

56.

57.

o8.

99.

60.

61.

Zhai W, Liu M, Peng ZR. Social distancing and inequality in the United States
amid COVID-19 outbreak. Environment and Planning A: Economy and Space.
2021;53(1):3-5.

Hong B, Bonczak BJ, Gupta A, Kontokosta CE. Measuring inequality in
community resilience to natural disasters using large-scale mobility data. Nature
communications. 2021;12(1):1-9.

Lewis J. Exposures in the City: Looking for Socioeconomic Patterns for the
Urban Exposome. Environmental Health Perspectives. 2019;127(4):044003.

Stockham N, Washingon P, Chrisman B, Paskov K, Jung JY, Wall DP. Causal
Modeling to Mitigate Selection Bias and Unmeasured Confounding in
Internet-Based Epidemiology of COVID-19: Model Development and Validation.
JMIR public health and surveillance. 2022;8(7):€31306-e31306.
doi:10.2196/31306.

Jonas Klingwort, Rainer Schnell. Critical Limitations of Digital Epidemiology.
Survey research methods. 2020;14(2). doi:10.18148/srm/2020.v14i2.7726.

Liu Z, Maneekul P, Pendergrast C, Doubleday A, Miles SB, Errett NA, et al.
Physical activity monitoring data following disasters. Sustainable Cities and
Society. 2022;81:103814. do0i:10.1016/j.scs.2022.103814.

Roy A, Nelson TA, Fotheringham AS, Winters M. Correcting Bias in
Crowdsourced Data to Map Bicycle Ridership of All Bicyclists. Urban Science.
2019;3(2). doi:10.3390/urbansci3020062.

Milusheva S, Bjorkegren D, Viotti L. Assessing Bias in Smartphone Mobility
Estimates in Low Income Countries. In: ACM SIGCAS Conference on
Computing and Sustainable Societies; 2021. p. 364-378.

Aleta A, Martin-Corral D, Bakker MA, y Piontti AP, Ajelli M, Litvinova M, et al.
Quantifying the importance and location of SARS-CoV-2 transmission events in
large metropolitan areas. Proceedings of the National Academy of Sciences.
2022;119(26):€2112182119. doi:10.1073/pnas.2112182119.

Birenboim A, Shoval N. Mobility Research in the Age of the Smartphone. Annals
of the American Association of Geographers. 2016;106(2):283-291.

Thimm T, Seepold R. Past, present and future of tourist tracking. Journal of
Tourism Futures. 2016;2(1):43-55.

Barry V, Dasgupta S, Weller DL, Kriss JL, Cadwell BL, Rose C, et al.. Patterns
in COVID-19 Vaccination Coverage, by Social Vulnerability and Urbanicity —
United States, December 14, 2020-May 1, 2021; 2021.

Center PR. Mobile Fact Sheet; 2021. [Cited 2022 January 8]. Available from:
https://www.pewresearch.org/internet/fact-sheet/mobile/|

Elarde J, Kim JS, Kavak H, Ziifle A, Anderson T. Change of human mobility
during COVID-19: A United States case study. PLOS ONE.
2021;16(11):€0259031. doi:10.1371/journal.pone.0259031.

Singh S, Shaikh M, Hauck K, Miraldo M. Impacts of introducing and lifting
nonpharmaceutical interventions on COVID-19 daily growth rate and compliance
in the United States. Proceedings of the National Academy of Sciences.
2021;118(12):€2021359118. doi:10.1073/pnas.2021359118.

17/18


https://www.pewresearch.org/internet/fact-sheet/mobile/

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Hearne BN. and Nino MD. Understanding How Race, Ethnicity, and Gender
Shape Mask-Wearing Adherence During the COVID-19 Pandemic: Evidence from
the COVID Impact Survey Journal of Racial and Ethnic Health Disparities.
2022;9(1):176-183. doi: 10.1007/s40615-020-00941-1.

Chang S, Pierson E, Koh PW, Gerardin J, Redbird B, Grusky D, et al. Mobility
network models of COVID-19 explain inequities and inform reopening. Nature.
2021;589(7840):82-87. doi:10.1038/s41586-020-2923-3.

Kraus S, Koch N. Provisional COVID-19 infrastructure induces large, rapid
increases in cycling. Proceedings of the National Academy of Sciences.
2021;118(15):2024399118. doi:10.1073/pnas.2024399118.

Doubleday A, Choe Y, Busch Isaksen T, Miles S, Errett NA. How did outdoor
biking and walking change during COVID-197: A case study of three U.S. cities.
PloS one. 2021;16(1):e0245514. doi:10.1371/journal.pone.0245514.

Fotheringham AS, Wong DW. The modifiable areal unit problem in multivariate
statistical analysis. Environment and planning A. 1991;23(7):1025-1044.

Hasan I, Liao S, Li J, Akram SU, Shao L. Generalizable pedestrian detection:
The elephant in the room. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition; 2021. p. 11328-11337.

Biljecki F, Tto K. Street view imagery in urban analytics and GIS: A review.
Landscape and Urban Planning. 2021;215:104217.
doi:10.1016/j.Jandurbplan.2021.104217.

Gullon P, Fry D, Plascak JJ, Mooney SJ, Lovasi GS. Measuring changes in
neighborhood disorder using Google Street View longitudinal imagery: a
feasibility study. Cities & Health. 2023;7(5):823-829.
doi:10.1080/23748834.2023.2207931.

Dong S, Zhou W, Xu C, Yan W. EGFNet: Edge-Aware Guidance Fusion Network
for RGB—Thermal Urban Scene Parsing. IEEE Transactions on Intelligent
Transportation Systems. 2023; p. 1-13. doi:10.1109/TTTS.2023.3306368.

Martell M, Miles SB, Choe Y. Review of Empirical Quantitative Data Use in
Lifeline Infrastructure Restoration Modeling. Natural hazards review. 2021;22(4).

Curtis A, Mills JW. Spatial video data collection in a post-disaster landscape:
The Tuscaloosa Tornado of April 27th 2011. Applied Geography.
2012;32(2):393-400. doi:10.1016/j.apgeog.2011.06.002.

18/]18



