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Abstract

Street View Images (SVI) are a common source of valuable data for researchers.
Researchers have used SVI data for estimating pedestrian volumes, demographic
surveillance, and to better understand built and natural environments in cityscapes.
However, the most common source of publicly available SVI data is Google Street View.
Google Street View images are collected infrequently, making temporal analysis
challenging, especially in low population density areas. Our main contribution is the
development of an open-source data pipeline for processing 360-degree video recorded
from a car-mounted camera. The video data is used to generate SVIs, which then can
be used as an input for longitudinal analysis. We demonstrate the use of the pipeline by
collecting an SVI dataset over a 38-month longitudinal survey of Seattle, WA, USA
during the COVID-19 pandemic. The output of our pipeline is validated through
statistical analyses of pedestrian traffic in the images. We confirm known results in the
literature and provide new insights into outdoor pedestrian traffic patterns. This study
demonstrates the feasibility and value of collecting and using SVI for research purposes
beyond what is possible with currently available SVI data. Our methods and dataset
represent a first of its kind longitudinal collection and application of SVI data for
research purposes. Limitations and future improvements to the data pipeline and case
study are also discussed.

Introduction 1

Street-level imagery is becoming an increasingly popular form of data for research [1]. 2

Between 2009 and 2020, more than 200 publications utilized street-level imagery from 3

corporate sources in urban research [1]. Out of all these sources, Google Street View’s 4

Street View Images (SVI) were the most popular among academics [1–3]. Uses for SVI 5

data include estimating demographics [4], evaluating the built environment [5], 6

surveying plant species [6], measuring pedestrian volume [7], among many other 7

applications [8–10]. 8
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While SVI data can provide many useful insights for researchers, it is not without its 9

flaws. For corporate-collected images such as Google Street View, or Tencent Street 10

View the availability of images depends on where the companies decide to collect data, 11

while the accessibility of these images hinges on the companies’ data provision policies. 12

For example, there is no Google Street View service in most parts of Africa. An 13

alternative to corporate-collected images are crowdsourced SVI databases such as 14

Mapillary [11]. These crowdsourced images sometimes may have better coverage or 15

temporal resolution than Google Street View, at the cost of varying image quality, field 16

of view, and positional accuracy [3, 12]. Perhaps the largest challenge with SVI data is 17

its temporal instability. Updates to these image datasets at specific locations are 18

infrequent, especially in rural areas [1, 13,14]. Additionally, images frequently are not 19

collected at a consistent time of day, or season, even within the same city. These issues 20

make existing SVI data unreliable for temporal studies. 21

Typically, temporal studies involving image data use images (or video) from fixed 22

locations. This data is used to do things such as evaluate disaster recovery [15], monitor 23

ecological change [16], or measure urban flooding [17]. Data from fixed cameras is also 24

used to count people [18]. The challenge with these methods is that they are 25

fixed-location. In order to collect spatial image data for these methods, frequently a 26

large team is required to traverse areas on foot. This challenge, along with existing SVI 27

data’s temporal issues, demonstrate the potential value of collecting longitudinal SVI 28

data. 29

Our main contribution is demonstrating the feasibility of collecting longitudinal SVI 30

data. We demonstrate this through the creation of a complete data pipeline for 31

conducting pedestrian counts using car-based street-level imagery. The pipeline accepts 32

raw video collected by the camera as an input and outputs a record of each pedestrian 33

detection and their locations (latitude and longitude). This approach allows for analysis 34

of mobility patterns with high spatial resolution and a short lag time. It alleviates the 35

quality and field of view inconsistencies that come with crowdsourcing SVI data [3, 12], 36

generates data that is not corporately owned, eliminates the temporal instability 37

challenge of both kinds of data [1, 13,14], while still maintaining the advantages of SVI 38

data over fixed-location methods [15]. 39

Specifically, we use this pipeline to generate and analyze video from 37 40

video-collection runs in the city of Seattle, Washington, USA from May 2020 through 41

July 2023. The video data was converted into over 4 million high-resolution images, 42

with each data-collection run representing about 1.5 TB of image data. We used the 43

images to create a record containing the location of each detected pedestrian, 44

cross-referenced to the relevant GEOID [19]. To detect pedestrians in the still images, 45

our pipeline leverages the state-of-the-art convolutional neural network, Pedestron [20]. 46

We used the cascade hrnet architecture benchmarked on the CrowdHuman data set [21]. 47

Our methods and dataset represent a first of its kind longitudinal collection and 48

application of SVI data for research purposes. 49

As a secondary contribution, we provide a case study based on the video data 50

collected throughout the COVID-19 pandemic. We examine the effect of vaccine 51

availability and local demographics on pedestrian detections, while accounting for 52

weekly and yearly seasonality. Community mobility became a key metric during the 53

height of the COVID-19 pandemic as government officials worked to halt the spread of 54

the virus [22,23]. Two of the largest and most widely used data sets for community 55

mobility during this time were the Google Community Mobility Reports [24] and Apple 56

Mobility Trends Reports [25]. Researchers used this data to study the incidence of 57

COVID-19 in the US [26] and the effectiveness of government lockdown policies [27,28], 58

among other topics. Issues with these two data sets include mandatory opt-in, use of 59

specific map applications, a lack of independent verification, and no long-term data 60
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availability guarantees [26,28–30]. Our findings demonstrate the utility of our data 61

processing pipeline as an alternative for tracking community mobility over time and 62

show the potential for its use in a variety of research domains. 63

Methods 64

Data Collection 65

We collected our data as a part of the Seattle street-level imagery campaign, an ongoing 66

series of video surveys for the purposes of documenting mobility throughout the 67

COVID-19 pandemic. During each survey, a vehicle equipped with a 360◦ video camera 68

is driven along a pre-defined route through Seattle while collecting video data and GPS 69

metadata. The route incorporates broad neighborhood/area canvassing designed to 70

collect data useful to multidisciplinary researchers as well as capital transects. Full 71

details on the route design are available in Errett et al. [31]. The capital transects 72

specifically target capitals (social, cultural, built, economic, and public health) which 73

are theorized to be closely tied to community resilience [32]. Specific canvassing areas 74

and capitals within Seattle were chosen to ensure a representative sample of the overall 75

population of Seattle [31]. While the drivers try to make the surveys as consistent as 76

possible, occasionally exogenous factors caused deviations from standard protocols. For 77

example, during three of the surveys (05-29-2020, 06-18-2020, and 06-26-2020), protests 78

over the murder of George Floyd caused parts of the survey route to be unnavigable. 79

After consulting with the University of Washington Human Subjects Division, it was 80

determined that this study was not considered human subjects research and would not 81

require IRB approval. The data we captured was people in public places, where they 82

cannot expect personal privacy. As an added precaution, all data for this study was 83

published through Mapillary [11], which automatically obscures faces. 84

Data Processing Pipeline 85

After video collection, the raw data is segmented into image data. The images are 86

subsampled from video frames so that they are collected about every 4 meters. The 87

images are then uploaded into the DesignSafe-CI Data Depot [33]. From DesignSafe, 88

the images are transferred to the TACC Frontera high-performance computing 89

cluster [34]. We completed all file transfers between the two services using Globus [35]. 90

Without access to these services, or similar ones, the storage and computing 91

requirements for this project would be intractable. 92

On Frontera, orthorectification is performed to the images, then pedestrian detection 93

is performed on the orthorectified images. The orthorectification transforms the images 94

from a single image in the equirectangular projection to two images in the rectilinear 95

(gnomonic) projection [36]. Pedestrians are detected on each of the new images using a 96

convolutional neural network (CNN) based on a pre-trained model from the Pedestron 97

repository [20]. Our data represents a highly challenging detection task, as there is great 98

variation in lighting, backgrounds, human poses, levels of occlusion and crowd density 99

from image to image and run to run. The Cascade Mask R-CNN architecture in the 100

Pedestron repository performed well on the CrowdHuman data set, representing a 101

similar challenge to our data [21]. All testing and use of the CNN was performed using 102

GPUs on the Frontera cluster. An example image after undergoing orthorectification 103

and pedestrian detection is shown in Fig 1. 104

Using one GPU node on Frontera, with four NVIDIA Quadro RTX 5000 GPUs, the 105

entire process takes about 3 seconds per original 360◦ image. Given the 4 million images 106

we collected, this takes about 3,300 hours of computing time. While this is not a small 107
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Fig 1. Sample images from the pedestrian detection data pipeline. The left image is an
original 360◦ image from a data collection run. The image on the right is the right-hand
side of the original image after orthorectification and pedestrian detection (both sides of
the image are processed separately). There are two pedestrians that were detected by
the algorithm (in red bounding boxes).

number, when running in parallel, the whole process can be completed in a manner of 108

days. In comparison, a human taking 10s per orthorectified image to count all the 109

pedestrians would take over 22,000 hours to complete the same task. File 110

compression/decompression for file transfer also takes a substantial amount of time. 111

Since we used DesignSafe as our main data storage platform, we had to transfer files 112

to/from the Frontera supercomputer to perform our pedestrian detection. To avoid 113

overloading the file transfer system, we compressed the images from each run into a tar 114

file prior to transferring the files to Frontera. This file compression/decompression can 115

take several hours per run, but can be performed in parallel with the detection 116

algorithm since they are on different systems. After compression, file transfer using 117

Globus [35] takes minutes. 118

In post-processing, the pipeline filters out low-confidence detections (defined as any 119

detection with less than 80% confidence) and associates the remaining high-confidence 120

detections to U.S. Cenus Bureau GEOIDs [19]. We arrived at this confidence level after 121

tuning for the precision and recall of the CNN classifier. Specifically, the pipeline filters 122

based on the output of the second to last layer of the CNN, known as a softmax layer. 123

For a k−class classification problem, the softmax layer will output a k−dimensional 124

probability vector, where each ith entry of the vector gives the probability that the 125

original input to the CNN belongs to class i. 126

The final stage of post-processing is GEOID matching, where latitude and longitude 127

metadata are cross-referenced to disjoint geographic regions (e.g. U.S. census tracts or 128

block groups) and their respective GEOID codes. The cross-referencing code assumes 129

the availability of shapefiles describing the geometry of the geographic regions. 130

Aggregating the pedestrian detections according to U.S. Census Bureau GEOIDs [19] is 131

necessary for analyses using sociodemographic data collected by the census. 132

Additionally, the pedestrian detections can easily be cross-referenced with custom 133

geometry defined using popular geographic information system software, such as the 134

capitals data used in route construction and our analysis. 135

Following the GEOID matching step, the pedestrian detections data is written to a 136

tabular format file (e.g. comma separated values). This file is an “analysis-ready” data 137

product, in the sense that it is readable by most popular statistical analysis software (R, 138

SPSS, Stata, etc.) and can be easily merged with other datasets using the GEOID 139

column(s). A visual depiction of the entire pipeline is seen in Fig 2. Full code and a 140

manual for following our process is available at 141

https://github.com/marte292/rapid-data-pipeline. 142
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Fig 2. Flowchart of the data processing pipeline. The parts of the flowchart in gray
occur on NHERI DesignSafe-CI, while the right-hand part in blue is done on the
Frontera cluster.

Case Study: Community Mobility in Seattle during the 143

COVID-19 Pandemic 144

Data Processing 145

All analysis is performed using the Python programming language version 3.11 [37]. 146

The initial data product as outlined in the previous section is a list of detections, 147

alongside the date of collection, geolocation, and GEOID. We also utilized a similar list 148

of the images themselves with the same features. The last dataset we utilized is the 149

median household income data and racial demographic data from the 2019 American 150

Community Survey (ACS) 5-year estimates. We aggregated the detections and image 151

data for each data collection survey at the census tract level, then matched each census 152

tract’s total number of detections and images to its respective demographic and income 153

data. 154

We utilized the data from 36 of the 37 surveys, omitting data from 10-29-2020. A 155

heavy rain event caused the survey to be stopped early due to poor video quality. For 156

each survey, we divided the number of detections in each census tract by the number of 157

images collected in the tract to create a normalized ‘detections per image’ metric. This 158

is a necessary step as the number of images in each tract may change survey to survey 159

due to circumstances outside our control, such as construction or community events 160

altering the route. 161

The last step in data processing was to transform some of our data to be represented 162

by categorical variables. The date of each survey was coded both as either a weekend or 163

weekday, and by the season. The date was also coded as either being before, or after the 164

date that vaccines became publicly available. Income data was coded to be one of 5 165

levels that were used during route design. These brackets were $48,274 and below, 166

$48,275 to $80,819, $80,820, to $110,536, $110537 to $153,500, and $153,501 and above. 167

Lastly, the proportion of the census tract’s population that identifies as non-white was 168

coded as an indicator variable, with ’1’ corresponding to areas that are 55.5% white or 169

more. We determined this threshold using Jenk’s natural breaks optimization. This left 170

us with a dataset of 3171 observations to be used for analysis. Each observation 171
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represented a census tract with a detections per image value, as well as values for each 172

of the categorical variables defined above. 173

Initial Regression Analysis 174

Using the processed data, we conducted a regression analysis to understand the 175

relationships between predictors of interest and pedestrian traffic. Based on the known 176

literature, we hypothesized that season, day of the week, COVID-19 vaccine availability, 177

income level, and demographics all would have an impact on pedestrian traffic. We 178

implemented a linear regression model to identify which of these factors are identified as 179

statistically significant (α = .05). We chose this modeling approach for its simple 180

interpretability, as our modeling goal is to describe. The regression model is detailed 181

below: 182

Y = β0 + β1 × Ivaccine + β2..4 × Cseason + β5 × Iweekend

+β6..9 × Cincomelevel + β10 × Idemographicindicator + ϵ,
(1)

where Y is the detections per image for a date/census tract combination; Ivaccine is an 183

indicator for if the vaccine was available on that date; Cseason is a categorical variable 184

with 3 levels for summer, winter, and spring; Iweekend is an indicator for if it is the 185

weekend or not; Cincomelevel is a categorical variable with 4 levels for the 4 income 186

brackets above the lowest bracket; Idemographicindicator is an indicator variable for if the 187

population is 55.5% white or more. β0 is the baseline detections per image on a weekday, 188

not in the summer, with the vaccine unavailable, in a census tract at the lowest income 189

level and a population less than 55.5% white. β1 represents the change in detections per 190

image from the vaccine becoming available, and β2..4 represent the change for different 191

seasons. β5 represents the change from a weekday to the weekend, and β6..9 represent 192

the change to other income brackets. Lastly, β10 represents the change in detections per 193

image to from an area that is less than 55.5% white to an area that is more. 194

In addition to the above analysis, we subset the data by only looking at detections 195

that occurred in an image with at least one other detection. Then we calculated 196

detections per image again, and fit the above model again with the new response 197

variable. This same process was followed for detections with at least two, three, and four 198

other detections in the same image. The goal of these analyses was to see if there were 199

different trends for larger groups of people when compared with the entire data set. 200

Results 201

Data pipeline 202

Our main contribution, the open-source data pipeline, is publicly available on 203

https://github.com/marte292/rapid-data-pipeline. The repository contains a 204

process manual with step-by-step instructions on how to implement the data pipeline in 205

Python [37]. The required Python libraries and system requirements are provided. 206

Additionally, we provide enough code for future researchers to implement the pipeline 207

on their own systems, with their own file structure. The pipeline is capable of 208

processing terabytes of image data and outputting an analysis-ready data product in a 209

matter of days (using high-performance computing, such as a single GPU node on 210

Frontera, an academic supercomputer) with minimal human input. 211

6/18

https://github.com/marte292/rapid-data-pipeline


Case study 212

Using data from the Seattle street-level imagery campaign, we calculated the number of 213

detections per image across all data collection surveys. Fig 3 shows the detections per 214

image for each survey, as well as the detections per image for the subset of detections 215

sharing an image with at least 4 others. Fig 3 also displays the timestamp of COVID-19 216

vaccines becoming publicly available in Washington state. 217

Fig 3. Time series data of the total detections per image (solid blue line, left axis), and
detections per image for the subset of detections sharing an image with at least 4 others
(orange dashed line, right axis). As the survey dates are irregular, all dates are included
in the figure. Please note that the axis for total detections per image does not start at 0.
This was done purposefully to facilitate comparison between the trends of the two
graphs.

Fig 3 depicts the trends over time for detections per image and detections sharing an 218

image with at least 4 others. While both graphs exhibit similar trends overall, notably 219

after vaccine rollout the graph of detections sharing an image with at least 4 others 220

exceeds the graph of detections per image in all cases. The spike in detections seen in 221

June 2020 is due to the large scale protests of police brutality that took place in Seattle 222

in the aftermath of George Floyd’s murder. 223

The full results of the linear regression model for total detections per image are 224

displayed in Table 1. They show that the season being summer is the only significant 225

seasonal effect. Additionally, the income bracket is a significant predictor, with 226

wealthier areas seeing less pedestrian traffic. Finally, a census tract having a population 227

greater than 55.5% white is a significant positive predictor. All other variables are not 228

significant, including vaccine availability. 229

For the regression models using a subset of data, the results are similar to the initial 230

model. All models have the same significant predictors as the initial model. The model 231

using the detections sharing an image with at least one other also had the weekend as a 232

borderline significant, negative predictor. The models using detections sharing an image 233

with at least 3 and 4 others had vaccine availability as a significant, positive predictor. 234

The full results of the linear regression model for detections per image with at least 4 235

others are displayed in Table 2, with all other regression models available in the 236

supporting information. 237
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Dep. Variable: Detections per Image R-squared: 0.086
Model: OLS Adj. R-squared: 0.083
Method: Least Squares F-statistic: 29.71
No. Observations: 3171 Prob (F-statistic): 3.20e-55
Df Residuals: 3160 Log-Likelihood: -4456.8
Df Model: 10
Covariance Type: nonrobust

coef std err t P> |t| [0.025 0.975]

Intercept 1.1242 0.075 14.914 0.000 0.976 1.272
Spring 0.0783 0.053 1.471 0.141 -0.026 0.183
Summer 0.2527 0.055 4.599 0.000 0.145 0.360
Winter -0.0046 0.058 -0.079 0.937 -0.118 0.109
Vaccine Available 0.0061 0.036 0.172 0.863 -0.064 0.076
Weekend -0.0775 0.052 -1.483 0.138 -0.180 0.025
Income Bracket 2 -0.4689 0.081 -5.795 0.000 -0.628 -0.310
Income Bracket 3 -0.8688 0.079 -11.041 0.000 -1.023 -0.714
Income Bracket 4 -0.9938 0.086 -11.540 0.000 -1.163 -0.825
Income Bracket 5 -1.3752 0.116 -11.893 0.000 -1.602 -1.148
More than 55.5% White 0.6416 0.054 11.820 0.000 0.535 0.748

Table 1. OLS Regression Results for Detections per Image. The first three
non-intercept terms represent indicator variables for the different seasons, with fall
being the baseline. The Vaccine Available term represents a binary variable for whether
the COVID-19 initial vaccination series was publicly available or not. Weekend is a
binary variable for whether the data was collected on Saturday or Sunday. The four
Income Bracket terms are indicator variables for the median income level of the census
tract where the data was collected. The income brackets are defined in our methods.
Lastly, the More than 55.5% White term is an indicator variable for if the census tract
in question had a populace that is more than 55.5% White. Full documentation for the
Python package used to make this output is available from the developers [38].
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Dep. Variable: Five Or More Peds per Image R-squared: 0.059
Model: OLS Adj. R-squared: 0.056
Method: Least Squares F-statistic: 19.78
No. Observations: 3171 Prob (F-statistic): 7.09e-36
Df Residuals: 3160 Log-Likelihood: 4286.3
Df Model: 10
Covariance Type: nonrobust

coef std err t P> |t| [0.025 0.975]

Intercept 0.0393 0.005 8.213 0.000 0.030 0.049
Spring 0.0006 0.003 0.180 0.857 -0.006 0.007
Summer 0.0100 0.003 2.870 0.004 0.003 0.017
Winter -0.0039 0.004 -1.057 0.291 -0.011 0.003
Vaccine Available 0.0093 0.002 4.109 0.000 0.005 0.014
Weekend 0.0009 0.003 0.270 0.787 -0.006 0.007
Income Bracket 2 -0.0289 0.005 -5.626 0.000 -0.039 -0.019
Income Bracket 3 -0.0468 0.005 -9.373 0.000 -0.057 -0.037
Income Bracket 4 -0.0541 0.005 -9.889 0.000 -0.065 -0.043
Income Bracket 5 -0.0688 0.007 -9.376 0.000 -0.083 -0.054
More than 55.5% White 0.0309 0.003 8.960 0.000 0.024 0.038

Table 2. OLS Regression Results for Detections per Image for the detections subset
sharing an image with at least 4 others. Coefficients are defined the same as in Table 1.

Discussion 238

Comparison to Google Community Mobility Data 239

Given the ability to measure community mobility through pedestrian counts, there is 240

potential value of our pipeline for social sciences and public health research [22,23]. At 241

an individual level, higher physical activity is known to predict better physical [39, 40] 242

and mental health [41–43], and is associated with higher self-reported satisfaction and 243

quality of life [44, 45]. In an aggregate sense, mobility is theorized to be an intermediate 244

variable through which socioeconomic deprivation affects vulnerability to infectious 245

disease [46,47], resilience to disasters [48], and exposure to environmental hazards [49]. 246

In light of this body of literature, we argue that the use of pedestrian counts to assess 247

mobility could be a differentiating factor in researching social and health inequity. One 248

extremely common source of mobility data during the COVID-19 Pandemic has been 249

Google Community Mobility Reports [24] and Apple Mobility Trends Reports [25]. 250

While there have been improvements in recent years [50], there are known 251

representation and self-selection biases with existing mobility data captured by 252

smartphones and other internet-based data collection methods [51–55]. 253

Given the large number of publications using smartphone data as the foundation for 254

their work, a natural question is how our data compares to smartphone mobility data. 255

Comparison between our data set and the still publicly available Google Community 256

Mobility Reports data can reveal some of the similarities and differences between the 257

two data sets [24]. Google Community Mobility data is reported at the county level in 258

the United States. Since Seattle is in King County, Washington, the King County data 259

is what we use to draw the comparison. 260

Google Community Mobility data does not provide raw mobility numbers, but 261

rather is reported as a percentage change from the five-week period of Jan 5–Feb 6, 262

2020. This data is collected from smartphones running the Android operating system 263

with location history turned on, which is off by default. The data is baselined by day of 264
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the week, so data from a given Monday is compared to the median of the five Mondays 265

in the baseline window to calculate a percent change. Additionally, it is unclear how 266

exactly Google quantifies mobility. It is mentioned that it combines number of visitors 267

to a location with amount of time spent in that location, but no specifics beyond that 268

are provided. 269

Google mobility data is broken down into different categories. The category that 270

most closely aligns with one of the categories used in our analysis is parks. Although 271

Google’s data classifies parks as official national parks and not the general outdoors, it 272

does not indicate how it accounts for city or state parks. Our own data for park 273

locations is based on the City of Seattle’s official classifications. 274

Fig 4 shows a comparison of our detections per image data against Google 275

Community Mobility data. Note that not all surveys are included because Google 276

Community Mobility data stopped being provided on October 15, 2022. Overall, the 277

trends between the two data sets are remarkably similar, lending further credibility to 278

our data collection procedure. The more notable differences in the graph are from the 279

months of November 2020 through August 2021, where the Google mobility data shows 280

a larger drop followed by an increase in community mobility than was visible through 281

our own data. 282

Fig 4. A depiction of our own detections per image data (blue, dashed; right axis)
against Google Community Mobility data (orange, solid; left axis). The Pearson
correlation between the two data sets is 0.387. The Google Community mobility data is
aggregated at King County, WA, while our data covers a survey route within Seattle,
which belongs to King County. As the dates of surveys were irregular (e.g., due to
weather conditions), all dates are included in the figure.

One plausible explanation for this is the upwards sampling bias that occurs when 283

using smartphone data [56,57]. Our data set captures anyone on the street, including 284

individuals experiencing homelessness, who are less likely to have smartphones. This 285

population was on the streets throughout the entirety of the pandemic, so they were 286

consistently captured by our data collection efforts. This consistent baseline pedestrian 287

count could lead to a lesser response to vaccine rollout and winter weather in our own 288

data in comparison with Google’s. Additionally, there is a known income gap in both 289

vaccination rates and smartphone ownership [58,59]. This gap could drive the increase 290
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in the Google Mobility data during vaccine rollout. 291

Implications, Limitations, and Extensions 292

Our results show that it is possible for researchers to collect and analyze longitudinal 293

SVI data. The presented methods can be used to collect and process SVI data from 8 294

hours worth of video in a manner of days. This time will only further decrease with 295

faster data processing infrastructure and methods. These methods will allow novel 296

longitudinal SVI data to be collected for research in a variety of application areas. 297

The results of the case study also bear further discussion. We demonstrated 298

expected relationships between seasonal effects like day of week and weather on 299

pedestrian traffic. Additionally, we showed that pedestrian traffic is inversely 300

proportional to income, a known result during the COVID-19 pandemic, as lower 301

income households are constrained in their capacity to work from home or take time off 302

of work [30,60]. Our results also showed that more white areas had higher on average 303

pedestrian counts. This could be due to known trends, such as areas with larger 304

non-white populations being more likely to stay home in response to government 305

restrictions [61] and participate in other risk-reducing practices such as wearing a 306

mask [62], or just due to local trends, as racial mobility trends tend to vary between 307

cities [63]. These findings are consistent across all of our models, both looking at the 308

entire data set, and the subsets examining pedestrians sharing an image. These results 309

validate our method with respect to established literature, and provide a quantitative 310

confirmation of results that had previously been found using cell phone data. 311

One new finding from our case study is that while overall pedestrian counts did not 312

respond to vaccine availability, the subset of pedestrians who were in larger groups (4+ 313

people in an image) did. Likely, the reason we did not see a response to the vaccine in 314

the aggregate data is because our data only captures people who are outdoors. There is 315

data that shows that outdoor pedestrian activity varied across cities, frequently 316

increasing at recreation locations like trails, during the early days of the 317

pandemic [64,65]. Given these increases at some locations, a return to ’normal’ 318

pedestrian traffic may not mean an increase, but rather a change in traffic patterns. 319

Our data captures this by showing that there was a significant increase in larger groups 320

of people after the vaccine became available. This implies that people were more willing 321

to be near each other outdoors after they had been vaccinated. 322

While the data pipeline presented here does represent a method for generating a 323

novel data product, there are implementation challenges worth further discussion. For 324

data collection, in addition to the time required to drive the route limiting the places of 325

interest the route could reach, there were also many tradeoffs that had to be made when 326

designing the route itself [31]. Despite having our survey route carefully designed to 327

assess a representative sample of the Seattle population, some bias in route design is 328

unavoidable. Since the route design included data from the American Community 329

Survey aggregated at the census tract level, there is an implicit assumption of spatial 330

homogeneity of the population within each census tract. Such bias is a manifestation of 331

the well-known modifiable areal unit problem [66]. Since the majority of the route was 332

primarily based on locations of interest throughout the city, this concern is somewhat 333

mitigated. 334

In terms of processing, the pre-trained model we used required a substantial amount 335

of high-performance computing time, and at times the data product generated was so 336

large as to be unwieldy. Given the challenge our data set represents, using a model 337

designed to be generalizable is necessary to attain good detection results. As many 338

state-of-the-art models perform substantially worse out of sample, we had to be careful 339

to choose a model that was designed to perform well in this situation, at the cost of 340

slower computing times [67]. Another unforeseen challenge was regular updates to the 341
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video camera’s software to process and segment the video data into images. Consistent 342

image formatting was vital for the data processing pipeline to function, so regular 343

quality checks are necessary to make sure the images are processed properly. 344

The data product created, pedestrian detections, has some limitations as well. First, 345

our method only captures pedestrians who are outdoors and near enough to the street 346

to be captured via camera. This means that our data set does not include people who 347

are indoors at these locations of interest, or who are too far from the street to be seen 348

by camera. While the changes over time in pedestrian traffic we observed are still 349

meaningful, it is important to recognize they don’t capture everything. Similarly, our 350

data cannot be interpreted as the actual number of pedestrians on the street. There is 351

overlap in the image data, even when subset at 4 meter intervals and cropped during 352

orthorectification. The orthorectified images only represent about 25% of the originals. 353

However, this natural cropping is not enough to avoid the image overlap and further 354

cropping would risk information loss. Pedestrians that appear in the foreground of one 355

image may end up in the background of another. There are also several known instances 356

of cyclists keeping relative pace with the street-view vehicle for several blocks, resulting 357

in numerous detections. These issues are easy to circumvent in analysis by comparing 358

the relative number of detections, although at the cost of interpretability. 359

Even with the above limitations, the data pipeline presented in this paper can be 360

directly applied or adapted to be used in a number of contexts. Potential applications of 361

longitudinal SVI data in assessing the built environment [14], broad urban 362

research [1, 3, 68], and health research [8] have been well-documented, as the temporal 363

instability of existing SVI data is discussed as a limitation in all of these fields. Beyond 364

this, it is possible to estimate population demographics [4], and other 365

neighborhood-level statistics [13,69] using SVI data. As our ability to quickly and 366

accurately parse scenes using computer vision improves [70], potential application areas 367

will only increase in number. 368

Another field where longitudinal SVI data could contribute a lot is disaster research. 369

There is a substantial body of research dedicated to empirical methods for modeling 370

various aspects of disaster recovery [71]. Our methods could be applied in this field to 371

quantify recovery using pedestrian detections as a metric for community mobility, or 372

another metric assessing the built environment as appropriate. Similar work has been 373

done using repeat photography after Hurricane Katrina [15] but our methods represent 374

a substantial increase in generated data, allowing for a wider range of analyses. Spatial 375

video data collection for disaster reconnaissance has also been done [72], but involves 376

manual assessment of the captured video. Our methods demonstrate that a 377

fully-automated approach is possible, which would allow for more frequent data 378

collection at a lower cost. 379

Conclusion 380

This article describes the creation of the first open-source SVI data pipeline for 381

longitudinal analysis. Regression analysis based on the resulting longitudinal SVI data 382

showed that pedestrian traffic patterns changed in response to the availability of the 383

COVID-19 vaccine, thereby demonstrating the data pipeline’s usefulness in research and 384

practice. In particular, we showed that there were statistically significant increases in 385

groups of people in proximity to each other after the vaccine became publicly available. 386

Our data also captured expected trends in pedestrian traffic based on annual seasonality 387

and socioeconomic factors. Our results demonstrate the feasibility and value in 388

collecting SVI data as part of a longitudinal study. Longitudinal SVI data is capable of 389

providing valuable insights in a variety of fields of study. Future work includes 390

applications of our methods in broader public health research, disaster research, and 391
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other fields of study that can benefit from longitudinal SVI data. Potential 392

methodological directions include study-specific route design process improvements and 393

newer pedestrian detection approaches, as further progress is made in this area. 394
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