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ABSTRACT: Producing high-quality forecasts of key climate variables, such as temperature and

precipitation, on subseasonal time scales has long been a gap in operational forecasting. This study

explores an application of machine learning (ML) models as post-processing tools for subseasonal

forecasting. Lagged numerical ensemble forecasts (i.e., an ensemble where the members have

different initialization dates) and observational data, including relative humidity, pressure at sea

level, and geopotential height, are incorporated into various ML methods to predict monthly

average precipitation and two-meter temperature two weeks in advance for the continental United

States. For regression, quantile regression, and tercile classification tasks, we consider using

linear models, random forests, convolutional neural networks, and stacked models (a multi-model

approach based on the prediction of the individual ML models). Unlike previous ML approaches

that often use ensemble mean alone, we leverage information embedded in the ensemble forecasts

to enhance prediction accuracy. Additionally, we investigate extreme event predictions that are

crucial for planning and mitigation efforts. Considering ensemble members as a collection of

spatial forecasts, we explore different approaches to using spatial information. Trade-offs between

different approaches may be mitigated with model stacking. Our proposed models outperform

standard baselines such as climatological forecasts and ensemble means. In addition, we investigate

feature importance, trade-offs between using the full ensemble or only the ensemble mean, and

different modes of accounting for spatial variability.
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Significance statement: Accurately forecasting temperature and precipitation on subseasonal time

scales – two weeks to two months in advance – is extremely challenging. These forecasts would

have immense value in agriculture, insurance, and economics. Our paper describes an application

of machine learning techniques to improve forecasts of monthly average precipitation and 2-meter

temperature using lagged physics-based predictions and observational data two weeks in advance

for the entire continental United States. For lagged ensembles, the proposed models outperform

standard benchmarks such as historical averages and averages of physics-based predictions. Our

findings suggest that utilizing the full set of physics-based predictions instead of the average

enhances the accuracy of the final forecast.

1. Introduction

High-quality forecasts of key climate variables such as temperature and precipitation on sub-

seasonal time scales, defined here as the time range between two weeks and two months, have

long been a gap in operational forecasting (Ban et al. 2016). Advances in weather forecasting on

time scales of days to about a week (Lorenc 1986; National Academies of Sciences 2016; National

Research Council 2010; Simmons and Hollingsworth 2002) or seasonal forecasts on time scales of

two to nine months (Barnston et al. 2012) do not necessarily translate to the challenging subseasonal

regime. Addressing the crucial need for forecasts on the seasonal-to-subseasonal (S2S) timescale,

collaborative initiatives led by the World Weather Research Programme and the World Climate

Research Programme aim to advance S2S forecasting by focusing on mesoscale–planetary-scale

interactions, high-resolution simulations, data assimilation methods, and tailored socioeconomic

support (Brunet et al. 2010). Skillful forecasts on subseasonal time scales would have immense

value in agriculture, insurance, and economics (White et al. 2022; Mouatadid et al. 2023). The

importance of improved subseasonal predictions is also detailed by Ban et al. (2016) and National

Research Council (2010).

The National Centers for Environmental Prediction (NCEP), part of the National Oceanic and

Atmospheric Administration (NOAA), currently issues a “week 3-4 outlook” for the contiguous

United States (CONUS).1 The NCEP outlooks are constructed using a combination of dynami-

cal and statistical forecasts, with statistical forecasts based largely on how conditions in the past

have varied (linearly) with indices of the El Niño-Southern Oscillation (ENSO), Madden-Julian

1https://www.cpc.ncep.noaa.gov/products/predictions/WK34/
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Oscillation (MJO), and global warming (i.e., the 30-year trend). There exists great potential to ad-

vance subseasonal forecasting (SSF) using machine learning (ML) techniques. Haupt et al. (2021)

provides an overview of using ML methods for post-processing of numerical weather predictions.

Vannitsem et al. (2021) highlight the crucial role of statistical post-processing techniques, includ-

ing ML methods, in national meteorological services. They discuss theoretical developments and

operational applications, current challenges, and potential future directions, particularly focusing

on translating research findings into operational practices. A real-time forecasting competition

called the Subseasonal Climate Forecast Rodeo (Hwang et al. 2018), sponsored by the Bureau

of Reclamation in partnership with NOAA, USGS, and the U.S. Army Corps of Engineers, illus-

trated that teams using ML techniques can outperform forecasts from NOAA’s operational seasonal

forecast system.

Here, we present work focused on developing ML-based forecasts that leverage lagged ensembles

(i.e., an ensemble whose members are initialized from a succession of different start dates) of

forecasts produced by NCEP in addition to observed data and other features. Previous studies,

including successful methods in the Rodeo competition (e.g., Hwang et al. (2019)), incorporate

the ensemble mean as a feature in their ML systems but do not use any other information about

the ensemble. In other words, variations among the ensemble members are not reflected in the

training data or incorporated into the learned model. In contrast, this paper demonstrates that the

full ensemble contains important information for subseasonal forecasting outside the ensemble

mean. Specifically, we consider the test case of predicting monthly 2-meter temperatures and

precipitation two weeks in advance over 3000 locations over the continental United States using

physics-based predictions, such as NCEP-CFSv2 hindcasts (Kirtman et al. 2014; Saha et al. 2014),

using an ensemble of 24 distinct forecasts. We repeat this experiment for the Global Modeling

and Assimilation Office from the National Aeronautics and Space Administration (NASA-GMAO)

ensemble, which has 11 ensemble members (Nakada et al. 2018).

In this context, this paper makes the following contributions:

• We train a variety of ML models (including neural networks, random forests, linear regression,

and model stacking) that input all ensemble member predictions as features in addition to

observations of geopotential heights, relative humidity, precipitation, and temperature from

past months to produce new forecasts with higher accuracy than the ensemble mean; forecast
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accuracy is measured with a variety of metrics (Section 7). These models are considered in the

context of regression, quantile regression, and tercile classification. Systematic experiments

are used to characterize the influence of individual ensemble members on predictive skill

(Section 8a(ii)).

• The collection of ML models employed allows us to consider different modes of accounting

for spatial variability. ML models can account for spatial correlations among both features

and targets; for example, when predicting Chicago precipitation, our models can leverage not

only information about Chicago but also about neighboring regions. Specifically, we consider

the following learning frameworks: (a) training a predictive model for each spatial location

independently; (b) training a predictive model that inputs the spatial location as a feature and

hence can be applied to any single spatial location; (c) training a predictive model for the

full spatial map of temperature or precipitation – i.e., predicting an outcome for all spatial

locations simultaneously. ML models present various ways to account for spatial variability,

each with distinct advantages and disadvantages. Our application of model stacking (an ML

technique where multiple models are combined, with their predictions used as input features

for another model that produces the final prediction) allows our final learned model to exploit

the advantages of each method.

• We conduct a series of experiments to help explain the learned model and which features the

model uses most to make its predictions. We systematically explore the impact of using lagged

observational data in addition to ensemble forecasts and positional encoding to account for

spatial variations (Section 8c).

• The ensemble of forecasts from a physics-based model (e.g., NCEP-CFSv2 or NASA-GMAO)

contain information salient to precipitation and temperature forecasting besides their mean,

and ML models that leverage the full ensemble generally outperform methods that rely on the

ensemble mean alone (Section 8a(i)).

• Finally, we emphasize that the final validation of our approach was conducted on data from

2011 to 2020 that was not used during any of the training, model development, parameter

tuning, or model selection steps. We only conducted our final assessment of the predictive

skill for 2011 to 2020 after we had completed all other aspects of this manuscript. Because of
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this, our final empirical results accurately reflect the anticipated performance of our methods

on new data.

This paper is organized as follows: Section 2 discusses related work, Section 3 introduces data

used in the experiments, Section 4 describes forecasting problems, while baselines and learning-

based methods are described in Section 5, experimental setup and evaluation metrics are given in

Section 6. Finally, we present our results in Section 7 and discuss them in Section 8. Conclusions

and directions for future work are given in Section 9.

2. Related work

While statistical models were common for weather prediction in the early days of weather

forecasting (Nebeker 1995), forecasts using physics-based dynamic system models have been

carried out since the 1980s and have been the dominant forecasting method in climate prediction

centers since the 1990s (Barnston et al. 2012). Many physics-based forecast models are used both

in academic research and operationally. Such systems often produce ensembles of forecasts – e.g.,

the result of running a physics-based simulation multiple times with different initial conditions or

parameters, and are a mainstay of operational forecast centers around the globe.

Recently, skillful ML approaches have been developed for short-range weather prediction (Chen

et al. 2023; Nagaraj and Kumar 2023; Frnda et al. 2022; Herman and Schumacher 2018; Ghaderi

et al. 2017; Grover et al. 2015; Radhika and Shashi 2009; Cofıno et al. 2002) and longer-term

weather forecasting (Lam et al. 2023; Yang et al. 2023; Chen et al. 2023; Hewage et al. 2021;

Cohen et al. 2019; Totz et al. 2017; Iglesias et al. 2015; Badr et al. 2014). However, forecasting on

the subseasonal timescale, with 2-8 week outlooks, has been considered a far more difficult task

than seasonal forecasting due to its complex dependence on both local weather and global climate

variables (Vitart et al. 2012; Min et al. 2020). Seasonal prediction also benefits from targeting a

much larger averaging period.

Some ML algorithms for subseasonal forecasting use purely observational data (i.e., not using any

physics-based ensemble forecasts). He et al. (2020) focuses on analyzing different ML methods,

including Gradient Boosting trees and Deep Learning (DL) for SSF. They propose a careful

construction of feature representations of observational data and show that ML methods are able

to outperform a climatology baseline, i.e., predictions corresponding to the 30-year mean at a
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given location and time. This conclusion is based on comparing the relative '2 scores for the ML

approaches and climatology. Srinivasan et al. (2021) proposes a Bayesian regression model that

exploits spatial smoothness in the data.

Other works use the ensemble mean as a feature in their ML models. For example, in the

subseasonal forecasting Rodeo (Hwang et al. 2018), a prediction challenge for temperature and

precipitation at weeks 3-4 and 5-6 in the western U.S. sponsored by NOAA and the U.S. Bureau of

Reclamation, simple yet thoughtful statistical models consistently outperform NOAA’s dynamical

systems forecasts. In particular, the winning approach uses a stacked model from two nonlinear

regression models, a selection of climate variables such as temperature, precipitation, sea surface

temperature, sea ice concentration, and a collection of physics-based forecast models including

the ensemble mean from various modeling centers in the North American Multi-Model Ensemble

(NMME). From the local linear regression with multitask feature selection model analysis, the

ensemble mean is the first- or second-most important feature for forecasting, especially for pre-

cipitation. He et al. (2021) perform a comparison of modern ML models that use data from the

Subseasonal Experiment (SubX) project for SSF in the western contiguous United States. The

experiments show that incorporating the ensemble mean as an input feature to ML models leads to

a significant improvement in forecasting performance, but that work does not explore the potential

value of individual ensemble members aside from the ensemble mean. Grönquist et al. (2020)

note that physics-based ensembles are computationally demanding to produce and propose an ML

method that can input a subset of ensemble forecasts and generate an estimate of the full ensemble;

they observe that the output ensemble estimate has more prediction skill than the original ensemble.

Loken et al. (2022) analyze the forecast skill of random forests leveraging the ensemble members

for next-day severe weather prediction compared to only using the ensemble mean. However, their

results only cover forecasts with a lead time of up to 48 hours, so it is unclear if their methods

would have succeeded in the tougher subseasonal forecasting setting.

This paper complements the prior work above by developing powerful learning-based approaches

that incorporate both physics-based forecast models and observational data to improve SSF over

CONUS.
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3. Data

Table 1 describes variables used in the experiments. Climatological means of precipitation

and temperature are calculated using 1971-2000 NOAA data (NOAA 2022). There are many

ensembles of physics-based predictions produced by forecasting systems. NMME is a collection

of physics-based forecast models from various modeling centers in North America, including

NOAA/NCEP, NOAA/Geophysical Fluid Dynamics Laboratory (GFDL), International Research

Institute for Climate and Society (IRI), National Center for Atmospheric Research (NCAR), NASA,

and Canadian Meteorological Centre (Kirtman et al. 2014). NMME provides forecasts from

multiple global forecast models from North American modeling centers (Kirtman et al. 2014). The

NMME project has two predictive periods: hindcast and forecast. A hindcast period refers to when

a dynamic model re-forecasts historical events, which can help climate scientists develop and test

new models to improve forecasting and to evaluate model biases. In contrast, a forecast period has

real-time predictions generated from dynamic models.

T���� 1. Description of climate variables and their data sources. Our target climate variables for sub-

seasonal forecasting are precipitation and 2-meter temperature. We use NOAA data to calculate the climatology

from 1971 to 2000. We also perform linear spatial interpolation on the historical values to get values with the

same resolution and support as target climate variables.

Type Variable Description Unit Spatial Coverage Time Range Data Source

Fe
at

ur
e

va
ria

bl
e

tmp2m Daily average
temperature at 2 meters

�
⇠

US mainland
0.5� ⇥0.5� grid 1985 to 2020

CPC Global
Daily Temperature

(Fan and Van den Dool 2008)

precip Daily average
precipitation mm US mainland

0.5� ⇥0.5� grid 1985 to 2020 CPC Global
Daily Precipitation (Xie et al. 2010)

SSTs Daily sea
surface temperature

�
⇠

Ocean only
0.25� ⇥0.25� grid 1985 to 2020

Optimum Interpolation
SSTs High Resolution

(OISST) (Reynolds et al. 2007)

rhum Daily relative humidity
near the surface Pa

slp Daily pressure
at sea level %

US mainland
and North Pacific
& Atlantic Ocean
0.5� ⇥0.5� grid

1985 to 2020
Atmospheric Research

Reanalysis Dataset
(Kalnay et al. 1996)

hgt500 Daily geopotential
height at 500mb m

Cl
im

at
ol

og
y

tmp2m Daily average
temperature at 2 meters K Globally

1� ⇥1� grid 1971 to 2000 NOAA (NOAA 2022)

precip Daily average
precipitation mm Globally

1� ⇥1� grid 1971 to 2000 NOAA (NOAA 2022)
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In this manuscript, we use ensemble forecasts from the NMME’s NCEP-Climate Forecast System

version 2 (CFSv2, Kirtman et al. (2014); Saha et al. (2014)), which has  = 24 ensemble members

at a 1� ⇥1� resolution over a 2-week lead time. NCEP-CFSv2 is the operational prediction model

currently used by the U.S. Climate Prediction Center. The NCEP-CFSv2 model has two different

products available in the NMME archive: we use its hindcasts from 1982 to 2010 for training and

validation of our models, and we use its forecasts from April 2011 to December 2020 for the final

evaluation of our models.

In order to ensure our results are not unique to a single forecasting model, we also analyze output

from the NASA-Global Modeling and Assimilation (GMAO) from the Goddard Earth Observing

System model version 5 (GEOS, Nakada et al. (2018)), which has  = 11 ensemble members at a

1� ⇥1� resolution over a 2-week lead time. Similarly, we use its hindcasts from 1981 to 2010 for

training and validation of our models, and we use its forecasts from January 2011 to January 2018

for final evaluation. The test periods of NCEP-CFSv2 and NASA-GMAO data differ due to data

availability. Note that the identical version of each model is used to generate the test, train, and

validation data.

Different ensemble members correspond to different initial conditions of the underlying phys-

ical model. The NCEP-CFSv2 forecasts are initialized in the following way: four initializations

at times 0000, 0600, 1200, and 1800 UTC every fifth day, starting one month prior to the lead

time of two weeks (Table B1 in Saha et al. (2014)). NASA-GMAO is a fully coupled atmo-

sphere–ocean–land–sea ice model, with five forecasts initialized every five days. While additional

members are generated through perturbation methods closest to the beginning of each month 2,

not all members are initialized on different dates, meaning that the ensemble is not strictly lagged.

However, NASA-GMAO members are not interchangeable, as each is created using a distinct

method.

All data are interpolated to lie on the same 1� ⇥ 1� grid, resulting in ! = 3,274 U.S. locations.

Climate variables available daily (such as pressure at sea level or precipitation) are converted to

monthly average values. When data are available as monthly averages only, we ensure that our

forecast for time C + XC does not use any information from the interval (C, C + XC).

2https://gmao.gsfc.nasa.gov/products/climateforecasts/GEOS5/DESC/init.php
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4. Forecast tasks

The learning task can be formulated as learning a model 5\ : X ! y with parameters ✓. This

model 5\ can be a linear regression (where ✓ is a set of regression weights), the mean of ensemble

members (no ✓ needs to be learned), a random forest (where ✓ parameterizes the set of trees in the

forest), a convolutional neural network (where ✓ is the collection of neural network weights), or

other learned models. We consider three forecasting tasks: regression, tercile classification, and

quantile regression.

(i) Regression The goal of regression is to predict monthly average values of precipitation and

2-meter temperature two weeks in the future. These models are generally trained using the squared

error loss function:

✓sq�err(\) = E[(H� 5\ (x))2] . (1)

(ii) Tercile classification The goal of tercile classification is to predict whether the precipitation or

2-meter temperature will be “high” (above the 66th percentile, denoted @ = 1), “medium” (between

the 33rd and the 66th percentiles, denoted @ = 0), or “low” (below the 33rd percentile, denoted

@ = �1). We compute these percentile values using the 1971-2000 climatology (see Section 3 for

details), and these percentiles are computed for each calendar month < and location ; pair. These

models are generally trained using the cross-entropy loss function:

✓CE(\) = E
266664

1’
@=�1

�I{H=@} log( 5\ (x))@
377775
, (2)

where I{�} :=

8>>><
>>>:

1, if � true

0, if � false
is the indicator function and ( 5\ (G))@ is the predicted probability that

the target H corresponding to feature vector G will be in tercile @.

(iii) Quantile regression For a given percentile U, the goal of quantile regression is to predict the

value I so that, conditioned on features G, the target H satisfies H  I with probability U. When we

set U to a value close to one, such as U = 0.9, this value I indicates what we can expect in “extreme

outcomes”, not just on average. These models are generally trained using the pinball loss function:
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✓quantile(\) = E[dU (H� 5\ (x))] (3)

where

dU (I) := I(U� I{(I<0)}) =
8>>><
>>>:
U |I | if I � 0

(1�U) |I | if I < 0
. (4)

5. Prediction methods

Our goal is to predict either the monthly average precipitation or the monthly average 2-meter

temperature two weeks in advance (for example, we predict the average monthly precipitation for

February on January 15). This section describes the notation used for features and targets, baselines

and learning methods, and how spatial features are accounted for.

a. Notation

We let) denote the number of time steps used in our analysis, and ! denote the number of spatial

locations. We define the following variables:

• D(:)
C,;

is the :-th ensemble member at time C and location ;, where : = 1, . . . , , C = 1, . . . ,) ,

; = 1, . . . , !. Every ensemble member represents the output of a given physics-based model

forecast from different initial states.

• E (?)
C,;

is the ?-th observational variable, such as precipitation or temperature, geopotential

height at 500mb, relative humidity near the surface, pressure at sea level and sea surface

temperature, at time C and location ;, with ? = 1, ...,%.

• z
(1)
;
,z

(2)
;

represent information about longitude and latitude of location ;, respectively; each is

a vector of length 3. More details about this representation, called positional encoding (PE),

can be found in Section 6a.

• xC,; := [D(1)
C,;

, ...,D
( )
C,;

,E
(1)
C,;

...,E
(%)
C,;

,z
(1)
;
,z

(2)
;
] is a set of features at time C and location ;.

• HC,; is the target – the ground truth monthly average precipitation or 2-meter temperature at

the target forecast time C + XC at location ;, where XC = 14 days is our forecast horizon. For

simplicity, we use a subscript C for HC,; instead of C+XC to match with the input features notation.

The same holds for our ensuing definitions.
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• ĤC,; is the output of a forecast model for a given task at target forecast time C + XC and location

;.

• B<,; – a 30-year mean (climatology) of an observed climate variable, such as precipitation or

temperature, at a month < = 1, . . . ,12 and location ;.

• B̂<,; – a 30-year climatology of a predicted climate variable, such as precipitation or temper-

ature, at a month < = 1, . . . ,12 and location ;. For each location ; and each month <, it is

calculated as a mean of ensemble member predictions over the training period, as defined

formally in Eq. (7).

• Hanomaly
C,;

and Ĥanomaly
C,;

are anomaly predictions and a true anomaly, at a month < = 1, . . . ,12 and

location ;. They are used during evaluation. We define anomalies as

H
anomaly
C,;

= HC,; � B<(C),; , (5)

Ĥ
anomaly
C,;

= ĤC,; � B<(C),; . (6)

For the special case of Ĥ corresponding to the ensemble mean, the ensemble members may

exhibit bias, in which case we also consider Ĥanomaly
C,;

= ĤC,; � B̂<(C),; , where B̂
<(C),; is evaluated

on the model’s (ensemble mean) predictions:

B̂<,; :=
1
)

)’
C=1

ĤC,;I{<=<(C)}, ; = 1, . . . , !. (7)

The model climatology B̂<,; is computed using the training data. Note that we do not subtract

the climatology from the input features and target variables, i.e., precipitation and temperature,

when training our ML models. We subtract climatology from the model outputs only when

evaluating their performance, as including climatology in the inputs to our ML models during

training improves performance. Section 6c provides more details on the model evaluation.

In our analyses, the number of locations is ! = 3274, there are  = 24 NCEP-CFSv2 ensemble

members or  = 11 NASA-GMAO ensemble members. The ensemble members are used as input

features to the learning-based methods as they are, we do not perform any feature extraction from
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them. The number of observational variables is usually % = 17. The details on these variables can

be found in Section 3 and Section 6b.

The target variable H is observed from 1985 to 2020. Data from January 1985 to September

2005 are used for training (249 time steps), and data from October 2005 to December 2010 are

used for validation and model selection (63 time steps). Data from 2011 to 2020 (or from 2011 to

2018 in the case of NASA-GMAO data) are used to test our methods after all model development,

selection, and parameter tuning are completed.

b. Baselines

(i) Climatology It is the fundamental benchmark for weather and climate predictability. In par-

ticular, for a given time C, let <(C) := (C mod 12) correspond to the calendar month corresponding

to C; then we compute the 30-year climatology of the target variable for a given location and time

via

Ĥ
hist
C,;

= B
<(C),; , C = 1, . . . ,) , ; = 1, . . . , !. (8)

(ii) Ensemble mean This is the mean of all ensemble members for each location ; at each time

step C:

Ĥ
ens mean
C,;

:=
1
 

 ’
:=1

D
(:)
C,;

, C = 1, . . . ,) , ; = 1, . . . , !. (9)

(iii) Linear regression Finally, we consider, as a baseline, a linear regression model applied to

input features corresponding to ensemble member predictions: xC,; = [D(1)
C,;

, . . . ,D
( )
C,;

]. Then, the

model’s output

Ĥ
LR
C,;

:= h✓; ,xC,;i + \0
;
, (10)

where \; are the trained coefficients for input features for each location ;, and \0
;

are the learned

intercepts for each location ;. Note that we train a different model for each spatial location, and the

illustration for this model and its input’s format is given in Figure 1(a).
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c. Learning-based methods

(i) Linear regression (LR) In contrast to the linear regression baseline, here other climate variables

are added to the input features: xC,; = [D(1)
C,;

, ...,D
( )
C,;

,E
(1)
C,;

, ...,E
(%)
C,;

]. Then the model’s output is defined

with Eq. (10). Because the feature vector is higher dimensional here than for the baseline, the

learned \; is also higher dimensional. We train a different model for each spatial location. In our

experiments with linear models, we do not include positional encoding (z(1)
;
,z

(2)
;
) as input features,

since they would be constants for each location’s linear model.

In the context of regression, we minimize the squared error loss. The linear quantile regressor

(Linear QR) is a linear model trained to minimize the quantile loss

✓
QR =

1
!

!’
;=1

"
1
)

)’
C=1

dg

�
HC,; � ĤC,;,

� #
, (11)

where dg is defined in Eq. (4).

(ii) Random forest In the context of regression and tercile classification, we train a random

forests that use ensemble predictions, the spatial location, and additional climate features to form

the feature vector xC,; = [D(1)
C,;

, ...,D
( )
C,;

,E
(1)
C,;

, ...,E
(%)
C,;

,z
(1)
;
,z

(2)
;
] for all location ; and time C pairs. One

random forest is trained to make predictions for any spatial location. The illustration for RF and

its input’s format is given in Figure 1(b): we train one RF model for all locations, and the spatial

information is encoded as input features via PE vectors z
(1)
;
,z

(2)
;

.

In the context of quantile regression, we train a random forest quantile regressor (RFQR, Mein-

shausen (2006)), which grows trees the same way as the original random forest while storing all

training samples. To make a prediction for a test point, the RFQR computes a weight for each

training sample that corresponds to the number of leaves (across all trees in the forest) that contain

the test sample and the training sample. The RFQR prediction is then a quantile of the weighted

training samples across all leaves that contain the test sample. We show a figure representation

of the RFQR in Section D1b. With this formulation, training a single RFQR for all locations is

computationally demanding, so we train individual RFQRs for every location.

Random forests are often referred as the best off-the-shelf classifiers (Hastie et al. 2009) even

using the default hyperparameters (Biau and Scornet 2016). Our cross-validation (CV) and grid
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search experiments show that the RFs hyperparameters have little impact on the accuracy, and thus,

we use the default parameters for RFs from the Scikit-learn library (Pedregosa et al. 2011).

(iii) Convolutional neural network To produce a forecast map for the U.S., we adapted a U-Net

architecture (Ronneberger et al. 2015), which has an encoder-decoder structure with convolutional

layer blocks. The U-Net maps a stack of images to an output image; in our context, we treat each

spatial map of a climate variable or forecast as an image. Thus, the input to our U-Net is can be

represented as a tensor composed of matrices: XC = [U(1)
C

, ...,U
( )
C

,V
(1)
C

, ...,V
(%)
C

,Z
(1)
,Z

(2)].
Note that here, we use capital letters because the input to our U-Net consists of 2-D spatial maps,

which are represented as matrices instead of vectors. The model output is a spatial map of the

predicted target. This process is illustrated in Figure 1(c).

For the U-Net, we modify an available PyTorch implementation (Yakubovskiy 2020). The

training set consists of 249 samples (images), which may be considered relatively limited for CNN

training. To address this concern, we conduct bootstrapping experiments for the U-Net architecture,

offering detailed insights into the impact of sample size on model performance. Further details are

presented in Appendix C2. We use a 10-fold CV over our training data and grid search to select

parameters such as learning rate, weight decay, batch size, and number of epochs. The Adam

optimizer (Kingma and Ba 2014) is used in all experiments. After selecting hyperparameters, we

train the U-Net model with those parameters on the full training dataset. The validation set is used

to perform feature importance analysis. For regression, we train using squared error loss. In the

context of quantile regression, we initialize the weights with those learned on squared error loss

and then train on the quantile loss Eq. (11).

(iv) Nonlinear model stacking Model stacking can improve model performance by combining

the outputs of several models (usually called base models) (Pavlyshenko 2018). In our case,

linear regression, random forests, and the U-Net are substantially different in architecture and

computation, and we observe that they produce qualitatively different forecasts. We stack the linear

model, random forest, and U-Net forecasts using a nonparametric approach:

ĤC,; = ⌘( ĤLR
C,;
, Ĥ

RF
C,;
, Ĥ

UNET
C,;

), (12)
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where ⌘ is a simple feed-forward neural network with a non-linear activation and Ĥ
LR
C,;
, Ĥ

RF
C,;
, Ĥ

UNET
C,;

are the predictions of a linear model, random forest and the U-Net correspondingly and referred

to as “base models”. One stacking model is trained to make predictions for any spatial location.

Figure 1(b) with input features that are predictions from other ML models and no PE vectors

demonstrates the stacking model’s framework. Model stacking can improve the forecast quality

by combining predictions from three forecasting paradigms – spatial independence, conditional

spatial independence, and spatial dependence (Section 5d), and is analogous to the multi-model

ensemble approach commonly used in weather and climate forecasting. The architecture details

can be found in Appendix D.

We apply the following procedure for model stacking: the base models are first trained on half

of the training data, and predicted values on the second half are used to train the stacking model

⌘. Then, we retrain the base models on all the training data and apply the trained stacked model to

the outputs of the base models. The proposed procedure helps to avoid overfitting.

d. Models of spatial variation

We consider three different forecasting paradigms. In the first, which we call the spatial

independence model, we ignore all spatial information and train a separate model for each spatial

location. In the second, which we call the conditional spatial independence model, we consider

samples corresponding to different locations ; as independent conditioned on the spatial location

as represented by features (z(1)
;
,z

(2)
;
). In this setting, a training sample corresponds to (x8, H8) =

(xC,; , HC,;), where, with a small abuse of notation, we let 8 index a C, ; pair. In this case, the number

of training samples is = = )!. In the third paradigm, which we call the spatial dependence model,

we consider a single training sample as corresponding to full spatial information (across all ;)

for a single C; that is (X8,Y8) = ( [GC,;] ;=1,...,! , [HC,;] ;=1,...,!]), where now 8 indexes C alone. Models

developed under the spatial dependence model account for the spatial variations in the features

and targets. For instance, a convolutional neural network might input “heatmaps” representing

the collection of physics-based model forecasts across the continental U.S. and output a forecast

heatmap predicting spatial variations in temperature or precipitation instead of treating each spatial

location as an independent sample.
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Figure 1 shows general frameworks of these paradigms. All models combine information from

all the different ensemble forecasts, and so in a broad sense, we can think of each prediction at

a given time and location as a weighted sum of the ensemble forecasts across space, time, and

ensemble members, where the weights are learned during the model training and may be data-

dependent (i.e., nonlinear). From this perspective, we may think of different modeling paradigms

as essentially placing different constraints on those weights:

• under spatial independence models, the weights may vary spatially but do not account for

spatial correlations in the data;

• under conditional spatial independence models, the interpretation depends on the model being

trained – linear models have the same weights on ensemble predictions regardless of spatial

location, while nonlinear models (e.g., random forests) have weights that may depend on the

spatial location;

• under spatial dependence models, the weights vary spatially, depend on the spatial location,

and account for spatial correlations among the ensemble forecasts and other climate variables.

6. Experimental setup

This section provides details on the experimental setup, including positional encoding, removing

climatology, and evaluation metrics. Data preprocessing details are presented in Appendix E.

a. Positional encoding and inputs

Positional encoding (Vaswani et al. 2017) is a technique used in natural language processing

(NLP) to inject positional information into data. In sequence-based tasks, such as language

translation or text generation, the order of elements in the input sequence is important, but neural

networks do not naturally capture this information. PE assigns unique encodings to each position

in the sequence, which are then added to the original input before being processed by the model.

This enables the model to consider the order and relative positions of elements, improving its

ability to capture local and global context within a sequence and make accurate predictions (Devlin

et al. 2018; Petroni et al. 2019; Narayanan et al. 2016). This technique is helpful to represent the

positional information outside the original NLP tasks (Gamboa 2017; Gehring et al. 2017; Khan
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F��. 1. An illustration of different forecasting paradigms: (a) spatial independence models with a model

for each spatial location, no accounting for spatial information; (b) conditional spatial independence models

with one model for all locations, might consider the spatial information; (c) spatial dependence models that

account for the spatial information by design. We replace “precipitation” in the illustration with “temperature”

for temperature prediction, but the overall structure remains the same.

et al. 2022). Several of our models use the spatial location as an input feature. Rather than directly

using latitudes and longitudes, we use PE (Vaswani et al. 2017):

I
(1)
;

(8) =PE(;,28) = sin(;/1000028/3), (13)

I
(2)
;

(8) =PE(;,28 +1) = cos(;/1000028/3), (14)

where ; is a longitude or latitude value, 3 = 12 is the dimensionality of the positional encoding, and

8 2 {1, . . . ,3} is the index of the positional encoding vector. For the U-Net model, PE vectors are

transformed into images in the following way: we take every value in the vector and fill the image
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of the desired size with this value. So, there are 3 images with the corresponding PE values. For

the RF models, PE vectors can be used as they are.

b. Models’ inputs details

Based on the available data, we use the following input features for our ML models:

•  ensemble forecasts for the target month,

• four climate variables: relative humidity, pressure, geopotential height, and temperature (if

the target is precipitation) or precipitation (if the target is temperature) two months before the

target month,

• the lagged target variable (the target variable two, three, four, twelve and 24 months before the

target date – five additional features),

• SSTs that are represented via principal components (PCs),

• and, finally, the positional embeddings.

SSTs are usually represented as eight PCs, and the embedding vector size is usually 3 = 12

as we describe Section 6a. For example, using the NCEP-CFSv2 members, there are

24|{z}
 

+4+5+8|   {z   }
%

+ 12|{z}
3

⇥2 = 65 input features for every time step and location. Figure 1 pro-

vides an illustration of these input features.

c. Evaluation metrics

(i) Regression metrics The forecast skill of our regression models is measured using the '2 value.

For each location ; and ground-truth values HC,; and predictions ĤC,; at this location, we compute

'
2
;
= 1�

Õ
)

C=1(H
anomaly
C,;

� Ĥanomaly
C,;

)2

Õ
)

C=1(H
anomaly
C,;

� H̄anomaly
;

)2
, (15)

where

H̄
anomaly
;

=
1
)

)’
C=1

Ĥ
anomaly
C,;

.
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Then, the average '2 for all locations is calculated as

'
2 =

1
!

!’
;=1

'
2
;
. (16)

In addition to the average '2 on the test data, we also estimate the median '2 score across all U.S.

locations.

We further report the mean squared error (MSE) of our predictions across all locations:

MSE; :=
1
)

)’
C=1

�
HC,; � ĤC,;

�2
,

for ; = 1, . . . , !, and

MSE =
1
!

!’
;=1

MSE; . (17)

We also report the standard error (SE), median, and 90th percentile of {MSE;}; . We say the

difference between the two models is significant if their MSE ± SE intervals do not overlap. Note

that the standard errors provided here should be used with caution since there are significant spatial

correlations in the MSE values across locations, so we do not truly have ! independent samples

from an asymptotically normal distribution.

(ii) Tercile classification metrics We estimate the accuracy of our tercile classification predictions

as the proportion of correctly classified samples out of all observations.

(iii) Quantile regression metrics For the quantile regression task, we report mean quantile loss

from Eq. (11) across all locations.

7. Experimental results

In this section, we report the predictive skill of different models applied to SSF over the continental

U.S. using NCEP-CFSv2 ensemble members for regression and quantile regression. Precipitation

forecasting is known to be more challenging compared to temperature forecasting (Knapp et al.

2011). The results for the NASA-GMAO dataset are presented in Appendix A. The skill of different

models on the tercile classification task is presented in Appendix B for both datasets. Recall that all

methods are trained on data spanning January 1985–September 2005, with data spanning October
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2005 - December 2010 used for validation (i.e., model selection and hyperparameter tuning). Test

data spanning 2011 to 2020 was not viewed at any point of the model development and training

process and only used to evaluate the predictive skill of our trained models on previously unseen

data; we refer to this period as the “test period”. As a navigation tool for the reader, Table 2 gives

references to the presented results for different tasks.

T���� 2. A table with references to the main results.

Task Data Reference

Regression precip NCEP-CFSv2 Table 3; Figure 2

tmp NCEP-CFSv2 Table 4; Figure 3

precip NASA-GMAO Table A1; Figure A1

tmp NASA-GMAO Table A2; Figure A2

Quantile regression precip NCEP-CFSv2 Table 5; Figure A3

tmp NCEP-CFSv2 Table 6; Figure 4

precip NASA-GMAO Table A3; Figure A3

tmp NASA-GMAO Table A4; Figure A4

Feature importance precip NCEP-CFSv2 Table 10

tmp NCEP-CFSv2 Table 11

Tercile classification precip NCEP-CFSv2 Table B1; Figure B1

tmp NCEP-CFSv2 Table B2; Figure B3

precip NASA-GMAO Table B1; Figure B2

tmp NASA-GMAO Table B2; Figure B4

a. Regression

(i) Precipitation regression using NCEP-CFSv2 Precipitation regression results are presented

in Table 3. While the individual ML approaches produce results generally similar to those of

the baselines, the stacked ML model, in particular, outperforms the baseline models in almost all

metrics. Note that the best '2 value, associated with the stacked model, is still near zero; while

this is a significant improvement over, for example, the ensemble mean, which has an '2 value

of -0.08, the low values for all methods indicate the difficulty of the forecasting problem. It is

important to note that '2 measures the accuracy of a model relative to a baseline corresponding

to the mean of the target over the test period – that is, relative to a model that could never be

used in practice as a forecaster because it uses future observations. The best practical analog to
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this would be the mean of the target over the train period – what we call the “historical mean” or

climatology model. These two models are not the same, possibly because of the nonstationarity of

the climate (Min et al. 2020). Thus, even when our '2 values are negative (i.e., we perform worse

than the impractical mean of the target over the test period), we still perform much better than the

practical climatology predictor. The model stacking approach is applied to the models trained on

all available features (i.e., ensemble members, PE, climate variables; linear regression is trained

on all features except PE). We decide what models to include in the stacking approach based on

their performance on validation data. The low 90th percentile error implies that our methods not

only have high skill on average but also that there are relatively few locations with large errors.

While acknowledging the overall performance may not be exceptional, it is important to recognize

the potential of machine learning methods in improving the quality of estimates relative to the

standard baselines. To further evaluate the capabilities of the stacking approach, we also apply the

approach to the baseline predictions, which include historical and ensemble means, as well as linear

regression. The performance of the stacked baseline model exceeds that of any of the individual

baseline models and is similar to the performance of the stacked ML approach in terms of the '2

metric. However, the stacked ML approach outperforms it in all MSE-based metrics, indicating

that the ML techniques can still provide additional skill even for as notoriously challenging a

quantity as precipitation.

T���� 3. Results for precipitation regression the using NCEP-CFSv2 ensemble, with errors reported

over the test period. LR refers to linear regression on all features, including ensemble members, lagged data,

climate variables, and SSTs. ML model stacking is performed on models that are trained on all features. The

best results are in bold. MSE is reported in squared mm.

Model Features Mean
'

2 (")
Median
'

2 (")
Mean

Sq Err (#)
Median
MSE (#)

90th prctl
MSE (#)

Climatology -0.06 -0.01 2.33 ± 0.04 1.59 4.96

Ens mean -0.08 0.01 2.19 ± 0.04 1.55 4.57Baseline

Linear Regr -0.11 -0.07 2.26 ± 0.04 1.54 4.72

Baseline stacking 0.00 0.04 2.15 ± 0.04 1.44 4.55

LR All features -0.33 -0.25 2.71 ± 0.05 1.91 5.45

U-Net All features -0.10 -0.01 2.18 ± 0.03 1.44 4.62

RF All features -0.11 -0.01 2.17 ± 0.05 1.48 4.45

Stacked LR, U-Net, RF outputs 0.02 0.04 2.07 ± 0.03 1.42 4.38
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Figure 2 illustrates performance of key methods with '2 heatmaps over the U.S. to highlight

spatial variation in errors. The RF and U-Net '2 fields are qualitatively similar, but they are still

quite different in certain states such as Georgia, North Carolina, Virginia, Utah, and Colorado.

The LR map is noticeably poor across most of the regions. The stacked ML model’s heatmap

reveals large regions where its predictive skill exceeds that of all other methods. Note that model

stacking yields relatively accurate predictions even in regions where the three constituent models

individually perform poorly (e.g., southwestern Arizona), highlighting the generalization abilities

of our stacking approach. All methods tend to have higher accuracy on the Pacific Coast, in the

Midwest, and in southern states such as Alabama and Missouri. The stacking model heatmaps

both look similar. The stacking model applied to the baselines has better '2 scores in California

compared to the stacked ML methods. However, the stacked ML model reveals larger positive '2

regions and fewer dark red spots, particularly evident in New Mexico, Minnesota, and Utah.

(ii) Temperature regression Table 4 shows results for 2-meter temperature regression. The

learning-based models, especially the random forest and stacked model, significantly outperform

the baseline models in terms of MSE and '2 score. The random forest also outperforms linear

regression and the U-Net. Note that LR, U-Net, and RF are trained without using SST information

since SST features yielded worse performance over the validation period. Figure 3 illustrates the

performance of these methods with '2 heatmaps over the U.S. As expected, the model stacking

approach shows the best results across spatial locations. We notice that there are still regions

such as the West, some regions in Texas, Florida, and Georgia where all models tend to achieve a

negative '2 score.

b. Quantile regression

We explore the use of quantile regression to predict values I so that “there’s a 90% chance that

the average temperature will be below I
� at your location next month” – or, equivalently, “there is a

10% chance that the average temperature will exceed I� at your location next month.” In this sense,

quantile regression focused on the 90-th percentile predicts temperature and precipitation extremes,

a task highly relevant to many stakeholders. We train a linear regression model fitting the quantile

loss (Linear QR), a random forest quantile regressor (RFQR), (Meinshausen 2006), a U-Net, and

the stacked model. The Linear QR and the RFQR details are discussed in Section 5. The below
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F��. 2. '2
score heatmaps of baselines and learning-based methods for precipitation regression using

NCEP-CFSv2 ensemble members; errors are computed over the test period. Positive values (blue) indicate

better performance. See Section 7a(i) for details.

experimental results show that temperature extremes can be predicted with high accuracy by the

learning-based models (particularly our stacked model), in stark contrast to historical quantiles or

ensemble quantiles in the case of temperature quantile regression. The results for precipitation are

less striking overall, though the learned models are significantly more predictive in some locations

on this quantile regression task.
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T���� 4. Results for temperature regression using the NCEP-CFSv2 ensemble, with errors reported

over the test period. LR refers to linear regression on all features including ensemble members, lagged data,

land variables. Model stacking is performed on models that are trained on all features except SSTs. The best

results are in bold. MSE is reported in squared �
⇠.

Model Features Mean
'

2 (")
Median
'

2 (")
Mean

Sq Err (#)
Median
MSE (#)

90th prctl
MSE (#)

Climatology -0.66 -0.17 6.57 ± 0.11 5.04 9.99

Ens mean -0.47 0.08 5.51 ± 0.10 3.83 9.16Baseline

Linear Regr 0.04 0.17 3.60 ± 0.03 3.25 5.49

LR All features w/o SSTs 0.05 0.16 3.57 ± 0.02 3.33 5.41

U-Net All features w/o SSTs 0.01 0.18 3.65 ± 0.02 3.38 5.31

RF All features w/o SSTs 0.16 0.25 3.17 ± 0.02 2.99 4.63

Stacked LR, U-Net, RF outputs 0.18 0.27 3.11 ± 0.02 2.93 4.56

(i) Quantile regression of precipitation For each location, the 90th percentile value is calculated

based on the historical data. For the ensemble 90th percentile, we simply take the 90th percentile

of the  ensemble members. Table 5 summarizes results for precipitation quantile regression using

the NCEP-CFSv2 ensemble. Our stacked model is able to significantly outperform all baselines.

The performance illustration is given in Appendix A, Figure A3.

T���� 5. Test results for precipitation quantile regression using NCEP-CFSv2 dataset, with target

quantile = 0.9. Linear QR refers to a linear quantile regressor. RFQR corresponds to a Random Forest Quantile

Regressor. Model stacking is performed on models that are trained on all features. The best results are in bold.

Quantile loss is reported in mm.

Model Features Mean
Qtr Loss (#)

Median
Qtr Loss (#)

90th prctl
Qtr Loss (#)

Historical 90th percentile 0.304 ± 0.003 0.278 0.504

Ens 90th percentile 0.311 ± 0.003 0.275 0.488Baseline

Linear QR ens only 0.310 ± 0.003 0.266 0.505

Linear QR All features 0.287 ± 0.003 0.248 0.463

U-Net All features 0.312 ± 0.002 0.281 0.504

RFQR All features 0.282 ± 0.002 0.257 0.453

Stacked U-Net, RFQR, LQR outputs 0.282 ± 0.002 0.256 0.457

(ii) Quantile regression of temperature Table 6 summarizes results for temperature quantile

regression using the NCEP-CFSv2 ensemble. Note that we do not include SST features for
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F��. 3. '2
score heatmaps of baselines and learning-based methods for temperature regression using

NCEP-CFSv2 ensemble members; errors are computed over the test period. Positive values (blue) indicate

better performance. See Section 7a(ii) for details.

temperature quantile regression in our learned models. We observe that all of our learned models

are able to significantly outperform all baselines. In Figure 4, we show the heatmaps of quantile

loss of baselines and our learned models. We observe that the learned models produce predictions

with varied quality, and the stacked model can pick up useful information from them. For example,

in Arizona and Texas, the Linear QR, U-Net, and RFQR show some errors but in different locations,

and the stacked model can exploit the advantages of each model.
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T���� 6. Test results for temperature quantile regression using NCEP-CFSv2 dataset, with target

quantile = 0.9. Linear QR refers to a linear quantile regressor. RFQR corresponds to a Random Forest Quantile

Regressor. Model stacking is performed on models that are trained on all features except for SSTs . Learned

models can predict highly likely temperature ranges accurately, meaning there are fewer unpredicted temperature

spikes. The best results are in bold.

Model Features Mean
Qtr Loss (#)

Median
Qtr Loss (#)

90th prctl
Qtr Loss (#)

Historical 90th percentile 0.589 ± 0.008 0.435 0.980

Ens 90th percentile 0.642 ± 0.009 0.468 1.196Baseline

Linear QR ens only 0.336 ± 0.004 0.286 0.488

Linear QR All features w/o SSTs 0.318 ± 0.002 0.301 0.407

U-Net All features w/o SSTs 0.363 ± 0.003 0.329 0.488

RFQR All features w/o SSTs 0.320 ± 0.002 0.307 0.384

Stacked U-Net, RFQR, LQR outputs 0.287 ± 0.001 0.285 0.344

8. Discussion

a. The efficacy of machine learning for SSF

Several hypotheses might explain why ML may be a promising approach for SSF, and we probe

those hypotheses in this section.

(i) Using full ensemble vs. ensemble mean Past works use ensemble mean as an input feature

to machine learning methods in addition to the climate variables (Hwang et al. 2018; He et al.

2021). Ensembles provide valuable information not only about expected climate behavior but

also variance or uncertainty in multiple dimensions; methods that rely solely on ensemble mean

lack information about this variance. Ensemble members may have systematic errors, either in

the mean or the variability, arising from different initial conditions of the corresponding dynamic

model that are not readily apparent to users. The more recently initialized an ensemble member

is, the better it usually performs. While taking the average of these ensemble members may cancel

out the deficiencies of each individual member, it is also possible that details of each member’s

systematic errors may be directly discovered and corrected independently by a machine learning

model. Therefore, using a single ensemble statistic, such as the ensemble mean, as a feature may

not fully capitalize on the information provided by using all members of the lagged ensemble as

features.
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F��. 4. Test quantile loss heatmaps of baselines and learning-based methods for temperature quantile

regression using NCEP-CFSv2 dataset. Blue regions indicate smaller quantile loss. See Section 7b(ii) for

details.

In our experiments, we find that using all available ensemble members enhances the prediction

quality of our approaches. As an illustration, we show the results of the LR, RF, U-Net, and

the stacked model trained on all ensemble members, compared to the ML models trained on the

ensemble mean only. In addition to the full ensemble or the ensemble mean, we use other available

features (as in our previous regression results). Table 7 and Table 8 demonstrate the precipitation
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and temperature forecasting results. For the linear regression, utilizing the ensemble mean with

all other features produces the best test performance compared to using the full ensemble. Such

behavior is not surprising for the LR since the full ensemble incorporates large variance across

ensemble members, which may result in a worse linear fit. For the U-Net, RF, and stacked model,

we observe significant performance improvements, in terms of having at least one standard error

smaller MSE, when using the full ensemble instead of using the ensemble mean. When we compare

the performance of learned models using only the ensemble mean to that of the learned models

that use both the ensemble mean and the ensemble standard deviation for each spatial location,

we find that the addition of the standard deviation feature does not provide enough information

to significantly improve the performance of ML models, and in fact the U-Net that exhibits a

performance degradation – a potential a sign of overfitting. These observations are visually

supported by Figure 5 and Figure 6, where the '2 heatmaps of our methods (except the U-Net)

utilizing ensemble mean and standard deviation closely resemble the performance of methods solely

relying on ensemble mean. We conclude that the full ensemble contains important information

for SSF aside from the ensemble mean, and our models can capitalize on this information for

precipitation and temperature forecasting.

We can perform a statistical test to verify that the performance discrepancies between using the

ensemble mean and using the full ensemble are statistically significant for the stacked model. As

before, let ĤC,; refer to the estimate under our usual stacked model (i.e., with all ensemble members).

Let ĤSEA
C,;

refer to a stacked model with just the ensemble mean as a feature, instead of all ensemble

members. We can employ a sign test framework (DelSole and Tippett 2014; Cash et al. 2019) to

compare model performance under minimal distributional assumptions. Namely, we only make

the following i.i.d. assumption over the time dimension:

I{| ĤC ,;�HC ,; |< | ĤSEA
C ,; �HC ,; |}

iid⇠ Bernoulli(?;)

Intuitively, this corresponds to assuming it is a coin flip which model will perform better at each

time point and location, and we would like to test whether each location’s “coin” is fair or not. We

can then formulate our null and alternative hypotheses for each location ; as follows:

�0,; : ?; = 0.5, �0,; : ?; > 0.5
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Thus, our overall test for significance is for the global null hypothesis �0 = \3274
;=1 �0,; . We calculate

a p-value for each �0,; , and then we check whether any of these p-values is below a Bonferroni-

corrected threshold of 0.05/3274 = 1.53⇥10�5, where 3274 refers to the number of locations. In

fact, the minimum p-values for this test with precipitation and regression alike are far below this

threshold (1.68⇥ 10�10 and 4.42⇥ 10�24, respectively). This allows us to reject the global null

hypothesis for both temperature and precipitation, and we conclude that including the full ensemble

in our stacked model significantly outperforms including just the ensemble mean.

T���� 7. Precipitation forecasting performance comparison of the LR, RF, U-Net, and stacked model

trained using the ensemble mean, using the sorted ensemble members, or using the original ensemble, in

addition to other features. Scores on the test data are reported, and NCEP-CFSv2 data is used. The best results

are in bold. MSE is reported in squared mm.

Model Features Mean
'

2 (")
Mean

Sq Err (#)

Ensemble mean + all features -0.28 2.59±0.04
LR

Ensemble mean & std + all features -0.29 2.61 ± 0.04

Shuffled ensemble + all features -0.41 2.84±0.05

Sorted ensemble + all features -0.43 2.87±0.05

Full ensemble + all features -0.33 2.71±0.05

Ensemble mean + all features -0.45 2.76±0.04
U-Net

Ensemble mean & std + all features -0.25 2.65 ± 0.04

Shuffled ensemble + all features -0.27 2.77±0.05

Sorted ensemble + all features -0.43 2.78±0.04

Full ensemble + all features -0.1 2.18±0.03

Ensemble mean + all features -0.16 2.36±0.04
RF

Ensemble mean & std + all features -0.15 2.32 ± 0.04

Shuffled ensemble + all features -0.16 2.29±0.04

Sorted ensemble + all features -0.18 2.30±0.04

Full ensemble + all features -0.11 2.17±0.05

Ensemble mean + all features -0.08 2.28±0.04
Stacked

Ensemble mean & std + all features -0.05 2.26 ± 0.04

Shuffled ensemble + all features -0.04 2.25±0.04

Sorted ensemble + all features -0.11 2.24±0.04

Full ensemble + all features 0.02 2.07±0.03
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F��. 5. Precipitation regression test '
2

heatmaps of LR, U-Net, RF, and stacked model trained using

ensemble mean only, using sorted and shuffled ensemble, or using the full ensemble. The NCEP-CFSv2

ensemble is used. See Section 8a for details.

(ii) Sensitivity to ensemble formulation We consider the hypothesis that there is a set of :

ensemble members that are always best. To test this hypothesis, we use a training period to identify

which : members perform best for each location, and then during the test period, compute the

average of only these : ensemble members. The performance of this approach depends on : , the

number of ensemble members we allow to be designated “good.” We have not found that the

performance for any : exhibits a significant improvement over the ensemble mean.

If the ensemble members have different levels of accuracy over various seasons, locations, and

conditions, then a machine learning model may be learning when to “trust” each member. We

know that our ensemble members are lagged, meaning they are initialized at different times. We

believe each ensemble member encapsulates valuable information derived from the underlying

physical model during each initialization. To investigate the impact of ensemble member order, we

perform the following experiment: we randomly permute ensemble members at every time step C

for all locations (preserving the spatial information) and apply our ML models to these shuffled

ensembles. From Table 7 and Table 8, this approach negatively affects the performance of the ML
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T���� 8. Temperature forecasting performance comparison of the LR, RF, U-Net, and stacked model

trained using the ensemble mean, using the sorted ensemble members, or using the original ensemble, in

addition to other features. Scores on the test data are reported and NCEP-CFSv2 data is used. The best results

are in bold. MSE is reported in squared �
⇠.

Model Features Mean
'

2 (")
Mean

Sq Err (#)

Ensemble mean + all features 0.06 3.55±0.03
LR

Ensemble mean & std + all features 0.05 3.59±0.03

Shuffled ensemble + all features 0.03 3.95±0.03

Sorted ensemble + all features -0.02 3.87±0.03

Full ensemble + all features 0.05 3.57±0.02

Ensemble mean + all features 0.00 3.77±0.03
U-Net

Ensemble mean & std + all features 0.19 4.61±0.03

Shuffled ensemble + all features 0.29 4.75±0.03

Sorted ensemble + all features -0.94 6.51±0.05

Full ensemble + all features 0.01 3.65±0.02

Ensemble mean + all features 0.10 3.57±0.02
RF

Ensemble mean & std + all features 0.10 3.56 ±0.02

Shuffled ensemble + all features 0.05 3.65±0.02

Sorted ensemble + all features 0.10 3.44±0.02

Full ensemble + all features 0.16 3.17±0.02

Ensemble mean + all features 0.11 3.43±0.02
Stacked

Ensemble mean & std + all features 0.13 3.30 ±0.02

Shuffled ensemble + all features 0.08 3.47±0.02

Sorted ensemble + all features 0.03 3.70±0.02

Full ensemble + all features 0.18 3.11±0.02

models compared to using the full ensemble with the original order. One possible explanation is

that the learned models lose the ability to learn which ensemble member to trust, as this information

is tied to the initialization time of each ensemble member. Even though the spatial information

remains intact after the shuffling, the models can no longer exploit dependencies associated with

the original ensemble structure.

Additionally, we conduct an experiment designed to test whether it is important to keep track of

which ensemble member made each prediction or whether it is the distribution of predictions that

is important. The modeling approach for the former would be to feed in ensemble member 1’s
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F��. 6. Temperature regression test '
2

heatmaps of LR, U-Net, RF and stacked model trained using

ensemble mean only, using sorted and shuffled ensemble, or using the full ensemble. The NCEP-CFSv2

ensemble is used. See Section 8a for details.

forecast as the first feature, ensemble member 2’s forecast as the second feature, etc. The modeling

approach under the distributional hypothesis is to make the smallest prediction be the first feature,

the second-smallest prediction be the second feature, and so on – i.e., we sort the ensemble forecasts

for each location separately. Note that this entails treating the ensemble members symmetrically:

the model would give the same prediction if ensemble member 1 predicted 0 and ensemble

member 2 predicted 1 or if ensemble member 1 predicted 1 and ensemble member 2 predicted 0.

In statistical parlance, this is passing in the order statistics of the forecasts as the features rather

than their original ordering. Note that for NCEP-CFSv2, ensemble forecasts are originally ordered

according to the time their initial conditions are set (Saha et al. 2014). According to Table 7 and

Table 8, using the sorted ensemble drastically degrades U-Net’s performance, which is essentially

because we sort the ensemble members for each location individually, and sorting the ensemble

members individually for each location may hamper the ability for the U-Net to learn spatial

structure. In the case of precipitation regression with the stacking model from Table 7, the MSE

of the sorted approach is 2.24, which is worse than the 2.07 MSE for using the original ordering.
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In the case of temperature forecasting from Table 8, the MSE of the sorted approach is 3.70, which

is much worse than the 3.11 MSE for using the original ordering. The mean '
2 of the sorted

approach is also lower compared to the original ordering. In both cases, the performance is better

when we feed in the features in such a way that the machine learning model has an opportunity to

learn aspects of each ensemble member, not merely their order statistics. Therefore, imposing a

symmetric treatment of ensemble members degrades performance. Figure 5 and Figure 6 shows

the corresponding '2 heatmaps of our models for precipitation and temperature regression tasks.

b. Using spatial data

There are several ways to incorporate information about location in our models. U-Net has access

to spatial dependencies through its design. Specifically, our U-Net inputs the spatial location of

each point in the map. Naively, we might represent each location using the latitude and longitude

values. Alternatively, we may use positional encoding, which is known to be beneficial in many

ML areas, not only in NLP (as we mention in Section 6a). PE captures the order (or position)

and allows one to learn the contextual relationships (local context – relationships between nearby

elements and global context dependencies across the entire sequence). We assume that the PE

approach represents spatial information in a manner more accessible to our learned models.

As an illustration, Table 9 and Figure 7 demonstrate the performance of a stacked model using

LR, RF, and U-Net trained using positional encoding, using latitude and longitude values and using

no features representing the spatial information (no PE and no latitude or longitude values). Other

inputs to the LR, RF, and U-Net models are ensemble member forecasts, lagged target variable,

climate variables, and SSTs (except in the case of temperature forecasting). The results suggest

that using PE enhances the predictive skill of our models, compared to using just the lat/lon values

or no location information, especially for the temperature forecasting task. Using no information

about locations hurts the performance of precipitation regression. Thus, our models can account

for spatial dependencies using input features, and PE is more beneficial than the raw latitude and

longitude information. These findings on PE effectiveness are consistent with prior findings in ML.

For example, Wu et al. (2021) investigate the efficacy of PE in the context of the visual transformer

model used for image classification and object detection. We show a more detailed analysis with

results for the LR, RF, and U-Net in Section C1.
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T���� 9. Test performance comparison of the stacked model of LR, RF, and U-Net trained using no

spatial features, using latitude and longitude values, or using PE. Utilizing spatial representations, including

PE, latitude, and longitude values, helps advance the predictive skill. Furthermore, using positional encoding is

more beneficial than using raw latitude and longitude values. The best results are in bold. MSE is reported in

squared mm for precipitation and in squared �
⇠ for temperature.

Target Features Mean
'

2 (")
Mean

Sq Err (#)

All + no location info -0.05 2.13±0.03
Precip

All + lat/lon values -0.01 2.21±0.04

All + PE 0.02 2.07±0.03

All + no location info 0.12 3.35±0.02
Tmp

All + lat/lon values 0.12 3.33±0.02

All + PE 0.18 3.11± 0.02

F��. 7. Test '
2

heatmaps of the stacked model of LR, RF, and U-Net trained using no spatial features,

using latitude and longitude values or using PE. The NCEP-CFSv2 ensemble is used. See section 8b for

details.

c. Variable importance

One consideration when implementing ML for SSF is that ML models can incorporate side

information (such as spatial information, lagged temperature and precipitation values, and climate

variables). In this section, we explore the importance of the various components of side information.

We see that including the observational climate variables improves the performance for the random
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forest and the U-Net when doing precipitation regression. Furthermore, including positional

encoding of the locations improves the performance of the U-Net, while the principle components

of the sea surface temperature do not make a notable difference in the case of temperature prediction.

More specifically, Table 10 summarizes grouped feature importance of precipitation regression

using the NCEP-CFSv2 ensemble. We observe that models, in particular random forest and U-Net,

trained on all available data achieve the best performance. In the case of linear regression, the

SSTs features are neither very helpful nor actively harmful. Therefore, to be consistent, we use

predictions of these models trained on all features as input to the stacking model.

T���� 10. Grouped feature importance results on validation for precipitation regression task using

NCEP-CFSv2 ensemble members. The results suggest that using additional observational information helps to

improve the performance of learning-based models for this task. –"– means a repetition of features that are used

above. For example, in the U-Net part of the table, “–"– & lags” means that ensemble members, PE, and lags

are used as features and “–"– & SSTs” means ensemble members, PE and lags, land features and SSTs are used

as features. The best results are in bold. MSE is reported in squared mm.

Model Features Mean
'

2 (")
Median
'

2 (")
Mean

Sq Err (#)
Median
MSE (#)

90th prctl
MSE (#)

LR Ens members -0.13 -0.08 2.11 ± 0.03 1.53 4.63

–"– & lags -0.11 -0.07 2.10 ± 0.03 1.50 4.59

–"– & climate variables (no SSTs) -0.09 -0.06 2.06 ± 0.03 1.47 4.52

–"– & SSTs -0.10 -0.07 2.08 ± 0.03 1.47 4.61

U-Net Ens members with PE -0.13 -0.05 2.01 ± 0.03 1.50 4.31

–"– & lags -0.08 -0.02 1.92 ± 0.03 1.42 4.17

–"– & climate variables (no SSTs) -0.02 0.05 1.86 ± 0.03 1.37 4.02

–"– & SSTs 0.00 0.05 1.83 ± 0.03 1.34 3.94

RF Ens members with PE -0.15 -0.04 2.02 ± 0.03 1.49 4.34

–"– & lags -0.10 0.00 1.96 ± 0.03 1.44 4.21

–"– & climate variables (no SSTs) -0.08 0.02 1.93 ± 0.03 1.39 4.16

–"– & SSTs -0.06 0.04 1.89 ± 0.03 1.36 4.08

Table 11 summarizes grouped feature importance of temperature regression using the NCEP-

CFSv2 ensemble. In this case, adding some types of side information may yield only very small

improvements to predictive skill, and in some cases, the additional information may decrease

predictive skill. On the one hand, this effect can be explained by different training set sizes

for different models: as we outline in Section 5d, the training set size for RF is = = )!, while
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= = ) for U-Net. This effect also may be a sign of overfitting, as temperature forecasting presents

a comparatively less complex challenge than precipitation forecasting. We also note that SSTs

provide only marginal (if any) improvement in predictive skill, in part because Pacific SSTs are

less helpful away from the western U.S. (Mamalakis et al. 2018; Seager et al. 2007). It could also

be that information from the SSTs is already being well-captured by the output from the dynamical

models, and thus, including observed SSTs does not provide much additional information. In order

to be consistent, we use predictions of these models trained on all features except SSTs as input to

the stacking model.

T���� 11. Grouped feature importance results on validation for temperature regression task using

NCEP-CFSv2 ensemble members. The results demonstrate that using some additional information may yield

only very small improvements in predictive skill, and in some cases, the side information may decrease predictive

skill. –"– means a repetition of features that are used above. For example, in the U-Net part of the table, “–"–

& lags” means that ensemble members, PE, and lags are used as features and “–"– & SSTs” means ensemble

members, PE and lags, land features and SSTs are used as features. The best results are in bold. MSE is reported

in squared �
⇠.

Model Features Mean
'

2 (")
Median
'

2 (")
Mean

Sq Err (#)
Median
MSE (#)

90th prctl
MSE (#)

LR Ens members 0.35 0.40 2.19 ± 0.02 2.00 3.47

–"– & lags 0.37 0.40 2.12 ± 0.02 1.94 3.30

–"– & climate variables (no SSTs) 0.36 0.39 2.14 ± 0.04 1.94 3.40

–"– & SSTs 0.34 0.38 2.23 ± 0.02 1.99 3.73

U-Net Ens members with PE 0.33 0.41 2.22 ± 0.04 2.02 3.47

–"– & lags 0.32 0.40 2.24 ± 0.02 2.02 3.49

–"– & climate variables (no SSTs) 0.31 0.41 2.26 ± 0.02 2.08 3.48

–"– & SSTs 0.28 0.38 2.47 ± 0.02 2.20 3.95

RF Ens members with PE 0.11 0.37 2.85 ± 0.04 2.28 4.87

–"– & lags 0.30 0.36 2.35 ± 0.02 2.12 3.70

–"– & climate variables (no SSTs) 0.30 0.36 2.33 ± 0.02 2.10 3.65

–"– & SSTs 0.28 0.34 2.42 ± 0.02 2.17 3.83

9. Conclusions and future directions

This paper systematically explores the use of machine learning methods for subseasonal forecast-

ing, highlighting several important factors: (1) the importance of using ensembles of physics-based
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forecasts (as opposed to only using the mean, as in common practice); (2) the potential for forecast-

ing temperature and precipitation extremes using quantile regression; (3) the efficacy of different

mechanisms, such as positional encoding and convolutional neural networks, for modeling spatial

dependencies; (4) the importance of various features, such as sea surface temperature and lagged

temperature and precipitation values, for predictive accuracy; (5) model stacking provides sub-

stantial benefits by leveraging the different utilization of spatial data among contributing models.

The stacking model probably capitalizes on this diversity, fostering performance enhancement.

Together, these results provide new insights into using ML for subseasonal weather forecasting in

terms of the selection of features, models, and methods.

Our results also suggest several important directions for future research. In terms of features,

there are many climate forecasting ensembles computed by organizations such as NOAA and

ECMWF. This paper focuses on ensembles in which ensemble members have a distinct ordering

(in terms of lagged initial conditions used to generate them), but other ensembles correspond to

initial conditions or parameters drawn independently from some distribution. Leveraging such

ensemble forecasts and potentially jointly leveraging ensemble members from multiple distinct

ensembles may further improve the predictive accuracy of our methods.

In terms of models, new neural architecture models such as transformers show remarkable

performance on several image analysis tasks (Dosovitskiy et al. 2020; Carion et al. 2020; Chen

et al. 2021; Khan et al. 2022) and have potential in the context of forecasting climate temperature

and precipitation maps. A careful study is needed, as past image analysis work using transformers

generally uses large quantities of training data, exceeding what is available in SSF contexts.

Recent advancements in data-driven global weather forecasting models, such as Pangu-Weather

(Bi et al. 2022), FourCastNet (Pathak et al. 2022), and GenCast (Price et al. 2023), demonstrate the

potential of ML techniques to enhance forecasting capabilities across various timescales. These

models outperform traditional numerical weather prediction approaches, suggesting that similar

data-driven methods may hold promise for improving SSF quality.

In terms of methods, two outstanding challenges are particularly salient to the SSF commu-

nity. The first is uncertainty quantification; that is, we wish not only to forecast temperature or

precipitation but also to predict the likelihood of certain extreme events. Our work on quantile

regression is an important step in this direction and statistical methods like conformalized quantile

38
Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0103.1.�4�7�104�2���0/������43��/0/� ��� ����� 	 ��
����




regression (Romano et al. 2019) may provide additional insights. Second, we see in Figure C7 that,

at least in some geographic regions, the distribution of ensemble hindcast and forecast data may

be quite different. Employing methods that are more robust to distribution drift (Wiles et al. 2021;

Subbaswamy et al. 2021; Zhu et al. 2021) is particularly important not only for handling forecast

and hindcast data but also for accurate SSF in a changing climate.
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available at https://github.com/elena-orlova/SSF-project.

APPENDIX A

Regression results for NASA-GMAO and NCEP-CFSv2

A1. Regression

(i) Precipitation regression using NASA-GMAO Precipitation regression results on the test data

from NASA-GMAO are presented in Table A1. On this dataset, no learned method or method

leveraging ensemble model forecasts significantly outperforms climatology. Note that the best '2

value associated with the climatology is still negative; the low values for all methods indicate the

difficulty of the forecasting problem.

Figure A1 illustrates the test performance of key methods on NASA-GMAO data with '
2

heatmaps over the U.S. Although the stacked model does not show the best performance in terms

of mean '2 score, it has more geographic regions with positive '2 than any other method.

(ii) Regression of temperature Temperature regression results using NASA-GMAO ensemble

members are presented in Table A2. The random forest and linear regression outperform all

baselines in terms of both '2 score and MSE. However, the U-Net model’s performance is lower

compared to other learned methods, which might be a sign of overfitting. Despite this performance

drop of U-Net, the model stacking approach still demonstrates the best predictive skill. Note that

the model stacking approach is applied to the models that are trained on all available features except

SSTs (similar to NCEP-CFSv2 data).
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T���� A1. Test results for precipitation regression using NASA-GMAO dataset. LR refers to linear

regression on all features including ensemble members, lagged data, land variables, and SSTs. Model stacking is

performed on models that are learned on all features. Bold values indicate the best performance for each statistic.

MSE is reported in squared mm.

Model Features Mean
'

2 (")
Median
'

2 (")
Mean

Sq Err (#)
Median
MSE (#)

90th prctl
MSE (#)

Climatology -0.07 -0.02 2.14 ± 0.04 1.51 4.40

Ens mean -0.11 -0.06 2.13 ± 0.04 1.52 4.31Baseline

Linear Regr -0.18 -0.14 2.25 ± 0.04 1.62 4.68

LR All features -0.40 -0.29 2.62 ± 0.05 1.93 5.42

U-Net All features -0.19 -0.09 2.11 ± 0.03 1.56 4.25

RF All features -0.18 -0.11 2.17 ± 0.04 1.55 4.44

Stacked LR, U-Net, RF, outputs -0.08 -0.06 2.09 ± 0.04 1.52 4.27

T���� A2. Test results for temperature regression using NASA-GMAO dataset. LR refers to linear

regression on all features including ensemble members, lagged data, and land variables. Model stacking is

performed on models that are learned on all features except SSTs. Bold values indicate the best performance for

each statistic. MSE is reported in squared �
⇠.

Model Features Mean
'

2 (")
Median
'

2 (")
Mean

Sq Err (#)
Median
MSE (#)

90th prctl
MSE (#)

Climatology -0.70 -0.20 6.49 ± 0.11 5.06 9.72

Ens mean -0.28 0.12 4.82 ± 0.10 3.43 7.82Baseline

Linear Regr 0.12 0.14 3.32 ± 0.02 3.11 4.70

LR All features wo SSTs 0.17 0.17 3.10± 0.02 3.05 4.26

U-Net All features wo SSTs 0.06 0.12 3.40 ± 0.02 3.27 4.52

RF All features wo SSTs 0.20 0.22 3.03 ± 0.02 2.94 4.25

Stacked LR, U-Net, RF, outputs 0.21 0.22 2.94 ± 0.02 2.89 3.97

Figure A2 illustrates the test performance of key methods on NASA-GMAO data with '
2

heatmaps over the U.S. The stacked model shows the best performance across spatial locations.

Similar to the NCEP-CFSv2 dataset, we notice that there are still regions where all models tend to

exhibit a negative '2 score.

A2. Quantile regression

(i) Quantile regression of precipitation using NCEP-CFSv2 ensemble In Figure A3, we show

heatmaps of quantile loss using all locations in the U.S., where blue means smaller quantile loss
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F��. A1. Test '
2

score heatmaps of baselines and learning-based methods for precipitation regression

using the NASA-GMAO dataset. Positive values (blue) indicate better performance. See Section A1(i) for

details.

and yellow means larger quantile loss. We observe that the learning-based models outperform the

baselines, especially in Washington, California, Idaho, and near the Gulf of Mexico.

(ii) Quantile regression of precipitation using NASA-GMAO ensemble Table A3 summarizes

results for precipitation quantile regression using the NASA-GMAO ensemble. The models are

the same as the models applied to the NCEP-CFSv2 ensemble. Our best model shows similar
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F��. A2. Test '
2

score heatmaps of baselines and learning-based methods for temperature regression

using NASA-GMAO dataset. Positive values (blue) indicate better performance. See Section A1(ii) for details.

performance to that of the baselines. One possible reason is that the NASA-GMAO ensemble

shows worse performance than the NCEP-CFSv2 ensemble empirically. Furthermore, according

to the designs of ensemble members from both climate models, the NASA-GMAO ensemble has

fewer ensemble members and, therefore, has less coverage on the distribution of precipitation than

the NCEP-CFSv2 ensemble, so our learned model has access to less information about the true

distribution of precipitation.
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F��. A3. Test quantile loss heatmaps of baselines and learning-based methods for precipitation quantile

regression using NCEP-CFSv2 dataset. Blue regions indicate smaller quantile loss. See Section 7b(i) for

details.

(iii) Quantile regression of temperature Table A4 summarizes results for temperature quantile

regression using the NASA-GMAO ensemble. All of our learned models are able to outperform

all baselines.
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T���� A3. Test results for precipitation quantile regression using NASA-GMAO dataset, with target

quantile = 0.9. Model stacking is performed on models that are learned on all features.

Model Features Mean
Qtr Loss (#)

Median
Qtr Loss (#)

90th prctl
Qtr Loss (#)

Historical 90-th percentile 0.295 ± 0.003 0.263 0.484

Ens 90-th percentile 0.378± 0.005 0.308 0.673Baseline

Linear QR ens only 0.336 ± 0.004 0.286 0.531

Linear QR All features 0.290 ± 0.003 0.253 0.456

U-Net All features 0.310 ± 0.002 0.278 0.489

RFQR All features 0.290 ± 0.002 0.265 0.471

Stacked U-Net, RFQR, LQR outputs 0.296± 0.002 0.268 0.467

T���� A4. Test results for temperature quantile regression using NASA-GMAO dataset, with target

quantile = 0.9. Linear QR refers to a linear quantile regressor, i.e. linear regression fitting the quantile loss,

using all features including ensemble members, positional encoding, lagged data, land variables. Model stacking

is performed on models that are learned on all features except for SSTs .

Model Features Mean
Qtr Loss (#)

Median
Qtr Loss (#)

90th prctl
Qtr Loss (#)

Historical 90-th percentile 0.596 ± 0.010 0.438 0.988

Ens 90-th percentile 0.812 ± 0.009 0.646 1.493Baseline

Linear QR ens only 0.445 ± 0.003 0.411 0.618

Linear QR All features wo SSTs 0.341 ± 0.001 0.333 0.419

U-Net All features wo SSTs 0.375 ± 0.003 0.347 0.477

RFQR All features wo SSTs 0.318 ± 0.002 0.316 0.376

Stacked U-Net, RFQR, LQR outputs 0.315 ± 0.002 0.310 0.374
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F��. A4. Test quantile loss heatmaps of baselines and learning-based methods for precipitation quantile

regression using NASA-GMAO dataset. Blue regions indicate smaller quantile loss. See Section A2(ii) for

details.
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F��. A5. Test quantile loss heatmaps of baselines and learning-based methods for temperature quantile

regression using NASA-GMAO dataset. Blue regions indicate smaller quantile loss. See Section A2(iii) for

details.
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APPENDIX B

Tercile Classification

In this section, we present results for the tercile classification task for both climate variables and

both datasets.

B1. Tercile classification of precipitation

In this case, the proposed learning-based methods are directly trained on the classification task.

Predictions of baselines, such as the ensemble mean, are split into three classes according to the

33rd and 66th percentile values. Note that random forest and U-Net are trained for classification

using all available features. We do not notice a significant difference in the performance of logistic

regression on the validation if the inputs are ensemble members only or ensemble members with

side information. So, we use logistic regression on ensemble members only. The model stacking

is applied to the logistic regression, U-Net, and random forest outputs.

Table B1 summarizes results for NCEP-CFSv2 and NASA-GMAO datasets on the test data. For

this task, the learning-based methods achieve the best performance in terms of accuracy for both

datasets. In the case of NCEP-CFSv2 data, U-Net achieves the highest accuracy score, and the

performance of the stacked model is comparable with it. For NASA-GMAO data, the stacked

model shows the best performance.

The accuracy heatmaps over U. S. land are presented in the Figure B1 for NCEP-CFSv2 dataset.

The plots corresponding to the learning-based methods show the best results, especially at the West

Coast, Colorado and North America.

The accuracy heatmaps over the U. S. land are presented in Figure B2 for the NASA-GMAO

dataset. The plots corresponding to the learning-based methods show the best results, the ensemble

mean’s figure has the most red regions.

B2. Tercile classification of temperature

The next task is tercile classification of 2-meter temperature. In this case, the threshold is applied

to the regression predictions of all methods, meaning there is no direct training for a classification.

Table B2 summarizes results for NCEP-CFSv2 and NASA-GMAO datasets on the test data. For

this task, the learning-based methods achieve the best performance in terms of accuracy, stacked
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T���� B1. Test results for tercile classification of precipitation on different datasets. Accuracy in %

is reported. Note that for this task, our models are trained for classification directly while baselines perform

regression, and a threshold for predicted values is applied. For stacking, logistic regression, U-Net and RF

outputs are used.

Data Model Mean
accuracy (")

Median
accuracy (")

Ens mean 38.00 ±0.16 37.61

Logistic Regr 41.22 ±0.14 40.17
NCEP-
CFSv2

U-Net 43.88 ±0.12 42.74

RF 42.38 ±0.13 41.88

Stacked 43.81 ±0.13 42.74

Ens mean 38.64 ±0.14 37.65

Logistic regr 41.51 ±0.16 40.00
NASA-
GMAO

U-Net 40.53 ±0.11 40.00

RF 40.79 ±0.14 40.00

Stacked 42.08 ±0.14 41.18

model using NCEP-CFSv2 data and linear regression using NASA-GMAO data and all additional

features (except SSTs). In general, all learning-based models significantly outperform the ensemble

mean.

Figure B3 shows accuracy heatmaps over the U.S. for different methods using NCEP-CFSv2

data. The stacked model shows the best performance across spatial locations. For example, the

ensemble mean does not show great performance in the Southeast and Middle Atlantic regions,

while learning-based methods demonstrate much stronger predictive skills in these areas. However,

there are still some areas, such as Texas or South West region, with red pixels for all methods.

Figure B4 shows accuracy heatmaps over the U.S. for different methods using NASA-GMAO

data. In this case, linear regression on all features achieves the best scores. Other learning-based

methods outperform the ensemble mean too, especially in the West and in Minnesota.
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F��. B1. Test accuracy heatmaps of baselines and learning-based methods for tercile classification

of precipitation using NCEP-CFSv2 dataset. The accuracy colorbar is recentered to be white at 1
3 , what

corresponds to a random guess score. Blue pixels indicate better performance, while red pixels correspond to

performance that is worse than a random guess. See Section B1 for details.
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F��. B2. Test accuracy heatmaps of baselines and learning-based methods for tercile classification

of precipitation using NASA-GMAO dataset. The accuracy colorbar is recentered to be white at 1
3 , what

corresponds to a random guess score. Blue pixels indicate better performance, while red pixels correspond to

performance that is worse than a random guess. See Section B1 for details.
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T���� B2. Test results for tercile classification of temperature on different datasets. Accuracy in % is

reported. Note that for this task, our models are trained for regression and the threshold for predicted values is

applied.

Data Model Mean
accuracy (")

Median
accuracy (")

Ens mean 44.84 ±0.36 42.74

Linear Regr 57.10 ±0.25 54.69
NCEP-
CFSv2

LR 57.34 ±0.25 54.71

U-Net 53.80 ±0.28 50.43

RF 58.07 ±0.27 54.70

Stacked 58.12 ±0.20 54.71

Ens mean 52.23 ±0.25 49.41

Linear Regr 57.75 ±0.25 54.11
NASA-
GMAO

LR 58.97 ±0.25 55.29

U-Net 55.64 ±0.27 51.76

RF 58.78 ±0.26 55.29

Stacked 58.72 ±0.25 54.12
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F��. B3. Test accuracy heatmaps of baselines and learning-based methods for tercile classification

of temperature using NCEP-CFSv2 dataset. The accuracy colorbar is recentered to be white at 1
3 , what

corresponds to a random guess score. Blue pixels indicate better performance, while red pixels correspond to

performance that is worse than a random guess. See Section B2 for details.
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F��. B4. Test accuracy heatmaps of baselines and learning-based methods for tercile classification

of temperature using NASA-GMAO dataset. The accuracy colorbar is recentered to be white at 1
3 , what

corresponds to a random guess score. Blue pixels indicate better performance, while red pixels correspond to

performance that is worse than a random guess. See Section B2 for details.
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APPENDIX C

Extended Discussions

In this section, we present more detailed results for Section 8a and Section 8d. We also provide

additional experiments on the temperature forecasting analysis, and experiments on training set

sizes and bootstrap.

C1. PE v.s. latitude/longitude values or no location information

In this section, we elaborate on our experiment with different uses of location information.

Similar to Section 8d, we train and test our models with three different settings: using no location

information, using latitude/longitude values, or using positional encodings. For the stacked model,

we first train the LR, RF, and U-Net using these different settings before training the stacked model

using the corresponding LR, RF, and U-Net outputs. Table C1 summarizes test performance

for precipitation regression with these three settings of using location information. For linear

regression, we observe that having latitude/longitude values or adding PE features does not improve

its performance. One interesting result is that adding PE for the LR degraded its performance,

which may be due to the fact that the PE features are non-linear transformations of latitude and

longitude values, which is hard to fit with a linear model.

For the RF, U-Net, and the stacked model, we observe that adding PE improves their perfor-

mance with significance, i.e. having at least one standard error smaller MSE. For the U-Net, using

latitude/longitude values yields worse overall performance compared to using no location infor-

mation. Figure C1 shows the test '2 heatmaps for LR, U-Net, RF, and stacked model under these

three settings for precipitation regression. We observe that adding PE features not only improves

performance for the U-Net and RF, the stacked model’s performance also improves from having

better predictions from the U-Net and RF.

Table C2 shows the test performances of LR, U-Net, RF and stacked model on temperature

regression. Similar to precipitation regression, adding latitude/longitude values or adding PE does

not help the LR, but we observe significant performance improvement when adding positional

encoding features for the U-Net, RF, and the stacked model. Figure C2 then shows the test '2

heatmaps for temperature regression. We can see that adding PE to the U-Net, RF, and stacked
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T���� C1. Precipitation regression test performance comparison of LR, U-Net, RF and stacked model

trained using no spatial features, using latitude and longitude values or using PE. The best results are in

bold.

Model Features Mean
'

2 (")
Mean

Sq Err (#)

All + no location info -0.11 2.29±0.04
LR

All + lat/lon values -0.11 2.29±0.04

All + PE -0.33 2.71±0.05

All + no location info -0.16 2.31±0.04
U-Net

All + lat/lon values -0.28 2.53±0.05

All + PE -0.10 2.18± 0.03

All + no location info -0.18 2.23±0.04
RF

All + lat/lon values -0.16 2.21±0.04

All + PE -0.11 2.17± 0.05

All + no location info -0.05 2.13±0.03
Stacked

All + lat/lon values -0.01 2.21±0.04

All + PE 0.02 2.07± 0.03

model improves forecast performance, especially in regions like Arizona, New Mexico, and Texas.

T���� C2. Temperature regression test performance comparison of LR, U-Net, RF and stacked model

trained using no spatial features, using latitude and longitude values or using PE. The best results are in

bold.

Model Features Mean
'

2 (")
Mean

Sq Err (#)

All + no location info 0.05 3.57±0.03
LR

All + lat/lon values 0.05 3.57±0.03

All + PE 0.05 3.57±0.03

All + no location info -0.35 4.81±0.04
U-Net

All + lat/lon values -0.21 4.47±0.03

All + PE 0.01 3.65± 0.02

All + no location info 0.11 3.37±0.02
RF

All + lat/lon values 0.14 3.28±0.02

All + PE 0.16 3.17± 0.02

All + no location info 0.12 3.35±0.02
Stacked

All + lat/lon values 0.12 3.33±0.02

All + PE 0.18 3.11± 0.02
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F��. C1. Precipitation regression test '
2

heatmaps of LR, U-Net, RF and stacked model trained using

no spatial features, using latitude and longitude values or using PE. The NCEP-CFSv2 ensemble is used.

See Appendix C1 for more details.

C2. Bootstrap experiments

To evaluate the stability of our machine learning models with small sample sizes, we perform

the following bootstrap experiments: We take bootstrap samples of size 200 from our training set

and retrain our U-Net, RF, and LR. Then we evaluate these models on the test set. We repeat this

process 50 times and show the results in Fig. C3. We observe from the plots that the U-Net performs

consistently better than the LR in precipitation regression but not for temperature regression. This

result is consistent with what we showed in Table 3 and Table 4.

We also observe that the U-Net is more sensitive to different bootstrap samples than the RF and

LR, which is not surprising since for the U-Net, the bootstrap samples correspond to 200 different
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F��. C2. Temperature regression test '
2

heatmaps of LR, U-Net, RF and stacked model trained using

no spatial features, using latitude and longitude values or using PE. The NCEP-CFSv2 ensemble is used.

See Appendix C1 for more details.

spatial maps for training. In contrast, for the RF and LR, the bootstrap samples correspond to

200 ·3274 training samples.

F��. C3. Box plots of MSEs for the U-Net, LR and RF trained on 50 set of different bootstrap samples,

each with size 200. The NCEP-CFSv2 ensemble is used. See Appendix C2 for more details.
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C3. Precipitation forecast example

While climate simulations and ensemble forecasts are designed to provide useful predictions of

temperature and precipitation based on carefully developed physical models, we see that machine

learning applied to those ensembles can yield a significantly higher predictive skill for a range of

SSF tasks. Figure C4 illustrates key differences between different predictive models for predicting

monthly precipitation with a lead time of 14 days. Individual ensemble members are predictions

with high levels of spatial smoothness and more extreme values. Linear regression, the random

forest, the U-Net, and the stacked model produce higher spatial frequencies. The linear regression

result, which uses a different model trained for each spatial location separately, has the least spatial

smoothness of all methods; this is especially visible in the southeast and potentially does not reflect

realistic spatial structure. The learning-based models more accurately predict localized regions of

high and low precipitation compared to the ensemble mean.

Figure C5 demonstrates differences between the ground truth and different model predictions.

In this figure, the color white is associated with the smallest errors, while red pixels indicate

overestimating precipitation and blue pixels indicate underestimating precipitation. The individual

ensemble member in Figure C5(e) exhibits dark red regions across the West, while the ensemble

mean in Figure C5(e) shows better performance in this area. The colors are more muted for the

stacked model in Figure C5(h). The climatology in Figure C5(a) has the most neutral areas. How-

ever, its MSE is slightly higher than the stacked model’s MSE. In general, all methods, including

linear regression (b, d), U-Net (f), and random forest (g), tend to underpredict precipitation in the

Southeast, Mid-Atlantic, and North Atlantic and predict higher precipitation levels in the West.

C4. Temperature forecasting analysis

Figure 3 shows regions in Texas and Florida where the ensemble mean and linear regression

performance is poor, while a random forest achieves far superior performance. We conduct an

analysis of forecasts of the ensemble mean, linear regression, and random forests in these regions

together with a region in Wisconsin where all methods show good performance. Figure C6 indicates

these regions and Table C3 summarizes the performance of different methods in these regions: the

ensemble mean prediction quality dramatically drops between the validation and test periods in

Texas and Florida, which is not the case for the random forest.
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F��. C4. An illustration of precipitation predictions Ĥ
anomaly

C ,; ( in mm) of different methods for February

2016 (in test period). (a) True precipitation. (b) LR on ensemble members. (c) Climatology. (d) LR on all

features. (e) Ensemble mean. (f) U-Net on all features. (g) Example single ensemble member. (h) Random

forest on all features. (i) Stacked model. See Section C3 for details.

Why does RF perform so much better than simpler methods in some regions? One possibility is

that the RF is a nonlinear model capable of more complex predictions. However, if that were the
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F��. C5. An illustration of differences H
anomaly

C ,; � Ĥanomaly

C ,; in precipitation predictions in mm of dif-

ferent methods for February 2016 (in test period). Red pixels indicate areas where a forecasting method

predicts higher precipitation levels compared to the ground truth, blue pixels indicate an underestimation of the

precipitation, and white pixels correspond to a precise prediction. See Section C3 for details.

only cause of the discrepancy in performance, then we would expect that the RF would be better not

only during the test period, but during the validation period as well. Table C3 does not support this

argument; it shows that the ensemble mean and linear regression have comparable, if not superior,

performance to the random forest during the validation period. A second hypothesis is that the

distribution of temperature is different during the test period than during the training and validation

periods. This hypothesis is plausible for two reasons: (1) climate change, and (2) the training and
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F��. C6. Regions where the temperature forecast is analyzed. See Section C4 for details.

T���� C3. Train, validation, and test performance of different methods in Texas, Florida, and Wisconsin

regions. The task is temperature regression; NCEP-CFSv2 dataset is used. The performance of the ensemble

mean and linear regression in the test period significantly decreases in Texas and Florida while the random forest

is able to demonstrate reasonable results. All methods perform well in Wisconsin.

Region
location Model Train

mean '2 (")
Validation

mean '2 (")
Test

mean '2 (")

Ens mean 0.19 0.36 -1.55
Texas

LR 0.53 0.49 -1.29

RF 0.97 0.32 -0.33

Ens mean 0.11 0.34 -0.87
Florida

LR 0.47 0.58 -0.56

RF 0.97 0.36 0.11

Ens mean 0.30 0.36 0.39
Wisconsin

LR 0.53 0.57 0.51

RF 1.00 0.47 0.47

validation data use hindcast ensembles while the test data uses forecast ensembles. To investigate

this hypothesis, in Figure C7 we plot the true temperature and ensemble mean in the training,

validation, and test periods for the three geographic regions. The discrepancy between the true

temperatures and ensemble means in the test period is generally greater than during the training

and validation periods in Texas and Florida (though not in Wisconsin, a region where validation

and test performance are comparable for all methods). This lends support to the hypothesis that

hindcast and forecast ensembles exhibit distribution drift, and the superior performance of the RF

during the test period may be due to a greater robustness to that distribution drift.
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The hindcast and forecast ensembles may have different predictive accuracies because the hindcast

ensembles have been debiased to fit past observations – a procedure not possible for forecast data. To

explore the potential impact of debiasing, Figure C7 shows the “oracle debiased ensemble mean”,

which is computed by using the test data to estimate the forecast ensemble bias and subtracting

it from the ensemble mean. This procedure, which would not be possible in practice and is used

only to probe distribution drift ensemble bias, yields smaller discrepancies between the true data

and the (oracle debiased) ensemble mean than the discrepancies between the true data and the

original (biased) ensemble mean. Specifically, the oracle ensemble member achieves -0.20 mean

'
2 score (TX) and -0.28 mean '2 score (FL) vs. -1.55 '2 (TX) and -0.87 '2 (FL) of the original

forecast ensemble mean. The errors during the test period are generally larger than during the train

and validation period, even after debiasing the ensemble members using future data. This effect

may be attributed both to (a) the nonstationarity of the climate (note that there are more extreme

values during the test period than during the training and validation periods, particularly in Texas

and Florida) and (b) the fact that in the train and validation periods, we use hindcast ensemble

members, whereas in the test period, we use forecast ensemble members.
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F��. C7. Temperature predictions in
�
⇠ of different methods at Texas, Florida, and Wisconsin regions.

Black lines correspond to train/val and val/test splits; train and validation correspond to the hindcast regime of

the ensemble, while test corresponds to the forecast regime. See Section C4 for details.
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APPENDIX D

Architecture Details

D1. Machine learning architectures

a. U-Net details

The U-Net has residual connections from layers in the encoder part to the decoder part in a paired

way so that it forms a U-shape. Figure D1 shows the architecture of the U-Net. The U-Net is a

powerful deep convolutional network that is widely used in image processing tasks such as image

segmentation (Ronneberger et al. 2015; Hao et al. 2020) or style transfer (Gatys et al. 2016; Jing

et al. 2019).

F��. D1. U-Net architecture with input channels = ⇠. ⇠ is the number of input channels, which, in our case,

equals the number of ensemble members plus all climate data.

Our U-Net differs from the original U-Net by modifying the first 2D convolutional layer after

input. Since our input channels can be different when we choose a different subset of features

or different ensemble (NCEP-CFSv2 or NASA-GMAO), this 2D convolutional layer is used to

transform our input with ⇠ channels into a latent representation with 64 channels. The number

of channels ⇠ depends on which ensemble we are using and what task we are performing. For

example, for precipitation tasks using the NCEP-CFSv2 ensemble, the input channels include 24
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ensemble members, 5 lagged observations, 4 other observational variables, 8 principal components

of SSTs, and 24 positional encodings, resulting in 65 channels in total. For temperature tasks using

the NASA-GMAO ensemble, there are only 11 ensemble members, and we don’t include SSTs

information, hence there are only 44 channels in total. The other following layers use the same

configurations with the standard U-Net Ronneberger et al. (2015).

We also perform careful hyperparameter tuning for the U-NET. In particular, we run a 10-fold

cross-validation on our training set, and use grid search for tuning learning rate, batch size, number

of epochs, and weight decay. Since we use different loss functions for different forecast tasks

and different numbers of input channels for NCEP-CFSv2 and GMAO-GMAO ensemble, we run

hyperparameter tuning with the same cross-validation scheme separately for these tasks. For

instance, for precipitation regression, we choose from 100, 120, 150, 170, 200, and 250 epochs;

batch size may be equal to 8, 16, 32; learning rate values are chosen from 0.0001, 0.001, 0.01;

weight decay can be 0, 1e-3, 1e-4. In case of NCEP-CFSv2 precipitation regression, the optimal

parameters are 170 epochs, batch size 16, learning rate 0.0001, and weight decay 1e-4. For

temperature regression using the same data, the best parameters are 100 epochs, batch size 16,

learning rate 0.001, and weight decay 1e-3. For tercile classification of precipitation, the best

parameters are 80 epochs (we chose from 60, 70, 80, 90, and 100 epochs during classification),

batch size 8, learning rate 0.001, and weight decay 1e-4.

b. Random Forest Quantile Regressor details

We show a figure representation of the RFQR in Fig. D2. The RFQR is essentially trained as

a regular random forest, but it makes a quantile estimate by taking the sample quantile of the

responses in all leaves associated with a new input.

c. Stacking model details

The stacking model is a simple one-layer neural network with 100 hidden neurons and a sigmoid

activation function for regression and softmax for classification. We use an implementation from

Scikit-learn library (Pedregosa et al. 2011). We choose 100 neurons based on the stacking model

performance on the validation data (we also try 50, 75, 100 and 120 neurons). The stacking model

demonstrates stable performance in general, but with 100 neurons it usually achieves the best
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results. We use the “lbfgs” optimizer from quasi-Newton methods for the regression tasks, and the
SGD optimizer for classification tasks.
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(marked with a star for each tree).

Fig. D2. Illustration of a random forest, which serves as a visual aid for our discussion. Quantile regression
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APPENDIX E

Additional Preprocessing Details

Random forest and U-Net require different input formats. For U-Net, all input variables have

natural image representation except SSTs and information about location. For example, ensemble

predictions can be represented as a tensor of shape ( ,, ,�), where  corresponds to the number

of ensemble members (or number of channels of an image), and , and � are width and height

of the corresponding image. In our case, , = 64 and � = 128. For the U-Net model, we handle

the missing land variables over the sea regions by the nearest neighbor interpolation of available

values.

(i) Sea surface temperatures There are more than 100,000 SSTs locations available. We extract

the top eight principal components. Principal component analysis fits on the train part and then is

applied to the rest of the data. In the case of U-Net, we deal with PCs of SSTs by adding additional

input channels that are constant across space, with each channel corresponding to one of PCs.

Random forest can use PCs from SSTs directly with no special preprocessing.

(ii) Normalization We apply channel-wise min-max normalization to the input features at each

location based on the training part of the dataset in the case of U-Net. As for normalization of

the true values, min-max normalization is applied for precipitation, and standardization is applied

for temperature. This choice affects the final layer of the U-Net model, too: for the precipitation

regression task, a sigmoid activation is used, and no activation function is applied for temperature

regression. For the stacking model, we apply min-max normalization to both input and target

values.
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