LibAUC: A Deep Learning Library for X-Risk Optimization

Zhuoning Yuan
University of lowa
zhuoning-yuan@uiowa.edu

Gang Li’
University of lowa
gang-li@uiowa.edu

ABSTRACT

This paper introduces the award-winning deep learning (DL) li-
brary called LibAUC for implementing state-of-the-art algorithms
towards optimizing a family of risk functions named X-risks. X-risks
refer to a family of compositional functions in which the loss func-
tion of each data point is defined in a way that contrasts the data
point with a large number of others. They have broad applications
in AI for solving classical and emerging problems, including but
not limited to classification for imbalanced data (CID), learning to
rank (LTR), and contrastive learning of representations (CLR). The
motivation of developing LibAUC is to address the convergence
issues of existing libraries for solving these problems. In particular,
existing libraries may not converge or require very large mini-batch
sizes in order to attain good performance for these problems, due
to the usage of the standard mini-batch technique in the empirical
risk minimization (ERM) framework. Our library is for deep X-risk
optimization (DXO) that has achieved great success in solving a va-
riety of tasks for CID, LTR and CLR. The contributions of this paper
include: (1) It introduces a new mini-batch based pipeline for imple-
menting DXO algorithms, which differs from existing DL pipeline in
the design of controlled data samplers and dynamic mini-batch losses;
(2) It provides extensive benchmarking experiments for ablation
studies and comparison with existing libraries. The LibAUC library
features scalable performance for millions of items to be contrasted,
faster and better convergence than existing libraries for optimizing
X-risks, seamless PyTorch deployment and versatile APIs for vari-
ous loss optimization. Our library is available to the open source
community at https://github.com/Optimization- AI/LibAUC, to fa-
cilitate further academic research and industrial applications.

CCS CONCEPTS

« Information systems — optimization.

KEYWORDS
Deep learning, Library, X-Risk, Optimization

“contributed equally to this work.
t Correponding author

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

KDD °23, August 6-10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0103-0/23/08.
https://doi.org/10.1145/3580305.3599861

Dixian Zhu*
University of lowa
dixian-zhu@uiowa.edu

Xuanhui Wang
Google Research
xuanhui@google.com

Zi-Hao Qiu”
Nanjing University
giuzh@lamda.nju.edu.cn

Tianbao Yang"
Texas A&M University
tianbao-yang@tamu.edu

ACM Reference Format:

Zhuoning Yuan, Dixian Zhu, Zi-Hao Qiu, Gang Li, Xuanhui Wang, and Tian-
bao Yang. 2023. LibAUC: A Deep Learning Library for X-Risk Optimization.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’23), August 6—10, 2023, Long Beach, CA, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3580305.3599861

1 INTRODUCTION

Deep learning (DL) platforms such as TensorFlow [1] and Py-
Torch [36] have dramatically reduced the efforts of developers
and researchers for implementing different DL methods without
worrying about low-level computations (e.g., automatic differen-
tiation, tensor operations, etc). Based on these platforms, plenty
of DL libraries have been developed for different purposes, which
can be organized into different categories including (i) supporting
specific tasks [15, 35], e.g., TF-Ranking for LTR [35], VISSL for
self-supervised learning (SSL) [15], (ii) supporting specific data,
e.g., DGL and DIG for graphs [31, 55]; (iii) supporting specific mod-
els [13, 58, 59], e.g., Transformers for transformer models [59].
However, it has been observed that these existing platforms and
libraries have encountered some unique challenges when solving
some classical and emerging problems in Al, including classifica-
tion for imbalanced data (CID), learning to rank (LTR), contrastive
learning of representations (CLR). In particular, prior works have
observed that large mini-batch sizes are necessary to attain good
performance for these problems [4, 5, 7, 37, 43, 46], which restricts
the capabilities of these Al models in the real-world. The reason for
this issue is two-fold. First, the standard empirical risk minimization
(ERM) framework, which serves as the foundation of the standard
mini-batch based methods, does not provide a good abstraction for
many non-decomposable objectives in ML and ignores their inher-
ent complexities. Second, all existing DL libraries are developed
based on the standard mini-batch based technique for ERM, which
updates model parameters based on the gradient of a mini-batch
loss as an approximation for the objective on the whole data set.
To address the first issue, a novel learning paradigm named deep
X-risk optimization (DXO) was recently introduced [60], which
provides a unified framework to abstract the optimization of many
compositional loss functions, including surrogate losses for AUROC,
AUPRC/AP, and partial AUROC that are suitable for CID [39, 64, 65],
surrogate losses for NDCG, top-K NDCG, and listwise losses that
are used in LTR [41], and global contrastive losses for CLR [63]. To
address the second issue, the LibAUC library implemented state-of-
the-art algorithms for optimizing a variety of X-risks arising in CID,
LTR and CLR. It has been used by many projects [8, 10, 19, 23, 45, 57]
and achieved great success in solving real-world problems, e.g.,

https://github.com/Optimization-AI/LibAUC
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3580305.3599861
https://doi.org/10.1145/3580305.3599861
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599861&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

the 1st Place at the Stanford CheXpert Competition [64] and MIT
AlCures Challenge [56]. Hence, it deserves in-depth discussions
about the design principles and unique features to facilitate future
research and development for DXO.

This paper aims to present the underlying design principles
of the LibAUC library and provide a comprehensive study of the
library regarding its unique features of design and superior perfor-
mance compared to existing libraries. The unique design features
of the LibAUC library include (i) dynamic mini-batch losses, which
are designed for computing the stochastic gradients of X-risks by
automatic differentiation to ensure the convergence; (ii) controlled
data samplers, which differ from standard random data samplers
in that the ratio of the number of positive data to the number of
negative data can be controlled and tuned to boost the performance.
The superiority of the LibAUC library lies in: (i) it is scalable to
millions of items to be ranked or contrasted with respect to an
anchor data; (ii) it is robust to small mini-batch sizes due to that all
implemented algorithms have theoretical convergence guarantee
regardless of mini-batch sizes; and (iii) it converges faster and to
better solutions than existing libraries for optimizing a variety of
compositional losses/measures suitable for CID, LTR and CLR.

To the best of our knowledge, LibAUC is the first DL library that
provides easy-to-use APIs for optimizing a wide range of X-risks.
Our main contributions for this work are summarized as follows:

e We propose a novel DL pipeline to support efficient imple-
mentation of DXO algorithms, and provide implementation
details of two unique features of our pipeline, namely dy-
namic mini-batch losses and controlled data samplers.

e We present extensive empirical studies to demonstrate the
effectiveness of the unique features of the LibAUC library,
and the superior performance of LibAUC compared to exist-
ing DL libraries/approaches for solving the three tasks, i.e.,
CID, LTR and CLR.

2 DEEP X-RISK OPTIMIZATION (DXO)

This section provides necessary background about DXO. We refer
readers to [60] for more discussions about theoretical guarantees.

2.1 A Brief History

The min-max optimization for deep AUROC maximization was
studied in several earlier works [32, 64]. Later, deep AUPRC/AP
maximization was proposed by Qi et al. [39], which formulates
the problem as a novel class of finite-sum coupled compositional
optimization (FCCO) problem. The algorithm design and analysis
for FCCO were improved in subsequent works [26, 50, 51]. Recently,
the FCCO techniques were used for partial AUC maximization [65],
NDCG and top-K NDCG optimization [41], and stochastic opti-
mization of global contrastive losses with a small batch size [63].
More recently, Yang et al. [60] proposed the X-risk optimization
framework, which aims to provide a unified venue for studying
the optimization of different X-risks. The difference between this
work and these previous works is that we aim to provide a technical
justification for the library design towards implementing DXO al-
gorithms for practical usage, and comprehensive studies of unique
features and superiority of LibAUC over existing DL libraries.

5488

Zhuoning Yuan et al.

2.2 Notations

For CID, let S = {(x1,41), ..., (Xn,yn)} denote a set of training
data, where x; € X c R%n denotes the input feature vector and
y; € {1, -1} denotes the corresponding label. Let Sy = {x; : y; = 1}
contain ny positive examples and S— = {x; : y; = —1} contain
n_ negative examples. Denote by hw(x) : X — R a parametric
predictive function (e.g., a deep neural network) with a parameter
w € R?. We use Ey.s = ﬁ Y xes interchangeably below.

For LTR, let Q denote a set of N queries. For a query q € Q, let
Sq = {x?,i =1,..., Nq} denote a set of Ny items (e.g., documents,
movies) to be ranked. For each x? € Sg, let yiq € R* denote its
relevance score, which measures the relevance between query q and
item x?. Let 87 C Sq denote a set of Ny (positive) items relevant
to g, whose relevance scores are non-zero. Let S = {(q, x?), q €
Q, x? € S,}' } denote all relevant query-item (Q-I) pairs. Denote by
hw(x;q) : XXQ — Raparametric predictive function that outputs
a predicted relevance score for x with respect to q.

For CLR,let S = {x1,...,X,} denote a set of anchor data, and let
S;” denote a set containing all negative samples with respect to x;.
For unimodal SSL, S;” can be constructed by applying different data
augmentations to all data excluding x;. For bimodal SSL, S;” can
be constructed by including the different view of all data excluding
x;. The goal of representation learning is to learn a feature encoder
network hy(-) € R% parameterized by a vector w € R? that
outputs an encoded feature vector for an input data .

2.3 The X-Risk Optimization Framework
We use the following definition of X-risks given by [60].

DerINITION 1. ([60]) X-risks refer to a family of compositional
measures in which the loss function of each data point is defined in
a way that contrasts the data point with a large number of others.
Mathematically, X-risk optimization can be cast into the following
abstract optimization problem:

min F(w) =

1
Inin, 5] Zziesfi(g(WQZi,Si)),

whereg : R? > R isa mapping, f; : R — R is a simple deterministic
function, S = {z1,...,zm} denotes a target set of data points, and S;
denotes a reference set of data points dependent or independent of z;.

1)

The most common form of g(w; z, S) is the following:
1
g9(w;z;, S;) = S szes,- £(w;z4,2;),

where £(W;2;,2j) = £(hw(2;), hw(zj)) is a pairwise loss.
As aresult, many DXO problems will be formulated as FCCO [50]:

n}hi’n |?1| ZziESﬁ (ﬁ ZZjESi [(hW(Zi)’ hW(Zj)) ’ (2)

The FCCO problem is subtly different from the traditional stochastic
compositional optimization [52] due to the coupling of a pair of
data in the inner function. Almost all X-risks considered in this
paper, including AUROC, AUPRC/AP, pAUC, NDCG, top-K NDCG,
listwise CE loss, GCL, can be formulated as FCCO or its variants.
Besides the common formulation above, in the development of
LibAUC library two other optimization problems are also used,
including the min-max optimization and multi-block bilevel opti-
mization. The min-max formulation is used to formulate a family of

LibAUC: A Deep Learning Library for X-Risk Optimization

X-Risk Deep X-Risk Opt.

(Min-Max Opt.
Finite-Sum Coupled
Compositional Opt.

Multi-block Bilevel

§ Opt.

Figure 1: Mappings of X-risks to optimization problems.

Area Under the
Curves

Ranking
Measures

Global
Contrastive Loss

Top-k Perf.

Self-Supervised

Supervised

surrogate losses of AUROC, and the multi-block bilevel optimization
is useful for formulating ranking performance measures defined
only on top-K items in the ranked list, including top-K NDCG,
precision at a certain recall level, etc. In summary, we present a
mapping of different X-risks to different optimization problems in
Figure 1, which is a simplified one from [60].

2.4 X-risks in LibAUC

Below, we discuss how different X-risks are formulated for devel-
oping their optimization algorithms in the LibAUC library.

Area Under the ROC Curve (AUROC). Two formulations
have been considered for AUROC maximization in the literature. A
standard formulation is the pairwise loss minimization [61]:

né%ld ExieS+Exj€S_f(hw(Xj) - hw(x:)),
w

where £(-) is a surrogate loss. Another formulation is following
the min-max optimization [32, 64]:

miri meag)z(Ex,-~S+ [(hw(xi) — a)z] + Ex]-~S_ [(hw(xj) - b)Z]
2
+ By U ()] = By, [w(xi)] +0) = 5

where ¢ > 0 is a margin parameter and Q C R. In LibAUC, we
have implemented an efficient algorithm (PESG) for optimizing the
above min-max AUC margin (AUCM) loss with Q =R, [64]. The
comparison between optimizing the pairwise loss formulation and
the min-max formulation can be found in [67].

Partial Area Under ROC Curve (pAUC) is defined as area
under the ROC Curve with a restriction on the range of false positive
rate (FPR) and/or true positive rate (TPR). For simplicity, we only
consider pAUC with FPR restricted to be less than f € (0, 1]. Let
SY [k1, ko] € S be the subset of examples whose rank in terms of
their prediction scores in the descending order are in the range of
[k1, k2], where k1 < kp. Then, optimizing pAUC with FPR< f can

be cast into:

.11
min — —

in —— D e, Dyest 1) LW 0G) — (i),
where k = [n_f]. To tackle challenge of handling St [1, k] for data

selection, we consider the following FCCO formulation [65]:
where A > 0 is a temperature parameter that plays a similar role
of k. Let g(w;x;,S-) = By es. exp(f(hw(xj) — hw(x;))/A) and
fi(g) = Alog(g). Then (3) is a special case of FCCO. In LibAUC,
we have implemented SOPAs for optimizing the above objective of
one-way pAUC with FPR< f and SOTAs for optimizing a similarly

5489

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

formed surrogate loss of two-way pAUC with FRP< ff and TPR> a
as proposed in [65].

Area Under Precision-Recall Curve (AUPRC) is an aggre-
gated measure of precision of the model at all recall levels. A non-
parametric estimator of AUPRC is Average Precision (AP) [3]:

z H(hw(xj) > hw(xi))

XjES+

1
AP=—-), 2 10 G) = h(x)

X; €S, <
By using a differentiable surrogate loss £(hw (X) — hw(x;)) in place
of I(hw(x;j) = hw(x;)), we consider the following FCCO formula-

tion for AP maximization:

o1
min— " f(g1(w;x;, 1), 92 (W3 x5,),
w N
x; €S+
where g1 (W: X, St) = Xx; e, {(hw(x)) — hw(xi)), g2(W:x;, S) =
Zxjes £(hw(x)) = hw(xi)), and f(g1, g2) = 7} In LibAUC, we
implemented the SOAP algorithm with a momentum SGD or Adam-
style update [39], which is a special case of SOX analyzed in [50].
Normalized Discounted Cumulative Gain (NDCG) is a rank-
ing performance metric for LTR tasks. The averaged NDCG over
all queries can be expressed by
1 1
N7

q€Q X?GS;
where r(w; x, Sq) = Zx/esq I(hw(x’,q) — hw(x,q) > 0) denotes
the rank of x in the set Sy respect to g, and Zg is the DCG score of
a perfect ranking of items in Sg, which can be pre-computed. For

q
2Y% —1

log, (r(w; x?, Sg)+1) ’

optimization, the rank function r(w; x?, Sq) is replaced by a differ-
entiable surrogate loss, e.g., g(w;X;, Sq) = Xyes, t(hw(x',q) —
hw(x,q)). Hence, NDCG optimization is formulated as FCCO. In
LibAUC, we implemented the SONG algorithm with a momen-
tum or Adam-style update for NDCG optimization [41], which is a
special case of SOX analyzed in [50].

Top-K NDCG only computes the corresponding score for those
that are ranked in the top-K positions. We follow [41] to formulate
top-K NDCG optimization as a multi-block bilevel optimization:

o (hg(xl;w) = Ag(w)) (24 — 1)
log, (g(w:x7, Sg) +1)

q X?ES;
Aq(w) = arg mjnL(A, w;K,Sg),¥q € Q,

where o(-) is a sigmoid function, ZCII(is the top-K DCG score of a
perfect ranking of items, and A4 (W) is an approximation of the (K +
1)-th largest score of data in the set Sq. The detailed formulation
of lower-level problem L can be found in [41]. In LibAUC, we
implemented the K-SONG algorithm with a momentum or Adam-
style update for top-K NDCG optimization [41].

Listwise CE loss is defined by a cross-entropy loss between
two probabilities of list of scores similar to ListNet in [6]:

. exp(h (x‘.];q)
m“lln—Z Z P(y?) log 5 Wh 1 .
9 xTes, xeS, exp(hw(x;;9))

©

where P(y?) o y? denotes a probability for a relevance score y? to
be the top one. (4) is a special case of FCCO by setting g(w; x?, Sg) =

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Zhuoning Yuan et al.

Standard Random Static .
Pipeline ‘ Dataset Sampler A HMini-batch LossH Optimizer ’
LibAUC Controlled Dynamic -
Pipeline | Pataset Data Sampler Model Mini-batch Loss Optimizer

Figure 2: The pipeline of LibAUC modules. Highlighted blocks denote the unique modules of the LibAUC library.

Eyes, exp(hw(x:q) = hw(x7:q)) and fzi(g) = P(y])log(g). In
LibAUC, we implemented an optimization algorithm, similar to
SONG, for optimizing listwise CE loss.

Global Contrastive Losses (GCL) are the global variants of
contrastive losses used for unimodal and bimodal SSL. For unimodal
SSL, GCL can be formulated as:

_ hw (xi) Thw (X7) = hw (xi) T hw (X7)
minEy, y+7logEy . s- exp .)
w i i

where 7 > 0 is a temperature parameter and x:r denotes a positive
data of x;. Different from [7, 42], GCL use all possible negative
samples S; for each anchor data instead of mini-batch samples
B [63], which helps address the large-batch training challenge
in [7]. In LibAUC, we implemented an optimization algorithm
called SogCLR[63] for optimizing both unimodal/bimodal GCL.

As of June 4, 2023, the LibAUC library has been downloaded
36,000 times. We also implemented two additional algorithms namely
MIDAM for solving multi-instance deep AUROC maximization [66]
and iSogCLR [40] for optimizing GCL with individualized tempera-
ture parameters, which are not studied in this paper.

3 LIBRARY DESIGN OF LIBAUC

The pipeline of training a DL model in the LibAUC library is shown
in Figure 2, which consists of five modules, namely Dataset, Data
Sampler, Model, Mini-batch Loss, and Optimizer. The Dataset
module allows us to get a training sample which includes its input
and output. The Data Sampler module provides tools to sample a
mini-batch of examples for training at each iteration. The Model
module allows us to define different deep models. The Mini-batch
Loss module defines a loss function on the selected mini-batch data
for backpropagation. The Optimizer module implements methods
for updating the model parameter given the computed gradient from
backpropagation. While the Dataset, Model, and Optimizer
modules are similar to those in existing libraries, the key differ-
ences lie in the Mini-batch Loss and Data Sampler modules.
The Mini-batch Loss module in LibAUC is referred to as Dynamic
Mini-batch Loss, which uses dynamically updated variables to
adjust the mini-batch loss. The dynamic variables will be defined
in the dynamic mini-batch loss, which can be evaluated by forward
propagation. In contrast, we refer to the Mini-batch Loss module
in existing libraries as Static Mini-batch Loss, which only uses
the sampled data to define a min-batch loss in the same way of
the objective but on mini-batch data. TheData Sampler module in
LibAUC is referred to as Controled Data Sampler, which differ
from standard random data samplers in that the ratio of the number
of positive data to the number of negative data can be controlled
and tuned to boost the performance. Next, we provide more details
of these two and other modules.

5490

3.1 Dynamic Mini-batch Loss

We first present the stochastic gradient estimator of the objec-
tive function, which directly motivates our design of Dynamic
Mini-batch Loss module.

For simplicity of exposure, we will mainly use the FCCO problem
of pAUC optimization (3) to demonstrate the core ideas of the library
design. The designs of other algorithms follow in a similar manner.
The key challenge is to estimate the gradient using a mini-batch
of samples. To motivate the stochastic gradient estimator, we first
consider the full gradient given by

VF(W) = Eyes, VS (9(wixi, S-) (Bx, s ¥ exp(e(wixisx)/2)
To estimate the full gradient, the outer average over all data in S;
can be estimated by sampling a mini-batch of data 8; C S;. Simi-
larly, the average over x; € S— in parentheses can be also estimated
by sampling a mini-batch of data 8, € S_. A technical issue arises
when estimating g(w; x;, S—) inside f. A naive mini-batch approach
is to simply estimate g(w;x;, S—) by using a mini-batch of data
inB; c S_,ie, g(w;x;,Bz) = @ ijegz exp(£(w; x4, %)/ 4).
However, the problem is that the resulting estimator V f (g(w; x;, 82))
is biased due to that f is a non-linear function, whose estimation er-
ror will depend on the batch size | B;|. As a result, the algorithm will
not converge unless the batch size | B;| is very large. To address this
issue, a moving average estimator is used to estimate g(w;x;, S—)
at the ¢-th iteration [39, 41, 50, 63, 65], which is updated for sampled
data x; € Blt according to:

wt = (1 - p)uf +yg(weixi, B))

3 exp(El, (%)) = hw, (50))/D),

t
(1 — Y)ui +y—
xjeﬂé

18]
where y € (0,1) is a hyper-parameter. It has been proved that the
averaged estimation error of uf” for g(w¢; x4, S-) is diminishing
in the long run. With the moving average estimators, the gradient
of the objective function is estimated by 1:

Gr = Exl—eﬂfvf(uf“)vgi(wt;xi, B3)

= Exier,xjeﬂévf(ufH)vw eXp(f(hwt (Xj) - hw, (x1))/4).
The key steps of SOPAs for optimizing pAUC loss are in Algo-
rithm 1 [65]. To facilitate the implementation of computing the
gradient estimator G;, we design a dynamic mini-batch loss. The
motivation of this design is to enable us to simply use the auto-
matic differentiation of PyTorch or TensorFlow for calculating the
gradient estimator G;. In particular, on PyTorch we aim to define a
loss such that we can directly call loss.backward() to compute
G;. To this end, we define a dynamic variable p; = Vf (uf“) for
X; € Blt and then define a dynamic mini-batch loss as loss

1+1
i

IFor theoretical analysis u*! is replaced by uf in [50, 65]

LibAUC: A Deep Learning Library for X-Risk Optimization

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Algorithm 1: SOPAs for solving pAUCLoss.

Algorithm 2: High-level pseudocode for SOPAs.

1 fort=0,...,T do
2 Draw two subsets Blt c S; and Bé cS-
3 forie B{ do

4 ul?+1 =(1- y)uf + ygi(Wt;Xi,th)
5 Pt = Vf(uttl) = Ajut*l
6 end

7 Compute the gradient estimator G; by
137 St T2 Ty et P Vo exp(EC, (30 o, (%)) /2)

8 Update the model parameter by an optimizer

9 end

1
2
3
4
5
6
7
8
9

10 for

11
12

14

15

def pAUCLoss(*xkwargs):

sur_loss = surrogate_loss(neg_logits - pos_logits)
exp_loss = torch.exp(sur_loss/Lambda)

u[index] (1 - gamma)*ul[index] + gamma*(exp_loss.mean(1))
p = (exp_loss/ulindex]).detach()

loss = torch.mean(p * sur_loss)

return loss

data, targets, index in dataloader:
logits = model(data)

loss = pAUCLoss(logits, targets, index)
optimizer.zero_grad()

loss.backward()

optimizer.step()

Figure 3: Left: SOPAs for optimizing pAUC; Right: its pseudo code using automatic differentiation of a dynamic mini-batch loss.
The corresponding parts of the algorithm and pseudocode are highlighted in the same color.

37 St 37 Sy ey Pr exp(Elh, (%)) = b, (x0))/A). How-
ever, since p; depends on ul?“ that is computed based on w;, directly
calling loss.backward() for this loss may cause extra differentia-
tion of p; in term of w;. To avoid this, we apply the detach operator
p.detach() to separate each p; from the computational graph by
returning a new tensor that does not require a gradient. The high-
level pseudo code of defining and using the dynamic mini-batch loss
for pAUC is given in Algorithm 2, where we use a variable change to
define the loss, i.e., p; Vf(uf“) exp(f(hw, (xj) — hw, (xi)) /1) /1.

Below, we give another example of code snippet to implement
the dynamic mini-batch contrastive loss for optimizing GCL.

def GCLoss (x*xkwargs)
"""Defines dynamic mini-batch loss for GCL."""

logits: pairwise similarities, labels: pairwise one
-hot labels, B: batch size
neg_logits = exp(logits/tau) * (1-labels)

u = (1-gamma) * ul[index] \
+ gamma * sum(neg_logits,

p = (neg_logits/u).detach()

sum_neg_logits = sum(p * logits, dim=1)/(2(B-1))

normalized_logits = logits - sum_neg_logits

loss = -sum(labels * normalized_logits, dim=1)

return loss.mean()

dim=1)/(2(B-1))

3.2 Controlled Data Sampler

Unlike traditional ERM, DXO requires sampling to estimate the
outer average and the inner average. In the example of pAUC opti-
mization by SOPAs, we need to sample two mini-batches Bf c Sy
and 85 C S_ at each iteration ¢. We notice that this is common
for optimizing areas under curves and ranking measures. For some
losses/measures (e.g., AUPRC/AP, NDCG, top-K NDCG, Listwise
CE), both sampled positive and negative samples will be used for
estimating the inner functions. According to our theoretical analy-
sis [50], balancing the mini-batch size for outer average and that
for the inner average could be beneficial for accelerating conver-
gence. Hence, we design a new Data Sampler module to ensure
that both positive and negative samples will be sampled and the
proportion of positive samples in the mini-batch can be controlled
by a hyper-parameter.

For CID problems, we introduce DualSampler, which takes as in-
put hyper-parameters such as batch_size and sampling_rate, to

5491

Batch1
(Epoch 1)

0000
00000060000

Batch1
(Epoch 2)

Figure 4: Illustration of DualSampler for an imbalanced
dataset with 4 positives e and 9 negatives o.

generate the customized mini-batch samples, where sampling_rate
controls the number of positive samples in the mini-batch accord-
ing to the formula # positives = batch_size*sampling_rate.
For LTR problems, we introduce TriSampler, which has hyper-
parameters sampled_tasks to control the number of sampled queries
for backpropogation, batch_size_per_task to adjust mini-batch
size for each query, and sampling_rate_per_task to control the
ratio of positives in each mini-batch per query. The TriSampler
can be also used for multi-label classification problems with many
labels such that sampling labels becomes necessary, which makes
the library extendable for our future work. To improve the sam-
pling speed, we have implemented an index-based approach that
eliminates the need for computationally intensive operations such
as concatenation and append. Figure 4 shows an example of
DualSampler for constructing mini-batch data with even positive
and negative samples on an imbalanced dataset with 4 positives and
9 negatives. We maintain two lists of indices for the positive data
and negative data, respectively. At the beginning, we shuffle the
two lists and then take the first 4 positives and 4 negatives to form
a mini batch. Once the positive list is used up, we only reshuffle
the positive list and take 4 shuffled positives to pair with next 4
negatives in the negative list as a mini-batch. Once the negative list
is used up (an “epoch” is done), we re-shuffle both lists and repeat
the same process as above. For TriSampler, the main difference is
that we first randomly select some queries/labels before sampling
the positive and negative data for each query/label. The following
code snippet shows how to define DualSampler and TriSampler.

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

from libauc.sampler import DualSampler, TriSampler

dualsampler = DualSampler(trainSet,
batch_size=32,
sampling_rate=0.1)
trisampler = TriSampler(trainSet,

batch_size_per_task=32,
sampled_tasks=5,
sampling_rate_per_task=0.1)

3.3 Optimizer

With a calculated gradient estimator, the updating rule for the
model parameter of different algorithms for DXO follow simi-
larly as (momentum) SGD or Adam [41, 50, 63-65, 67]. Hence,
the optimizer.step() is essentially the same as that in existing
libraries. In addition to our built-in optimizer, users can also uti-
lize other popular optimizers from the PyTorch/TensorFlow library,
such as Adagrad, AdamW, RMSprop, and RAdam [12, 30, 33, 48].
Hence, we provide an optimizer wrapper that allows users to ex-
tend and choose appropriate optimizers. For the naming of the
optimizer wrapper, we use the name of optimization algorithms
corresponding to each specific X-risk for better code readability. An
example of the optimizer wrapper for pAUC optimization is given
below, where mode="‘adam’ allows user to use Adam-style update.
Another mode is ‘SGD’, which takes a momentum parameter as an
argument to use the momentum SGD update.

#An example of optimizer wrapper.

from libauc.optimizers import SOPAs

optimizer = SOPAs(model.parameters(),
, weight_decay=1e-4)

1lr=0.1, mode='adam'

3.4 Other Modules

In addition, we provide useful functionalities in other modules, in-
cluding libauc.datasets, libauc.models, and libauc.metrics,
to help users improve their productivity. The libauc.datasets
module provides pre-processing functions for several widely-used
datasets, including CIFAR [28], CheXpert [25], and MovieLens [17],
allowing users to easily adapt these datasets for use with LibAUC
in benchmarking experiments. It is important to note that the def-
inition of the Dataset class is slightly different from that in ex-
isting libraries. An example is given below, where __getitem__
returns a triplet that consists of input data, its label and its cor-
responding index in the dataset, where the index is returned for
accommodating DXO algorithms for updating the uf”
The libauc.models module offers a range of pre-defined models
for various tasks, including ResNet[18] and DenseNet[22] for clas-
sification and NeuMF [20] for recommendation. libauc.metrics
module offers evaluation wrappers based on scikit-1learn for var-
ious metrics, such as AUC, AP, pAUC, and NDCG@K. Moreover, it
provides an all-in-one wrapper (shown below) to evaluate multiple
metrics simultaneously to improve the production efficiency.

estimators.

class ImageDataset(torch.utils.data.Dataset):
"""An example of Dataset class

wnn

def __init__(self, inputs, targets):
self.inputs = inputs
self.targets = targets

def __len__(self):

return len(self.inputs)
__getitem__(self, index):
data = self.inputs[index]
target = self.targets[index]

return data, target, index

def

5492

Zhuoning Yuan et al.

Table 1: The list of losses, corresponding samplers and opti-
mizer wrappers in libauc. For a complete list, please refer to
the documentation of LibAUC.

Loss Function Data Sampler Optimizer Wrapper
. . . - Reference

libauc.losses libauc.sampler 1libauc.optimizers
AUCMLoss DualSampler PESG [64]
APLoss DualSampler SOAP [39]
pAUCLoss(“1w’) DualSampler SOPAs [65]
pAUCLoss(“2w’) DualSampler SOTAs [65]
NDCGLoss TriSampler SONG [41]
NDCGLoss (topk=5) TriSampler SONG [41]
ListwiseCELoss TriSampler SONG [41]
GCLoss(‘unimodal’) RandomSampler SogCLR [63]
GCLoss(‘bimodal’) RandomSampler SogCLR [63]

#An evaluator wrapper
from libauc.metrics import evaluator

scores = evaluator(pred, true,metrics=["'auc', 'ap', 'pauc'])

3.5 Deployment

Before ending this section, we present a list of different losses,
their corresponding data samplers and optimizer wrappers of the
LibAUC library in Table 1. Finally, we present an example below
of building the pipeline for optimizing pAUC using our designed
modules.

#A high-level training pipeline for optimizing pAUC.
from libauc.losses import pAUCLoss

from libauc.optimizers import SOPAs

from libauc.sampler import DualSampler

from torch.utils.data import Dataloader

dataset =
sampler =

ImageDataset (images, labels)

DualSampler (dataset,sampling_rate=0.1)
dataloader = DatalLoader(dataset, sampler, shuffle=False)
Loss = pAUCLoss('Tw') # one-way pAUC loss

optimizer = SOPAs ()

for data, targets, index in dataloader:
logits = model (data)
loss = Loss(logits, targets,
optimizer.zero_grad()
loss.backward ()
optimizer.step()

index)

4 EXPERIMENTS

In this section, we provide extensive experiments on three tasks CID,
LTR and CLR. Although individual algorithms have been studied
in their original papers for individual tasks, our empirical studies
serves as complement to prior studies in that (i) ablation studies
of the two unique features for all three tasks provide coherent
insights of the library for optimizing different X-risks; (ii) compar-
ison with an existing optimization-oriented library TFCO [9, 34]
for optimizing AUPRC is conducted; (iii) a larger scale dataset is
used for LTR, and re-implementation of our algorithms for LTR
is done on TensorFlow for fair comparison with the TF-Ranking
library [35]; (iv) evaluation of different DXO algorithms based on
different areas under the curves is performed exhibiting useful
insights for practical use; (v) larger image-text datasets are used
for evaluating SogCLR for bimodal SSL. Another difference from
prior works [39, 41, 64, 65] is that all experiments for CID and
LTR are conducted in an end-to-end training fashion without using
a pretraining strategy. However, we did observe the pretraining
generally helps improve performance (cf. the Appendix).

LibAUC: A Deep Learning Library for X-Risk Optimization

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Table 2: Results on three classification tasks. Best results are marked in bold and second-best results are marked in underline.

Methods CIFAR10 (imratio=1%) CheXpert (imratio=24.54%) OGB-HIV (imratio=1.76%)
AUROC AD pAUC (fpr<0.3) | AUROC AP pAUC (fpr<03) | AUROC AP pAUC (fpr<0.3)
CE 0.687£0.008 0.6810.005 0.619£0.003 | 0.853£0.006 0.687%0.012 0.769+0.011 | 0.765£0.002 0.250£0.013 0.721%0.004
Focal | 0.678+0.006 0.671£0.009 0.6100.007 | 0.879+0.004 0.737+0.010 0.800+0.006 | 0.758+0.004 0.241+0.009 0.722+0.003
PESG | 0.712£0.009 0.706£0.011 0.639£0.009 | 0.890£0.002 0.759£0.009 0.820£0.003 | 0.805£0.009 0.199%0.009 0.745£0.007
SOAP | 0.711#0.027 0.717+0.016 0. 648+0.013 | 0.875:0.048 0.757+0.074 0.813£0.059 | 0.709£0.008 0.293+0.004 0.699+0.001
SOPAs | 0.717£0.005 0.713+0.002 0.645:0.003 | 0.894%0.003 0.767+0.008 0.823+0.006 | 0.786:0.007 0.249+0.019 0.747+0.004
CIFAR10 (1%! CIFAR10 (1% CIFAR10 (2%) CIFAR10 (2%)
4.1 Classification for Imbalanced Data Lo .«/-f(2 e AR o N_,-—' ~~~~~~ oo ‘
0.8 YV 0.65 | ‘] 0.8 f

We choose three datasets from different domains, namely CIFAR10 -
anatural image dataset [28], CheXpert - a medical image dataset [25]
and OGB-HIV - a molecular graph dataset [21]. For CIFAR10, we
follow the original paper [64] to construct an imbalanced training
set with a positive sample ratio (referred as imratio) of 1%. For
evaluation, we sample 5% data from training set as validation set
and re-train the model using full training set after selecting the
parameters and finally report the performance on testing set with
balanced positive and negative classes. For CheXpert, we follow the
original work [64] by conducting experiments on 5 selected diseases,
i.e., Cardiomegaly (imratio=12.2%), Edema (imratio=32.2%), Con-
solidation (imratio=6.8%), Atelectasis (imratio=31.2%), Pleural
Effusion (imratio=40.3%), with an average of imratio of 24.54%.
We use the downsized 224 x 224 frontal images only for training.
Due to the unavailability of testing set, we report the averaged
results of 5 tasks on the official validation set. For OGB-HIV, the
dataset has an imratio of 1.76% and we use official train/valid/test
split for experiments and report the final performance on testing set.
For each setting, we repeat experiments three times using different
random seeds and report the final results in mean+std.

For modeling, we use ResNet20, DenseNet121, and DeepGCN [18,
22, 29] for the three datasets, respectively. We consider optimizing
three losses, namely AUCMLoss, APLoss, pAUCLoss by using PESG,
SOAP, SOPAs, respectively. For the latter two, we use the pairwise
squared hinge loss with a margin parameter in their definition. Thus,
all losses have a margin parameter, which is tuned in [0.1, 0.3, 0.5,
0.7,0.9, 1.0]. For APLoss and pAUCLoss, we tune the moving average
estimator parameter y in the same range. For pAUCLoss, we also
tune the temperature parameter in [0.1, 1.0, 10.0]. For DualSampler,
we tune sampling_rate in [0.1, 0.3, 0.5]. For baselines, we compare
two popular loss functions used in the literature, i.e., CE loss and
Focal loss. For Focal loss, we tune & in [1,2,5] and y in [0.25, 0.5,
0.75]. For optimization, we use the momentum SGD optimizer for all
methods with a default momentum parameter 0.9 and tuned initial
learning rate in [0.1, 0.05, 0.01]. We decay learning rate by 10 times
at 50% and 75% of total training iterations. For CIFAR10, we run all
methods using a batch size of 128 for 100 epochs. For CheXpert, we
train models using a batch size of 32 for 2 epochs. For OGB-HIV, we
train models using a batch size of 512 for 100 epochs. To evaluate
the performance, we adopt three different metrics, i.e., AUROC, AP,
and pAUC (FPR<0.3). We select the best configuration based on the
performance metric to be optimized, e.g., using AUROC for model
selection of AUCMLoss. The results are summarized in the Table 2.

We have several interesting observations. Firstly, directly opti-
mizing performance metrics leads to better performance compared
to baseline methods based on ERM framework. For example, PESG,

5493

./.
/
|

AP (Training)
o o o
= a
o o
>
AP (Testing)
°
S

| 055 f

2)

0.0 e—

0 50
Epochs

Figure 5: Comparison of TFCO and LibAUC.

TFCO Py
|—:- LibAUC (S0AP)| < / |
0.50 / TFCO TFCO

{ |=+- tibauc (soap) 05§ |—-- LibAuC (50AP)
50 100 0
Epochs

100 0

SOAP, and SOPAs outperform CE and Focal Loss by a large mar-
gin in all datasets. This is consistent with prior works. Secondly,
optimizing a specific metric does not necessarily has the best perfor-
mance for other metrics. For example, on OGB-HIV dataset PESG
has the highest AUROC but the lowest AP score, while SOAP has
the highest AP score but lowest AUROC and pAUC, and SOPAs has
the highest pAUC score. This confirms the importance of choosing
appropriate methods in LibAUC for corresponding metrics. Thirdly,
on CheXpert, it seems that optimizing pAUC is more beneficial
than optimizing full AUROC. SOPAs achieves better performance
than PESG and SOAP in all three metrics.

Comparison with the TFCO library. We compare LibAUC
(SOAP) with TFCO [9, 34] for optimizing AP. We run both methods
using batch size of 128 for 100 epochs with Adam optimizer and
learning rate of 1e-3 and weight decay of 1e-4 on constructed CI-
FAR10 with imratio={1%,2%}. We plot the learning curves on
training and testing sets in Figure 5. The results indicate that
LibAUC consistently performs better than TFCO.

4.2 Learning to Rank

We evaluate LibAUC on a LTR task for movie recommendation. The
goal is to rank movies for users according to their potential interests
of watching based on their historical ratings of movies. We compare
the LibAUC library for optimizing ListwiseCELoss, NDCGLoss and
top-K NDCG loss denoted by NDCGLoss (K) against the TF-Ranking
library [35] for optimizing ApproxNDCG, GumbelNDCG, ListMLE, on
two large-scale movie datasets MovieLens20M and MovieLens25M
from MovieLens website [17]. MovieLens20M contains 20 millions
movie ratings from 138,493 users and MovieLens25M contains 25
millions movie ratings from 162,541 users. Each user has at least 20
rated movies. Different from [41], we re-implement the SONG and
K-SONG (its practical version) on TensorFlow for optimizing the
three losses for a fair comparison of running time with TF-Ranking
since it is implemented in TensorFlow. To construct training/val-
idation/testing set, we first sort the ratings based on timestamp
for each user from oldest to newest. Then, we put 5 most recent
ratings in testing set, and the next 5 most recent items in validation
set. For training, at each iteration we randomly sample 256 users,
and for each user sample 5 positive items from the remaining rated
movies and 300 negatives from all unrated movies. For computing
validation and testing performance, we sample 1000 negative items
from the movie list similar to [41].

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Zhuoning Yuan et al.

Loss MovieLen20M MovieLen25M Comparison of training time
NDCG@5 NDCG@20 NDCG@5 NDCG@20 ListwisecE [== LibAUC
LiStMLE (TF-Ranking) 0.2841+0.0007 0.3968+0.0004 0.3771%0.0003 0.4902%0.0003 sonG [== TF-Ranking
ApproxNDCG (TF-Ranking) | 0.3113+0.0001 0.4362+0.0001 0.3960+0.0003 0.5237%0.0001 ksonG [
GumbelNDCG (TF-Ranking) | 0.3179+0.0003 0.4444+0.0001 0.4022£0.0002 0.5285%0.0013 approxhocG [
ListwiseCE (LibAUC) 0.3225+0.0005 0.4493+0.0003 0.4104+0.0001 0.5369+0.0001 ustvie [
NDCGLoss (K) (LibAUC) | 0.3325£0.0020 0.4497£0.0037 0.4115£0.0008 0.5249+0.0021 Gumbeinocc [N
NDCGLoss (LibAUC) 0.3476+0.0001 0.4769+0.0003 0.4357+0.0005 0.5614+0.0003 o 10 20 30
sec/epoch

Figure 6: Left: Results on MovieLens datasets. Right: Comparison of training time for LibAUC and TF-Ranking.

For modeling, we use NeuMF [20] as backbone network for all
methods. We use the Adam optimizer [27] for all methods with an
initial learning rate of 0.001 and weight decay of 1le-7 for 120 epochs
by following similar settings in [41]. During training, we decrease
learning rate at 50% and 75% of total iterations by 10 times. For
evaluation, we compute and compare NDCG@5 and NDCG@20
for all methods. For NDCGLoss, NDCGLoss (K) and ListwiseCELoss,
we tune moving average estimator parameter y in range of [0.1, 0.3,
0.5, 0.7, 0.9, 1.0]. For NDCGLoss (K), we tune K in [50, 100, 300]. We
repeat the experiments three times using different random seeds
and report the final results in mean+std. To measure the training
efficiency, we conduct the experiments on a NVIDIA V100 GPU
and compute the average training times over 10 epochs.

As shown in the Figure 6 (left), LibAUC achieves better perfor-
mance on both datasets. It is worth mentioning that the results of
all methods we reported are generally worse than those reported
in [41], likely due to different negative items being used for evalu-
ation. In addition, optimizing NDCGLoss (K) is not as competitive
as optimizing NDCGLoss, which is because that we did not use the
pretraining strategy used in [41]. In Appendix, we show that using
pretraining is helpful for boosting the performance of optimizing
NDCGLoss (K). The runtime comparison, where we report the aver-
age runtime in seconds per epoch, is shown in Figure 6 (right). The
results show that our implementation of LibAUC on TensorFlow
is even faster than three methods in TF-Ranking. It is interesting
to note that LibAUC for optimizing ListwiseCE loss is 1.6X faster
than TF-Ranking for optimizing GumbelLoss yet has better perfor-
mance.

4.3 Contrastive Learning of Representations

In this section, we demonstrate the effectiveness of LibAUC (Sog-
CLR) for optimizing GCLoss on both uimodal and bimodal SSL tasks.
For unimodal SSL, we use two scales of the ImageNet dataset: a
small subset of ImageNet with 100 randomly selected classes (about
128k images) denoted as ImageNet-100, and the full version of Ima-
geNet (about 1.2 million images) denoted as ImageNet-1000 [11].
For bimodal SSL, we use MS-COCO and CC3M [16, 47] for ex-
periments. MS-COCO is a large-scale image recognition dataset
containing over 118,000 images and 80 object categories, and each
image is associated with 5 captions describing the objects and their
interactions in the image. CC3M is a large-scale image captioning
dataset that contains almost 3 million image-caption pairs. For eval-
uation, we compare the feature quality of pretrained encoder on
ImageNet-1000 validation set, which consists of 50,000 images that
belong to 1000 classes. For unimodal SSL, we conduct linear evalu-
ation by fine-tuning a new classifier in a supervised fashion after
pretraining. For bimodal SSL, we conduct zero-shot evaluation by
computing similarity scores between the embeddings of the prompt

5494

Table 3: Results for Self-Supervised Learning. Numbers are
denoted in %. SogCLR [63] is re-implemented in PyTorch.

Acc@1 Acc@5
Dataset Scale Modality SlaCHIJ,R SogCLR SlglLCI;;R SogCLR
ImageNet100 0.13M Image 78.1 80.3 94.9 95.5
ImageNet1000 1.2M Image 66.5 69.0 87.5 89.2
MS-COCO 0.12M Image-Text 4.6 5.0 12.2 12.5
CC3M 3M Image-Text 19.7 21.4 39.3 41.3

text and images. Due to the high training cost, we only run each
experiment once. It is worth noting that the two bimodal datasets
were not used in [63].

For unimodal SSL, we follow the same settings in SimCLR [7].
We use ResNet-50 with a two-layer non-linear head with a hidden
size of 128. We use LARS optimizer [62] with an initial learning
rate of 0.075 X Vbatch_size and weight decay of 1le-6. We use a
cosine decay strategy to decrease learning rate. We use a batch size
of 256 to train ImageNet-1000 for 800 epochs and ImageNet-100
for 400 epochs with a 10-epoch warm-up. For linear evaluation, we
train the classifier for additional 90 epochs using the momentum
SGD optimizer with no weight decay. For bimodal SSL, we use a
transformer [44, 49] as the text encoder (cf appendix for structure
parameters) and ResNet-50 as the image encoder [42]. Similarly, we
use LARS optimizer with the same learning rate strategy and weight
decay. We use a batch size of 256 for 30 epochs, with a 3-epoch warm-
up. For zero-shot evaluation, we compute the accuracy based on the
cosine similarities between image embeddings and text embeddings
using 80 different prompt templates similar to [42]. Note that we
randomly sample one out of five text captions to construct text-
image pair for pretraining on MS-COCO. We compare SogCLR with
SimCLR for unimodal SSL and with CLIP for bimodal SSL tasks.
For SogCLR, we tune y in [0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0] and tune
temperature 7 in [0.07, 0.1]. All experiments are run on 4-GPU
(NVIDIA A40) machines. The results are summarized in Table 3.

The results demonstrate that SogCLR outperforms SimCLR and
CLIP for optimizing mini-batch contrastive losses in both tasks. In
particular, SogCLR improves 2.2%, 2.9% over SImCLR on ImageNet
datasets, and improves 0.5%, 1.6% over CLIP on two bimodal datasets.
It is notable that the pretraining for ImageNet lasts up to 800 epochs,
while the pretraining on the two bimodal datasets is only performed
for 30 epochs due to limited computational resources. According to
theorems in [63], the optimization error of SogCLR will diminish as
the training epochs increase. We expect that SogCLR exhibit have
larger improvements over CLIP with longer epochs.

4.4 Ablation Studies

In this section, we present more ablation studies to demonstrate
the effectiveness of our design and superiority of our library.

LibAUC: A Deep Learning Library for X-Risk Optimization

Table 4: The y < 1 is better.

Method Dataset y=01 y=03 y=05 y=07 y=09 y=10
SOAP OGB-HIV 0.2745 0.2906 0.2881 0.2930 0.2904 0.2864
SOPAs OGB-HIV 0.6404 0.7414 0.7413 0.7467 0.7337 0.7383
SONG MovieLens 0.3476 0.3431 0.3384 0.3339 0.3308 0.3290
SogCLR ImageNet100 0.8018 0.7956 0.8032 0.7974 0.7994 0.7956
SogCLR CC3M 0.2138 0.2029 0.1931 0.1873 0.1825 0.1778

Table 5: Tuning the sampling rate is beneficial for AUCMLoss.

Dataset imratio sr=original sr=10% sr=30% sr=50%
CIFAR10 1% 0.7071 0.7124 0.7087 0.7110
Cardiomegaly 12.2% 0.8469 0.8515 0.8566 0.8378
Edema 32.2% 0.9341 0.9366 0.9420 0.9337
Consolidation 6.8% 0.8888 0.9096 0.8832 0.8636
Atelectasis 31.9% 0.8231 0.8269 0.8330 0.8353
Pleural Effusion 40.3% 0.9265 0.9258 0.9249 0.9311
OGB-HIV 1.8% 0.7642 0.8054 0.7786 0.7752

Table 6: Tuning the sampling rate is beneficial for NDCGLoss
on MovieLens20M.

Pos/Neg 1 5 10 100 300 500 1000
1 0.1315 0.1617 0.1725 0.1972 0.2039 0.2067 0.2078
5 0.1609 0.2289 0.2608 0.3354 0.3480 0.3509 0.3522
10 0.1568 0.2083 0.2374 0.3260 0.3417 0.3472 0.3506

4.4.1 Effectiveness of Dynamic Mini-batch Losses. To verify the
effectiveness of the dynamic mini-batch losses, we compare them
with conventional static mini-batch losses. To this end, we focus on
SOAP, SOPAs, SONG and SogCLR, and compare their performance
with different values of y in our framework. When setting y = 1, our
algorithms will degrade into their conventional mini-batch versions.
We directly use the best hyper-parameters tuned in Section 4.1, 4.2
except for y, which is tuned from 0.1 to 1.0. The performance is
evaluated using AP (SOAP), pAUC (SOPAs), NDCG@5 (SONG), and
Top-1 Accuracy (SogCLR), respectively. The final results of this
comparison are summarized in Table 4. Overall, we find that all
methods achieve the best performance when y is less than 1.
4.4.2 Effectiveness of Data Sampler. We vary the positive sam-
pling rate (denoted as sr) in the DualSampler for CID by opti-
mizing AUCMLoss, and in the TriSampler for LTR by optimizing
NDCGLoss. For CID, we use three datasets: CIFAR10 (1%), CheX-
pert, and OGB-HIV, and tune sr={original, 10%, 30%, 50%}, where
sr=original means that we simply use the random data sampler
without any control. Other hyper-parameters are fixed to those
found as in Section 4.1. The results are evaluated in AUROC and
summarized in Table 5. For LTR, we use MovieLens20M dataset.
We fix the number of sampled queries (i.e., users) to 256 in each
mini-batch and vary the number of positive and negative items,
which are tuned in {1, 5, 10} and {1, 5, 10, 100, 300, 500, 1000}, re-
spectively. We fix y = 0.1 and train the model for 120 epochs with
the same learning rate, weight decay and learning rate decaying
strategies as in section 4.2. The results are evaluated in NDCG@5
and are shown in Table 6. Both results demonstrate that tuning the
positive sampling rate is beneficial for performance improvement.
The results reveal that DualSampler largely boosts the perfor-
mance for AUCMLoss on CIFAR10 and OGB-HIV when sampling
rate (sr) is set to 10%. It is interesting to note that balancing the data
(sr=50%) did not necessarily improve performance on three cases.
However, generally speaking using a sampling ratio higher than the
original imbalance ratio is useful. For LTR with TriSampler, we ob-
serve a dramatic performance increase when increasing the number

5495

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

OGB-HIV OGB-HIV

dil

— SOPAS(V 1.0)
m—SOPAS _

0.72
64 128 256 512

MovieLens20M ImageNet1000

Jll

W SogCLR (y=1.0)
0.62 |mm_SogClR _

°
S
vl

0.36
0.30 0.70
0.35

0.28

°
<
3

0034 g ooes
£

o 026 =
% 8033 066

0.24

°
<
o

g
2022 ©0.64

PAUROCI(fpr<0.3)

m— SOAP (y=1.0

s SOAP
————

W= SONG (y=1.0)
. SONG
—

0.22 0.31

0.20

64 128 256 512 32 64 128 256

Figure 7: Impact of batch size.

128 512 20488192

0GB-HIV OGB-HIV MovieLens20M ImageNet100
- 0.75 0.35
0.80 | Yondms _
S/ =
NN S
8] f Yo.70
..... - 5
% 0.75 £
< e}
% 0.65
0.70 < 50
| |== Focal - Focal 0.20 ‘ SimCLR
-~ PESG (LibAUC) — ' SOPAs (LibAUC) " == K-SONG (LibAUC) =" SogCLR (LibAUC)
0 50 100 %0 50 100 0 so 100 % 200 400

Epochs Epochs Epochs Epochs

Figure 8: Convergence curves of LibAUC algorithms.
of positive samples from 1 to 10, and the number of negative sam-
ples from 1 to 300. However, when further increasing the number
of negatives from 300 to 1000, the improvement is saturated.

4.4.3 The Impact of Batch Size. We study the impact of the batch
sizes on our methods (SOAP, SOPAs, SONG, SogCLR) using dy-
namic mini-batch losses and that using static mini-batch losses
(i.e., y = 1). We follow the same experiment settings as in previous
section and only vary the batch size. For each batch size, we tune
y correspondingly as theories indicate its best value depends on
batch size. For SogCLR, we train ResNet50 on ImageNet1000 for
800 epochs using batch sizes in {8192, 2048, 512, 128}. For SOAP
and SOPAs, we train ResNet20 on OGB-HIV for 100 epochs using
batch sizes in {512, 256, 128, 64}. For SONG, we train NeuMF for
120 epochs on MovieLens20M using batch sizes in {256, 128, 64, 32}.
The results are shown in Figure 7, which demonstrates our design
is more robust to the mini-batch size.

4.4.4 Convergence Speed. Finally, we compare the convergence
curves of selected algorithms on the OGB-HIV, MovieLens20M, and
ImageNet100 datasets. We use the tuned parameters from previous
sections to plot the convergence curves on the testing sets. The
results are illustrated in Figure 8. In terms of classification, it is ob-
served that PESG, and SOPAs converge much faster than optimizing
CE and Focal loss. For MovieLens20M dataset, we find that SONG
has fastest convergence speed compared to all other methods, and
K-SONG (without pretraining) is faster than the other baselines
but slower than SONG. In the case of SSL, we observe that SogCLR
and SimCLR achieve similar performance at the beginning stage,
however, SogCLR gradually outperforms SimCLR as the training
time goes longer.

5 CONCLUSION & FUTURE WORKS

In this paper, we have introduced LibAUC, a deep learning library
for X-risk optimization. We presented the design principles of
LibAUC and conducted extensive experiments to verify the design
principles. Our experiments demonstrate that the LibAUC library
is superior to existing libraries/approaches for solving a variety of
tasks including classification for imbalanced data, learning to rank,
and contrastive learning of representations. Finally, we note that
our current implementation of the LibAUC library is by no means
exhaustive. In the future, we plan to implement more algorithms
for more X-risks, including performance at the top, such as recall
at top-K positions, precision at a certain recall level, etc.

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

REFERENCES

(1]

[11]

=
)

[20]

[21

[22

[23]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yanggqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

Adrien Bardes, Jean Ponce, and Yann LeCun. 2022. Vicreg: Variance-invariance-
covariance regularization for self-supervised learning. International Conference
on Learning Representations (2022).

Kendrick Boyd, Kevin H Eng, and C David Page. 2013. Area under the precision-
recall curve: point estimates and confidence intervals. In Joint European conference
on machine learning and knowledge discovery in databases. Springer, 451-466.
Andrew Brown, Weidi Xie, Vicky Kalogeiton, and Andrew Zisserman. 2020.
Smooth-ap: Smoothing the path towards large-scale image retrieval. In Computer
Vision—-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part IX 16. Springer, 677-694.

Fatih Cakir, Kun He, Xide Xia, Brian Kulis, and Stan Sclaroff. 2019. Deep Metric
Learning to Rank. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. 129-136.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597-1607.

Chih cheng Hsieh. 2022. Multimodal-XAI-Medical-Diagnosis-System. https:
//github.com/ChihchengHsieh/Multimodal-Medical-Diagnosis-System
Andrew Cotter, Heinrich Jiang, and Karthik Sridharan. 2019. Two-player games
for efficient non-convex constrained optimization. In Algorithmic Learning Theory.
PMLR, 300-332.

Ngoc Dang Nguyen, Wei Tan, Wray Buntine, Richard Beare, Changyou Chen, and
Lan Du. 2022. AUC Maximization for Low-Resource Named Entity Recognition.
arXiv e-prints (2022), arXiv-2212.

JiaDeng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248-255.

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research 12, Jul (2011), 2121-2159.

TensorFlow Model Garden. 2020. GitHub.

Saeed Ghadimi, Andrzej Ruszczynski, and Mengdi Wang. 2020. A single timescale
stochastic approximation method for nested stochastic optimization. SIAM
Journal on Optimization 30, 1 (2020), 960-979.

Priya Goyal, Quentin Duval, Jeremy Reizenstein, Matthew Leavitt, Min Xu,
Benjamin Lefaudeux, Mannat Singh, Vinicius Reis, Mathilde Caron, Piotr Bo-
janowski, Armand Joulin, and Ishan Misra. 2021. VISSL. https://github.com/
facebookresearch/vissl.

Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. 2016. Ms-
celeb-1m: A dataset and benchmark for large-scale face recognition. In European
conference on computer vision. Springer, 87-102.

F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1-19.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Siyuan He, PENGCHENG XI, Ashkan Ebadi, Stéphane Tremblay, and Alexander
Wong. 2022. Performance or Trust? Why Not Both. Deep AUC Maximization
with Self-Supervised Learning for COVID-19 Chest X-ray Classifications. Journal
of Computational Vision and Imaging Systems 7, 1 (Apr. 2022), 37-39. https:
//doi.org/10.15353/jcvis.v7i1.4906

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173-182.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118-22133.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
2017. Densely Connected Convolutional Networks. In 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 2261-2269.
Mengda Huang, Yang Liu, Xiang Ao, Kuan Li, Jianfeng Chi, Jinghua Feng, Hao
Yang, and Qing He. 2022. AUC-Oriented Graph Neural Network for Fraud

5496

[24

[25]

™
2

[27

[28

[29

[30

[32

[33

[34

(35]

[36

[37

[38

[40

(41

[42

=
&

[44

Zhuoning Yuan et al.

Detection. In Proceedings of the ACM Web Conference 2022 (Virtual Event, Lyon,
France) (WWW ’22). Association for Computing Machinery, New York, NY, USA,
1311-1321. https://doi.org/10.1145/3485447.3512178

Gabriel Ilharco, Mitchell Wortsman, Nicholas Carlini, Rohan Taori, Achal Dave,
Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. 2021. OpenCLIP. https://doi.org/10.5281/zenodo.
5143773 If you use this software, please cite it as below..

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris
Chute, Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, et al.
2019. Chexpert: A large chest radiograph dataset with uncertainty labels and
expert comparison. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 590-597.

Wei Jiang, Gang Li, Yibo Wang, Lijun Zhang, and Tianbao Yang. 2022. Multi-
block-Single-probe Variance Reduced Estimator for Coupled Compositional
Optimization. In NeurIPS. http://papers.nips.cc/paper_files/paper/2022/hash/
d13ee73683fd5567e5c07634a25cd7b8- Abstract-Conference.html

Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimiza-
tion. In 3rd International Conference on Learning Representations (ICLR).

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. 2020. Deepergcn:
All you need to train deeper gens. arXiv preprint arXiv:2006.07739 (2020).
Liyuan Liu, Haoming Wang, Zhenguo Peng, Xiaodong Liu, Xiaohan Chen, Ji
Liu, and Jiawei Han. 2019. On the Variance of the Adaptive Learning Rate and
Beyond. arXiv preprint arXiv:1908.03265 (2019).

Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang
Yu, Zhao Xu, Jingtun Zhang, Yi Liu, Kegiang Yan, Haoran Liu, Cong Fu, Bora M
Oztekin, Xuan Zhang, and Shuiwang Ji. 2021. DIG: A Turnkey Library for Diving
into Graph Deep Learning Research. Journal of Machine Learning Research 22,
240 (2021), 1-9. http://jmlr.org/papers/v22/21-0343.html

Mingrui Liu, Zhuoning Yuan, Yiming Ying, and Tianbao Yang. 2019. Stochastic
auc maximization with deep neural networks. arXiv preprint arXiv:1908.10831
(2019).

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

Harikrishna Narasimhan, Andrew Cotter, and Maya Gupta. 2019. Optimizing
generalized rate metrics with three players. Advances in Neural Information
Processing Systems 32 (2019).

Rama Kumar Pasumarthi, Sebastian Bruch, Xuanhui Wang, Cheng Li, Michael
Bendersky, Marc Najork, Jan Pfeifer, Nadav Golbandi, Rohan Anil, and Stephan
Wolf. 2019. Tf-ranking: Scalable tensorflow library for learning-to-rank. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2970-2978.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

Yash Patel, Giorgos Tolias, and Jiri Matas. 2022. Recall@k Surrogate Loss with
Large Batches and Similarity Mixup. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR. arXiv:2108.11179 https://arxiv.org/abs/2108.11179
Przemystaw Pobrotyn and Radostaw Biatobrzeski. 2021. Neuralndcg: Direct
optimisation of a ranking metric via differentiable relaxation of sorting. arXiv
preprint arXiv:2102.07831 (2021).

Qi Qi, Youzhi Luo, Zhao Xu, Shuiwang Ji, and Tianbao Yang. 2021. Stochastic
Optimization of Areas Under Precision-Recall Curves with Provable Convergence.
Advances in Neural Information Processing Systems 34 (2021).

Zi-Hao Qiu, Quangi Hu, Zhuoning Yuan, Denny Zhou, Lijun Zhang, and
Tianbao Yang. 2023. Not All Semantics are Created Equal: Contrastive Self-
supervised Learning with Automatic Temperature Individualization. In Pro-
ceedings of International Conference on Machine Learning, Vol. abs/2305.11965.
https://doi.org/10.48550/arXiv.2305.11965 arXiv:2305.11965

Zi-Hao Qiu, Quangqi Hu, Yongjian Zhong, Lijun Zhang, and Tianbao Yang. 2022.
Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning
with Provable Convergence. In Proceedings of International Conference of Machine
Learning. arXiv:2202.12183 [cs.LG]

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
etal. 2021. Learning transferable visual models from natural language supervision.
arXiv preprint arXiv:2103.00020 (2021).

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models
From Natural Language Supervision. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event (Pro-
ceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang
(Eds.). PMLR, 8748-8763. http://proceedings.mlr.press/v139/radford21a.html
Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAl blog

https://www.tensorflow.org/
https://github.com/ChihchengHsieh/Multimodal-Medical-Diagnosis-System
https://github.com/ChihchengHsieh/Multimodal-Medical-Diagnosis-System
https://github.com/facebookresearch/vissl
https://github.com/facebookresearch/vissl
https://doi.org/10.15353/jcvis.v7i1.4906
https://doi.org/10.15353/jcvis.v7i1.4906
https://doi.org/10.1145/3485447.3512178
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
http://papers.nips.cc/paper_files/paper/2022/hash/d13ee73683fd5567e5c07634a25cd7b8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/d13ee73683fd5567e5c07634a25cd7b8-Abstract-Conference.html
http://jmlr.org/papers/v22/21-0343.html
https://arxiv.org/abs/2108.11179
https://arxiv.org/abs/2108.11179
https://doi.org/10.48550/arXiv.2305.11965
https://arxiv.org/abs/2305.11965
https://arxiv.org/abs/2202.12183
http://proceedings.mlr.press/v139/radford21a.html

LibAUC: A Deep Learning Library for X-Risk Optimization KDD ’23, August 6-10, 2023, Long Beach, CA, USA

1,8(2019), 9. (2019).
[45] Tencent Youtu Research. 2021. Heterogeneous interpolation on graph. https: [56] Zhengyang Wang, Meng Liu, Youzhi Luo, Zhao Xu, Yaochen Xie, Limei Wang,

//github.com/TencentYoutuResearch/HIG-GraphClassification

Michal Rolinek, Vit Musil, Anselm Paulus, Marin Vlastelica, Claudio Michaelis,
and Georg Martius. 2020. Optimizing Rank-Based Metrics With Blackbox Dif-
ferentiation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. 2018. Con-
ceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic
image captioning. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 2556—2565.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA: Neural
networks for machine learning (2012).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

Lei Cai, Qi Qi, Zhuoning Yuan, Tianbao Yang, and Shuiwang Ji. 2021. Advanced
Graph and Sequence Neural Networks for Molecular Property Prediction and
Drug Discovery. arXiv:2012.01981 [g-bio.QM]

Lanning Wei, Huan Zhao, Quanming Yao, and Zhigiang He. 2021. Pooling
Architecture Search for Graph Classification. In CIKM.

Ross Wightman. 2019. PyTorch Image Models. https://doi.org/10.5281/zenodo.
4414861

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational

you need. Advances in neural information processing systems 30 (2017). Linguistics, Online, 38-45. https://www.aclweb.org/anthology/2020.emnlp-

[50] Bokun Wang and Tianbao Yang. 2022. Finite-Sum Coupled Compositional demos.6
Stochastic Optimization: Theory and Applications. In Proceedings of the 39th [60] Tianbao Yang. 2022. Algorithmic Foundation of Deep X-Risk Optimization. arXiv
International Conference on Machine Learning (Proceedings of Machine Learn- preprint arXiv:2206.00439 (2022).
ing Research, Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba [61] Tianbao Yang and Yiming Ying. 2022. AUC maximization in the era of big data
Szepesvari, Gang Niu, and Sivan Sabato (Eds.). PMLR, 23292-23317. https: and AL A survey. ACM Computing Surveys (CSUR) (2022).
//proceedings.mlr.press/v162/wang22ak.html [62] Yang You, Igor Gitman, and Boris Ginsburg. 2017. Scaling SGD batch size to 32k
[51] Guanghui Wang, Ming Yang, Lijun Zhang, and Tianbao Yang. 2022. Momentum for imagenet training. arXiv preprint arXiv:1708.03888 6 (2017).
Accelerates the Convergence of Stochastic AUPRC Maximization. In International [63] Zhuoning Yuan, Yuexin Wu, Zi-Hao Qiu, Xianzhi Du, Lijun Zhang, Denny Zhou,

Conference on Artificial Intelligence and Statistics, AISTATS 2022, 28-30 March
2022, Virtual Event (Proceedings of Machine Learning Research, Vol. 151), Gustau
Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (Eds.). PMLR, 3753-3771.
https://proceedings.mlr.press/v151/wang22b.html

Mengdi Wang, Ethan X Fang, and Han Liu. 2017. Stochastic compositional
gradient descent: algorithms for minimizing compositions of expected-value
functions. Mathematical Programming 161, 1-2 (2017), 419-449.

Mengdi Wang, Ethan X Fang, and Han Liu. 2017. Stochastic compositional
gradient descent: algorithms for minimizing compositions of expected-value
functions. Mathematical Programming 161, 1-2 (2017), 419-449.

Mengdi Wang, Ji Liu, and Ethan Fang. 2016. Accelerating stochastic composition
optimization. Advances in Neural Information Processing Systems 29 (2016).
Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315

and Tianbao Yang. 2022. Provable stochastic optimization for global contrastive
learning: Small batch does not harm performance. In International Conference on
Machine Learning. PMLR, 25760-25782.

Zhuoning Yuan, Yan Yan, Milan Sonka, and Tianbao Yang. 2021. Large-scale
robust deep auc maximization: A new surrogate loss and empirical studies on
medical image classification. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. 3040-3049.

Dixian Zhu, Gang Li, Bokun Wang, Xiaodong Wu, and Tianbao Yang. 2022. When
AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex
Convergence Guarantee. (2022).

Dixian Zhu, Bokun Wang, Zhi Chen, Yaxing Wang, Milan Sonka, Xiaodong Wu,

and Tianbao Yang. 2023. Provable Multi-instance Deep AUC Maximization with
Stochastic Pooling. In Proceedings of International Confeprence on Machine Learning,

Vol. abs/2305.08040. https://doi.org/10.48550/arXiv.2305.08040 arXiv:2305.08040
Dixian Zhu, Xiaodong Wu, and Tianbao Yang. 2022. Benchmarking Deep AUROC
Optimization: Loss Functions and Algorithmic Choices. arXiv:2203.14177 [cs.LG]

https://github.com/TencentYoutuResearch/HIG-GraphClassification
https://github.com/TencentYoutuResearch/HIG-GraphClassification
https://proceedings.mlr.press/v162/wang22ak.html
https://proceedings.mlr.press/v162/wang22ak.html
https://proceedings.mlr.press/v151/wang22b.html
https://arxiv.org/abs/2012.01981
https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.5281/zenodo.4414861
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.48550/arXiv.2305.08040
https://arxiv.org/abs/2305.08040
https://arxiv.org/abs/2203.14177

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

A APPENDIX
A.1 Pretraining Strategy

We compare the performance of pretraining v.s. random initializa-
tion strategy on MovieLens (20M, 25M) with K-SONG and CheXpert
with PESG, SOAP, SOPAs, respectively. For K-SONG, we pretrain
model using ListwiseCELoss for 30 epochs using learning rate
of 0.001 with adam optimizer. Then, we re-initialize last layer and
re-train models for 120 epochs by using the tuned parameters in
section 4.2. For PESG, SOAP, SOPAs, we use CrossEntropyLoss
to pretrain model on CheXpert in multi-label (5 classes) setting for
1 epoch using learning rate of 0.001 with adam optimizer. Then,
we re-initialize last layer and re-train models for 2 epochs using
the tuned parameters in Section 4.1 for each individual task. We
report average scores of five selected diseases in AUC, AP, pAUC.
We present the final results in Figure 9. Overall, we can see pre-
training boosts the performance of K-SONG by a large margin on
two datasets. For CheXpert, we also observe that pretraining can
effectively improve the performance on different metrics.

MovieLens (K-SONG) 0.90 CheXpert CheXpert CheXpert

0.825

=
n 0.40 0.89 0.77 g 0820
® m= Random Init| g o o815
g . w/ Pretrain | I < &
IS
2035 0.88 0.76 20810
mmm Random Init = Random Init| = gos [WEE Random Init]
l BN w/ Pretrain . w/ Pretrain . W/ Pretrain
0.30 0.87 — — 0.75 — — 0.800 ——

20M 25M PESG SOAP SOPAs
Figure 9: Performance comparison of pretraining v.s. random
initialization strategies.

A.2 Relationship between X-Risk Measures

AUROC is a special case of one-way pAUC and two-way pAUC.
One-way pAUC with FPR in a range (0, @) is a special case of
two-way pAUC. Top Push is a special case of one-way pAUC and
p-norm push. AP is a non-parametric estimator of AUPRC. MAP
and NDCG are similar in the sense that they are functions of ranks.
Top-K MAP, Top-K NDCG, Recall@K (R@K), Precision@K (P@K),
PAUC+Precision@K (pAp@K), Precision@Recall (P@R) are similar
in the sense that they all involve the computation of K-th largest
scores in a set. Listwise losses, supervised contrastive losses, and
self-supervised contrastive losses are similar in the sense that they
all involve the sum of log-sum term. The above relationships are
summarized in Figure 10.

(_ AUROC Jw--_ One-WayPartiad| AUC | -> TopPush |
\ X X

[awrc | Y Two-Way Partial AUC] [P-norm Push]
(estimator)

"~ TopkmAPNDCG | [pAr@K |

,

(top-K)
(P@R |« P@K, R@K

(log-sum)
[Supervised GCL]<—>[Self-Supervised GCL }

- - special case
<> similar

Figure 10: Relationships between different X-risks [60].

Zhuoning Yuan et al.

A.3 Relationship with Stochastic Compositional
Optimization Algorithms

The considered family of problems has a subtle difference from the
conventional two level compositional optimization problems stud-
ied in the literature (e.g., [53, 54]), though they are closely related.
In traditional two-level compositional optimization, the objective is
given by E¢fz(E;g; (w)), where the inner random function g, (w)
does not depend on the outer random variable £. Our problem is
given by % >, filgi(w)), where g;(w) = |T11| szeSi (W, z,2j),
which can be written as E;_[p) [fi(EszSl.t’(w, zi,zj))]. We can see
that the key difference between our problem and the conventional
two-level compositional optimization problem is that the inner
random function £(w,z;,z;) in our objective not only depends
on the inner random variable z; but also depends on the outer
random variable z;. As a result, we cannot simply apply existing
algorithms to solving our problems. Instead, we need to maintain
and update estimators for all g;(w) = Ezj~SL-[(W’ zj,Zj) in a ran-
dom block-wise fashion. Our algorithms were inspired by existing
works (e.g., [14, 53, 54]), with a key difference in that the moving
average estimators for g;(w) are updated only if z; is in the sampled
mini-batch.

A.4 Model Configurations

For the bimodal pretraining experiments in Section 4.3, we imple-
ment a small version of CLIP model in PyTorch following the open-
source codebase [24]. The model consists of a modified Transformer
and ResNet50 [42, 44, 49]. The hyperparameters used for building
the model are summarized in Table 7. For the imbalanced classifi-
cation on OGB-HIV in Section 4.1, we use DeepGCN model [29],
which takes inspiration from the concepts of CNNs, e.g., residual
connections. We adapt the DeepGCN codebase on OGB-HIV to our
experiments, and the hyperparameters used for building the model
are summarized in Table 8.

Table 7: Configuration for CLIP model [42].

Hyperparameter Value
embed_dim 1024
image_resolution 224x224
vision_layers [3,4,6,3]
vision_width 32
vision_patch_size null
context_length 77
vocab_size 49408
transformer_width 512
transformer_heads 8
transformer_layers 12

Table 8: Configuration for DeepGCN model [29].

Hyperparameter | Value
num_layers 3
embed_dim 256
block res+
gen_aggr max
dropout 0.5
temperature 1.0
norm batch

LibAUC: A Deep Learning Library for X-Risk Optimization

A.5 Additional Experiments

We run additional experiments to compare our implemented al-
gorithms with two state-of-the-art baselines: (1) NeuralNDCG for
LTR [38], which optimizes NDCG by approximating non-continuous
sorting operators based on NeuralSort for LRT tasks, and (2) VICReg
for CLR tasks [2], which is based on optimizing invariance, variance,
and covariance terms for self-supervised learning of representa-
tions.

For VICReg, we pretrain ResNet-50 with a 2-layer non-linear
head with a hidden size of 128 on ImageNet100. We follow the
same training parameters as stated in Section 4.3. In particular, we
pretrain the model for 400 epochs with a batch size of 256, initial
learning rate of 0.075 X Vbatch_size, cosine learning rate decay
strategy and weight decay of 1e-6. For linear evaluation, we train
the classifier for additional 90 epochs using the momentum SGD op-
timizer with no weight decay. For NeuralNDCG, we train the NeuMF
model on MovieLens20M and MovieLens25M datasets. We follow
the same training parameters as stated in Section 4.2. In particular,
we use the Adam optimizer to train the models with a weight decay

5499

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

of 1e-7 for 120 epochs with the learning rate tuned in the range
of [0.001, 0.0005]. For evaluation, we conduct experiments using
three different seeds and report the average results in mean+std
for NDCG@5 and NDCG@20. The final results for the above two
experiments are summarized in Table 9 and Table 10.

Table 9: Comparisons for SSL task on ImageNet100 dataset.

Acc@1 Acc@5
VICReg 743 92.8
SogCLR 80.3 95.5

Table 10: Comparisons for LTR task on MovieLens datasets.

Dataset Methods NDCG@5 NDCG@20
MovieLen20M NeuralNDCG 0.3181£0.0007 0.4424+0.0007
NDCGLoss (LibAUC) 0.3419+0.0004 0.4709+0.0001
+ £
MovieLen25M NeuralNDCG 0.4059+0.0005 0.5322+0.0006

NDCGLoss (LibAUC) 0.4295+0.0003 0.5566+0.0005

	Abstract
	1 Introduction
	2 Deep X-Risk Optimization (DXO)
	2.1 A Brief History
	2.2 Notations
	2.3 The X-Risk Optimization Framework
	2.4 X-risks in LibAUC

	3 Library Design of LibAUC
	3.1 Dynamic Mini-batch Loss
	3.2 Controlled Data Sampler
	3.3 Optimizer
	3.4 Other Modules
	3.5 Deployment

	4 Experiments
	4.1 Classification for Imbalanced Data
	4.2 Learning to Rank
	4.3 Contrastive Learning of Representations
	4.4 Ablation Studies

	5 Conclusion & Future Works
	References
	A Appendix
	A.1 Pretraining Strategy
	A.2 Relationship between X-Risk Measures
	A.3 Relationship with Stochastic Compositional Optimization Algorithms
	A.4 Model Configurations
	A.5 Additional Experiments

