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Summary

� Water scarcity, resulting from climate change, poses a significant threat to ecosystems. Syn-

trichia ruralis, a dryland desiccation-tolerant moss, provides valuable insights into survival of

water-limited conditions.
� We sequenced the genome of S. ruralis, conducted transcriptomic analyses, and performed

comparative genomic and transcriptomic analyses with existing genomes and transcriptomes,

including with the close relative S. caninervis. We took a genetic approach to characterize the role

of an S. ruralis transcription factor, identified in transcriptomic analyses, in Arabidopsis thaliana.
� The genome was assembled into 12 chromosomes encompassing 21 169 protein-coding

genes. Comparative analysis revealed copy number and transcript abundance differences in

known desiccation-associated gene families, and highlighted genome-level variation among

species that may reflect adaptation to different habitats. A significant number of abscisic acid

(ABA)-responsive genes were found to be negatively regulated by a MYB transcription factor

(MYB55) that was upstream of the S. ruralis ortholog of ABA-insensitive 3 (ABI3). We deter-

mined that this conserved MYB transcription factor, uncharacterized in Arabidopsis, acts as a

negative regulator of an ABA-dependent stress response in Arabidopsis.
� The new genomic resources from this emerging model moss offer novel insights into how

plants regulate their responses to water deprivation.

Introduction

In the terrestrial realm, where aridity prevails and survival is an
unyielding challenge, some plants can harness an extraordinary
resilience known as desiccation tolerance (DT): the ability to
endure extreme water loss without suffering irreparable damage
or death. Specifically, the tolerance of desiccation is defined as
the ability to survive equilibration of the water potential of tissues
to that of the surrounding air (Bewley, 1979). Desiccation-
tolerant plants are defined by their ability to survive tissue water
potential of at least �100MPa (equilibration to a relative humid-
ity, RH, of 50%), then recover and resume normal growth once
water becomes available again (Alpert & Oliver, 2002). A suite of
adaptive traits that enables plants to survive in arid or water-
scarce environments can be found across the land plant phylo-
geny (Stark, 2017; Oliver et al., 2020). It has been postulated
that vegetative DT (in vegetative, rather than reproductive,

tissues; VDT) was a critical requirement for plants to colonize
terrestrial habitats (Oliver et al., 2005). Indeed, DT mechanisms
are believed to have been adapted into new developmental con-
texts as the need arose, such as late embryogenesis in seed plants
(Oliver et al., 2005). Thus, understanding how DT is regulated
can provide insights into land plant evolution.

The origin of early land plants coincided with a large degree of
genetic novelty (Bowles et al., 2020). A prime example includes
the introduction of regulators (e.g. transcription factors) of criti-
cal phytohormone pathways such as abscisic acid (ABA), which
itself has numerous roles governing drought and DT mechan-
isms. Recent studies demonstrated the presence of ABA and its
physiological effects in the red alga Cyanidioschyzon merolae, sug-
gesting an early evolutionary origin of these signaling pathways
(Kobayashi et al., 2016). The conservation of ABA signaling
through evolution, especially in stress responses, is further evi-
denced by studies on various plant lineages. In seed plants, ABA
has been extensively studied for its role in stress tolerance, parti-
cularly in response to drought and salinity (Cutler et al., 2010).*These authors contributed equally to this work.
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The fundamental components of ABA signaling, such as PYR/
PYL/RCAR receptors, PP2C phosphatases, and SnRK2 kinases,
have also been identified across a wide range of plant species
(Umezawa et al., 2010). Since the emergence of land plants, these
gene families have expanded, likely allowing for adaptation to
increasingly diverse environments and developmental contexts
(Donoghue et al., 2021).

Bryophytes hold an important phylogenetic position as three
of the four main living clades of land plants, along with the tra-
cheophytes. Thus, the establishment of genetically tractable bryo-
phyte models that exhibit VDT has been instrumental in
understanding the significance of the genomic and molecular
innovations that coincided with land plant emergence. Mosses,
one of the bryophyte lineages, are excellent model systems for
studying VDT (Cove et al., 2009; Rensing et al., 2020; Nara-
moto et al., 2022; Li et al., 2023; Yadav et al., 2023), particularly
as the molecular underpinnings of VDT may be shared across
land plants (Phillips et al., 2002; Oliver et al., 2020). The princi-
pal bryophyte model that is widely used to study growth and
development, Physcomitrium patens (Lang et al., 2018; Rensing
et al., 2020), while drought-tolerant (Frank et al., 2005), is gener-
ally sensitive to dehydration stress (Mishler & Oliver, 2009; Kos-
ter et al., 2010). Although P. patens has the capability for DT if
treated with ABA (Oldenhof et al., 2006) or extremely slow-
drying rates (Greenwood & Stark, 2014; Xiao et al., 2018), it is
not an ideal model for understanding tolerance to desiccation.

Two closely related desiccation-tolerant mosses, Syntrichia cani-
nervis and Syntrichia ruralis (previously known as Tortula caninervis
and Tortula ruralis; Schonbeck & Bewley, 1981), have emerged as
important model systems for understanding mechanisms of abiotic
stress tolerance and their evolution. Both species can survive inter-
nal water potentials well below �100MPa and have served as a
focus for research into the ecological, reproductive, physiological,
biochemical, and molecular aspects of VDT in bryophytes (Stark
et al., 2005a,b; Proctor et al., 2007; Oliver, 2009; Zhang
et al., 2011; Stark, 2017; Coe et al., 2021). Syntrichia is a diverse
genus of mosses that occur in dryland habitats across the world and
is one of the most ecologically dominant groups of mosses across
western and northern North America (Brinda et al., 2021). Both S.
caninervis and S. ruralis can dominate biological soil crust (bio-
crust) communities of North American drylands (Belnap &
Lange, 2003). However, while S. caninervis can be considered a
dryland biocrust specialist, S. ruralis grows in a wider range of habi-
tats that are not restricted to the biocrust community and span a
range of moisture gradients (Mishler, 2007). Thus, despite their
relatively recent divergence (c. 5 Ma; Jauregui-Lazo et al., 2023),
the phenotypic variation within these two species argues that they
are an excellent comparative resource for understanding how desic-
cation tolerance is experienced and regulated in land plants.

We report here the addition of a chromosomal-level genome
assembly for S. ruralis derived from a clonally propagated male
gametophyte and the insights this genome can provide to plant
abiotic stress responses. Using comparative genomics and tran-
scriptomics, we explored both the evolutionary dynamics of the
two Syntrichia genomes and the ways in which the two mosses
regulate their molecular responses to desiccation and rehydration.

Specifically, we tested the hypothesis that the ability of S. ruralis
to inhabit a broad range of stressful habitats will be reflected by
genomic and transcriptomic differences relative to S. caninervis,
which has a more restrictive habitat range. We used these com-
parisons to uncover critical elements that govern the plasticity of
VDT in these two species. We then expanded our comparisons
to flowering plants (i.e. Arabidopsis thaliana), where we used
information from S. ruralis to identify a novel, but deeply con-
served, ABA-associated transcription factor (TF). Our results
highlight the importance of developing bryophyte models and
the conservation of DT-associated pathways across land plants.

Materials and Methods

Syntrichia ruralis cultures

Syntrichia ruralis (Hedw.) F. Weber & D. Mohr shoots originated
from a single specimen (Brinda 9108) collected from the Bow
River Valley in Calgary Alberta (51.098875°N, 114.281461°W)
and vouchered in the University of Nevada, Las Vegas herbarium
(UNLV). In the laboratory, S. ruralis shoots, free of visible con-
tamination with algae and protists, were vegetatively propagated
on sterile fine sand collected from a dune near Moab, Utah
(93.9% sand, 5.5% silt, and 0.6% clay with a pH of 8.4), and
watered on alternating weeks with sterile distilled water and with a
30% inorganic nutrient solution (Hoagland & Arnon, 1938). This
specimen is male (has antheridia reproductive structures) and was
selected for its healthy appearance and sustained growth under cul-
ture conditions. Cultures were placed in a growth chamber set to a
12 h photoperiod (20°C : 8°C, light : dark), at c. 90 lmol m�2 s�1

photosynthetically active radiation (PAR). The single clonal line
used for genome sequencing had been subcultured and grown to
maturity through at least five asexual generations. Several gameto-
phytes from the original clonal line were used to expand and estab-
lish subcultures for generating sufficient material for isolation of
RNA for construction of transcriptome libraries for transcript
abundance studies (RNA-seq). Expansion of cultures was achieved
by isolating individual shoots following branching as well as by
fragment regeneration. Cultures were examined every subculturing
for lack of visible contamination by stereomicroscope.

Desiccation was achieved using a standardized slow dehydra-
tion protocol and drying curve (as described by Oliver (1991)) in
which gametophytes in small wire baskets were placed over satu-
rated ammonium nitrate (67% RH) in a closed glass desiccator
placed in the same incubator as the moss cultures at 20°C. Under
these conditions, the gametophytes reached a stable weight (equi-
librium), measured gravimetrically, at 6 h and a water potential
of �54MPa within the light period (100 lmol m�2 s�1) of the
day : night cycle. Equilibrium drying was chosen to achieve desic-
cation, even though the moss can survive cellular water potentials
of – 600MPa (Alpert & Oliver, 2002), as it provides a highly
reproducible drying rate and a precise level of dehydration, in this
case �54MPa, which is sufficient to induce quiescence. Rehydra-
tion was achieved by placing the desiccated gametophytes in a
culture dish in the incubator at 20°C in the light and adding suf-
ficient distilled water to ensure full hydration.
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Genomic DNA isolation and Chicago library preparation
and sequencing

Genomic DNA isolation, library preparation, sequencing, and
assembly were conducted by Dovetail Genomics (Scotts Valley,
CA) and as described for the S. caninervis genome (Silva
et al., 2021). Briefly, genomic DNA was isolated from 1 to 2 g of
powdered flash frozen gametophytes using a standard CTAB-
based procedure (Doyle & Doyle, 1987) and high molecular
weight genomic DNA was precipitated, resuspended in Qiagen
Buffer G2 with RNAse A and after incubation at 50°C for
30 min, the DNA was purified using Qiagen Genomic-tips (Qia-
gen). Chicago genomic DNA libraries were prepared as described
by Putnam et al. (2016). The libraries were sequenced on an Illu-
mina HiSeq platform to produce 389 million 150 bp, paired-end
reads, which provided 153.29 physical coverage of the genome
(1–100 kb pairs). A Dovetail HiC library was prepared as
described by Lieberman-Aiden et al. (2009). For each library,
chromatin was fixed in place in the nucleus by incubation of the
gametophytes in 1% formaldehyde for 15 min under vacuum.
The fixed chromatin was extracted from the treated gametophytes
using the Dovetail TM Hi-C Kit (Dovetail Genomics, Scotts
Valley, CA, USA). After digestion with DpnII, the 500 overhangs
filled in with biotinylated nucleotides and ligated. After ligation,
cross-links were reversed, and the DNA purified from protein.
The DNA was then sheared to c. 350 bp mean fragment size, and
sequencing libraries were generated using NEBNext Ultra
enzymes and Illumina-compatible adapters. Biotin-containing
fragments were isolated using streptavidin beads before PCR
enrichment of each library. The libraries were sequenced on an
Illumina HiSeq platform to produce 224 million 29 150 bp
paired-end reads, which provided 23 246.369 physical coverage
of the genome (10–10 000 kb pairs).

Syntenic comparisons

To identify syntenic gene blocks between S. ruralis, S. caninervis,
and Ceratodon purpureus, an all-against-all BLASTP analysis was
conducted, using a stringent threshold (e-value < 19 10�5 and
top five matches). Syntenic blocks were defined based on the pre-
sence of a minimum of five synteny gene pairs, employing the
MCSCANX package with default settings (Wang et al., 2012). Sub-
sequently, adjacent blocks were merged, and large syntenic blocks
were chosen for further analysis. These sizable syntenic
blocks were utilized to infer the chromosome evolution and
explore the syntenic relationships between S. ruralis, S. caninervis,
and P. patens.

Phylogenetic analyses

Late embryogenesis abundant (LEA) and early light-induced pro-
tein (ELIP) genes were identified in S. ruralis and S. caninervis by
HMMER (a software that uses probabilistic models called profile
hidden Markov models; profile HMMs; Potter et al., 2018) and
NCBI BLAST. For the LEA genes, profile HMMs of eight LEA sub-
families (LEA_1, PF03760; LEA_2, PF03168; LEA_3, PF03242;

LEA_4, PF02987; LEA_5, PF00477; LEA_6, PF10714; DHN,
PF00257; and SMP, PF04927) were retrieved from the Pfam
database (Finn et al., 2014) and used to identify LEA domain-
conserved proteins using hmmsearch in HMMER. Subse-
quently, sequences from S. ruralis and S. caninervis were aligned
using CLUSTAL OMEGA (Sievers et al., 2011). Then, the phyloge-
netic tree was constructed in a maximum likelihood framework
with MEGA5 (Tamura et al., 2011), and the resulting tree was
visualized by Interactive Tree of Life online tool (ITOL; Letunic &
Bork, 2021). For the ELIP family, profile HMMs of ELIPs were
downloaded from the InterPro database (Hunter et al., 2009) and
used to screen for ELIP-conserved proteins with hmmsearch.
The ELIPs identified were subject to the same BLAST confirma-
tion and phylogenetic analyses as the LEA gene family.

RNA-sequencing

For RNA-sequencing, replicate gametophytic samples, in tripli-
cate, were collected for each of six treatments: fully hydrated con-
trols (Ctrl), slow-dried gametophytes (D; desiccated samples at
�54MPa), samples rehydrated for 1 h after slow-drying (R; fully
rehydrated), heat stress at 30°C for 90 min, heat shock at 35°C,
and cold treatment at 4°C for 90 min. The desiccated samples
were chosen to ensure full capture of sequestered transcripts
induced by desiccation (Wood & Oliver, 1999) and the 1 h rehy-
dration time was chosen to fully capture the complete rehydra-
tion response (Oliver, 1991). Temperature stress growth
conditions were similar to those in Silva et al. (2021). The game-
tophytes for this part of the study were obtained from the same
clonal cultures used for the genome sequencing. RNA was
extracted using the RNeasy (Qiagen) kit with the RLC buffer fol-
lowing the manufacturer’s recommended protocol. RNA isolates
were treated with DNase1 and cleaned using the DNA-free RNA
Kit (Zymo Technologies, Irvine, CA, USA). RNA quality was
assessed by the use of a fragment analyzer (Advanced Analytical
Technologies, Ankeny, IA, USA) and concentration determined
by use of a Nanodrop Spectrophotometer (ThermoFisher, Wal-
tham, MA, USA). RNA libraries were created and individually
barcoded from 2.7 lg of template total RNA utilizing the TruSeq
RNA Sample Prep Kit (Illumina, San Diego, CA, USA) as
described in the manufacturer’s recommended protocol. Libraries
were pooled in groups of 12 and sequenced (12 samples per lane)
on an Illumina HiSeq 2500 ultra high-throughput DNA sequen-
cing platform (Illumina) at the DNA Core facility at the Univer-
sity of Missouri, Columbia, MO, USA.

Transcriptome analysis

The transcriptome analysis was conducted using the RNA-seq
workflow RMTA (Read Mapping Transcript
Assembly; Peri et al., 2020), which first trimmed the adap-
ter sequences using CUTADAPT with a minimum overlap of 10 bp
and eliminated low-quality sequences from the raw data using
TRIMMOMATIC with a sliding window of 4 : 15 and a minimum
length of 36 bp. After preprocessing, the high-quality reads were
aligned to the S. ruralis genome using HISAT2 (Pertea et al.,
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2016), and the number of read counts mapping back to each
gene was quantified using FEATURECOUNTS (Liao et al., 2014)
with default parameters. Read normalization was performed with
the DESEQ2 package (Love et al., 2014) in R (R Development
Core Team, 2021), employing the Wald test with parameters for
normalization and dispersion estimation set to DESEQ2’s
defaults. For identifying differentially abundant transcripts, a
threshold was set to an adjusted P-value < 0.05 and the absolute
value of the log2 (fold change) of > 1, where treatments (Ctrl, D,
and R) were compared pairwise. To visualize the overlap of genes
with differential transcript abundance between treatments, Venn
diagrams were generated by the R package GGVENNDIAGRAMS

(Gao et al., 2021). Gene ontology (GO) and enrichment analyses
were performed using TOPGO (Alexa & Rahnenf€uhrer, 2009).
Syntelogs (syntenic homologs) were identified using SynMap2,
and then 1 : 1 syntelogs were extracted from the final syntenic
gene set output provided by SynMap2 in CoGe (the analysis can
be recapitulated at the following link: https://genomevolution.
org/r/1qb33; Haug-Baltzell et al., 2017). UpSet plots were gener-
ated using the UPSETR package in R (Conway et al., 2017). The
PHEATMAP R package was used to process the log-transformed and
normalized TPM data, with genes and samples as rows and col-
umns, respectively (Kolde & Kolde, 2015).

Transcription factor analysis

Transcription factors (TFs) in S. ruralis were identified by query-
ing the protein sequences against the PlantTFDB database (Tian
et al., 2020). The upstream region (2 kb) of the 3045 genes with
differential abundance between Ctrl and D conditions was
extracted using the BEDTOOLS suite (Quinlan & Hall, 2010).
These sequences served as the input data for performing an Ana-
lysis of Motif Enrichment (AME; McLeay & Bailey, 2010) with
the default parameters, using the Arabidopsis thaliana DAP motif
database (O’Malley et al., 2016) to identify overrepresented
motifs and corresponding S. ruralis TFs. Pairwise abundance cor-
relation analysis was performed using Spearman’s rank correla-
tion coefficient in R, considering expression data across all
treatment conditions, including Ctrl, D, and R. Only pairs with
a Spearman’s rho value of |0.75| and a P-value < 0.05 were
selected for network construction. The regulatory network, illus-
trating the interactions between TFs and putative target genes,
was generated by CYTOSCAPE (Saito et al., 2012). We utilized the
built-in ‘prefuse force directed layout’ for network visualization.

Arabidopsis growth and genotyping conditions

For growth on soil (Cornell Mix), Arabidopsis thaliana wild-type
(WT; Col-0) and Atmyb55 mutant (Insertion ID: SAIL_555_H05,
seed stock ID: CS823517; ABRC) T-DNA insertion lines were
stratified at 4°C for 2 d and then grown in walk-in growth cham-
bers at the Boyce Thompson Institute under standard Arabidopsis
long-day growth conditions (16 h : 8 h, 22°C, light : dark). Plants
were grown until flowering, whereupon genomic DNA was
extracted from the youngest rosette leaves. DNA was extracted
using the CTAB-based method as described by Doyle &

Doyle (1987). To verify the T-DNA insertion, primers were
designed using the T-DNA primer design website (http://signal.
salk.edu/tdnaprimers.2.html) and used to genotype by PCR.
Wild-type reaction = LP +RP, T-DNA insertion (mutant) reac-
tion =RP + LB, where LP 50-30: TTTTCCTCTTATGTGGG
AGGG; RP 50-30: AGCATCGGAATGAAAAATCG, and LB
50-30: ATTTTGCCGATTTCGGAAC. Seeds from individual con-
firmed homozygous mutant lines were collected and stored sepa-
rately.

ABA treatment and MS plate growth conditions

Wild-type Columbia-0 (Col-0) and Atmyb55 homozygous
mutant seeds were stratified at 4°C for 48 h to synchronize ger-
mination and then sown on Murashige and Skoog (MS) agar
plates supplemented with varying concentrations of ABA (0, 0.1,
0.3, and 0.5 lM). Seedlings on plates were then grown under
16 h : 8 h, 22°C, light : dark. Germination, defined as radicle
emergence, was monitored and recorded at 12 h intervals over
6 d to evaluate the mutants’ sensitivity to ABA during germina-
tion. To compare plant responses to ABA post-germination, WT
and Atmyb55 seedlings were grown on 0 lM ABA MS-agar plates
for 1 wk (roughly four-leaf stage) under the same conditions.
Then, the 1-wk-old seedlings were transferred to plates contain-
ing 0.3, 0.5, 1, and 2 lM ABA to assess the post-germination
root growth response to ABA. Root elongation was assessed by
capturing images weekly for 2 wk using an Epson V800 scanner,
and the images were analyzed in IMAGEJ (Schneider et al., 2012).

Results and Discussion

De novo assembly of S. ruralis genome

The draft genome of S. ruralis was assembled into 381.24 Mb,
which consisted of 3211 scaffolds with an N50 value of
24.06Mb. The S. ruralis reference genome represents the four-
teenth publicly available moss genome, and so far, all have small
genomes relative to vascular plants (Supporting Information
Fig. S1). The 12 largest scaffolds, representing 80% of the assem-
bly (305.19 out of 381.24Mb), were considered near-
chromosome level assemblies, with the consensus plant telomere
repeat (TTTAGGG, Fajkus et al., 2019; Fajkus et al., 2021) pre-
sent at eight of the 24 scaffold ends. The BUSCO analysis indi-
cated 95% genome completeness of S. ruralis and recovered 404
of the 425 BUSCO groups in the Viridiplantae database
(Table 1). The size of the 12 S. ruralis chromosomes ranged from
15.7 to 48.2Mb (Table S1), with the largest being the putative
sex chromosome (Chr. 12; Fig. 1). Of the additional 3199
unplaced scaffolds, 14 were > 1 Mbp. The average GC content
for the 12 proposed chromosomes was 41.28%, whereas the aver-
age for the 14 largest unplaced scaffolds was 59.68%.

A total of 27 065 genes were predicted in the draft genome
including 21 169 gene models associated with the 12 chromo-
somes and 5896 genes with the 3199 unplaced scaffolds
(Table 1). The number of genes per chromosome ranged from
857 to 2888. Despite being the largest, Chr. 12 had the fewest
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predicted genes (Table S1; Fig. 1). Given their high GC content
and our inability to assemble them with the rest of the chromo-
somes, we hypothesized that the unplaced chromosomes might
be bacterial symbiont derived (Table S2). To test this, the 5896
genes from the unplaced scaffolds were used as queries in a

BLASTP against the NCBI non-redundant nucleotide database.
Significant hits were recovered for 5765 (97.8%) genes. Of these,
5272 genes (91.45%) were bacterial-associated, 343 genes
(5.95%) were plant-related, and the rest (150, or 2.5%) were
associated with fungi and single-cell eukaryotes (Table S3).

Evolution of the S. ruralis genome

Conservation of genome structure and collinearity between spe-
cies can provide insight into major evolutionary events over his-
tory. First, CoGe’s SYNMAP2 tool (Lyons & Freeling, 2008;
Haug-Baltzell et al., 2017) was used to assess synteny between
close relatives S. ruralis and S. caninervis, which last shared a
common ancestor c. 5 Ma (Jauregui-Lazo et al., 2023; Fig. 2a).
In addition to some smaller inversion events along S. ruralis
Chrs. 1, 2, 9, and 10, this pairwise comparison also uncovered a
chromosome rearrangement (either a chromosomal fusion or fis-
sion event) between S. ruralis Chr. 11 and S. caninervis chromo-
somes 2 and 8 (Fig. 2a). To infer the directionality in this
chromosomal rearrangement, both mosses C. purpureus and P.
patens were added to three-way genome-wide synteny compari-
sons with MCSCAN (Figs 2b, S2; P. patens). The inclusion of Cer-
atodon purpureus as an outgroup, which is reported to have last
shared a common ancestor with Syntrichia c. 180Ma
(Jauregui-Lazo et al., 2023) and thus is more closely related to
Syntrichia than is P. patens (Zhong et al., 2014), revealed that
Chr. 11 in S. ruralis likely resulted from a chromosomal fusion

Table 1 Summary of Syntrichia ruralis genome assembly and annotation.

Genome assembly size without symbionts 305.19Mb
Genome assembly size with symbionts 381.24Mb
Number of chromosome level scaffolds 12
Number of total scaffolds 3211
Number of symbionts scaffolds 3199
Longest chromosomes 48.23Mb
Scaffold N50 length 24.06Mb
GC content 44.6%
Genome BUSCO assessment 95%
% ambiguous bases (Ns) 0.7%
Number of predicted gene models (likely bacterial
derived)

21 169
(5896)

Repetitive regions in genome 45.1%
Mean transcript length (mRNA) 2398
Mean coding sequence length (CDS) 1231 bp
GC content of coding sequences 0.5362
Average number of exons per gene 5
Mean exon length 279 bp
Mean intron length 269 bp
InterProScan 16 393
Gene Ontology 14 252

     Gene density
0

0
TE density

> 35%

> 10

A

A

B

B

Fig. 1 Characteristics of the Syntrichia ruralis
genome. From outer to inner: The 12
chromosomes; (A) gene density in 100-kilobase
(kb) genomic regions; (B) transposable element
(TE) density in 100-kb genomic regions; the lines
in the center reflect inter-chromosomal genomic
collinearity, as defined by MCScan.
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event of S. caninervis Chrs. 2 and 8 sometime after these two spe-
cies last shared a common ancestor.

In haploid-dominant plants with separate sexes, sex is
expressed in the gametophyte life stage and determined by a sin-
gle sex-specific chromosome: U for females and V for males
(Coelho et al., 2018). In S. ruralis, Chr. 12, which is the largest
in size (48.2 Mb; c. 1.3 times bigger than the largest autosome)
but has the fewest number of genes (857 vs 2888 in Chr. 11), is
proposed to be the putative sex chromosome, specifically the V
(male) chromosome since the specimen used was phenotypically
male. A previously identified gametolog (an allele of a gene that
is shared between the non-recombining regions of the U and V
sex chromosomes; Singh et al., 2023) from S. caninervis (gene id:
Sc_g00229; Ekwealor et al., 2017; Silva et al., 2021) was mapped
to gene Sr_g00673 on Chr. 12 with 88% identity (e-value = 0),
supporting this conclusion. Comparative analysis revealed that
there were significantly fewer syntenic blocks between the S. cani-
nervis U and S. ruralis V sex chromosomes than there were
between homologous autosomes of these species, suggesting the
presence of sex-specific genes on the sex chromosomes. It is also
possible the observed lack of synteny may be due, at least in part,
to algorithmic difficulty of MCSCAN in aligning the high number
of repetitive sequences on these two chromosomes. To address
this possibility, a separate examination of the protein-coding
sequences using an all-vs-all protein BLAST (BLASTP; e-value = 10
e�10, identity > 80%) revealed a small portion of homologous
genes between the sex chromosomes of S. ruralis and S. caninervis
(139 out of 857 genes in S. ruralis; Table S4), highlighting
the stark differences between these two chromosomes. In

C. purpureus, the U and V sex chromosomes share no obviously
syntenic regions with each other even within the species (Carey
et al., 2021). These results suggest that the male V sex chromo-
some of S. ruralis and the female U chromosome of S. caninervis
may have undergone distinct evolutionary processes that have
resulted in differences in their gene content and structure, per-
haps due to both differences in species and differences in sex. In
the future, sequencing the V sex chromosome of S. caninervis and
the U chromosome of S. ruralis, along with sex chromosomes of
other Syntrichia species, will be useful for comparative purposes.

Transcriptomic response to desiccation and rehydration in
S. ruralis

To investigate the potential molecular mechanism of desiccation
tolerance of S. ruralis, a transcriptomic analysis was conducted
under a variety of conditions (Table S5) including fully hydrated
controls (Ctrl), desiccated (abbreviated as D), and rehydrated
(abbreviated as R). An average of 16 million reads were
sequenced per replicate (n = 3) per condition. Following QC,
read mapping, and assigning reads to features (see Materials and
Methods section; Table S5), a single replicate was removed due
to poor clustering via both principal component analysis and
pairwise Euclidean distance (Fig. S3). As observed increases in
transcript abundance may reflect changes in RNA stability rather
than gene expression, we use the more general term ‘abundance’
rather than ‘expression’ below.

A series of pairwise comparisons were then performed to exam-
ine the S. ruralis response to dehydration and rehydration. In Ctrl
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Fig. 2 Comparative genomics between Syntrichia ruralis, Syntrichia caninervis, and Ceratodon purpureus. (a) Dot plot graph of genome synteny revealed
genome duplication and small-scale inversions between S. ruralis and S. caninervis. Several inversions (highlighted in red circles) were observed in S. ruralis

chromosomes 1, 2, 9, and 10. (b) Large-scale genome conservation between S. ruralis, S. caninervis and C. purpureus generated by McScan. Each node
(connection point) represents a genomic region, and the edges (lines) connecting the nodes represent syntenic blocks or collinear regions of syntenic genes.
The length and thickness of the edges indicate the size and similarity of the syntenic blocks, respectively. Conserved syntenic blocks are depicted in shared
colors. The green edges reflect a chromosomal rearrangement event (fusion event) between S. caninervis Chr. 2 and 8 and S. ruralis Chr. 11.
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vs D, D vs R, and Ctrl vs R comparisons, 3045, 2746, and 4867
genes showing differential transcript abundance were identified,
respectively (adjusted P-value < 0.001, |log2 fold change| > 2).
Specifically, when comparing D to Ctrl, transcripts for 1648
genes increased and transcripts for 1397 genes decreased in RNA
abundance (Fig. 3a). When comparing R to D, transcripts for
1170 genes increased, whereas 1576 genes decreased in RNA
abundance (Fig. 3a). While most of these genes were context-
specific in their abundance change, a subset showed contrasting
abundance patterns when comparing the transition from Ctrl to
D and then to R (Fig. 3b). Transcripts representing 340 genes
increased in abundance in D but decreased in abundance in R.
By contrast, transcripts for 120 genes were increased in RNA
abundance in both Ctrl vs D and D vs R comparisons, indicating
that these genes may be necessary for both the dehydration and
rehydration responses in S. ruralis.

Gene Ontology enrichment analysis was performed on genes
showing differential RNA abundance in the Ctrl?D?R

transition. Genes with increased RNA abundance in D (com-
pared with control) were enriched in the GO terms: response to
abscisic acid, response to cold, response to water deprivation, response
to wounding, and response to karrikin (Fig. 3c). The enrichment
of these GO terms suggests an activation of specific stress
response pathways in S. ruralis under dehydration conditions.
For example, the response to karrikin, a group of compounds
known for their role in smoke-induced seed germination and
stress response in plants, is noteworthy (Nelson et al., 2010). This
either implies a unique adaptive mechanism in S. ruralis, poten-
tially mirroring evolutionary adaptations to fire-prone environ-
ments, or that the karrikin-related pathways are ancient and
adapted for different responses across land plants.

Interestingly, the response to ABA GO term was enriched in
transcripts with significantly reduced abundance in rehydration,
suggesting that these plants were no longer perceiving stress. The
top five enriched GO terms for genes with reduced transcript
abundance in D vs Ctrl were photosynthesis, response to salicylic
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Fig. 3 Genes that display a change in transcript abundance in response to dehydration and rehydration of Syntrichia ruralis and Syntrichia caninervis. (a)
The number of S. ruralis genes showing differential transcript abundance between two treatments according to a fold expression cutoff of ≥ 2 and a False
Discovery Rate (FDR) ≤ 0.001. D, desiccated; R, rehydrated after the desiccated treatment. (b) Venn diagram illustrating the number of shared and unique
genes showing differential transcript abundance across different treatments. Ctrl, control. (c) Gene Ontology (GO) enrichment analysis of genes showing
differential RNA abundance in D vs Ctrl or R vs D. The top 5 most enriched GO terms are displayed. (d) Number of S. ruralis and S. caninervis homologous
gene pairs with differential RNA abundance between D vs Ctrl or R vs D in both species. (e) Upset plot showing homologous genes with differential RNA
abundance in D vs Ctrl or R vs D comparisons of the two species. Colored bars and dots denote similar comparisons/conditions between the two species
(e.g. teal reflects transcripts that were more abundant in R vs D). transcripts that respond similarly between the two species under the same conditions. (f)
Heatmap of Transcripts Per Million (TPMs) of homologous gene pairs under D vs Ctrl or R vs D conditions.
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acid, light stimuli (two terms), and protein autophosphorylation
(Fig. 3c). This reduction in photosynthesis-related transcripts
during dehydration could reflect a conservation of energy and
resources, a common strategy in plants under stress (Liu
et al., 2018). GO-enriched terms of genes showing decreased
transcript abundance in rehydration were response to ABA,
plant-type secondary cell wall biogenesis, cellular response to freezing,
response to wounding, and defense response to bacterium, in which a
majority of genes were associated with stress response (Fig. 3c).
The presence of stress-related responses during rehydration likely
indicates a dissipation of stress response-related transcripts that
were elevated in rehydration.

The relatively recent divergence time and likely shared evolu-
tionary origins of DT between S. ruralis and S. caninervis offers a
unique opportunity to search for conserved, but also recent mole-
cular adaptations to desiccation and rehydration that may coincide
with different habitat preferences. To this end, publicly available
RNA-sequencing data from S. caninervis, gathered from plants
exposed to a similar set of desiccation and rehydration conditions
(Silva et al., 2021), were mapped to the S. caninervis genome. Fol-
lowing similar QC filtering as performed in S. ruralis, changes in
RNA abundance were compared for syntelogs (i.e. both collinear
and sequence conserved) between these two species. Syntelogs
were identified for 13 658 of the 21 169 gene models in the S. rur-
alis nuclear genome, representing 64.5, and 82.5%, of annotated
genes in S. ruralis and S. caninervis, respectively. There were 818
and 516 syntelogs showing differential RNA abundance in D vs
Ctrl and R vs D of both S. ruralis and S. caninervis, respectively
(Fig. 3d). In the D vs Ctrl comparison, a majority of syntelogs
had similar patterns, with RNA abundance either increasing or
decreasing similarly in both species (629/818; Fig. 3e). A closer
examination of the genes falling within inversion events (Fig. 2a)
revealed a number of heat shock and stress-responsive transcrip-
tion factors with different responses to desiccation tolerance
between S. ruralis and S. caninervis (Table S6). In the R vs D
comparison, a majority of syntelogs (401/516) showed different
RNA abundance patterns in the two species. Interestingly, 54 syn-
telogs exhibited increased RNA abundance in D compared with
Ctrl in both species, but S. caninervis showed decreased RNA
abundance and S. ruralis displayed increased RNA abundance in
R vs D comparison (Figs 3e,f). The similarity between the two
mosses in their response to desiccation is likely a reflection of the
shared cellular requirements needed to protect cells from the rigors
of severe water loss and survive drying (Oliver et al., 2020). The
differences between the two mosses in their response to rehydra-
tion likely reflects differences in the level of damage incurred upon
drying by the two species (Oliver et al., 1993) and perhaps is a
measure of their overall DT.

Comparative genomic and transcriptomic analysis of the
LEA and ELIP protein families

Certain gene families, such as late embryogenesis abundant
(LEA) and early light-inducible proteins (ELIPs), have been
associated with DT in a number of species (Tolleter et al., 2007;
VanBuren et al., 2019). Late embryogenesis abundants, first
identified during the late stages of seed development, are known
for their protective functions in various cellular components
under dehydration stress (Tolleter et al., 2007; Hundertmark &
Hincha, 2008). Similarly, ELIPs, a part of the chlorophyll a/b-
binding (CAB) superfamily, are implicated in protecting photo-
synthetic apparatus from light-induced stress (Montan�e
et al., 1998; VanBuren et al., 2019). Given their critical roles in
stress tolerance, LEA and ELIP genes represent ideal candidates
for understanding the molecular basis of DT in S. ruralis.

To better explore the evolution of these two important gene
families in S. ruralis, candidate LEA and ELIP genes were first
identified by protein sequence similarity using HMMER (Johnson
et al., 2010). A total of 59 LEA genes were identified in S. ruralis,
clustering into seven of the eight characterized LEA subgroups
based on sequence and structural motifs (Fig. S4; Singh &
Graether, 2020). No LEA-6 was identified in S. ruralis, nor was
one identified in S. caninervis (Fig. 4a; Silva et al., 2021). A multi-
ple sequence alignment of all S. ruralis and S. caninervis LEA pro-
tein sequences was used as input for inferring evolutionary
relationships in this large gene family. The S. ruralis LEA-2 sub-
group was the largest (25 genes), followed by LEA-4 (n = 17) and
LEA-5 (n = 10; Fig. 4a). Multiple instances of species-specific gene
duplication and then loss were evident in these larger subgroups, as
inferred by an extant duplicate in one species adjacent to a node
uniting a LEA from both species (asterisks, Fig. 4a). The ELIP gene
family in S. ruralis is similarly large, comprising 30 members
divided into four classes (I–IV; Fig. S5). As with the LEAs, both S.
ruralis and S. caninervis have experienced lineage-specific duplica-
tion and loss events in the ELIP gene family. In addition, both spe-
cies have experienced lineage-specific expansions that appear to
have occurred through local tandem duplication events (Fig. 4b).
For instance, nine of 30 S. ruralis ELIP genes are the product of
tandem duplications, highlighting the volatility in these
desiccation-associated gene families.

Transcriptomic analyses revealed how duplication (and loss)
within these two gene families have impacted gene expression.
Of the 59 identified S. ruralis LEA genes, transcripts of 27 of
them were differentially abundant in desiccated conditions
(Fig. 4c; Table S7). Of these 27, nine did not have an S. cani-
nervis ortholog. Of the remainder, 12 had differentially abun-
dant transcripts for an ortholog. A similar pattern was observed

Fig. 4 Comparison of late embryogenesis abundant (LEA) and early light-induced protein (ELIP) genes in Syntrichia ruralis and Syntrichia caninervis. (a)
Phylogenetic relationship between LEA gene families in S. ruralis and S. caninervis. A maximum likelihood tree was generated based on a protein multiple
sequence alignment. (b) The graph illustrated the occurrence of species-specific tandem duplication events. (c) Heatmap of the differentially abundant S.
ruralis LEA genes and their S. caninervis orthologs, where present, under control (Ctrl) and desiccated (D) conditions. NA implies that a syntenic ortholog
was not found in the S. caninervis genome. Normalized (transcript per million, TPM) values are shown. (d) Heatmap of the differentially abundant S.
ruralis ELIP genes and their S. caninervis orthologs, where present, under control and slow dry conditions. Some homologous sequences were identified at
syntenic locations in S. caninervis but were not predicted to be ELIPs based on absence of protein functional domains.
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for the S. ruralis ELIP gene family, where 11/30 ELIP tran-
scripts were differentially abundant under desiccation conditions
(six up, five down; Fig. 4d; Table S8). Of these, three had S.
caninervis orthologs whose transcripts were differentially

abundant with similar changes in abundance in the two species.
In sum, these two gene families are evolutionarily quite dynamic
and look to be heavily (and differently) utilized during desicca-
tion in these two species.
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Putative transcription factors regulating the desiccation
response in S. ruralis

To predict putative transcription factors in S. ruralis, the amino
acid sequences of all nuclear-encoded genes were scanned using
PLANTTFDB (Tian et al., 2020), resulting in a total of 636 TFs
associated with 53 families (Table S9). These numbers are
slightly higher than those previously identified in S. caninervis
(542 in 50 TF families) and substantially lower than in P. patens
(1136 in 53 families; Table S9; Silva et al., 2021). When compar-
ing TF family composition between S. ruralis and S. caninervis,
the B3 and C2H2 families were expanded (although not signifi-
cantly) in S. ruralis, whereas there were no families that had
experienced a significant loss.

These S. ruralis TFs were then assessed for a possible role in
the response to desiccation by examining their change in abun-
dance between D and Ctrl conditions. A total of 126 (out of
636) TFs showed differential RNA abundance, with RNA levels
increasing for 83 and decreasing for 53 (Fig. 5a). Ninety-four S.
ruralis TFs (out of 126) have syntelogs in S. caninervis, of which
40 also showed differential transcript abundance in D conditions
(Fig. 5a; Table S10). Interestingly, 32 differentially abundant S.
ruralis TFs had no identifiable syntelog in S. caninervis, suggest-
ing they may impart a species-specific response to desiccation
(Fig. 5a).

To investigate the regulation of downstream dehydration-
responsive genes by these 126 TFs, the 2 kb upstream region (pro-
moter region) of the 3045 genes found to be differentially abun-
dant between Ctrl and D conditions was extracted. Putative
transcription factor binding sites were identified in these regions
using Analysis of Motif Enrichment AME (AME; McLeay & Bai-
ley, 2010) with TF-DNA binding data from the A. thaliana DAP
motif database (O’Malley et al., 2016). From the 3045 input genes,
121 overrepresented (enriched; P-value < 1e�60) motifs, corre-
sponding to 120 S. ruralis TFs were selected for further analysis
(Table S11). As expected based on the water-limited conditions,
the enriched motifs were predicted to predominantly be associated
with the APETALA2/ETHYLENE RESPONSE FACTOR
(AP2/ERF) and AP2/ETHYLENE RESPONSE FACTOR
BINDING PROTEIN (AP2/ERFBP) families of TFs, which are
well-known regulators of plant abiotic stress responses. Of these
120 TFs, 14 corresponded to those that changed abundance in
desiccated conditions (Fig. 5a,b), suggesting they may both be
responding to and regulating the desiccation response in S. ruralis.

To assess their potential regulatory role, pairwise abundance
correlation, Spearman’s rank correlation coefficient (r), was

calculated between these 14 S. ruralis TFs and their putative tar-
get genes across all six experimental conditions (n = 17 data
points) and compared with a background set of genes. Seven of
the 14 TFs had a median correlation above |0.5|, with seven of
these TFs significantly more correlated with their target genes
than background (Figs 5c, S6). Six of these S. ruralis TFs are
homologous (based on amino acid sequence and domain simila-
rities) to A. thaliana TFs that have reported functions in drought
tolerance in vegetative tissues (ABA-Responsive Element Binding
factor 2 [AREB2]/Sr_g16458), cell division during stress
(GT2/Sr_g03037; HSFB4/Sr_g07011; MYBH/Sr_g09762;
ERF6/Sr_g20827), and control gene expression during late
embryogenesis–in particular the LEA gene family (ABA Insensitive
3 [ABI3]/Sr_g11739). Given their annotated functions in A. thali-
ana, SrABI3 and SrAREB2 are more likely to regulate ABA-
responsive genes in S. ruralis. Several dehydration-responsive
genes, including 5 LEAs, are among the 480 differentially abun-
dant genes that contain ABI3 TF binding motifs and are corre-
lated with SrABI3 abundance (Fig. 5d; Table S12). Of the 346
desiccated-responsive genes with an AREB2 TF binding site and
expression correlation > |0.5|, 29 are annotated as ABA-responsive
genes based on sequence or domain similarity (Table S12).

An uncharacterized regulator of dehydration in land plants

The remaining TF (Sr_g19809) is an R2R3 MYB transcription
factor, a large family of regulators (both activators and repressors)
well known for their diverse roles in development, metabolism,
and stress responses in plants. In S. ruralis, Sr_g19809 was down-
regulated during desiccation, and, due to correlation and TF
binding site enrichment, appears to regulate SrGT2, SrHSFB4,
and SrAREB2. Indeed, of the seven hub TFs, Sr_g19809 appears
to have the most interactions, with most of these being anticorre-
lated (Fig. 5d), suggesting it is a transcriptional repressor.
In addition, Sr_g19809 is also anticorrelated with the
S. ruralis homolog of A. thaliana ABI3/FUS3 (AT3G24650 and
AT3G26790, respectively), which are also known to play a role
in DT during embryogenesis (Fig. S7; Gonz�alez-Morales et al.,
2016).

Given the repeated incorporation of specific components of the
DT pathway across land plants (e.g. ABI3, LEAs, and ELIPs; Marks
et al., 2021), we investigated whether there were any MYB TFs
similar to Sr_g19809 in A. thaliana. Using publicly available tran-
scriptomic data, including samples associated with seed develop-
ment, ABA application, and drought treatment (Klepikova
et al., 2016; Zhao et al., 2018), we searched for A. thaliana MYB

Fig. 5 Putative transcription factor (TF) regulators in response to dehydration in Syntrichia ruralis. (a) The expression heatmap of putative S. ruralis TFs and
syntenic pairs in Syntrichia caninervis in desiccated and control conditions. (b) The expression heatmap of 14 hub TFs and S. caninervis syntenic pairs. (c)
Expression correlation between differentially abundant TFs and putative target genes (correlation > 0.5) and randomly selected genes (background).
Boxplots depict the distribution of expression correlation. Horizontal lines within boxplots indicate median correlation values while whiskers extend to 1.5
times the interquartile range. All seven comparisons are significant based on a Student’s t-test (P-value < 0.05). (d) Regulatory network of hub TFs and
putative downstream targets. The network was constructed by integrating differential gene abundance data with transcription factor binding motif
enrichment analysis to identify potential regulatory relationships. Nodes represent TFs (squares) and target genes (circles), while edges indicate predicted
interactions based on correlation analysis. The thickness of edges reflects the strength of correlation (|0.7–1|), with blue lines representing a positive
correlation and pink lines a negative.
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transcription factors anticorrelated in abundance with either
AtFUS3 or AtABI3. This search uncovered a previously uncharac-
terized MYB TF, AtMYB55 (AT4G01680). AtMYB55 has a simi-
lar R2R3 MYB binding domain as Sr_g19809 (hereafter referred to
as SrMYB55), is expressed during embryogenesis and germination,

and shows strong negative correlation with FUS3 under drought
and ABA treatment (Fig S8A,B) but shows a strong negative corre-
lation with ABI3 during seed development (Fig. S8C). An investiga-
tion of A. thaliana Cistrome data (O’Malley et al., 2016) identified
a MYB55 binding site upstream of both ABI3 and FUS3,
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suggesting AtMYB55 may be a direct negative regulator of both of
these genes (Fig. S8D).

AtMYB55 is part of a clade of four similarly structured R2R3
MYB TFs in A. thaliana (Stracke et al., 2001). To determine the
specificity of the AtMYB55-FUS3/ABI3 regulatory interaction,
we also examined the closest expressed homolog of AtMYB55,
AtMYB50 (AT1G57560), for its transcript abundance profile
and potential ability to interact with ABI3 or FUS3. In contrast
to AtMYB55, AtMYB50 was not correlated with ABI3 and FUS3
(Fig. S8A–C), nor is a MYB50 binding site seen in the promoter
elements of these two genes. In addition, AtMYB50 is induced by
the biotic-stress associated phytohormones JA and SA (Katiyar
et al., 2012) and thus likely works to regulate a distinct set of
genes from AtMYB55.

Given that SrMYB55 regulates a number of ABA-associated
genes and AtMYB55 is expressed during germination (Fig. S8D),
we hypothesized that Atmyb55 mutants might display a sensitiv-
ity to ABA at this developmental stage. We identified a T-DNA
insertion line within the third exon of AtMYB55 (Fig. 6a). Both
WT and Atmyb55 showed 100% germination after 24 h on plates
without ABA (Fig. 6b). On the plates with 0.1, 0.3, and 0.5 lM
ABA, WT seeds displayed delayed germination, but germinated
at levels close to control plates after 72 h. By contrast, the
Atmyb55 background showed significantly delayed germination,
and at the maximum ABA concentration (0.5 lM), never reached
control levels of germination (Fig. 6c). To test whether this sensi-
tivity was restricted to germination, WT and Atmyb55 seedlings
were germinated on 0 lM ABA plates and then after 1 wk (corre-
sponding to roughly four true leaves for both backgrounds) trans-
ferred to plates containing varying concentrations (0.3–2.0 lM)
of ABA. No variation in number or density of lateral roots, nor
in length of primary root, was observed between WT and
Atmyb55 seedlings, suggesting the ABA sensitivity in this back-
ground is restricted to germination under normal growth condi-
tions (Fig. S9). In sum, MYB55 appears to be negatively
regulating ABI3/FUS3 in both A. thaliana and S. ruralis.

MYB55 transcript abundance appears to be positively corre-
lated with water content in both species (Figs 5b, S8A–C), such
that under normal water conditions, MYB55 abundance is high

and is reduced as water availability diminishes. Interestingly,
this decrease in MYB55 abundance occurs in drying seeds as
well as in vegetative tissues experiencing drought stress
(Fig. S8A–C). A compelling model arises in which MYB55 is
tightly linked to perceived water stress in an ABA-dependent
manner. As water stress increases, MYB55 levels are decreased,
allowing for increased levels of either ABI3 or FUS3, depending
on the developmental stage. While it remains to be seen if
MYB55 directly binds the combined ABI3-FUS3 homolog in S.
ruralis, the observed regulatory interactions in both species are
suggestive of a conserved mechanism between A. thaliana and S.
ruralis, and maybe across land plants in general. The similar
regulatory interactions observed in A. thaliana and S. ruralis,
therefore, might represent a fundamental survival strategy,
rooted in early photosynthetic eukaryotes, and maintained
throughout plant evolution.

Conclusions

In this study, we sequenced the genome of a desiccation-tolerant
moss, S. ruralis, and then took a comparative transcriptomic
approach to identify its regulatory response to water deprivation.
Compared with S. caninervis, S. ruralis can inhabit a wide range
of habitats and moisture gradients, and thus, we anticipated iden-
tifying both shared, and unique, molecular responses to desicca-
tion. The transcriptomic analyses revealed that the major
differences in the response to desiccation between the closely
related Syntrichias occurred in the response to rehydration, a
major aspect to overall DT and a major stress. We conclude that
these differences likely indicate the different levels of DT exhib-
ited by the highly tolerant S. caninervis and the more variable tol-
erance capabilities of S. ruralis (as described by Oliver
et al., 1993) as well as the overall plasticity of this trait in mosses.
Unexpectedly, through our transcriptomic analyses, we identified
a previously unknown regulatory component in the desiccation
response pathway in S. ruralis: a MYB transcription factor that
was anticorrelated with deeply conserved ABA-associated drought
response and seed germination factors in angiosperms (e.g. ABI3
and FUS3). This TF appears itself to be functionally conserved
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across land plants. In sum, we have developed a comparative
genomic resource for studying desiccation tolerance and used this
resource to uncover novel insights into desiccation tolerance
across the land plant lineage.
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