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ABSTRACT

Gridless direction-of-arrival (DOA) estimation with multiple fre-
quencies can be applied to acoustic source localization. We for-
mulate this as an atomic norm minimization (ANM) problem and
derive a regularization-free semi-definite program (SDP) avoiding
regularization bias. We also propose a fast SDP program to deal
with non-uniform frequency spacing. The DOA is retrieved via
irregular Vandermonde decomposition (IVD), and we theoretically
guarantee the existence of the IVD. We extend ANM to the multiple
measurement vector setting and derive its equivalent regularization-
free SDP. For a uniform linear array using multiple frequencies, we
can resolve more sources than the sensors. The effectiveness of the
proposed framework is demonstrated via numerical experiments.

Index Terms— Atomic norm minimization, Multiple frequen-
cies, Vandermonde decomposition, DOA estimation.

1. INTRODUCTION

In the past few decades, some wideband direction-of-arrival (DOA)
estimation methods have been proposed [2-7]. Recently proposed
methods based on sparse recovery [2-10] and the multi-frequency
model [3, 5] have demonstrated superior performance in wideband
DOA estimation problems.

The multi-frequency model [2-7] uses Ny (rather than 1) tempo-
ral frequency bins in a frequency set {F1,..., Fiv, } to characterize
a wideband signal. All these frequencies are used for DOA estima-
tion, as opposed to using a single frequency under the narrowband
model.

Atomic norm minimization (ANM) [11] is a general framework
for promoting sparse signal decompositions. The main benefit of
ANM is that it overcomes the grid mismatch error that plagues
grid-based methods. The pioneering ANM paper [12] proposed
an optimization-based continuous (temporal) frequency estimation
method and provided a theoretical guarantee when full data are
available. The authors in [13] studied continuous temporal fre-
quency estimation based on randomly sampled data for the single
measurement vector (SMV) case. ANM for multiple measurement
vectors (MMYV) under the uniform (or equispaced) time samples was
studied [14-16] and was applied to DOA estimation for uniform lin-
ear arrays (ULAs) and for non-uniform arrays (NUAs) [17]. It was
extended to multiple frequencies for wideband DOA estimation
in [5, 18]. The sample complexity of modal analysis with random
temporal compression was established in [19]. We refer readers
to [20] for an overview of ANM and its applications.

We propose a wideband DOA estimation framework that sig-
nificantly expands the applicability from [5]. 1) The method in [5]
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was developed under the SMV case and we extend it to the MMV
model. 2) We develop a fast semi-definite program (SDP) for the pri-
mal domain SDP. The ANM [5] was formulated as an SDP problem,
thus being solved using off-the-shelf SDP solvers, e.g., CVX [21].
The fast SDP is derived based on the dual problem of the fast algo-
rithm [5]. The fast algorithm improves the speed and extends the
method to the non-uniform frequency (NUF) case. The DOAs are
encoded in a matrix with an irregular Toeplitz structure. We apply
the irregular Vandermonde decomposition (IVD) [17] to this matrix
to retrieve the DOAs. Further, we provide a theoretical guarantee for
the existence of the IVD which was not shown in [17]. 3) The de-
veloped framework is regularization-free. In [5], regularization was
applied to enhance the robustness to noise. However, regularization
leads to bias. The proposed framework avoids regularization bias
and achieves superior performance. 4) We consider more sources
than sensors under the ULA setup. For a single frequency, the max-
imum number of uniquely identifiable sources in an Njr-element
ULA is Ny — 122, Sec. 11.2.3]. Co-prime array techniques [23]
can break this limit with a carefully designed array structure, en-
abling the resolution of more sources than sensors. We show that a
ULA with multiple frequencies can resolve more sources than sen-
sors. The physical intuition is that multiple frequencies increase the
diversity of the harmonics and these “new harmonics” serve as extra
“virtual sensors” in a virtual array.

2. PRELIMINARIES

2.1. Assumptions

The array configuration and signal model are assumed as follows:
1) The array is a ULA with Njs sensors and spacing d.

2) The sources have frequencies drawn from a uniform grid
{1,...,Nr} - Fi, where Fi is the frequency spacing. Let A1:=
¢/ F1 be the wavelength for F, where c is the propagation speed. We
assume A\, = 2d where d is the sensor spacing; equivalently, d = i
This spacing is for simplifying the derivation and can be relaxed
to any d < %1 (see [5]). Welet F C {1,...,Np} denote the
indices of the active source frequencies; the resulting frequencies are
thus {f - F1|f € F} with wavelengths {\1/f|f € F}. We define
Ny := |F| < Np to be the number of active source frequencies.
When all frequencies are active, Ny = Nr, and we refer to this as
the uniform frequency case. When only some frequencies are active,
Ny < Np, and we refer to this as the NUF case.

3) There are N; snapshots (time samples) received by each sensor.
The source amplitude for the f-th frequency (f € F) is x4 (f) =
(@) (f) . 22V ()" e T

4) There are K uncorrelated sources impinging on the array from
unknown DOAs 6, or directional cosines w := Fidcos()/c =
cos(6)/2.
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2.2. MMV-MF Model

For the multiple measurement vector, multiple frequency (MMV-
MF) model, we begin by considering the case of a ULA with uni-
form frequencies, i.e., Ny = Nr (we incorporate the NUF case in
Sec. 4). The received signals can be arranged into a tensor )V €
CNMXNixNF (sensors x snapshots x frequencies) with the follow-
ing structure:

V=X4+N (1)
X =>"cola(l,w)xy(1)]...[a(Ne, w)xy, (Nr)]

2
= Z cwA(w) * X5

where a(f,w) = [1 e772™/ ¢
=1 2. ..zf(NM_l)}T € C¥M (z := e792™) is the array
manifold vector for the f-th frequency. N € CNM*NiXNr de.
notes additive Gaussian uncorrelated noise in (1). Denote A (w) =

—j27rwf(N1W—1)]T

[a(l,w)...a(Np,w)] € CVM*NF and X, = [xu(1) . . . xu(NF)]”

€ CNPXNi - A (w) * XT is the “reshaped Khatri-Rao product” de-
fined as [A(w) * XL]..; := a(f,w)x5(f) (f = 1,..., Nr). When
N; = 1, the above matches the SMV model in [5]. We assume
IXw|lFr = 1, as the coefficient ¢,, can used to absorb any other
scaling of the source amplitudes via the product c,, X

Finally, we define N = N (Nar—1)+1, noting that Np (N —
1) appears in the largest exponent of any array manifold vector used
in the MM V-MF model. Consequently, N will determine the size of
certain SDP formulations such as (8).

2.3. Irregular Vandermonde and Toeplitz Matrices

Define some integer-valued vector v = [v1. A.WNW}T e ™M,
complex-valued vector z = [z1 ...2zn,]T € CV=, and w(v, 2) :=
[27 ... z””v}T. For arbitrary dimensions N, and N, an irregu-
lar Vandermonde matrix of size N, x N is a matrix having the
form [17, eq. (25)]

W=W(y,2)=[z" .2 " =[w(y,21) ... w(y.2x.)]. 3)
Note that when the entries of « form an arithmetic progression,
specifically v = [0... N, — 1]*, W(~,z) forms a regular Van-
dermonde matrix.

An (N, N;)-irregular Toeplitz matrix is any matrix T €

CMNv*Nv that can be constructed from an irregular Vandermonde
matrix as follows [17, eq. (27)]:

T = W(v,2)DW(v,2)", |z =1, )

where v € ZN7 andz € CM=, and where D € R™=*" is diagonal.
We refer to (4) as an irregular Vandermonde decomposition (IVD).
Note that any N, x N, positive semi-definite regular Toeplitz matrix
T with rank N has a regular Vandermonde decomposition of the
form (4) in which ~ is an arithmetic progression.

3. ATOMIC NORM MINIMIZATION FOR MMV-MF

In this section, we formulate the atomic norm minimization problem
for the MM V-MF model with uniform frequencies. Then, we derive
an equivalent SDP that makes the proposed framework computation-
ally feasible.

Define the atomic set

A={Aw)* XL |we[-1/2,1/2], |Xulr =1}.  (5)

The atomic norm of a tensor X € CNMXNiXNr js defined as
[[X|la :==inf{>",, |cw|]X = coA(w) * XL | |Xy|lr = 1}. The
ANM problem for the noise-free case can be expressed as

y=4x. (6)

min ||X]la st
X

When noise is present, the optimization problem is modified to relax
the equality constraint:

min X4 st Y- Xllns <, @

where || - ||us is the Hilbert-Schmidt norm for the tensor (for a 3D
tensor [|Allus = /22,5 laizr[?)-

Proposition 3.1 Problem (6) is equivalent to the following SDP
problem

P, Q
, | = >0,

gl’%)§<g Vw8 {QH InNg }

- ) ®)

> Po(ii+k) =0kQ=[R(Q1) ... R(Qn,)].

i=1
Here, Q = [Qu]...|Qng] € CYM*XNXNF s the dual vari-
able, Po € CN*N s used for DOA extraction, (9, V) =

Re[Y,; Q7 (i,, k)V(i,5, k)], Q = [Q1 ... Qn,] € CN*NNF,
and Qy = R(Qy) : Nam x Ny — N x Ny is a mapping defined as
o _fQs(m) for (i,1)=(f(m—1)+1)

R(Qy)(1) _{0 otherwise. ®

Across all frequencies, R : Ny X Ny X Np — N X N)Npisa
linear mapping and can be expressed as a tall binary matrix multiply
vec(Q) = Rvec(Q). R describes the behavior of the adjoint
operatorR* :N X NNNr — Npy X N; X Np.

In the noisy case, the equivalent SDP of (7) is the regularized
version of (8), 7 depends on the noise level and is the same as in (7):

p ~

Nk (10)
> Po(iyi+k) =05,Q=[R(Q1)...R(Qny)].

i=1

4. REGULARIZATION-FREE FAST ALGORITHM

In this section, we derive a reduced-dimension version of the SDP
that can be applied to non-uniform frequency settings. The so-called
fast program improves the speed, and more importantly, it relaxes
the uniform frequency assumption.

4.1. Non-uniform Frequency (NUF) Setting

In Sec. 3, we focused on the uniform frequency case. We generalize
the proposed framework to the NUF case in this section. Recall that
F C{1,..., Nr} denotes the indices of the active source frequen-
cies, with Ny := |F| < N denoting the number of active frequen-
cies. The NUF case corresponds to the scenario where Ny < N,
i.e., only some of the frequencies are active.

Recall that every exponent in an array manifold vector from the
MMV-MF model involves a product of one temporal frequency and
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Fig. 1. Demonstration for the R (-) mapping and its adjoint map-
ping R’{() N]u = 4, Nl = 3, Nf = NF = 2, u =
{0,1,2,3,4,6}, N, = U] = 6.

one sensor position. To capture all such products in the NUF setting,
we define a spatial-frequency index set U as U = {m - flm €
M, f € F}, where M = {0,1,..., Ny — 1} denotes the indices
of the sensor positions in the ULA. The cardinality of this set IV, :=
U] < N = Np(Na — 1)+ 1. In many settings, N, < N. In later
sections, we see that the size of the fast SDP depends on /V,,, and its
complexity is greatly reduced compared to the original SDP.

4.2. Fast Dual SDP for the NUF Case

We now generalize the SDP in Proposition 3.1 to the NUF case. In-
spired by the fast algorithm in [5, Sec. III-F], the SDP in this section
is considered the fast algorithm for MMV.

For NUF, the measurement tensor ) € CNMXNtXNy and the
SDP in Proposition 3.1 is generalized as

Q7 Iy,

D Puoiyg) =6, Qr = [Ri(Q1) .. Ra(Qw, )],

Uy —U; =k

max (Q,V)r  s.t.

Q,Pro

PrO Qr :| =0
an

where Q = [Qu]...|Qn,] € CNM*NXNs g the dual variable,

Py e CV M, Q= [Qr...Q] € CVNN (Qf =
R1(Qy) € CNe*Niy and R1(Qy) : Nar X N — Ny x Ny is

a mapping that pads zeros to the extra entries defined as

R1(Qf)(7",l) :{ Qf(ml) for (uﬁl):(f'(m_l)vl) (12)

0 otherwise.

Fig. 1 demonstrates the R1(-) mapping. Any rows of Q; which
would have remained all-zero under the operator R(-) (correspond-
ing to unused space-frequency products) are omitted in Ry (-).
Comparing (12) with (9), these two mappings pad zeros for the
same input Qy to obtain the output matrix with a different dimen-
sion. As a result, (11) not only gives a lower-dimensional formula-
tion (the size of P,o decreases from N x N to N, x N,), but it
naturally accommodates the NUF setting. Still, (11) can be applied
to the uniform frequency case, where N, is often smaller than N.

4.3. Fast Primal SDP for the NUF Case

We now derive the dual problem of (11), yielding a fast primal SDP
that is regularization-free and accommodates the NUF setting.

Proposition 4.1 The dual problem of (11) is given by

min_[Tr(T(u)) + Tr(W)]
W,u,¥
13)

Tu) Y * <
s.t. [ %H) W} =0, Yy =Ri(Yy), f €F,

where Y € CNuxNiNg W ¢ CNiNgxNiNyg Y; € CNvxNi g
the slice of the received signal tensor Y corresponding to frequency
f, and ?f e CN*Ni comes from taking the Ny columns of?
corresponding to frequency f. Ri(+) : Nu X Ny = N X Ny is the
adjoint mapping of R1. u € CN*1 and T : N x 1 — Ny, x Ny is
explicitly defined as (note ™ denotes complex conjugate)

U, —U; >0

- Vi —u;
T(V)(Z7]) ::{ o L{j—Z/I¢<O.

*
Y —u;

Remark The dual problem of (8) can be similarly derived, yielding
the following full-dimension primal SDP for the ULA and uniform
frequency case:

min [Tr(Toep(u)) + Tr(W)]

W,u,Y N
v (14)
Toep(u) Yn oS
.t = >0, Yy=R(Ynys),f=1,...,Np,
s { i w|Z0Ys (Yny), f F

where Toep(-) : N x1 — N x N is the Toeplitz operator that maps
a vector to a self-adjoint Toeplitz matrix. Yy € CN*NMNr R*()
N x N; — N x Ny is the adjoint mapping of R(-), and ?Nf €
CN*Ni js taking N; columns from Yy (from the (f —1)- N; +1-th
to the f - N;-th column). Compared to (13), a main difference is that
T(u) € CV*Nu in (13) is changed to Toep(u) € CV*¥,

4.4. Existence of Irregular Vandermonde Decomposition (IVD)

In ANM problems that involve trace minimization of a regular
Toeplitz matrix, one typically computes the Vandermonde decom-
position of the resulting Toeplitz matrix to extract the DOAs.

In contrast, the fast primal SDPs (13) derived in the previous
section involve trace minimization not of a Toeplitz matrix but rather
a matrix of the form T'(u). However, as we establish in Theorem 4.2
below, there is an important connection between T(u) and Toeplitz
matrices: T'(u) is guaranteed to be an irregular Toeplitz matrix, and
therefore is guaranteed to have an IVD.

Theorem 4.2 For any u such that Toep(u) is PSD, T(u) €
CNu*Nu s an (N, K)-irregular Toeplitz matrix, where K =
rank(Toep(u)). Specifically, T(u) has an IVD of the form (4),
where v = [Uy,...Un,]".

In summary, we first solve the SDP (13) via an SDP solver (e.g.,
CVX [21]). After u is obtained, the DOAs are retrieved by IVD
methods (e.g., root-MUSIC). Although (13) is regularization-free, it
is robust to noise and the robustness is achieved by IVD.

5. MORE SOURCES THAN SENSORS IN THE ULA SETUP

For single-frequency ULA, the maximum number of resolvable
sources is Nps — 1 [22, Sec 11.2.3]. In this section, we will
demonstrate the possibility of resolving more sources than sen-
sors under the ULA setup if multiple frequencies are available.
In our multi-frequency ANM configuration, it can resolve up to
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Fig. 2. Estimated and True DOAs for ANM (“x” indicates the
true DOAs and the blue vertical line indicates the estimated DOAS).
Ny = 4, Np = 5, Ny = 1, and K = 10,11,12,13, 14, 15.
The RMSEs of ANM under K = 10, 11,12, 13,14, 15 are 0.005°,
0.16°,0.20°, 0.04°, 0.27°, and 0.27°.

N —1 = (Nu — 1)Np sources as Toep(u) € CN*N and Un
exists only if K < N — 1. The reason for using (14) instead of
(13) is that (13) can resolve up to N,, — 1 sources and (14) has the
potential to resolve more sources than (13) because Toep(u) in (14)
has a higher dimension than T(u) in (13).

The key observation for the multi-frequency model is that these
frequencies increase the diversity of the harmonics. These extra har-
monics serve as “virtual” sensors in the array, and they bring about
an enhanced degree of freedom. The SDP problem (13) can be inter-
preted as a structured covariance matrix estimation problem (T'(u)
can be interpreted as the covariance matrix). We notice this covari-
ance matrix is in a higher dimension, which corresponds to our intu-
ition that there are more sensors in our “virtual” array.

As an example, suppose we have Ny = 4 sensors, Np = 5
frequencies ({100, ..., 500} Hz), N; = 1 snapshot, noise-free, and
K = 10,11,12,13,14, 15 sources with uniform and deterministic
across frequencies. For K = 10,12, and 15, the DOAs are gener-
ated as the uniform distribution in the cosine domain (i.e., the DOAs
are [cos (=14 2([1 : K] — 0.5)/K)]). For K = 11, we pick up
the last 11 sources in the K = 12 case. For K = 13, we pick up the
middle 13 sources in the K = 15 case, and for K = 14, we pick up
the middle 14 sources. We plot the estimated DOAs for ANM. From
Fig. 2, our ANM can resolve up to (Nas — 1)Ng = 15 sources.

6. SIMULATION RESULTS

The simulation setup is detailed as follows. The source amplitude
is complex Gaussian. /N; snapshots are collected. The uniform
frequency set is defined as {1,...,Ng} - Fi (Fy is the mini-
mum frequency). The array spacing for ULA is ’\—21 where A1
is the wavelength for the minimum frequency in the frequency
set. The noise for each frequency and each snapshot is randomly
generated from the complex Gaussian distribution CA(0,0?)
and then scaled to fit the desired signal-to-noise ratio (SNR):
SNR = 20log, || X|s /[|V [[ms-

In the Monte-Carlo experiments, MC = 100 trials are exe-
cuted to compute the root mean square error (RMSE) defined as

RMSE = \/% she [min (% S Ok — )2, 102)1 ,

RMSE (°) vs. SNR (dB), NUF
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Fig. 3. RMSE (°) vs. SNR. Ny = 16 ULA with d = A100/2. N; =
1. (a) Np = 4 with uniform frequencies {100, 200, 300, 400} Hz;
(b) Ng = 4 with non-uniform frequencies {100, 200, 300, 500} Hz.
“ANM” and “ANM [4]” represents the proposed framework and the
framework proposed in [5].
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Fig. 4. RMSE (°) vs. N; for MMV setup. Ny = 16 ULA with
d = A100/2. K = 3DOAs at [88°,93°, 155°] 4 € where € contains
random offsets from a uniform distribution [0,1]. SNR = 20 dB.
(a): Nr = 2 with frequency set {100,200} Hz; (b) Np = 4 with
frequency set {100, 200, 300,400} Hz.

where émk, and 0,5 are (sorted) estimated DOAs, and (sorted)
ground-truth DOAs for the kth DOA and mth trial. A maximum
threshold of 10° is used to penalize the incorrect DOA estimates.
We compare the proposed method with the multi-frequency sparse
Bayesian learning (SBL) [3]. The Cramér-Rao bound (CRB) [24,
Eq. (121)] for the multi-frequency model is computed for reference.

We examine the performance under the non-uniform fre-
quency set. In this case, Ny = 4, and the frequency set is
{100, 200, 300, 500} Hz. Fig. 3(b) demonstrates the effectiveness
of the proposed method under the non-uniform frequency case. We
also see superior performance compared to the fast dual algorithm
in [5] in both uniform and non-uniform frequency cases.

We then examine the performance of ANM with varying num-
bers of snapshots N;. From Fig. 4, we can see ANM follows the
trend of CRB and outperforms SBL. We also see that more snapshots
will improve the performance. In addition, comparing Fig. 4(a) with
4(b), ANM performs better with higher N, which demonstrates the
benefits of multi-frequency processing.

7. CONCLUSION

This paper proposes a gridless DOA estimation method based on
regularization-free SDP and Vandermonde decomposition. We ex-
tend this framework to MMV and NUF cases. For the NUF case, the
Toeplitz structure will not hold. However, we propose to use IVD
in these cases, and the existence of IVD is theoretically guaranteed.
With the help of multiple frequencies, the method can resolve more
sources than the number of physical sensors under the ULA setup.
Simulations demonstrate the proposed framework can achieve supe-
rior performance for MMV and NUF setups.
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