
NON-UNIFORM FREQUENCY SPACING FOR REGULARIZATION-FREE GRIDLESS DOA

Yifan Wu1, Michael B. Wakin2, Peter Gerstoft1, and Yongsung Park1

1 University of California, San Diego, La Jolla, CA, USA
2 Colorado School of Mines, Golden, CO, USA

ABSTRACT
Gridless direction-of-arrival (DOA) estimation with multiple fre-
quencies can be applied to acoustic source localization. We for-
mulate this as an atomic norm minimization (ANM) problem and
derive a regularization-free semi-definite program (SDP) avoiding
regularization bias. We also propose a fast SDP program to deal
with non-uniform frequency spacing. The DOA is retrieved via
irregular Vandermonde decomposition (IVD), and we theoretically
guarantee the existence of the IVD. We extend ANM to the multiple
measurement vector setting and derive its equivalent regularization-
free SDP. For a uniform linear array using multiple frequencies, we
can resolve more sources than the sensors. The effectiveness of the
proposed framework is demonstrated via numerical experiments.

Index Terms— Atomic norm minimization, Multiple frequen-
cies, Vandermonde decomposition, DOA estimation.

1. INTRODUCTION

In the past few decades, some wideband direction-of-arrival (DOA)
estimation methods have been proposed [2–7]. Recently proposed
methods based on sparse recovery [2–10] and the multi-frequency
model [3, 5] have demonstrated superior performance in wideband
DOA estimation problems.

The multi-frequency model [2–7] uses Nf (rather than 1) tempo-
ral frequency bins in a frequency set {F1, . . . ,FNf } to characterize
a wideband signal. All these frequencies are used for DOA estima-
tion, as opposed to using a single frequency under the narrowband
model.

Atomic norm minimization (ANM) [11] is a general framework
for promoting sparse signal decompositions. The main benefit of
ANM is that it overcomes the grid mismatch error that plagues
grid-based methods. The pioneering ANM paper [12] proposed
an optimization-based continuous (temporal) frequency estimation
method and provided a theoretical guarantee when full data are
available. The authors in [13] studied continuous temporal fre-
quency estimation based on randomly sampled data for the single
measurement vector (SMV) case. ANM for multiple measurement
vectors (MMV) under the uniform (or equispaced) time samples was
studied [14–16] and was applied to DOA estimation for uniform lin-
ear arrays (ULAs) and for non-uniform arrays (NUAs) [17]. It was
extended to multiple frequencies for wideband DOA estimation
in [5, 18]. The sample complexity of modal analysis with random
temporal compression was established in [19]. We refer readers
to [20] for an overview of ANM and its applications.

We propose a wideband DOA estimation framework that sig-
nificantly expands the applicability from [5]. 1) The method in [5]

This work is supported by NSF Grants CCF-1704204, CCF-2203060,
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is encouraged to refer to our extended work [1] for details.

was developed under the SMV case and we extend it to the MMV
model. 2) We develop a fast semi-definite program (SDP) for the pri-
mal domain SDP. The ANM [5] was formulated as an SDP problem,
thus being solved using off-the-shelf SDP solvers, e.g., CVX [21].
The fast SDP is derived based on the dual problem of the fast algo-
rithm [5]. The fast algorithm improves the speed and extends the
method to the non-uniform frequency (NUF) case. The DOAs are
encoded in a matrix with an irregular Toeplitz structure. We apply
the irregular Vandermonde decomposition (IVD) [17] to this matrix
to retrieve the DOAs. Further, we provide a theoretical guarantee for
the existence of the IVD which was not shown in [17]. 3) The de-
veloped framework is regularization-free. In [5], regularization was
applied to enhance the robustness to noise. However, regularization
leads to bias. The proposed framework avoids regularization bias
and achieves superior performance. 4) We consider more sources
than sensors under the ULA setup. For a single frequency, the max-
imum number of uniquely identifiable sources in an NM -element
ULA is NM − 1 [22, Sec. 11.2.3]. Co-prime array techniques [23]
can break this limit with a carefully designed array structure, en-
abling the resolution of more sources than sensors. We show that a
ULA with multiple frequencies can resolve more sources than sen-
sors. The physical intuition is that multiple frequencies increase the
diversity of the harmonics and these “new harmonics” serve as extra
“virtual sensors” in a virtual array.

2. PRELIMINARIES

2.1. Assumptions

The array configuration and signal model are assumed as follows:
1) The array is a ULA with NM sensors and spacing d.
2) The sources have frequencies drawn from a uniform grid
{1, . . . , NF } · F1, where F1 is the frequency spacing. Let λ1 :=
c/F1 be the wavelength for F1, where c is the propagation speed. We
assume λ1=2d where d is the sensor spacing; equivalently, d= c

2F1
.

This spacing is for simplifying the derivation and can be relaxed
to any d ≤ λ1

2
(see [5]). We let F ⊆ {1, . . . , NF } denote the

indices of the active source frequencies; the resulting frequencies are
thus {f · F1|f ∈ F} with wavelengths {λ1/f |f ∈ F}. We define
Nf := |F| ≤ NF to be the number of active source frequencies.
When all frequencies are active, Nf = NF , and we refer to this as
the uniform frequency case. When only some frequencies are active,
Nf < NF , and we refer to this as the NUF case.
3) There are Nl snapshots (time samples) received by each sensor.
The source amplitude for the f -th frequency (f ∈ F ) is xw(f) =

[x
(1)
w (f) . . . x

(Nl)
w (f)]T ∈ CNl .

4) There are K uncorrelated sources impinging on the array from
unknown DOAs θ, or directional cosines w := F1d cos(θ)/c =
cos(θ)/2.
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2.2. MMV-MF Model

For the multiple measurement vector, multiple frequency (MMV-
MF) model, we begin by considering the case of a ULA with uni-
form frequencies, i.e., Nf = NF (we incorporate the NUF case in
Sec. 4). The received signals can be arranged into a tensor Y ∈
CNM×Nl×NF (sensors × snapshots × frequencies) with the follow-
ing structure:

Y = X +N (1)

X =
∑
w

cw[a(1, w)xT
w(1)|...|a(NF , w)xT

w(NF )]

=
∑
w

cwA(w) ∗XT
w

(2)

where a(f, w) = [1 e−j2πwf . . . e−j2πwf(NM−1)]T

= [1 zf . . . zf(NM−1)]T ∈ CNM (z := e−j2πw) is the array
manifold vector for the f -th frequency. N ∈ CNM×Nl×NF de-
notes additive Gaussian uncorrelated noise in (1). Denote A(w) =
[a(1, w) . . .a(NF , w)] ∈ CNM×NF and Xw = [xw(1) . . .xw(NF )]

T

∈ CNF×Nl . A(w) ∗ XT
w is the “reshaped Khatri-Rao product” de-

fined as [A(w) ∗XT
w]::f := a(f, w)xT

w(f) (f = 1, ..., NF ). When
Nl = 1, the above matches the SMV model in [5]. We assume
∥Xw∥F = 1, as the coefficient cw can used to absorb any other
scaling of the source amplitudes via the product cwXw.

Finally, we define N = NF (NM−1)+1, noting that NF (NM−
1) appears in the largest exponent of any array manifold vector used
in the MMV-MF model. Consequently, N will determine the size of
certain SDP formulations such as (8).

2.3. Irregular Vandermonde and Toeplitz Matrices

Define some integer-valued vector γ = [γ1 . . . γNγ ]
T ∈ ZNγ ,

complex-valued vector z = [z1 . . . zNz ]
T ∈ CNz , and w(γ, z) :=

[zγ1 . . . zγNγ ]T . For arbitrary dimensions Nγ and Nz , an irregu-
lar Vandermonde matrix of size Nγ × Nz is a matrix having the
form [17, eq. (25)]

W=W(γ, z)=[zγ1 . . . zγNγ ]T=[w(γ, z1) . . .w(γ, zNz )]. (3)

Note that when the entries of γ form an arithmetic progression,
specifically γ = [0 . . . Nγ − 1]T , W(γ, z) forms a regular Van-
dermonde matrix.

An (Nγ , Nz)-irregular Toeplitz matrix is any matrix T ∈
CNγ×Nγ that can be constructed from an irregular Vandermonde
matrix as follows [17, eq. (27)]:

T = W(γ, z)DW(γ, z)H , |z| = 1, (4)

where γ ∈ ZNγ and z ∈ CNz , and where D ∈ RNz×Nz is diagonal.
We refer to (4) as an irregular Vandermonde decomposition (IVD).
Note that any Nγ×Nγ positive semi-definite regular Toeplitz matrix
T with rank Nz has a regular Vandermonde decomposition of the
form (4) in which γ is an arithmetic progression.

3. ATOMIC NORM MINIMIZATION FOR MMV-MF

In this section, we formulate the atomic norm minimization problem
for the MMV-MF model with uniform frequencies. Then, we derive
an equivalent SDP that makes the proposed framework computation-
ally feasible.

Define the atomic set

A = {A(w) ∗XT
w | w ∈ [−1/2, 1/2], ∥Xw∥F = 1}. (5)

The atomic norm of a tensor X ∈ CNM×Nl×NF is defined as
∥X∥A := inf{

∑
w |cw|

∣∣X = cwA(w) ∗XT
w | ∥Xw∥F = 1}. The

ANM problem for the noise-free case can be expressed as

min
X

∥X∥A s.t. Y = X . (6)

When noise is present, the optimization problem is modified to relax
the equality constraint:

min
X

∥X∥A s.t. ∥Y − X∥HS ≤ η, (7)

where ∥ · ∥HS is the Hilbert-Schmidt norm for the tensor (for a 3D

tensor ∥A∥HS =
√∑

ijk |aijk|2).

Proposition 3.1 Problem (6) is equivalent to the following SDP
problem

max
Q,P0

⟨Q,Y⟩R s.t.
[

P0 Q̃

Q̃H INlNF

]
⪰ 0,

N−k∑
i=1

P0(i, i+ k) = δk, Q̃ = [R(Q1) . . .R(QNF )].

(8)

Here, Q = [Q1| . . . |QNF ] ∈ CNM×Nl×NF is the dual vari-
able, P0 ∈ CN×N is used for DOA extraction, ⟨Q,Y⟩R =

Re[
∑

ijk Q
∗(i, j, k)Y(i, j, k)], Q̃ = [Q̃1 . . . Q̃NF ] ∈ CN×NlNF ,

and Q̃f = R(Qf ) : NM ×Nl → N ×Nl is a mapping defined as

R(Qf )(i, l) =

{
Qf (m, l) for (i, l)=(f(m−1)+1,l)
0 otherwise. (9)

Across all frequencies, R : NM ×Nl ×NF → N ×NlNF is a
linear mapping and can be expressed as a tall binary matrix multiply
vec(Q̃) = R vec(Q). RT describes the behavior of the adjoint
operator R∗ : N ×NlNF → NM ×Nl ×NF .

In the noisy case, the equivalent SDP of (7) is the regularized
version of (8), η depends on the noise level and is the same as in (7):

max
Q,P0

⟨Q,Y⟩R − η∥Q∥HS s.t.
[

P0 Q̃

Q̃H INlNF

]
⪰ 0,

N−k∑
i=1

P0(i, i+ k) = δk, Q̃ = [R(Q1) . . .R(QNF )].

(10)

4. REGULARIZATION-FREE FAST ALGORITHM

In this section, we derive a reduced-dimension version of the SDP
that can be applied to non-uniform frequency settings. The so-called
fast program improves the speed, and more importantly, it relaxes
the uniform frequency assumption.

4.1. Non-uniform Frequency (NUF) Setting

In Sec. 3, we focused on the uniform frequency case. We generalize
the proposed framework to the NUF case in this section. Recall that
F ⊆ {1, . . . , NF } denotes the indices of the active source frequen-
cies, with Nf := |F| ≤ NF denoting the number of active frequen-
cies. The NUF case corresponds to the scenario where Nf < NF ,
i.e., only some of the frequencies are active.

Recall that every exponent in an array manifold vector from the
MMV-MF model involves a product of one temporal frequency and
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2)
𝑹1 𝑹1

𝑁𝑙 = 3
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෪𝑸𝑟
1 = 𝑹1(𝑸1)

෪𝑸𝑟
2 = 𝑹1(𝑸2)

𝑀 = 0, 1, 2, 3 , 𝐹 = 1, 2
𝑈 = {0, 1, 2, 3, 4, 6}

𝑹1
∗ 𝑹1

∗

𝑓 = 1 𝑓 = 2

Fig. 1. Demonstration for the R1(·) mapping and its adjoint map-
ping R∗

1(·). NM = 4, Nl = 3, Nf = NF = 2, U =
{0, 1, 2, 3, 4, 6}, Nu = |U| = 6.

one sensor position. To capture all such products in the NUF setting,
we define a spatial-frequency index set U as U = {m · f |m ∈
M, f ∈ F}, where M = {0, 1, . . . , NM − 1} denotes the indices
of the sensor positions in the ULA. The cardinality of this set Nu :=
|U| ≤ N = NF (NM − 1)+1. In many settings, Nu ≪ N . In later
sections, we see that the size of the fast SDP depends on Nu, and its
complexity is greatly reduced compared to the original SDP.

4.2. Fast Dual SDP for the NUF Case

We now generalize the SDP in Proposition 3.1 to the NUF case. In-
spired by the fast algorithm in [5, Sec. III-F], the SDP in this section
is considered the fast algorithm for MMV.

For NUF, the measurement tensor Y ∈ CNM×Nl×Nf and the
SDP in Proposition 3.1 is generalized as

max
Q,Pr0

⟨Q,Y⟩R s.t.

[
Pr0 Q̃r

Q̃H
r INlNf

]
⪰ 0,∑

Uj−Ui=k

Pr0(i, j) = δk, Q̃r = [R1(Q1) . . .R1(QNf )],
(11)

where Q = [Q1| . . . |QNf ] ∈ CNM×Nl×Nf is the dual variable,

Pr0 ∈ CNu×Nu , Q̃r = [Q̃1
r . . . Q̃

Nf
r ] ∈ CNu×NlNf (Q̃f

r =
R1(Qf ) ∈ CNu×Nl ), and R1(Qf ) : NM × Nl → Nu × Nl is
a mapping that pads zeros to the extra entries defined as

R1(Qf )(r, l) =

{
Qf (m, l) for (Ur, l)=(f · (m−1), l)
0 otherwise. (12)

Fig. 1 demonstrates the R1(·) mapping. Any rows of Q̃f which
would have remained all-zero under the operator R(·) (correspond-
ing to unused space-frequency products) are omitted in R1(·).

Comparing (12) with (9), these two mappings pad zeros for the
same input Qf to obtain the output matrix with a different dimen-
sion. As a result, (11) not only gives a lower-dimensional formula-
tion (the size of Pr0 decreases from N × N to Nu × Nu), but it
naturally accommodates the NUF setting. Still, (11) can be applied
to the uniform frequency case, where Nu is often smaller than N .

4.3. Fast Primal SDP for the NUF Case

We now derive the dual problem of (11), yielding a fast primal SDP
that is regularization-free and accommodates the NUF setting.

Proposition 4.1 The dual problem of (11) is given by

min
W,u,Ỹ

[Tr(T(u)) + Tr(W)]

s.t.
[
T(u) Ỹ

ỸH W

]
⪰ 0,Yf = R∗

1(Ỹf ), f ∈ F ,
(13)

where Ỹ ∈ CNu×NlNf , W ∈ CNlNf×NlNf , Yf ∈ CNM×Nl is
the slice of the received signal tensor Y corresponding to frequency
f , and Ỹf ∈ CNu×Nl comes from taking the Nl columns of Ỹ
corresponding to frequency f . R∗

1(·) : Nu ×Nl → NM ×Nl is the
adjoint mapping of R1. u ∈ CN×1, and T : N × 1 → Nu ×Nu is
explicitly defined as (note ∗ denotes complex conjugate)

T(v)(i, j) :=

{
vUj−Ui Uj − Ui ≥ 0
v∗Ui−Uj

Uj − Ui < 0.

Remark The dual problem of (8) can be similarly derived, yielding
the following full-dimension primal SDP for the ULA and uniform
frequency case:

min
W,u,ỸN

[Tr(Toep(u)) + Tr(W)]

s.t.
[
Toep(u) ỸN

ỸH
N W

]
⪰ 0,Yf =R∗(ỸNf ), f =1, . . . , NF ,

(14)

where Toep(·) : N×1 → N×N is the Toeplitz operator that maps
a vector to a self-adjoint Toeplitz matrix. ỸN ∈ CN×NlNF , R∗(·) :
N ×Nl → NM ×Nl is the adjoint mapping of R(·), and ỸNf ∈
CN×Nl is taking Nl columns from ỸN (from the (f−1) ·Nl+1-th
to the f ·Nl-th column). Compared to (13), a main difference is that
T(u) ∈ CNu×Nu in (13) is changed to Toep(u) ∈ CN×N .

4.4. Existence of Irregular Vandermonde Decomposition (IVD)

In ANM problems that involve trace minimization of a regular
Toeplitz matrix, one typically computes the Vandermonde decom-
position of the resulting Toeplitz matrix to extract the DOAs.

In contrast, the fast primal SDPs (13) derived in the previous
section involve trace minimization not of a Toeplitz matrix but rather
a matrix of the form T(u). However, as we establish in Theorem 4.2
below, there is an important connection between T(u) and Toeplitz
matrices: T(u) is guaranteed to be an irregular Toeplitz matrix, and
therefore is guaranteed to have an IVD.

Theorem 4.2 For any u such that Toep(u) is PSD, T(u) ∈
CNu×Nu is an (Nu,K)-irregular Toeplitz matrix, where K =
rank(Toep(u)). Specifically, T(u) has an IVD of the form (4),
where γ = [U1, . . .UNu ]

T .

In summary, we first solve the SDP (13) via an SDP solver (e.g.,
CVX [21]). After u is obtained, the DOAs are retrieved by IVD
methods (e.g., root-MUSIC). Although (13) is regularization-free, it
is robust to noise and the robustness is achieved by IVD.

5. MORE SOURCES THAN SENSORS IN THE ULA SETUP

For single-frequency ULA, the maximum number of resolvable
sources is NM − 1 [22, Sec 11.2.3]. In this section, we will
demonstrate the possibility of resolving more sources than sen-
sors under the ULA setup if multiple frequencies are available.
In our multi-frequency ANM configuration, it can resolve up to
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Fig. 2. Estimated and True DOAs for ANM (“×” indicates the
true DOAs and the blue vertical line indicates the estimated DOAs).
NM = 4, NF = 5, Nl = 1, and K = 10, 11, 12, 13, 14, 15.
The RMSEs of ANM under K = 10, 11, 12, 13, 14, 15 are 0.005◦,
0.16◦, 0.20◦, 0.04◦, 0.27◦, and 0.27◦.

N − 1 = (NM − 1)NF sources as Toep(u) ∈ CN×N and UN

exists only if K ≤ N − 1. The reason for using (14) instead of
(13) is that (13) can resolve up to Nu − 1 sources and (14) has the
potential to resolve more sources than (13) because Toep(u) in (14)
has a higher dimension than T(u) in (13).

The key observation for the multi-frequency model is that these
frequencies increase the diversity of the harmonics. These extra har-
monics serve as “virtual” sensors in the array, and they bring about
an enhanced degree of freedom. The SDP problem (13) can be inter-
preted as a structured covariance matrix estimation problem (T(u)
can be interpreted as the covariance matrix). We notice this covari-
ance matrix is in a higher dimension, which corresponds to our intu-
ition that there are more sensors in our “virtual” array.

As an example, suppose we have NM = 4 sensors, NF = 5
frequencies ({100, . . . , 500} Hz), Nl = 1 snapshot, noise-free, and
K = 10, 11, 12, 13, 14, 15 sources with uniform and deterministic
across frequencies. For K = 10, 12, and 15, the DOAs are gener-
ated as the uniform distribution in the cosine domain (i.e., the DOAs
are ⌊cos−1(−1 + 2([1 : K]− 0.5)/K)⌋). For K = 11, we pick up
the last 11 sources in the K = 12 case. For K = 13, we pick up the
middle 13 sources in the K = 15 case, and for K = 14, we pick up
the middle 14 sources. We plot the estimated DOAs for ANM. From
Fig. 2, our ANM can resolve up to (NM − 1)NF = 15 sources.

6. SIMULATION RESULTS

The simulation setup is detailed as follows. The source amplitude
is complex Gaussian. Nl snapshots are collected. The uniform
frequency set is defined as {1, . . . , NF } · F1 (F1 is the mini-
mum frequency). The array spacing for ULA is λ1

2
where λ1

is the wavelength for the minimum frequency in the frequency
set. The noise for each frequency and each snapshot is randomly
generated from the complex Gaussian distribution CN (0, σ2)
and then scaled to fit the desired signal-to-noise ratio (SNR):
SNR = 20 log10 ∥X∥HS/∥N∥HS.

In the Monte-Carlo experiments, MC = 100 trials are exe-
cuted to compute the root mean square error (RMSE) defined as

RMSE =

√
1

MC

∑MC
m=1

[
min

(
1
K

∑K
k=1(θ̂mk − θmk)2, 102

)]
,

-10 -5 0 5 10 15 20 25 30 35 40

0.01

0.1

1

10

ANM
SBL
ANM [4]
CRB

-10 -5 0 5 10 15 20 25 30 35 40

(a) (b)

Fig. 3. RMSE (◦) vs. SNR. NM = 16 ULA with d = λ100/2. Nl =
1. (a) NF = 4 with uniform frequencies {100, 200, 300, 400} Hz;
(b) NF = 4 with non-uniform frequencies {100, 200, 300, 500} Hz.
“ANM” and “ANM [4]” represents the proposed framework and the
framework proposed in [5].

100 101 102

10-2

10-1

ANM
SBL
CRB

100 101 102

ANM
SBL
CRB

(a) (b)

Fig. 4. RMSE (◦) vs. Nl for MMV setup. NM = 16 ULA with
d = λ100/2. K = 3 DOAs at [88◦, 93◦, 155◦]+ϵ where ϵ contains
random offsets from a uniform distribution [0, 1]. SNR = 20 dB.
(a): NF = 2 with frequency set {100, 200} Hz; (b) NF = 4 with
frequency set {100, 200, 300, 400} Hz.

where θ̂mk, and θmk are (sorted) estimated DOAs, and (sorted)
ground-truth DOAs for the kth DOA and mth trial. A maximum
threshold of 10◦ is used to penalize the incorrect DOA estimates.
We compare the proposed method with the multi-frequency sparse
Bayesian learning (SBL) [3]. The Cramér-Rao bound (CRB) [24,
Eq. (121)] for the multi-frequency model is computed for reference.

We examine the performance under the non-uniform fre-
quency set. In this case, Nf = 4, and the frequency set is
{100, 200, 300, 500} Hz. Fig. 3(b) demonstrates the effectiveness
of the proposed method under the non-uniform frequency case. We
also see superior performance compared to the fast dual algorithm
in [5] in both uniform and non-uniform frequency cases.

We then examine the performance of ANM with varying num-
bers of snapshots Nl. From Fig. 4, we can see ANM follows the
trend of CRB and outperforms SBL. We also see that more snapshots
will improve the performance. In addition, comparing Fig. 4(a) with
4(b), ANM performs better with higher NF , which demonstrates the
benefits of multi-frequency processing.

7. CONCLUSION

This paper proposes a gridless DOA estimation method based on
regularization-free SDP and Vandermonde decomposition. We ex-
tend this framework to MMV and NUF cases. For the NUF case, the
Toeplitz structure will not hold. However, we propose to use IVD
in these cases, and the existence of IVD is theoretically guaranteed.
With the help of multiple frequencies, the method can resolve more
sources than the number of physical sensors under the ULA setup.
Simulations demonstrate the proposed framework can achieve supe-
rior performance for MMV and NUF setups.
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