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ARTICLE INFO ABSTRACT

Keywords: Since the landmark Adverse Childhood Experiences (ACEs) study, adversity research has
Adversity expanded to more precisely account for the multifaceted nature of adverse experiences. The
Development complex data structures and interrelated nature of adversity data require robust multivariate
Multivariate statistical methods, and recent methodological and statistical innovations have facilitated ad-
Methodology

vancements in research on childhood adversity. Here, we provide an overview of a subset of
multivariate methods that we believe hold particular promise for advancing the field’s under-
standing of early-life adversity, and discuss how these approaches can be practically applied to
explore different research questions. This review covers data-driven or unsupervised approaches
(including dimensionality reduction and person-centered clustering/subtype identification) as
well as supervised/prediction-based approaches (including linear and tree-based models and
neural networks). For each, we highlight studies that have effectively applied the method to
provide novel insight into early-life adversity. Taken together, we hope this review serves as a
resource to adversity researchers looking to expand upon the cumulative approach described in
the original ACEs study, thereby advancing the field’s understanding of the complexity of
adversity and related developmental consequences.

1. Introduction

The landmark Adverse Childhood Experiences (ACEs) study demonstrated a clear, graded relation between exposure to adversity
during childhood and physical and mental health outcomes in adulthood (Felitti et al., 1998). These findings spurred a widespread
public health response, as well as a body of scientific research that sought to better understand the consequences of adversity for
human development. The original study categorized ACEs as abuse (psychological, physical, and sexual) and household dysfunction
(substance use, mental illness, domestic violence, and incarceration), operationalized as a summed score of the total number of ex-
posures. In the 25 years following this study, adversity research has expanded to more precisely account for the multifaceted and
interrelated nature of adverse experiences, with increased emphasis on the importance of factors such as developmental timing,
chronicity, and severity, as well as consideration of forms of adversity that were not captured in the original ACEs measure (e.g.,
perceptions of identity-based discrimination and racial trauma; Bernard et al., 2020; Cohodes et al., 2021; Manly et al., 2001).

Researchers have increasingly accounted for these factors in data acquisition and analysis, yielding novel insights into how, why,
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and when adversity impacts child development (Gee, 2021). Furthermore, the increasing availability of large, publicly accessible
datasets and archives (e.g., National Data Archive on Child Abuse and Neglect [NDACAN]; Adolescent Brain Cognitive Development
[ABCD] Study) provide rich data characterizing a wide range of child experiences, which can facilitate these lines of inquiry. However,
these data also introduce challenges in how to best operationalize and organize adversity data. Adversity data are often heterogeneous,
non-normally distributed, have complex data structures (e.g., combinations of continuous and categorical data), and are interrelated in
nature (e.g., high rates of co-occurrence across domains of adversity). These features necessitate robust multivariate' statistical
methods that can account for this complexity and more accurately represent youths’ lived experiences.

Methodological and statistical innovations have facilitated advancements in child adversity research broadly (see the 2019 special
issue in Child Abuse and Neglect on methods and measurement; Gabrielli & Jackson, 2019). Here, we describe a subset of multivariate
methods that we believe hold particular promise for advancing the field’s understanding of early-life adversity, given the often
complex and varied nature of adversity exposure data. Such data have become more common in recent years—the operationalization
of adversity exposure, and dimensions of adversity along which effects are hypothesized to cleave, has been the subject of numerous
theoretical models (Callaghan & Tottenham, 2016; Cohodes et al., 2021; Ellis et al., 2022; McEwen, 1998; McLaughlin et al., 2021;
Smith & Pollak, 2020). Given this diversity of approaches in adversity measurement and operationalization, in the present paper we
aim not to suggest a particular theoretical approach to studying adversity, but rather to recognize that burgeoning theoretical
complexity necessitates a more comprehensive suite of analysis tools, many of which are capable of handling non-Gaussian (i.e., non-
normal) data. Thus, the goal of the present paper is to 1) provide an overview of prevailing multivariate methods that may be especially
beneficial for advancing adversity research, and 2) highlight examples of studies that have effectively applied these methods to provide
novel insight into early-life adversity. We do not intend to provide an in-depth tutorial on applications of each methodological
approach (though we do point to methodological and statistical papers that provide greater depth for readers interested in applying
these approaches); rather, we seek to provide adversity researchers with an overview of some of the quantitative tools available to
them and how these tools can be practically applied to explore research questions of interest. We have organized these methods into
several key domains: data-driven or unsupervised approaches (including dimensionality reduction and person-centered clustering/subtype
identification) and supervised/prediction-based approaches (including linear and tree-based models and neural networks). These
methods are summarized visually in Fig. 1, and definitions for these approaches and related technical terms (italicized in text) are
summarized in a glossary in the supplemental material.

2. Unsupervised/data-driven approaches

In contrast to theory-driven approaches that test specific hypotheses, unsupervised, or data-driven, methods are approaches that
are often exploratory in nature and that generate insights based on naturally-occurring patterns in a dataset (Maass et al., 2018). Data-
driven approaches aid in parsing complexity raised by co-occurrence and, further, relax constraints that may be imposed by existing
theory, researcher bias, or preconceptions (Jack et al., 2018), facilitating novel theory-building to advance understanding of the
complexity of adversity and related developmental consequences. In the following sections, we provide an overview of several un-
supervised approaches with notable applications to adversity research.

2.1. Dimensionality reduction

Dimensionality reduction methods reduce the number of features in a dataset, often aiming to reduce measurement noise, account
for feature dependency, and/or limit overfitting during model building. In theory, these reduced dimensions are thought to represent
the latent structure of variables, and serve as a way of reducing high dimensional datasets into a subset of variables that account for the
majority of variance. This is especially beneficial when datasets have a large number of correlated variables, as is often the case with
adversity data. The following methods facilitate identification of patterns and can clarify the relations among different variables by
grouping them in statistically meaningful ways.

2.1.1. Exploratory factor analysis

Exploratory factor analysis (EFA) is one approach to dimensionality reduction that serves to identify a set of latent (unobserved)
factors thought to be the underlying cause of multiple manifest (observed) variables based on their interrelationships (Krishnakumar &
Nagar, 2008; Matsunaga, 2010). EFA is, by definition, exploratory in nature and is not, in and of itself, suited for hypothesis testing.
However, it can be helpful in characterizing the data’s structure, especially with multiple indicators of the same underlying constructs.
This can help inform novel theoretical conceptualizations that can then be formally tested in subsequent work.

As one example, Brieant et al. (2023) tested an EFA based on 60 early-life adversity variables in the ABCD Study in order to examine
covariation among a wide range of adversities. Estimating the EFA in a structural equation modeling framework (Asparouhov &
Muthén, 2009; Marsh et al., 2014) helped to accommodate the complex data structure (i.e., combination of dichotomous, polytomous,
and continuous data) across multiple measurement methods, compare model fit across different factor solutions, and adjust for skewed
variable distributions—all factors that are especially beneficial when working with multidimensional adversity data. Results indicated
10 robust dimensions of early-life adversity co-occurrence, corresponding to conceptual domains such as caregiver substance use and

! italicized terms are defined in the Glossary in Appendix A
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Fig. 1. High-level graphical depiction of four major methodological categories described in the present paper. We distinguish between linear
regression and tree-based methods, which characterize associations between measurements, clustering and subgrouping methods, which characterize
shared patterns across measurements, and dimensionality reduction methods, which describe latent structure underlying measurements. Importantly,
not all methods fall neatly into these groups, and the statistical assumptions and designed purpose of each method vary.

biological caregiver separation, caregiver psychopathology, caregiver lack of support, and socioeconomic disadvantage/neighborhood
lack of safety.” Importantly, these factors demonstrated predictive validity in that they were associated with distinct behavioral
correlates, including internalizing and externalizing symptoms and cognitive functioning (Brieant et al., 2023). Though studies like
this illustrate the utility of applying an EFA approach to clarify interrelations among types of adversity (see Table 1 for additional
examples), it has been suggested that the causal structure of reflective models may not be well-suited for adversity research (e.g., Bethell
et al., 2017; McLaughlin et al., 2023). That is, it may not always be the case that there is a “common cause” for the shared variance
between different adversity exposures (see Plamondon et al., 2022 for further discussion). Depending on the research question and
nature of the data, formative models (such as principal component analysis) may be more appropriate, as described below.

2.1.2. Principal component analysis

Similar to EFA, principal component analysis (PCA) is a dimensionality reduction approach that summarizes and reduces the overall
number of variables in a dataset; however, unlike EFA (in which latent factors are modeled to be the cause of the measured indicators),
in PCA the underlying dimensions (or “components™) are modeled to be the effect of the measured indicators. This results in uncor-
related (or orthogonal) components that maximize explained variance in the original variables (Bryant & Yarnold, 1995; Krishna-
kumar & Nagar, 2008). Importantly, in contrast to EFA which attempts to differentiate error and signal covariances, PCA does not
distinguish between variance due to measurement error versus true signal when estimating components. As such, PCA may not be an
appropriate approach with datasets suspected of containing unreliable or high-noise measurements.

As one example, Nikolaidis et al. (2022) applied PCA to a set of caregiving-related early adversity variables, including physical
abuse, parental mental illness, and emotional neglect. Fourteen total items were distilled into two significant components which were
interpreted as 1) additive exposure (which captured the majority of adversity items) and 2) emotional maltreatment without domestic
violence. This approach facilitates a more parsimonious organization of data by reducing dimensionality while simultaneously
minimizing loss of information from the original variables. Additional adversity-related PCA examples that further illustrate these
benefits are listed in Table 1.

2 Code for the models from Brieant et al. (2023) is publicly available via the Open Science Foundation: https://osf.io/28ch7/?view_
only=b7789e2eb92d40d290358a5ad623ac65. Factor scores for the 10 adversity factors are available for use by researchers with an active data
use agreement for the ABCD Study.
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Table 1

Summary of outlined multivariate methods.

Method Goal Important considerations Key methodological Examples of application in Suggested software/packages
citations adversity research

Exploratory Dimensionality reduction - Exploratory, not suited for hypothesis testing; Krishnakumar & Nagar, Brieant et al., 2023; Ford psych package in R (Revelle, 2023); Mplus,
Factor characterize dimensional structure  latent factors thought to be the underlying 2008; Matsunaga, 2010 et al., 2014; Nikolaidis EFA and ESEM options (Asparouhov &
Analysis of variables, identify latent factors cause of multiple manifest variables based on et al., 2022; Scott et al., Muthén, 2009)

their interrelationships 2013

Principal Dimensionality reduction - Underlying dimensions (or “components”) are Bryant & Yarnold, 1995; Nikolaidis et al., 2022; Stats package in R (R Core Team, 2012);
Components reduce the number of variables modeled to be the effect of the measured Krishnakumar & Nagar, Nweze et al., 2023 FactorMineR in R (Lé et al., 2008); Scikit-
Analysis indicators 2008 learn in python (Abraham et al., 2014)

Canonical Dimensionality reduction - Enables the identification of latent links Hotelling, 1936; Kettenring, Alnzs et al., 2020; PMD in R (Gonzalez et al., 2008; Witten
Correlation identify latent “variates” that between two high dimensional datasets; has 1971 Modabbernia et al., 2021; et al., 2009); cca-zoo in python (Chapman
Analysis represent combinations of linear and non-linear model types Sisk et al., 2023 and Wang, 2021)

Data Fusion

K-Means

Spectral
Clustering

Latent Class
Analysis and
Latent Profile
Analysis

Regularized
Linear
Models

Support Vector
Machines

Random Forest

Gradient Boosting
Trees

Multilayer
Perceptron
(Neural
Networks)

variables

Dimensionality reduction -
identify shared variance across two
or more datasets or data types
Person or Variable Clustering -
create subgroups based on
similarity between cases using a
distance measure

Person or Variable Clustering -
create subgroups based on
similarity between cases using a
distance measure

Person Clustering - identify latent
subgroups of individuals based on
response patterns on a set of items

Supervised Prediction - learn a
set of linear parameters with a loss
function penalty

Supervised Prediction - learn a
decision hyperplane based on
maximizing or minimizing its
margin from support vectors
Supervised Prediction - learn a
set of independently-fit decision
trees from bootstrapped subsets of
data and aggregate their
predictions

Supervised Prediction - learn a
set of sequentially-fit decision
trees, each learning from the
prediction errors of previous
(weaker) models

Supervised Prediction - learn a
set of weights and biases belonging
to neurons that interact with each
other within interconnected layers

Describes various different methods, such as
Joint and Individual Variation Explained (JIVE)
and Similarity Network Fusion (SNF)
Minimizes the sum of variances within each
subgroup

Uses graph theory to identify similarities
between cases

Model-based, can evaluate fit to the data; can
account for classification uncertainty. Can also
distinguish residual variance/noise from true
signal.

Fewest implementation barriers of discussed
models. May achieve feature selection (L,),
parameter grouping (Lz) or both (elastic net).
Less likely to overfit than non-regularized.

Few implementation barriers. Robust to small
sample sizes and low computational
complexity. Sensitive to outliers and overfitting
with high dimensional data.
Highly-transparent decisions. Makes few/no
assumptions about data and parameter
structure. Reduced likelihood of overfitting and
moderately robust to small samples.

Highly-transparent decisions. Makes few/no
assumptions about data and parameter
structure. Reduced likelihood of overfitting and
moderately robust to small samples.

Best for problems where variable interactions
are important. Least transparent model
discussed. Highest implementation barriers.
Requires larger sample sizes and most likely to
overfit without regularization, cross validation,
etc.

Wang et al., 2014; Yu et al.,
2017

Hartigan & Wong, 1979

Newman, 2006; Yu & Shi,
2003

Bauer & Shanahan, 2007;
Lanza & Cooper, 2016;
Nylund-Gibson & Choi,
2018; Sinha et al., 2021

Arnold et al., 2020;
Melkumova & Shatskikh,
2017; Scholkopf, 2000;
Ying, 2019; Zou & Hastie,
2005

Cortes & Vapnik, 1995;
Shawe-Taylor & Sun, 2011

Breiman, 2001; Biithlmann,
2012; Kern et al., 2019

Biihlmann, 2012; Friedman,
2001; Natekin & Knoll, 2013

Bebis & Georgiopoulos,
1994; Hanson & Burr, 1990;
Liu et al., 2017; Smys et al.,
2020

Hong & Sisk et al., 2021

Basu et al., 2023; Ehrlich
et al., 2016

Hong & Sisk et al., 2021;
Sheridan et al., 2020

Brieant et al., 2022; Brown
et al.,, 2019; Conley et al.,
2022; King et al., 2019; Lian
et al., 2022; Pears et al.,
2008

Herd et al., 2022; Keding

et al., 2021

Carmel & Widom, 2020;
Keding et al., 2021

Keding et al., 2021; Teicher
et al., 2018

Khan et al., 2015; Silveira
et al., 2020

Keding & Herringa, 2022;
Keding et al., 2021

R.jive in R (O’ Connell and Lock, 2016);
SNFtool in R (Wang et al., 2014)

Stats package in R (R Core Team, 2012);
Scikit-learn in python (Abraham et al., 2014)

Spectrum in R (John et al., 2020); Scikit-learn
in python (Abraham et al., 2014)

Mplus, LPA and LCA options (Muthen &
Muthen, 2000); tidyLPA in R (Rosenberg
et al., 2019)

LASSO, Ridge, and ElasticNet from Scikit-
Learn in Python (Pedregosa et al., 2011);
glmnet in R (Friedman et al., 2010)

SVC and SVR from Scikit-Learn in Python (
Pedregosa et al., 2011); Interface libsvm and
package e1071 in R (Chang & Lin, 2011)

RandomPForestClassifier and
RandomForestRegressor from Scikit-Learn in
Python (Pedregosa et al., 2011)

GradientBoostingClassifier and
GradientBoostingRegressor from Scikit-Learn
in Python (Pedregosa et al., 2011); XGBoost
(Chen & Guestrin, 2016)

MLPClassifier and MLPRegressor from SciKit-
Learn (Pedregosa et al., 2011); Tensorflow (
Abadi et al., 2016); PyTorch (Paszke et al.,
2019); all in Python
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2.1.3. Canonical correlation analysis

Canonical correlation analysis (CCA) comprises a suite of unsupervised, multivariate statistical models that enable the simultaneous
identification of latent links between two high dimensional datasets. That is, CCA seeks to identify latent “variates” that represent
optimal linear combinations of variables from two independent datasets. CCA is somewhat analogous to PCA, in that variables “load”
onto a CCA variate in a similar manner to PCA component. However, unlike PCA, in CCA pairs of variates are identified that maximally
correlate with each other, thereby identifying latent links across datasets. Further differences exist between CCA and PCA in the
mathematical computations underpinning latent variable identification, and indeed PCA can be used as a dimensionality reduction
step prior to CCA (e.g. Alnes et al., 2020; Smith et al., 2015). Pairs of correlated CCA variates (each variate representing variable
loadings from its respective dataset) comprise a “mode”. CCA models can fit multiple modes per model, and these modes are pre-
dominantly orthogonal to each other. In practice, these properties make CCA particularly well-suited for exploratory research ques-
tions aiming to characterize meaningful patterns of shared variance between high dimensional datasets. After identifying modes whose
variates are correlated at levels above chance, researchers may then examine the variable loadings on these variates to identify which
variables comprise them. Several different types of CCA models have been developed over the years to suit different questions and data
structures. For instance, penalized or sparse CCA models (e.g., Witten et al., 2009) have the added benefit of handling multicollinear
data more efficiently and parsimoniously (Wang et al., 2020; Witten et al., 2009). Additional types of CCA models include multiset CCA
(Nielsen, 2002), which can handle more than two high dimensional datasets; non-linear or kernel CCA, which can identify complex
nonlinear associations; and probabilistic (or Bayesian) CCA. However, it is important to note that CCA is best suited for moderately-
sized to large datasets, and requires careful consideration when computing statistical significance and controlling for nuisance
covariates (Winkler et al., 2020).

Although CCA was first introduced in the 1930s (Hotelling, 1936), its high computational demand precluded it from being widely
used until recently. With the advent of modern computing systems, CCA has begun gaining popularity in neuroscience and psychology
research alongside the development of software packages that make running complex models more feasible. Several papers highlight
the promise of CCA for neuroimaging research in particular (Wang et al., 2020; Zhuang et al., 2020), given the high dimensionality and
covariance common in neuroimaging datasets. Applications in the context of adversity have been limited to date; however, sparse CCA
(sCCA; Witten et al., 2009) was recently applied to identify how adversity exposures at different ages across childhood and adolescence
were linked with patterns of white matter tract integrity across three measures (generalized fractional anisotropy, radial diffusivity,
and quantitative anisotropy; Sisk et al., 2023). Three sCCA models were fitted—one for each of the three white matter tract integrity
measures. The variates comprising the first mode for each of the three models were examined, revealing that across all models
exposure to adversity in middle childhood (particularly during ages 5-6 and 8-9) was linked with alterations in white matter tract
integrity at levels significantly above chance. In particular, white matter tracts demonstrated a divergent pattern of loadings in relation
to middle childhood adversity exposure, such that white matter tracts broadly supporting sensorimotor information (such as the
corticospinal tract) loaded opposite white matter tracts broadly supporting higher-order cognitive and emotion processing (such as the
superior longitudinal fasciculus). This pattern suggests that adversity during middle childhood may be related to alterations in white
matter integrity across the whole brain, and that the directionality of links between adversity and tract-level integrity may differ as a
function of the neural circuits the tract supports. Further, the mean loadings for white matter tract integrity in the quantitative
anisotropy model were associated with trauma-related symptoms, suggesting that latent whole-brain patterns of tract integrity may
relate to mental health symptoms above and beyond measures from a single tract. Given the flexible, data-driven nature of CCA, it is
well-suited to research questions that seek to apply a data-driven approach to identify multidimensional links between adversity and
neural, behavioral, or clinical measures.

2.1.4. Data fusion

Data fusion approaches represent another promising method for researchers aiming to apply data-driven approaches across mul-
tiple types of data, particularly when datasets include variables of different types (e.g., numeric, categorical) and on different scales.
Across scientific domains, many different approaches have been developed in service of identifying shared signal, minimizing noise,
and more comprehensively characterizing a participant sample across two or more data types (Castanedo, 2013). For multimodal
research studies, these methods present a promising alternative to common practices such as conducting separate analyses within
modalities, or simply concatenating datasets (Wang et al., 2014). Notably, methods previously described in the current paper such as
principal components analysis (PCA) and canonical correlation analysis (CCA) have also been described as data fusion (Calhoun & Sui,
2016). While the characterization of and mathematical computations underpinning data fusion methods vary, here we will highlight
Similarity Network Fusion (SNF; Wang et al., 2014), which leverages an iterative, nonlinear fusion approach to characterize shared
patterns of variation across datasets. Specifically, SNF uses a two-step network approach: first, sample-similarity networks are con-
structed for each type of data, and second, these networks are fused into a single similarity network using an iterative nonlinear process
(Wang et al., 2014). The resulting similarity network has been shown to be scalable, robust to outliers, and able to identify meaningful
information even in relatively small sample sizes (Wang et al., 2014). Following data fusion, applying a clustering model to the
resulting similarity network may facilitate the identification of subtypes of individuals. One recent study leveraging SNF examined
shared variance between brain and environmental data in the ABCD Study, and how these patterns differed across participants (Hong
& Sisk et al., 2021). SNF was applied to measures of cortical thickness, myelination, and environmental factors (specifically trauma
exposure, neighborhood safety, school environment, and family environment). Subsequently, spectral clustering was applied to identify
subtypes characterized by shared variation in the similarity network comprising both neural and environmental data. Results
demonstrated that two- and five-subtype solutions fit the data best, and demonstrated that measures of key environmental risk and
protective factors were differentially linked with patterns of cortical thickness and myelination in youth. Further, incorporating
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subtyping information into a predictive model facilitated clinical symptom prediction above and beyond imaging or environmental
features alone. These results suggest that data fusion may aid in clarifying heterogeneity across individuals and data types, thereby
parsimoniously representing individual- and subgroup-level differences in brain, behavior, and mental health.

2.2. Person clustering and subgroup identification

The methods described thus far are often considered “variable-centered” (or “feature-centered”), as they attempt to organize and
describe relations between variables. In contrast, clustering methods that are “person-centered” (or “instance-centered”) offer op-
portunities to group individuals based on shared attributes (Bauer & Shanahan, 2007). In the context of adversity research, this can be
especially helpful in parsing heterogeneity in adverse experiences by identifying subgroups of individuals who share similar types of
adversity exposure and who are meaningfully distinct from other subgroups of individuals. In this way, these approaches can char-
acterize specific patterns of adversity exposure and help inform more individualized intervention efforts that are tailored to youths’
unique and varied experiences. This can be accomplished through a variety of methods, including K-means and spectral clustering
methods, latent class analysis, and latent profile analysis.

2.2.1. K-means and spectral clustering

Certain clustering methods use a distance measure to create subgroups based on similarity between cases. Optimally, cases that are
most similar belong to the same subgroup, while cases that are least similar belong to different subgroups. Identified subgroups are
often highly dependent on the choice of distance measure (e.g., Euclidean distance, Manhattan distance, cosine similarity). Addi-
tionally, different clustering algorithms such as K-Means (Hartigan & Wong, 1979) and spectral clustering (Newman, 2006; Yu & Shi,
2003) use different logic to identify subgroups. Thus, the choice of which algorithm, as well as which distance measure, is most suitable
is dependent on the specific research question and type of data available (see Shirkhorshidi et al., 2015; Xu & Tian, 2015). For instance,
K-Means clustering minimizes the sum of variances within each subgroup, iteratively computing this metric and reassigning subgroups
until minimum values for each subgroup are obtained (Morissette & Chartier, 2013). In contrast, spectral clustering uses graph theory
to identify similarities between cases, indexed as low edge weights (i.e., relatively weaker connections) between cases in different
subgroups, which are iteratively computed and subgroups reassigned until minimum values for each subgroup are obtained (von
Luxburg, 2007).

As one example, a recent study examined whether a clustering approach would yield subtypes of individuals differentially char-
acterized by dimensions of adversity exposure (i.e., threat and deprivation) and cognitive and emotional abilities (Sheridan et al.,
2020). Association networks were constructed, representing correlation strengths between each possible pairing of variables while
controlling for every other variable. Next, four clustering methods were applied and consensus clustering (Lancichinetti & Fortunato,
2012) was used to determine the most representative groupings. Across two separate datasets, the resulting clusters suggested that
dimensions of adversity may be differentially linked with cognitive and emotional abilities in youth.

2.2.2. Latent class and latent profile analysis

Latent class analysis (LCA) is a model-based clustering approach that can be used to identify unobserved subgroups of individuals in
a structural equation modeling (SEM) framework (Nylund-Gibson & Choi, 2018). Generally speaking, LCA is distinct from other
clustering methods such as K-Means in that it derives clusters using a probabilistic model, rather than a distance measure. Thus,
relative goodness-of-fit can be evaluated for the models and guide the determination of the most appropriate number of clusters.
Posterior probabilities are also generated, which allows assessment of the certainty of class membership. For these reasons, LCA is
often considered a more robust clustering method, although it is more computationally demanding (Sinha et al., 2021). The LCA
approach assumes the presence of multiple mutually-exclusive “classes” within a population, characterized by different patterns of
responses on a set of categorical variables (Lanza & Cooper, 2016) and has increasingly been adopted in adversity research. As one
example, Brown et al. (2019) applied LCA to identify patterns of maltreatment among a large sample of children who had contact with
child welfare services. Based on dichotomous reports of ACEs exposure, three distinct clusters of exposure emerged (with some
variation depending on developmental stage): 1) physical neglect, emotional abuse, and domestic violence; 2) physical neglect/
household dysfunction; and 3) emotional abuse. This study nicely illustrates how LCA can offer insight into complex, co-occurring
experiences within individuals; however, the reliance of LCA on categorical data may omit important information about the degree
or severity of adversity exposure. Latent profile analysis (LPA) is computationally similar to LCA but uses continuous, rather than
categorical, indicators to characterize subgroups. For example, Brieant et al. (2022) estimated latent profiles in a community sample of
adolescents based on eight different continuous variables, including factors such as exposure to abuse, neglect, household chaos, and
socioeconomic disadvantage. Results indicated four different adversity profiles: low exposure, neglect, household instability, and poly-
adversity. Importantly, individuals with these profiles significantly differed on mental health outcomes four years later; the poly-
adversity group reported significantly higher levels of both internalizing and externalizing symptoms relative to the low exposure
group, and the household instability group showed elevated risk for externalizing symptoms. Linking subgroups with outcomes of
interest in this way can provide a form of validation that the subgroups are substantively meaningful, while also providing important
insight into the varied developmental consequences of adversity. Additional LCA and LPA examples are listed in Table 1.

3. Supervised/prediction-based approaches

The methods discussed thus far have been predominantly unsupervised methods, wherein the model does not have access to
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“ground truth” expectations. In contrast, supervised methods incorporate an external source of knowledge into model fitting, using the
difference between model predictions and supervisory signals to train the model. Prediction-based approaches typically use supervised
learning to create a model that maps the relationship between a set of input variables (referred to as features) and the supervisory
signal and shows low generalization error on unobserved data. Broadly, prediction-based methods have three components that must be
decided by the researcher a priori: the model algorithm, loss function, and the optimizer. Here, the algorithm is the class of model being
implemented (e.g., linear, tree-based), the loss function refers to the equation used to calculate the model’s prediction errors, or
deviations from the supervisory signal (e.g., mean squared error, cross entropy), and the optimizer is the method by which model
parameters are updated (after exposure to data) with the aim of minimizing or maximizing the loss function (e.g., maximum likelihood
estimation, stochastic gradient descent). In the following sections, we provide an overview of common algorithms, important con-
siderations for their appropriate use, and their application to early-life adversity research.

3.1. Linear models

Linear® models are one of the most common types of prediction-based approaches, primarily due to their ease of implementation,
low computational complexity, and interpretability (Arnold et al., 2020). Linear models assume that the supervisory signal can be
predicted by a weighted sum of the input features; importantly, these features can take nonlinear forms, including interactions
(multiplication of two or more features) and other transformation functions (e.g., log transform). Additionally, linear models are
extremely adaptable to a variety of data types, ranging from nominal- to ratio-level measurements, for both the supervisory signal
(through link functions; e.g., logistic for binary outcomes, Poisson for count outcomes) and features. Modern computers can optimize
linear models quickly relative to other models, allowing them to scale well in situations with large samples and a large number of
features. At the same time, because the weighted-sum form of linear models is less complex than other models, they are also less prone
to overfitting and can show adequate fit with smaller sample sizes. For these reasons, linear models represent a good starting point, or
“default choice”, of a model algorithm, often performing well in a wide variety of situations.

Although linear models can scale well to many features, there are cases where the number of features overwhelms the available
sample size (p > n) or where many features are correlated with each other, causing issues related to multicollinearity. In these cases,
regularized linear models can help overcome such challenges during model fitting. Regularization refers to a penalty added to the
model’s loss function, increasing the model’s loss as the number of parameters and their magnitudes increase. These penalties have the
effect of decreasing model complexity and reducing overfitting (Ying, 2019). For example, the least absolute shrinkage and selection
operator (LASSO; L; penalty) iteratively updates low-magnitude parameters toward O; this produces a model that implements feature
selection. Another example is ridge (L, penalty) regularization, which reduces overfitting through a “grouping” effect on related pa-
rameters; here, the parameters of correlated variables will tend to increase and decrease together, preventing arbitrary feature dropout
observed with LASSO and limiting multicollinearity issues. Additionally, ridge regularization penalizes extreme feature values more
harshly, making the model more robust to outliers (see Melkumova & Shatskikh, 2017 for more information).

Elastic net regularization (Zou & Hastie, 2005) utilizes both the L, and Ly penalties in the same loss function. This combination
allows the model to implement feature selection like L; while being less sensitive to multicollinearity and more robust to outliers like
Ly. For example, Herd et al. (2022) used a combination of subgroup identification and prediction-based approaches to study how early-
life adversity was related to different trajectories of post-traumatic stress symptoms (PTSS) in female adolescents. First, they identified
three distinct trajectories of PTSS: (1) recovery; (2) moderate, chronic; and (3) high, chronic; second, an elastic net model tested how
adversity could predict trajectory membership. Their results demonstrated that the recovery trajectory was characterized by the
absence of sexual abuse, physical abuse, and other traumas, less affective dysregulation, having fewer high risk-taking friends, lower
levels of parent depression, and being of racial/ethnic minority status (Herd et al., 2022). Feature selection and decreased sensitivity to
multicollinearity were particularly important here, allowing Herd et al. to overcome the challenge of including many, highly-related
adversity features in a single model and discovering environmental markers of recovery from PTSS.

Finally, support vector machines (SVMs; see Shawe-Taylor & Sun, 2011) are traditionally considered linear models, although non-
linear implementations do exist. Broadly, SVMs learn parameters that define a hyperplane that maximally separates data points
belonging to different categories given some margin (i.e., the “thickness” of the hyperplane). Here, the boundary of the margin is
defined by specific data points known as support vectors. Like other linear models, various implementations of SVMs support different
types of measurement for inputs and supervisory signals, and can be used for both classification (nominal-level) and regression (ratio-
level) analyses. SVMs also perform well in datasets with smaller sample sizes; however, hyperplanes can be sensitive to outliers,
especially in cases of high dimensionality where the likelihood that a support vector contains an outlier increases. Carmel and Widom
(2020) used SVMs to develop an adult-retrospective measure of severe early-life neglect to overcome analytic challenges due to
missing exposure reports (especially early in development) and degraded memory about such exposures over time. SVMs were used to
predict the optimal exposure items to include in an overall propensity score for experiencing early-life neglect. The final measure
consisted of 10 items, which successfully predicted adults who suffered severe neglect and may not have been identified or treated at
the time of exposure (Carmel & Widom, 2020). Propensity scores demonstrated strong predictive, construct, and discriminant validity,
highlighting strengths of using prediction-based approaches.

8 “Linear” does not limit these algorithms to only detecting linear relationships, but instead refers to linearity of the parameters, where each must
take the form pX + C (but variable X can be transformed with any nonlinear function).
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3.2. Tree-based models

Another category of prediction-based models, tree-based algorithms, are nonparametric (in contrast to parametric models), indi-
cating that the structure of the model is learned as part of the model fitting process itself. Here, a sequence of decision points, based on
thresholded feature values, is learned from the data; these decision points, when diagrammed, take the form of a directed tree, where
the first node (the root) is theoretically the “best” feature to estimate groups or values and the remaining nodes predict with greater and
greater specificity (see Kern et al., 2019). Because features are “split” at specific values at each decision point of the tree, these models
are a useful choice when interactions between features are theoretically important or predictive of the supervisory signal. Additionally,
these models are known to perform exceptionally well with tabular data as input, where the structural organization of the features is
unrelated to the values those features take (i.e., where there is no information contained in the spatial/temporal relationship between
features, as is the case with image or time-series data). Finally, such models are robust against datasets with small sample sizes and can
be sensitive to high dimensionality.

Random forest models (Breiman, 2001)—which utilize decision tree ensembles, as well as bootstrap aggregation (bagging; Biihlmann,
2012)—are a powerful extension of decision trees. To implement random forest models, a bootstrapped sample of the original data is
generated and a random subsample of candidate features is selected; this sample is subsequently used to fit a single decision tree. This
is repeated n times (the number of trees in the forest, specified a priori), and predictions from the trees are aggregated to form a final
prediction. The combination of ensemble and bagging approaches make random forests robust to overfitting and outliers, but when
taken together, protect against poorly-performing submodels. Teicher et al. (2018) used random forests combined with feature
importance analysis to assess the most important predictors of adult hippocampal volume among multiplicity, severity, duration, and/
or timing of maltreatment exposures at different periods of development. They discovered that male hippocampal volume was pre-
dicted by neglect, but not abuse, experiences up through 7 years of age. Female hippocampal volume, on the other hand, was predicted
by abuse, but not neglect, experiences at 10, 11, 15 and 16 years. Interestingly, exposure at peak age had greater predictive importance
than multiplicity, severity, or duration (Teicher et al., 2018).

Another tree-based algorithm is gradient-boosting trees (or gradient-boosting machines [GBMs]; Friedman, 2001). GBMs are similar
to random forest models, utilizing ensemble and bagging approaches to combine multiple decision tree models into a larger model.
However, unlike random forests, whose underlying decision trees are fit independently, GBMs attempt to predict the errors of previous
trees in the ensemble (see Natekin & Knoll, 2013 for more information). This type of ensemble fitting is known as boosting. Silveira et al.
compared different tree-based prediction methods to investigate the links between childhood trauma, executive dysfunction, and brain
functional connectivity in predicting high-risk drinking in adolescents; they showed childhood trauma severity was significantly
related to executive dysfunction across all developmental milestones. At baseline, functional connectivity patterns in regions like the
dorsal anterior cingulate cortex, anterior insula, intraparietal sulcus, and postcentral gyri mediated the relationship between childhood
trauma and executive dysfunction (Silveira et al., 2020).

3.3. Neural networks

Artificial neural networks (ANNs) are a connectionist (Hanson & Burr, 1990) subclass of machine learning, often referred to as deep
learning. ANN models consist of nodes/neurons, representing the features in a dataset, which are organized into layers and are
interconnected across layers through edges. Like tree-based algorithms, ANNs are ideal for situations where feature interactions are
crucial to predicting the supervisory signal; however, unlike tree-based models, ANNs are uniquely suited to analyzing data where the
structural organization of the features is related to the values those features take (i.e., where important information is contained in the
spatial/temporal relationship between features), as is the case with images (e.g., computer vision), time series (e.g. audio processing,
natural language processing), or a combination of the two (e.g., video processing, neuroimaging analysis). Indeed, research on ANNs
has produced many unique network architectures (see Liu et al., 2017; Smys et al., 2020), each designed to handle specific needs of
various data structures. The backbone of these architectures is the multilayer perceptron (MLP; Bebis & Georgiopoulos, 1994). An MLP’s
network structure represents a latent, interactive feature map (a collection of nodes/neurons), making MLPs ideal for modeling sys-
tems with complex interactions (see the Universal Approximation Theorem; Cybenko, 1989; Pinkus, 1999). However, it is because of
this property that MLPs are extremely sensitive to overfitting, especially with small samples, and thus hyperparameter tuning, regu-
larization, and cross validation are almost always necessary.

ANNSs and their derivative architectures have unique challenges that limit their use, most of which involve their complexity and
black box nature. These typically include being more difficult to implement, debug, tune, and train, requiring extensive computational
resources as models get larger. Additionally, because of the complex structure of ANNs, models typically have many (often by orders of
magnitude) more parameters to be estimated relative to other models, necessitating large sample sizes to ensure generalizability;
however, with an appropriately-chosen architecture and large sample, ANNs tend to out-perform most other model algorithms in their
predictive performance. As such, their use is only beginning to emerge in adversity research. For example, Keding et al. used an
ensemble learning approach to combine predictions from many algorithms discussed here, including ridge, SVM, random forest, GBM,
and MLP regression models; here, they aimed to predict chronological age from gray matter brain features in female children and
adolescents with a history of physical and/or sexual abuse. Results indicated that female participants exposed to abuse showed delayed
maturation of emotion-related neural circuits relative to those not exposed to abuse. This delay was observed regardless of subsequent
expression of internalizing psychopathology and was associated with altered structural maturation of key subcortical brain structures
involved in fear learning, including the hippocampus (Keding et al., 2021). As large, population-representative datasets become
commonplace in adversity research, neural network approaches are likely to become more common, as their ability to capture
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complex, interactive patterns supersedes other approaches.
4. Discussion

Each of the described methods can be leveraged to advance the field’s understanding of adversity in different ways. We have
focused on a subset of multivariate, quantitative approaches that hold particular promise in the context of adversity research given
their ability to handle common challenges in adversity data, such as multicollinearity, heterogeneity, skewed distributions, and
complex data structures. While the present paper is by no means exhaustive, and there are numerous other methods with applications
in adversity research that are not covered here due to space constraints (e.g., graph theory, network analysis), we hope that this review
serves as a starting point for adversity researchers interested in expanding upon the methodology of the original ACEs study.
Leveraging such powerful modeling approaches holds great promise for advancing the field’s understanding of the complex, inter-
related, and multidimensional nature of adversity and its developmental consequences.

4.1. Interplay between unsupervised/data-driven methods and theory

Theory-driven hypothesis testing has remained the prevailing approach in adversity research. Here, we have reviewed the ways in
which a selection of unsupervised/data-driven approaches can be implemented to advance this area of research in complementary
ways; indeed, these perspectives are synergistic and are both essential to the scientific process. Translating causal, mechanism-driven
theories of adversity into precise, testable, and falsifiable hypotheses has proven challenging (due in large part to the complexity and
heterogeneity of adversity) and the literature to date lacks consensus (Smith & Pollak, 2020). Thus, identifying data-driven patterns of
co-occurrence or covariance that are clinically relevant (i.e., that map onto mental health-related variables) represents an important,
complementary branch of research that can parallel theory-driven explorations and further facilitate hypothesis generation and
refinement of existing theory. Importantly, exploratory approaches are not entirely atheoretical, as variable selection is often guided
by existing theory, and they also allow for inclusion of novel factors that may not be represented in existing theory (Van Lissa, 2022).
For example, factors such as the predictability and controllability of experiences have historically not been explicitly accounted for in
theoretical models of adversity; however, these factors are important elements of youths’ experiences (Baram et al., 2012; Cohodes
et al., 2021; Ellis et al., 2022; Smith & Pollak, 2020). Multivariate methods can facilitate understanding of how these features of
adversity exposure (among others) interrelate, co-occur, and differentially predict youth outcomes.

4.2. Optimizing multivariate approaches

In order to maximize the benefits of these types of multivariate approaches, there are key considerations that researchers can
account for during study conceptualization and data acquisition. The original ACEs questionnaire (Felitti et al., 1998) included a small
number of items related to abuse and household dysfunction, and participants reported on whether or not they had experienced those
particular adversities as children. Notably, there is no clear rationale delineated in the original ACEs study for the selection of these
particular adversities (Lacey & Minnis, 2019). Following the ACEs study, more comprehensive and nuanced measures of adversity
have been developed, and refined measurement of adverse experiences is critical to further advancing this area of research. For
example, the Maltreatment and Abuse Chronology of Exposure (MACE; Teicher & Parigger, 2015) assesses a wide range of features
including specific types of abuse and neglect, timing of exposure, and severity. The Dimensional Inventory of Stress and Trauma across
the Lifespan (DISTAL; Cohodes et al., 2023) provides further expansion by querying features such as controllability, predictability,
discrimination, and physical proximity to a stressor. The multidimensional, heterogeneous data derived from these measures are well-
suited for advanced multivariate methods that can accommodate the large number of interrelated variables and clarify their relative
importance for youth outcomes.

4.3. Conclusion

The original ACEs study by Felitti and colleagues was crucial in establishing the robust relations between adversity and long-term
health and well-being. Twenty-five years later, significant advances in quantitative methods have ushered forth a new wave of
adversity research that has the potential to fundamentally shift the field’s conceptualization of adversity. Advanced multivariate
statistical approaches can help address some of the key challenges in adversity research and facilitate improvements in intervention
and prevention efforts that mitigate the consequences of adversity for children and adolescents.
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