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Abstract
Depth estimation tries to obtain 3D scene geometry from low-dimensional data like 2D images. This is a vital operation in
computer vision and any general solution must preserve all depth information of potential relevance to support higher-level
tasks. For scenes with well-defined depth, this work shows that multi-view edges can encode all relevant information—that
multi-view edges are complete. For this, we follow Elder’s complementary work on the completeness of 2D edges for image
reconstruction. We deploy an image-space geometric representation: an encoding of multi-view scene edges as constraints
and a diffusion reconstruction method for inverting this code into depth maps. Due to inaccurate constraints, diffusion-based
methods have previously underperformed against deep learning methods; however, we will reassess the value of diffusion-
based methods and show their competitiveness without requiring training data. To begin, we work with structured light
fields and epipolar plane images (EPIs). EPIs present high-gradient edges in the angular domain: with correct processing,
EPIs provide depth constraints with accurate occlusion boundaries and view consistency. Then, we present a differentiable
representation form that allows the constraints and the diffusion reconstruction to be optimized in an unsupervised way via
a multi-view reconstruction loss. This is based around point splatting via radiative transport, and extends to unstructured
multi-view images. We evaluate our reconstructions for accuracy, occlusion handling, view consistency, and sparsity to show
that they retain the geometric information required for higher-level tasks.

Keywords Edges · Depth reconstruction · Diffusion · Light fields · Multi-view reconstruction

1 Introduction

Depth estimation is a vital first step in many computer vision
tasks such as novel view synthesis (Gortler et al., 1996; Choi
et al., 2019; Riegler & Koltun, 2020, 2021), scene editing
(Jarabo et al., 2014; Mihara et al., 2016; Luo et al., 2020),
lighting and material estimation (Ha et al., 2020), and aug-
mented reality (Holynski & Kopf, 2018). The problem has
a long history with a wide variety of proposed solutions.
These include photometric stereo (Xu et al., 2019), shape
from shading (Zhang et al., 1999), depth from defocus (Sub-
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barao & Surya, 1994; Ikoma et al., 2021), active illumination
(Bi et al., 2020; Debevec et al., 2000; Meka et al., 2019; Nam
et al., 2016; Xu et al., 2019), and deep-learning-based meth-
ods including monocular settings (Chen et al., 2016; Li et al.,
2019; Ranftl et al., 2020, 2021).

The most popular and widely studied approach is still
binocular and multi-view passive stereo depth estimation
(Seitz et al., 2006; Schönberger et al., 2016). This is due to its
ability towork inmany environments and lighting conditions,
its immunity to interference from competing active illumi-
nation signals, and its ability to generate depth at the same
resolution as the color input. In their basic form, stereo depth
methods use epipolar constraints to perform a correspon-
dence search at each pixel in neighboring images. However,
this search is computationally expensive and is susceptible
to failure in textureless, specular, and disoccluded regions.
The baseline between neighboring cameras can also have a
significant impact on quality: Small baselines reduce accu-
racy as the change in disparity relative to depth is low, and
large baselines make it difficult to find corresponding points
in neighboring images (Joshi & Zitnick, 2014).
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Nonetheless, stereo depth estimation remains popular,
especially with the recent proliferation of camera sensors.
Most smartphones now have at least two back-facing cam-
eras, e.g., the Google Pixel 7 Pro has three, the Light L16 had
sixteen, and light field camerasmay havemanymore. A large
number of sensors leads to increased—often prohibitive—
data and computational costs. But it also enables new
applications in computational photography, including ones
that require depth, with the quality of depth often correlating
with the quality achieved in the computational photography
task.While depth accuracy is less important for frontal-scene
novel view synthesis (Mildenhall et al., 2019), depth accu-
racy is critical for tasks that require measurement such as 3D
reconstruction, tasks that edit scenes such as light field paint-
ing (Jarabo et al., 2011, 2014), or tasks that rely on correct
surface normals like relighting (Xu et al., 2019) or material
estimation (Ha et al., 2020).

Beyond accuracy, we must also consider other proper-
ties of a representation for depth. For instance, a depth map
contains discrete samples on a regular grid, but this may be
redundant if neighboring samples do not vary. For 2D appear-
ance images, Elder described the explicitness, concision, and
completeness of a given representation (Elder, 1999), where
completeness captures all information of potential relevance
to any higher-level visual task. From this, Elder presented
a representation of 2D images based on sparse 2D texture
edges and a diffusion reconstruction step. This provides an
explicit, concise, and complete image-space representation
that is accurate in its reconstruction of an original image.

From this inspiration, our paper shows that sparse multi-
view edges can similarly provide a complete representation
of scene depth; that is, multi-view edges encode all rele-
vant information to support higher-level tasks that rely on
depth estimation. These can represent depth for all input
views with correct occlusion, maintaining the explicitness
of depth structures via occlusion edges. Further, their conci-
sion is particularly useful: beyond their sparseness helping to
reduce data costs from many input views, multi-view edges
can help us to ignore estimating depth in low-confidence tex-
tureless regions and instead rely on diffusion to fill the gaps.

First, we describe how to quantify completeness by the
three metrics of accuracy, occlusion-edge accuracy, and
view-consistency, and then define the proposed sparse multi-
view edge representation for scene depth (Sect. 2). Then,
we show how to estimate the parameters of the representa-
tion for structured 4D light field images (Sect. 3). Two-plane
parameterized light fields are a good starting point because
multi-view edges are well-defined via gradients in epipolar
plane images (EPIs). Evaluating the representation for com-
pleteness requires measuring the loss of information during
encoding. Thus, we show how to decode the representation
into piece-wise smooth multi-view depth maps using dif-
fusion, where the representation provides constraints upon

the diffusion operation (Sect. 4). We evaluate the representa-
tion for completeness, observing that our encoding/decoding
approach finds balance between the three metrics (Sect. 5).

However, even though our multi-view edge representa-
tion is in principle complete, in practice errors in the diffusion
constraints maymake it less effective. This is one reasonwhy
diffusion-based methods for depth estimation have declined
in favor versus deep-learning-based methods. To reconsider
this situation, we present a differentiable encoding variant
that allows us to optimize representation parameters directly
to improve quality with respect to the three metrics (Sect. 6).
Using Gaussian splatting and radiative transport, this dif-
ferentiable approach optimizes constraints with respect to a
multi-view reprojection loss, and lets us relax our capture
scenario to unstructured multi-view images. Optimizing the
representation directly also lets us easily control sparsity by
assessing the value of each multi-view edge. This produces
accurate and compact representations for scene depth that can
be competitive with deep learning methods (Sect. 7), where
the representation is especially advantageous for sparsity and
discreteness that are difficult to represent with CNNs.

Code and video results are available online at
https://visual.cs.brown.edu/incompletedepth.

2 Defining a Representation

2.1 Criteria

We begin by describing properties we would like in a rep-
resentation and how to measure them. To evaluate an image
representation, Elder (1999) determined explicitness, conci-
sion, and completeness criteria.We contextualize these to the
specific setting of multi-view scene reconstruction and con-
sider them criteria for evaluating a general-purpose image
space geometric representation.

2.1.1 Explicitness

Important structural information should be explicitly rep-
resented. Adelson and Bergen (1991) describes this as
representing “things” not “stuff.” For instance, edges are
more explicit than intensity values. Multi-view color images
implicitly store the geometric scene structure. Depth maps
explicitly store geometric structure, and this is more eas-
ily used by later tasks, e.g., we can define occlusion
boundaries from depth map gradients. Another example is
spatio-angular segmentationmasks (Hog et al., 2016;Mihara
et al., 2016) that define piece-wise constant object sur-
faces. Both representations are more explicit thanmulti-view
RGB images.
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2.1.2 Concision

Any redundant information in the input should be dis-
carded. This property—based on Barlow’s efficient coding
hypothesis (Barlow et al., 1961)—is especially important
for multi-view input, as multi-view images implicitly encode
depth in their angular dimensionwith high redundancy.Many
methods (Wanner & Goldluecke, 2012; Wang et al., 2015,
2016a; Zhang et al., 2016; Jiang et al., 2018; Schönberger et
al., 2016; Huang et al., 2018; Yao et al., 2018, 2019) exploit
this redundancy for higher-quality depth reconstruction than
traditional stereo. However, suppose we store the recon-
structed result as a depth map per input view. This retains
redundancy and so per-viewdepthmaps are not concise.Con-
cision also relates to the sparsity of a needed representation,
where textureless regions might require little representation.

2.1.3 Completeness

The representation should encode all relevant information to
be able to support a variety of higher-level tasks. Different
tasks are enabled as depth reconstruction quality increases,
e.g., approximate reconstructions can suffice for novel view
synthesis tasks (Zhou et al., 2018;Mildenhall et al., 2019) but
not for normal or BRDF estimation (Wang et al., 2016b; Park
et al., 2018). Only high quality reconstruction everywhere
makes stringent higher-level tasks possible.

2.2 Measurement

Elder also lists generality, reliability and precision as evalu-
ative criteria for a representation. We believe these concepts
are subsumed within three metrics for a representation’s
reconstructed depth.

2.2.1 Accuracy

Accuracy refers to the correctness of the estimated depth
maps in metric terms. Correct reconstruction is a broad goal
of 3D reconstruction and so accuracy is a prime metric
in benchmarks (Scharstein & Szeliski, 2002; https://vision.
middlebury.edu/stereo/;Geiger et al., 2012;Menze&Geiger,
2015). It quantifies the difference between the estimated
depth and a known ground truth measure. Common quan-
titative metrics include the Mean Absolute Error (MAE), the
Mean Squared Error (MSE), Q25, and a bad pixel measure
BP(·). The Q25 metric represents the 25th percentile of the
absolute error, and BP(t) is the percentage of pixels falling
above threshold t in absolute error.

2.2.2 Occlusion Edge Accuracy

For some tasks, like compositing a new scene element behind
an existing one, the mean error over all pixels may be less
relevant than the error specifically for pixels upon depth
boundaries. Occlusion edge reconstruction accuracy is mea-
sured by restrictingMSE, MAE, Q25, and bad pixel BP(·) to
the vicinity of depth edges defined by ground truth gradients.
We also show precision-recall curves of these edges.

2.2.3 View Consistency

View consistency in multi-view depth estimation requires
the globally-consistent reconstruction of each view Ii as rep-
resented by a depth map Di : R

2 → R in camera space
coordinates. View consistency is vital to avoid flickering and
swimming artifacts in applications that involve interaction
with all input views simultaneously or in quick succession,
such as when editing a light field or for output on a light field
display (Jarabo et al., 2014; Tompkin et al., 2015).

We measure view consistency by reprojecting a depth
map onto a reference view and computing the variance. Let
D0, D1, . . . , Dn represent the depthmaps forn viewswarped
onto a target view (u, v). The view consistency at pixel s in
view (u, v) is given by:

C(u,v)(s) = 1

n

n∑

i=0

(Di (s) − μs)
2, (1)

μs = 1

n

n∑

i=0

Di (s), (2)

and overall consistency is given as the mean over all pixels
s in the target view S:

C(u,v) = 1

S

S∑

s=0

C(u,v)(s). (3)

This form allows consistency to be evaluated for both syn-
thetic and real world scenes.

2.2.4 Discussion

A fundamental trade-off exists between these three metrics.
Maximizing consistency penalizes general and occlusion
edge accuracy: in the extreme case, a single depth value for all
pixels would provide the highest consistency with low accu-
racy and no occlusion edges. Continuous or smooth depth
values allowgreater precision and accuracy but leads to lower
gradient edges. A complete depth representation should be
general enough to optimize each metric separately.
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Fig. 1 Top:Elder showed that a representation of image edges including
position, brightness and contrast, gradient, and blur scale is complete as
it lets us reconstruct the image via a diffusion processwith lowerror.Left
to right: Original image, edge locations, reconstructed image; repro-
duced from Elder (1999). Bottom: We show that a similar approach is
possible for multi-view images and provides a complete representation
for scene geometry via depth

2.3 A Complete Multi-view Edge
Representation for Depth

Next, let us begin to define our representation by consid-
ering Elder’s edge-based representation for images (Elder,
1999). This consists of four components:

1. The 2D pixel location (xi , yi ) of edges within an image,
2. The brightness and contrast (bi , ci ) of intensity values at

each edge pixel,
3. A 2D gradient vector (gi ) that indicates the direction

perpendicular to an edge, and
4. A blur scale (ri ) describing the extent and attenuation of

the edge.

Elder’s paper shows results for grayscale images, but the
concepts extend to each spectral channel.

Assuming that we can recover the representation from an
image, the original image can be reconstructedwith low error
through anisotropic diffusion (Fig. 1). The representation is
more compact than an image (≈2–10% of the input pixels) as
constant or smoothly-varying intensity values are not stored;
instead, edges are blurred by the diffusion process according
to their direction and scale to fill in these gaps. This represen-
tation can be used by tasks like editing by adding, varying,
or removing points from the representation, such as remov-
ing windows from an image of a house as shown in Elder’s
succeeding paper (Elder & Goldberg, 2001).

With this inspiration, let us formulate a representation of
sparse geometry based on multi-view edges in image space.
A multi-view edge refers to the pairing of a 2D edge location
with a depth label that allows the edge point to be uniquely
identified and localized in multiple views.

Our model consists of:

1. The 2D subpixel location (xi , yi ) of an edge in the central
camera view,

2. A depth value (di ) for the edge,
3. A 2D surface vector (si ) that indicates the direction of

occlusion, and
4. A confidence value (ci ) of the edge being a depth edge

rather than a texture edge.

Elder’s single-view edge model (Elder, 1999) encodes pho-
tometric information, whereas our multi-view edge model
encodes geometric information. It assumes that smoothly-
varying depth regions can be interpolated from sharp neigh-
boring edges via their surface vectors and confidences that
define the direction and contribution to the local region’s
depth estimate (cf. to image edges blurring to contribute).
Subpixel edge locations and continuous depth values are
required when projecting the representation into cameras at
different positions, and special attention will be required to
handle aliasing given the limited sensor resolution.

This representation makes structural features of the input
explicit. This includes edges that provide information about
changes in the visual composition of a scene, and occlusion
surfaces and depth boundaries that together provide infor-
mation about the 3D structure of a scene. Moreover, this
information encoding is concise. Redundant measurements
are avoided and noisy estimates in smooth and texture-less
regions—ambiguous areas for most correspondence-based
dense depth estimation methods—are discarded.

2.3.1 Reconstruction Methods

A reconstructionmethod allows us to convert our edgemodel
into a depth map. Using only the first two model parameters
along with a piece-wise constant depth reconstruction can
produce view-consistent results. This can be posed as a 4D
light field superpixel segmentation task (Khan et al., 2019)
and is useful for tasks such as view interpolation that might
not require as-highly-accurate depth estimates.

However, for tasks like light field editing or compositing,
accuracy is important and requires the use of all four parame-
ters of ourmodel alongwith a smooth reconstructionmethod.
For our work, this is achieved by guided diffusion of depth
values from edges in both the angular and spatial domain
through the solution of a constrained optimization problem
(Levin et al., 2004). The solution minimizes an energy E that
encourages adherence to the sparse edge depth values—the
so-called data term Ed—while reducing the gradient every-
where via a smoothness term Es :

E = λd Ed + λs Es . (4)

Terms are traded by hyperparameters λd and λs .
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Fig. 2 Model completeness on synthetic scene.With correct constraints
set in our multi-view edgemodel, diffusion-based reconstruction gener-
ates high-quality results. The drastic improvement between (b) and (c)
also shows the potential of providing better constraints within an opti-
mization approach (Sect. 6). a Direct diffusion of sparse depth labels

with no constraint optimization. b Our initial reconstruction approach
using bidirectional diffusion (Sect. 4). c Using an oracle to optimize the
surface vector parameter. dUsing an oracle to optimize both the surface
vectors and the sparse edge set. e Ground truth depth and input light
field view. Please zoom in to the PDF to see the detail

2.3.2 Demonstration of Completeness

To highlight the potential accuracy of this model, we imple-
ment a brute-force optimization of representation parameters
given a ground truth depth map on a synthetic scene (Fig. 2).
The multi-view edge model can represent highly accurate
depth maps via diffusion-based reconstruction, so long as
the model parameters are correct.

2.3.3 Why an Image-Space Representation?

The 2D subpixel locations and depth values of ourmulti-view
edges effectively describe a 3D point cloud. This can be pro-
jected into 2D and, with the surface vector and confidence
parameters, diffused at any particular image resolution. Thus,
the representation can offer a one-to-one correspondence
between color pixels and geometry, which is useful for tasks
like image editing, AR, and mixed reality that operate on
image pixels. Moreover, they can typically more efficiently
capture fine details than a mesh or a voxel grid, the latter
being expensive in terms of resolution. Neural fields may
offer these advantages but are computationally expensive to
compute anddifficult to edit once computed (Xie et al., 2022).

2.3.4 Limitations of Scope

Multi-view images encode both photometric and geometric
information; we focus on the geometric information encoded

in our proposed model. For this, we show the completeness
and concision properties empirically and do not quantify the
explicitness of our model. Our work uses edges and points
recovered assuming the scene is composed of Lambertian
surfaces and that edges that lead to depth estimates are not
blurred. We demonstrate empirically that this model is often
sufficient for editing tasks of real-world scenes captured with
narrow baseline camera systems.

3 RecoveringModel Parameters
for Light Fields

We consider the case of structured light fields as might be
captured by a lenslet-array camera (e.g., Lytro). In Sect. 6,
wewill show examples that extend this to unstructuredmulti-
view images. For now, structured light fields provide simpler
ways to extract multi-view edge information.

Given a 4D light field LF(x, y, u, v) (Fig. 3), we define
the central horizontal row of viewsH = LF(x, y, u, vc) and
central vertical column of views V = LF(x, y, uc, v). We
call H,V the ‘cross-hair’ views. Each view I ∈ H contains
a set of epipolar plane images (EPIs) Ei (x, u) = I (x, yi , u),
with I ∈ V containing E j (y, v) = I (x j , y, v). With a Lam-
bertian reflectance assumption, a 3D scene point corresponds
to a straight line l in an EPI, where the depth of the point
determines the slope of the line.

123



International Journal of Computer Vision

Fig. 3 LF(x, y, u, v) defines a two-plane light field parameterization
with central viewsH,V outlined in dashed yellow. Light rays are shown
as black lines (top). We show epipolar plane images (EPIs) sliced from
the 4D volume below (Color figure online)

3.1 FindingMulti-view Edges

A multi-view edge refers to the pairing of a 2D edge loca-
tion with a depth label which allows the edge point to be
uniquely identified and localized in multiple views. These
two parameters correspond exactly to the edges in an EPI.
For robust occlusion handling, we must accurately detect the
intersections of lines in EPIs (Fig. 4). However, classical edge
detectors like Canny (Canny, 1986) and Compass (Ruzon &
Tomasi, 1999) often generate curved or noisy responses at
line intersections,whichmakes later linefitting andocclusion
localization difficult. Instead, we propose an EPI-specific
method to detect a line set L for each EPI of the central hori-
zontal and vertical views of our light field.Note:We describe
line detection for the central horizontal views; central vertical
views follow similarly.

3.1.1 EPI Edge Detection

We take all EPIs Ei (x, u) (size w × h) from the horizontal
central view images I ∈ H. We convolve them with a set
of 60 oriented Prewitt edge filters with each representing a
particular disparity. We filter only the central views for effi-
ciency and later on will propagate their edges across all light
field views. To detect small occluded lines, we use 2 h × 2 h
filters and convolve the entire (x, u) space. This effectively
extends occluded edge response to span the height of the EPI.

From this, we pick the filter with maximal response per
pixel, which is a disparity map Z at edges, and we take the
value of the filter response as an edge confidence map C .
Then, we perform non-maximal suppression per EPI. To sup-
press false response in regions of uniform color, wemodulate
edge response by the standard deviation of a 3 × 3 window
around each pixel in the original EPI (Kim et al., 2013). Our
final C map has clean intersections.

3.2 Multi-view Edge Refinement

3.2.1 Line Fitting

To create a parametric line set L, we form lines li from each
pixel in C in confidence order, with line slopes from Z . As
we add lines, any pixels inC which lie within an λ-pixel per-
pendicular distance of the line li are discarded. λ determines
the minimum feature size that our algorithm can detect. In all
our experiments, we set λ = 0.2h. We proceed until we have
considered all pixels in C . For efficiency, we detect edges
and form line sets in a parallel computation per EPI.

3.2.2 Noise & Occlusion Filtering

The above process, while fast, may not remove all false pos-
itives. To filter these, we use a gradient-based alignment
scheme: each line l ∈ L is sampled at n locations to generate
the set of samples Sl = {(xi , yi )}. The line l is considered a
false-positive if the local image gradient of I does not align
with the line direction at a minimum k number of samples:

∑

s∈Sl
1

( ∇ I (s)(∇l)T

‖∇ I (s)‖‖∇l‖ > cos(τ f )

)
< k, (5)

where 1(·) is the indicator function that counts the set of
aligned samples,∇ I is the first-order image gradient approx-
imated using a 3×3Sobel filter, and∇l is perpendicular to the
line. The parameters τ f and k are constants with τ f = π/13
and k = (EPI height)/c, with 1 ≤ c ≤ EPI height. To deter-
mine the constant value c, we consider two factors: 1) the
accuracy of EPI line fitting, and 2) the expected minimum
number of views a point is visible in.

In the case of perfect alignment between the line and EPI
gradients, c = 1. This means that a line with even a single
misaligned sample is rejected.However, if a point is occluded
in some views, the corresponding EPI line will be hidden and
misalignment of samples in those views is inevitable. If we
set c = 1 we risk discarding such lines. We determine empir-
ically that c = 4 provides good results across the synthetic
and real-world scenes, and across the narrow andwider base-
line light fields that we evaluate.
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Fig. 4 EPI edges provide both the location and disparity labels of a
sparse point set P . Thus, the first stage of multi-view edge estimation
consists of EPI edge detection and line fitting. In the second stage, we
compare the direction of each EPI line with underlying image gradients

to remove noisy labels and points that are occluded in the central view.
Finally, we improve the disparity estimates of the sparse set through an
entropy-based random search

The parametric definition of EPI lines does not carry any
visibility information for a point across light field views. We
determine visibility v(l) of a point l ∈ L in the central view:

v(l) = 1

( ∇ I (sc)(∇l)T

‖∇ I (sc)‖‖∇l‖ > cos(τv)

)
, (6)

where sc is the EPI sample corresponding to the central view
and τv = π/10.

3.2.3 Entropy-based Disparity Refinement

Notice that the number of discrete disparity values of points
in L is bounded by the number of large Prewitt filters used
for EPI line fitting. Computational efficiency considerations
prevent this number from becoming too large. Moreover,
numerical precision and sampling errors result in the granu-
larity of depth estimates plateauing beyond a certain number
of filters. Thus, to enable the calculation of sub-pixel dispar-
ity values we fine-tune the initial estimates through random
search and filtering. Let Lc = {l ∈ L | v(l) = 1}.

E(l) =
∑

s∈Sl
−P(I (s)) log2(P(I (s))), (7)

where I (s) is the intensity value at s and P(s) is estimated
from a histogram.

We minimize E(l) through a random search in the 2D
parameter space defined by the x-intercepts of l on the top
and bottom edge of the EPI, l = (xt , xb): at the j th iter-
ation of the search we generate uniform random numbers
(ot , ob) ∼ U (−1, 1)(αt j ), to generate a proposal l j =
(xt + ot , xb + ob) (Fig. 4). This is accepted with probability
one if E(l j ) < E(l j−1). We use t = 0.88, α = 0.15, and run
ten search iterations.

Then, the resulting disparity estimates are refined by joint
filtering in the spatial, disparity, and LAB color space. Let P

represent the spatial projection of Lc into the central view,
and let ps , pd , and pc be the spatial position, disparity, and
color of a point p ∈ P . The filtered disparity estimate f (pd)
is calculated via a spatial neighborhood S around p:

f (pd) = 1

W

∑

q∈S
Nσs (‖ps − qs‖)Nσd (pd − qd)·

Nσc (‖pc − qc‖)pd , (8)

where the normalization factor W is given by

W =
∑

q∈S
Nσs (‖ps − qs‖)Nσd (pd − qd)·

Nσc (‖pc − qc‖). (9)

In theory, the parameters σc and σd depend on the scene con-
tent and the maximum disparity. In practice, the maximum
disparity is usually bounded and the color gradient character-
istics of most real-world scenes are fairly uniform. Thus, we
found that the combination σs = 10, σd = 0.1 and σc = 0.5
works for all scenes in our experiments.

3.3 Surface Vectors

At each depth edge, a surface vector indicates the direc-
tion of the occluding surface. This information is required
since multi-view edges by themselves do not encode suffi-
cient information to uniquely reconstruct a scene. In Fig. 5a,
two different scene configurations generate a similar EPI and,
thus, similar multi-view edge parameters. The problem is
exacerbated by the fact that in practice we do not even know
the location of the discontinuity—that is, the edge—precisely
in pixels when using Prewitt filters: Fig. 5b shows that a Pre-
witt filter convolved with a set of pixels representing an edge
will generate a non-zero activation along two-pixel columns.
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Fig. 5 Sparse labels at edges are difficult to propagate because the
edge is weakly localized at the boundary of two projected surfaces. As
a result, labels may be assigned to the incorrect side of a depth bound-
ary. a Two different scene configurations captured with camerasC1 and
C2 may generate similar EPIs. The EPI edge represents the boundary

of the occluding surface. For C1 this is the surface on the left (black);
for C2 it is on the right (blue). b The direction from which occlusion
happens cannot be disambiguated from edge activations alone, leading
to incorrect label placement (Color figure online)

Using a model without surface vector parameters results
in significant errors around edges when using a smooth
reconstruction method. However, retrieving the direction of
occlusion as the surface vector is a difficult task: determining
it requires us to know the depth at pixels around each label,
but we only have a sparse set of labeled points at edges.
Holynski and Kopf (2018) deal with this by assuming that
sparse labels do not lie on depth edges so that neighboring
pixels have a similar label. Yucer et al. (2016) handle labels
on depth edges, but their method is designed for light fields
with a large number (≈3000+) of views. Our novel contribu-
tion is that we determine surface direction from other sparse
labels within context. We present a method that uses a bidi-
rectional ‘backward-forward’ diffusion process to generate
a surface vector parallel to the image gradient.

As all potential occlusion edges are also depth edges, one
way to determine occluding surface, or diffusion, direction is
by distinguishing depth and texture edges. Yucer et al. (2016)
compare the variation in texture on both sides of an edge
as the view changes: the background seen around a depth
edge will change more rapidly than the foreground, leading
to a larger variation in texture along one side of the edge.
The correct diffusion direction is to the side with a lower
variation. This method works for light fields with thousands
of views (3000+ images) but proves ineffective on datasets
that are captured using a lenslet array or camera rig (Fig. 10).
This is because the assumption fails to hold in cases where
1) the background lacks texture, and 2) the light field has a
small baseline with relatively few views, as is common for
handheld cameras. Here, occlusion is minimal and intensity
variation is caused more by sensor noise than by background
texture variation.

Our proposed solution to the depth edge identification
problem works for light fields with few views (e.g., 7 × 7

from a Lytro). We use S[A] to represent the image created
by splatting sparse points in a set A onto a w × h raster
grid, and D to be a dense w × h disparity map. Diffusion is
formulated as a constrained quadratic optimization problem:

D̂[A] = argmin
D

∑

p∈A
Ed(p) +

∑

(p,q)∈S
Es(p, q), (10)

where D̂[A] is the optimal disparity map given the sparsely
labeled image S[A] and S is the set of all four-connected
neighbors in D. The data term Ed(p) and smoothness term
Es(p, q) are:

Ed(p) = λd(p)
∥∥S[A](p) − D(p)

∥∥, (11)

Es(p, q) = λs(p)
∥∥D(p) − D(q)

∥∥, (12)

with λd(·) and λs(·) being the spatially-varying data and
smoothness weights.

Equation (10) represents a standard Poisson problem, and
we solve it using an implementation of the LAHBPCG solver
(Szeliski, 2006) by posing the constraints in the gradient
domain (Bhat et al., 2009). We begin by defining two sets
formed from opposite offset directions ∇ I (p) and −∇ I (p):

P f = {p + ∇ I (p) ∀ p ∈ P}, (13)

Pb = {p − ∇ I (p) ∀ p ∈ P}, (14)

where ∇ I (p) is the gradient of the central light field view at
point p. Then, we solve Eq. (10) for both offset directions
D̂[P f ] and D̂[Pb] using data and smoothness weights:

λd(p) =
{
106 if p ∈ A,

0 otherwise,
(15)
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Fig. 6 Top: Given an edge point p with image gradient ∇ I (p) and
depth label pd , we would like to determine which side of the edge to
propagate pd . We generate images D̂[P f ] (middle), and D̂[Pb] (bot-
tom) by solving a Poisson optimization problemwith diffusion direction
p+∇ I (p) and p−∇ I (p) respectively. The correct diffusion direction
(middle; forward) generates an intensity profile resembling a step func-
tion. In the example shown, pd corresponds to the surface on the right
of the edge as p + ∇ I (p) generates a profile more closely resembling
a step function

λs(p) = 1

‖∇ I (p)‖ + ε
. (16)

Given both solutions, we compare the normalized depth
profile around each point p ∈ P along ∇ I (p) in D̂[P f ]
and D̂[Pb]. Figure6 shows that the profile for the correct
offset direction (∇ I (p) or −∇ I (p)) more closely resembles
a step function around p due to a strong depth gradient. This
is because neighboring points in the correct offset direction
will have a disparity value similar to p. The high data term
together with the global smoothness constraint results in a
small gradient around p when the incorrect offset pushes
it to the wrong side of the edge. We estimate the profile

Fig. 7 Estimated depth edge confidence λs , which successfully ignores
texture edges on the bunny in the top scene and shadow edges on the
dinosaur skeleton in the bottom scene

around p in D̂[P f ] and D̂[Pb] by convolving the normalized
value of a set Np of pixels around p with the step filter F =
[−1 −1 +1 +1].

3.4 Depth Edge Confidence

The bi-directional diffusion process descried above also
allows us to identify the final parameter of our multi-view
edge model, depth edge confidence. This is given by the
mean gradient at each pixel across the backward-forward
pass (Fig. 7). Texture edge gradient remains low in both
passes. For depth edges, the gradient is higher in one pass.
For depth edges that are not meant to be sharp, the change
in depth around that region from the bi-directional solve is
small, and picking either offset leads to low error.

4 Occlusion-aware 4D Depth Reconstruction

Section 3 estimates accurate view-consistent depth for multi-
view edges; next, we present an occlusion-aware reconstruc-
tion method to invert our multi-view edge encoding into
depth maps. By showing that our representation encodes
all relevant information required for generating accurate and
view-consistent depth reconstructions with strong occlusion
edges, we establish completeness. Practically, this accom-
plishes light field depth estimation. Methods often strive
for geometric accuracy without considering occlusion edges,
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Fig. 8 a Ground-truth disparity maps from two different camera posi-
tions C1 and C2. b Naively attempting to generate the output of C2
by reprojecting C1 results in large holes (in green). c Our method uses

depth edges to guide disparity propagation in such disoccluded regions.
The EPIs corresponding to the highlighted row are shown in d and e.
The EPI in e constitutes our depth EPI Do (Color figure online)

which are especially important for handling visibility in com-
putational photography applications. Moreover, aggregating
information across many light field views produces high
accuracy depth, but most approaches estimate only a depth
map for the central view. We show how to estimate depth
for every pixel in the light field (Khan et al., 2020), e.g., for
editing a light field photograph where every output view will
be seen on a light field display.

4.1 Challenges

Our reconstructionmethod is an anisotropic diffusionprocess
that fills in missing regions. Depth diffusion is a long-
standing problem in which it is difficult to ensure both
consistency and correctness in non-central-view disoccluded
regions because these regions are sampled less by the cam-
era. As such, methods that estimate depth for every light field
pixel are often not strictly occlusion aware, or are expensive
(Wanner & Goldluecke, 2012; Zhang et al., 2016) due to
the extra angular dimension increasing data and computation
costs (Jeon et al., 2015; Zhang et al., 2016). Researchers have
tried to overcome this barrier by learning data-driven priors
with deep learning. Jiang et al. (2019), Jiang et al. (2018)
presented the first practical view consistent method based on
deep learning.Learning requires trainingdata andmayoverfit
to scenes or capture scenarios (Li et al., 2020). Our multi-
view edge encoding and smooth reconstruction method is a
counterpart first principles method with no learned priors.

One solution to reconstruct per-viewdepth fromourmulti-
view edge encoding would compute a disparity map for each
sub-aperture view separately. However, this is challenging
for boundary views and is inefficient in terms of redundant
computation and due to the spatial domain constraints or
regularization required to ensure consistency across views.
Another solutionmight calculate a disparity map for a source

view and then reproject it into all other views. However,
this fails to handle scene points that are not visible in the
source view. Such points cause holes for disocclusions, or
lead to inaccurate disparity estimates when the points lie on
an occluding surface. While most methods try to deal with
holes through inpainting, occluding surfaces are more diffi-
cult to deal with as the occluding surface may have a depth
value (or label) not seen in the original view.Thus, techniques
like diffusion alone are insufficient to prove or disprove the
completeness of our edge model.

4.2 Approach

Our proposed method deals with this issue of depth con-
sistency in subviews of light fields via an occlusion-aware
diffusionprocess (Fig. 8).Asour occlusion-awaremulti-view
edges persist across views, we can use them as reliable guides
for an angular inpainting process that fills any holes in repro-
jected views. As inpainting occurs in the angular rather than
the spatial domain of the light field, this ensures depth view
consistency by design while accounting for the visibility of
points in disoccluded regions. This avoids trying to constrain
or regularize view consistency after estimating depth spa-
tially, and so aids efficiency.

4.3 Central View Depth Estimation

From our multi-view edge model, we have a sparse set of
multi-view edge points P , surface vectors parallel to the
image gradient∇ I (·), and an occlusion edge confidence. Let
A = {p±∇ I (p) ∀ p ∈ P} be the sparse set of points P off-
set by the surface vector. We use S[A] to represent the image
created by splatting sparse points in a setA onto aw×h raster
grid, and D to be a dense w × h disparity map. Diffusion is
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formulated as a constrained quadratic optimization:

D̂[A] = argmin
D

∑

p∈A
Ed(p) +

∑

(p,q)∈S
Es(p, q), (17)

where D̂[A] is the optimal disparity map given the sparsely
labeled image S[A] and S is the set of all four-connected
neighbors in D. Data and smoothness terms are defined as:

Ed(p) = λd(p)
∥∥S[A](p) − D(p)

∥∥2
2, (18)

Es(p, q) = λs(p)
∥∥D(p) − D(q)

∥∥2
2. (19)

The data weight λd(p) is defined in terms of the sets P f =
{p + ∇ I (p) ∀ p ∈ P } and Pb = {p − ∇ I (p) ∀ p ∈ P } as:

λd(p) = ω exp(aλe(p)), (20)

λe(p) = max
{D̂[P f ],D̂[Pb]}

‖Np � F‖. (21)

where Np is a set of pixels around p, and F is the step filter
[−1−1+1+1]. The parameters are set toω = 1.5×102 and
a = 3 for all scenes. The smoothness term λs(p) is provided
by the depth edge confidence at every pixel (Sect. 3.4).

Equation (17) represents a standard Poisson problem, and
we solve it using the Locally Adaptive Hierarchical Basis
Preconditioning Conjugate Gradient (LAHBPCG) solver
(Szeliski, 2006) by posing the constraints in the gradient
domain as proposed by Bhat et al. (2009). The result D̂[A]
provides a dense depth estimate for the central view.

4.4 Cross-hair View Projection

Our EPI line-fitting algorithm works on EPIs in the cen-
tral cross-hair views—that is, the central row and column of
light field images. Computing this on other rows and columns
can be expensive, and the central set is usually sufficient to
detect visible surfaces in the light field (Wanner et al., 2013).
Hence, we project the estimated disparity map from the cen-
ter view into all views along the cross-hair. Since gradients
at depth edges in the estimated disparity map are not com-
pletely sharp, this leads to some edges being projected onto
multiple pixels in the target view.We deal with this by sharp-
ening the edges of the disparity map before projection, as in
Shih et al. (2020), using a weighted median filter (Ma et al.,
2013) with parameters r = 7 and ε = 10−6. Omitting this
step causes inaccurate estimates around strong depth edges.
The result is not very sensitive to parameters r and ε since
most settings will target the error-prone strong edges.

4.5 Angular Inpainting

After depth reprojection, wemust deal with the two problems
highlighted in the overview: inpainting holes, and accounting

for occluding surfaces in off-center sub-aperture views. We
tackle this by using our multi-view edges to guide a dense
diffusion process. Moreover, we ensure view consistency by
performing diffusion in EPI space.

The multi-view edges constitute a set L of cross-view
edge features (Sect. 3.1) that are robust to occlusions in a
single view as they exist in EPI space. As such, L provides
occlusion-aware sparse depth labels to guide dense diffusion
in EPI space. Diffusion in EPI space has the added advantage
of ensuring view consistency.

Let Do represent an angular slice of the disparity maps
with values reprojected from the center view and with prop-
agation guides (Fig. 8). Again, we formulate diffusion as a
constrained quadratic optimization problem:

D̂ = argmin
D

∑

p∈D
Ed(p) +

∑

(p,q)∈S
Es(p, q), (22)

where D̂ is the optimal depth labeling of the EPI, and S is
the set of four-connected neighboring pixels. The data Ed(p)
and smoothness terms Es(p, q) are defined as:

Ed(p) = λd(p)
∥∥D(p) − Do(p)

∥∥2
2, (23)

Es(p, q) = λs(p, q)
∥∥D(p) − D(q)

∥∥2
2. (24)

We take the weight for the smoothness term from the EPI
intensity image I :

λs(p, q) = c

‖∇ I (p)‖ + ε
, (25)

where c = 0.1. We define the weight for the data term as:

λd(p) =
⎧
⎨

⎩

15 if p ∈ C,

λe(p) if p ∈ L,

0 otherwise,
(26)

where λe(p) is the edge-importance weight from Eq.21, and
C and L are the set of pixels coming from the reprojected
center view disparity map and EPI line guides, respectively.

Equation (22) defines the optimal disparity map D̂ as one
that minimizes divergence from the labeled data (Eq. (23))
while being as smooth as possible. Equation (24) measures
smoothness as the similarity between disparities of neigh-
boring pixels. We wish to relax the smoothness constraint
for edges, so smoothness weight is chosen as the inverse of
the image gradient (Eq. (25)). This allows pixels across edges
to have a disparity difference without being penalized. The
data weight (Eq. (26)) is determined empirically and works
for all datasets.

Equation (22) is again a standard Poisson optimization.
We solve this using the LAHBPCG solver (Szeliski, 2006)
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Fig. 9 Occlusion edges in disparity maps. Top: Stanford dataset light field captured with a camera rig. Bottom: EPFL light field from a Lytro Illum.
Left to right: Jeon et al. (2015), Zhang et al. (2016), Jiang et al. (2018), Shi et al. (2019), and ours

by posing the data and smoothness constraints in the gradient
domain (Bhat et al., 2009).

4.6 Non-cross-hair View Reprojection

We now have view-consistent disparity estimates for every
pixel in the central cross-hair of light field views: (uc, ·), and
(·, vc). As noted, this set is usually large enough to cover
every visible surface in the scene. Hence, all target views
(ui , vi ) outside the cross-hair can be computed as the mean
of the reprojection of the closest horizontal and vertical cross-
hair view ((uc, vi ) and (ui , vc), respectively). The result is
a view-consistent dense depth reconstruction for each light
field view.

5 Evaluating the Reconstruction

At this point, we evaluate our approach for recovering the
multi-view edge model and for reconstructing depth from
this model (Fig. 9).

5.1 Datasets

For our evaluation, we used both synthetic and real-world
light fieldswith a variety of disparity ranges. For the synthetic
light fields, we used the HCI Light Field Benchmark Dataset
(Honauer et al., 2016). This dataset consists of a set of four
9×9, 512×512 pixels light fields:Dino, Sideboard, Cotton,
and Boxes. Each has a high-resolution ground-truth disparity
map for the central view only.

For real-world light field data, we use the EPFL MMSPG
Light-Field Image Dataset (Rerabek & Ebrahimi, 2016) and
the New Stanford Light Field Archive (Laboratory, 2008).
The EPFL light fields are captured with a Lytro Illum and
consist of 15 × 15 views of 434 × 625 pixels each. As edge
views tend to be noisy, we only use the central 7 × 7 views.
The Stanford Archive scenes are captured with a moving
camera and have a larger baseline than theLytro and synthetic
scenes. Each scene consists of 17 × 17 views with varying
spatial resolution. We use all views from the Lego and Bunny
scenes, scaled to a spatial resolution of 512 × 512 pixels.
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Fig. 10 Visualizing occlusion edges as gradients of disparity maps.
Left to right: Shi et al. (2019), Li et al. (2020), Yucer et al. (2016), and
ours. Bottom row, red circle: the learning-based methods hallucinate

a strong depth edge on the plow even though it is in contact with the
black ground cloth at the same depth. Yucer et al.’s method fails in the
absence of many views (Color figure online)

Fig. 11 Average precision-recall curves of depth boundaries for all
baselines (HCI dataset). Learning-based methods are shown as dot-
ted lines. Our approach consistently outperforms traditional algorithms
(Jeon et al., 2015; Wang et al., 2016a; Zhang et al., 2016) and the
learning-based method of Jiang et al. (2018), while outperforming Shi
et al. (2019) and Li et al. (2020) at medium-to-low recall rates. Area
under curve is highest for both our method and Shi et al., at 0.63

5.2 Baselines

We compare ours to three non-learning-based methods: the
defocus and correspondence cues methods by Jeon et al.
(2015) and Wang et al. (2016a), and the spinning parallel-
ogram operator of Zhang et al. (2016). We also compare
with the learning-based methods of Jiang et al. (2018), Shi
et al. (2019), and Li et al. (2020). Both Shi et al. and Jiang et
al. use the deep-learning-based Flownet 2.0 (Ilg et al., 2017)
network to estimate optical flow between the four corner
views of a light field, then use the result to warp a set of
anchor views. In addition, Shi et al. further refine the edges
of their depth maps using a second neural network trained
on synthetic light fields. While Shi et al.’s method generates

high-quality depth maps for each sub-aperture view, they do
not have explicit cross-view consistency constraint. We do
not compare to Holynski and Kopf (2018) as COLMAP fails
on typical skew-projected light fields.

5.3 Quantitative Metrics

5.3.1 Occlusion Edge Accuracy

Qualitatively, our method produces sharper and more accu-
rate occlusion edges than state-of-the-art light field depth
estimation methods.

Figure 10 visualizes occlusion boundaries as depth gra-
dients. The learning-based methods of Shi et al. and Li et
al. generate spurious boundaries in textureless regions, and
the approach of Yucer et al. (2016) fails without thousands
of views. We also evaluate our edges quantitatively on four
scenes from the synthetic HCI Dataset (Honauer et al., 2016)
via ground truth disparity for the central view (Fig. 11 and
Table 2). Although our Q25 error is higher, our method has
highboundary-recall precision and a lower averageMSE than
all baselines.

Our method works on 2D slices of a 4D light field. While
jointly considering the 4D structure may improve accuracy,
edge detection and diffusion become computationally expen-
sive. In principle, the accuracy of our edge detection can
improve with entropy-based label refinement (Sect. 3.2) in
both vertical and horizontal EPIs. In practice, we found little
advantage of doing so.
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Table 1 Evaluating disparity maps with depth edges identified via
reprojection error and via our approach of diffusion gradients on the
synthetic HCI dataset

Light Field MSE × 100 Q25

Reproj Ours Reproj Ours

Sideboard 1.39 1.03 1.20 1.22

Dino 0.64 0.45 0.81 0.85

Cotton 1.04 0.70 0.68 0.74

Boxes 9.32 7.52 1.65 1.41

Average 3.10 2.43 1.08 1.05

Bold values denote better performance
MSE is mean squared error; Q25 is 25th percentile of absolute error

5.3.2 Diffusion Gradients as Self-supervision

One way to think about bidirectional diffusion gradients is
as a self-supervised loss function for depth edge localization.
With this view, we compare its performance to multi-view
reprojection error—a commonly used self-supervised loss
in disparity optimization. We use the dense disparity maps
D̂[P f ] and D̂[Pb] to warp all light field views onto the cen-
tral view through an occlusion-aware inverse projection. A
reprojection error map is calculated as the mean per-pixel
L1 intensity error between the warped views and the cen-
tral view. The offset direction at each point p ∈ P is then
determined based on the disparity map that minimizes the
reprojection error at the pixel location of p. Table 1 evalu-
ates the result of calculating Q = {p ± ∇ I (p) ∀ p ∈ P}
based on the reprojection error maps instead of our bidirec-
tional diffusion gradients. Ourmethod has consistently lower
MSE, indicating better edge performance.

5.3.3 Accuracy

Table 2 presents quantitative results for the central view of
all light fields in accuracy comparisons against ground truth
depth. Our method is competitive or better on the MSE met-
ric against the baseline methods, reducing error on average
by 20% across the four light fields. However, our method
produces more erroneous pixels than the baseline methods
as given by the Q25 error. For baseline techniques to have
higherMSEbut fewer bad pixelsmeans theymust have larger
outliers. This is confirmed by the error plots in Fig. 26.

5.3.4 View Consistency

Figure12 presents results for view consistency across all
three datasets. The box plots at the top show that our method
has competitive or better view consistency than the baseline
methods. As expected, Shi et al.’s method without an explicit
view consistency term has a significantly larger consistency

Fig. 12 Quantitative view consistency comparison of our method and
Jiang et al. (2018) and Shi et al. (2019). While the method of Jiang et
al. enforces cross-view consistency, Shi et al. operates on each view
individually and has no explicit consistency constraint. a For each light
field, we plot summary statistics over C(u,v) for all views (u, v) in the
light field (Eq. (3)). bThe angular distribution of the error over all views

error. At the bottom of the figure, we visualize how this error
is distributed spatially across the views in the light field. Both
our method and Jiang et al.’s method produce relatively even
distributions of error across views.

5.3.5 Computational Resources

Figure13 plots runtime versus view consistency across our
three datasets. Our method produces comparable or better
consistency and is quicker, being 2–4× faster than Jiang et
al.’s methods per view for equivalent error.

5.3.6 Qualitative

Figures26 and 27 present qualitative single-view depth map
results. Overall, all methods produce broadly comparable
results, though eachmethod has different characteristics. The
learning-based methods tend to produce smoother depths
across flat regions. All methods struggle with thin features.
On the Bunny scene, our approach introduces fewer back-
ground errors and shows fewer ‘edging’ artifacts than Jiang
et al. Shi et al. produces a cleaner depth map appearance for
Lego, but is view inconsistent. Jiang et al. is view consistent,
but introduces artifacts on Lego. On Sphynx, a far scene and
narrow baseline cause noise in our line reconstruction.

While these results do seem to indicate that our edge
model encodes all relevant information required for generat-
ing accurate and view-consistent depth reconstructions with
strong occlusion edges, the accuracy criterion is not always
satisfied. In particular, as we estimate depth explicitly only
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Table 2 Quantitative comparison of our method and the baselines on the synthetic HCI light fields

Light Field MSE × 100 Q25 Run time (s)
Jeon
et al.
(2015)

Zhang
et al.
(2016)

Jiang
et al.
(2018)

Shi
et al.
(2019)

Li et
al.
(2020)

Wang
et al.
(2016a)

Ours Jeon
et al.
(2015)

Zhang
et al.
(2016)

Jiang
et al.
(2018)

Shi
et al.
(2019)

Li et
al.
(2020)

Wang
et al.
(2016a)

Ours Jeon
et al.
(2015)

Zhang
et al.
(2016)

Jiang
et al.
(2018)

Shi
et al.
(2019)

Li et
al.
(2020)

Wang
et al.
(2016a)

Ours

Sideboard 3.21 1.02 1.96 1.12 1.89 13.3 1.03 0.61 1.15 0.37 0.48 0.66 2.46 1.22 754 537 507 72.3 77.1 635 35.5

Dino 1.73 0.36 0.47 0.43 3.28 4.19 0.45 1.07 1.40 0.25 0.31 0.50 2.02 0.85 805 531 500 59.3 76.8 609 37.7

Cotton 12.5 1.81 0.97 0.88 1.95 9.56 0.70 0.50 1.01 0.21 0.36 0.59 2.30 0.74 748 530 500 79.8 76.9 612 34.0

Boxes 16.0 7.90 11.6 8.48 4.67 12.5 7.52 0.75 1.64 0.42 0.69 0.78 2.21 1.41 736 541 491 56.2 78.0 667 34.3

Average 8.37 2.77 3.75 2.72 2.94 9.91 2.43 0.73 1.3 0.31 0.46 0.63 2.25 1.05 761 535 500 66.9 77.2 631 35.4

The top three results are highlighted in gold , silver and bronze . MSE is mean squared error; Q25 is 25th percentile of the absolute error

Fig. 13 Average depth consistency error and runtimes for the three
assessed datasets. Our method runs consistently faster than the base-
lines while having comparative or better consistency. The errors across
datasets are shown in absolute terms

around potential occlusion boundaries our method has lower
accuracy in non-edge regions, reflected by the Q25 error. In
the next section, we describe a differentiable variant of our
model that addresses this shortcoming.

6 A Differentiable Model Implementation

Even with our efforts, it can be difficult to identify and fil-
ter out noisy or erroneous points from a sparse edge set,
and diffusion from noisy points produces results with lower
accuracy. However, with correct noise-free constraints, Sec-
tion 2.3 showed that our edge model and reconstruction
produce extremely low error and are significantly better than
current dense processing methods.

So, how can we handle noisy edges?We present a method
to optimize edge constraints through a set of linear equations
representing the solution to the standard Poisson problem
of depth diffusion (Fig. 14) (Khan et al., 2021). For this, we
develop a differentiable and occlusion-aware image-space
representation for a sparse set of scene edges that allows us to
solve the inverse problem efficiently using gradient descent.
This section expands upon EPI edges to consider unstruc-

tured multi-view images too in which only sparse points in
correspondence are easily discovered: we treat each point
as a Gaussian to be splatted into the camera, then we use
the setting of radiative energy transfer through participating
media tomodel the occlusion interaction betweenGaussians.
This lets us optimize over point position, depth, and weight
parameters via reprojection error from RGB images.

In Sect. 7, we show that this method reduces diffusion
errors caused by noisy or spurious points, and allows us to
optimize a sparse point set. Further, we discuss why edges
are difficult to optimize via reprojection from depth maps.
Finally, in comparison to both image processing and deep
learning baselines, our method shows competitive perfor-
mance, especially in reducing bad pixels.

6.1 Depth via Differentiable Diffusion

Given a set I = {I0, I1, . . . , In} of n multi-view images and
a sparse set of noisy scene points P ∈ R

3, our goal is to
generate a dense depth map for central view Ic. We achieve
this by optimizing the set of scene points so that their diffused
image minimizes a reprojection error across I.

We begin by restating the task of reconstruction via dif-
fusion within the context of a sparse set of 3D scene points
P and a camera. Let S ∈ R

2 denote the sparse depth labels
obtained by projectingP onto the image plane of some I ∈ I.
That is, for a given scene point x = (Xx, Yx, Zx) ∈ P and
camera projection matrix K, S(Kx) = Zx. We want a dense
depth map Do by penalizing the difference from the sparse
labels S while promoting smoothness by minimizing the gra-
dient ∇D:

Do = argmin
D

∫∫

	

λ(x, y) (D(x, y) − S(x, y))2

+ ϑ(x, y)‖∇D(x, y)‖ dx dy, (27)

where λ(x, y) = ∑
x∈P δ((x, y) − Kx) is a sum of point

masses centered at the projection of P—the splatting func-
tion. The second term enforces smoothness; ϑ is low around
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Fig. 14 From a set of noisy sparse depth samples, our method uses differentiable splatting and diffusion to produce a dense depth map. Then, we
optimize point position, disparity, and weight against an RGB reprojection loss. This reduces errors in the initial set of points

depth edgeswhere it is desirable to have high gradients. Solv-
ing Eq. (27) in 3D is expensive and complex, needing for
example voxels or a mesh. Practically, the energy in Eq. (27)
is minimized over a discrete pixel grid with indices x, y:

Do = argmin
D

∑

(x,y)

(
λZ(x, y)

(
D(x, y) − SZ(x, y)

)2

+
∑

(u,v)∈N (x,y)

ϑZ(x, y)‖D(u, v) − D(x, y)‖
)

, (28)

where N (x, y) defines a four-pixel neighborhood around
(x, y), and λZ, ϑZ and SZ are, respectively, the discrete
counterparts of the splatting function λ, the local smooth-
ness weight ϑ , and the depth label in R2, S.

Deciding how to perform this discretization has important
consequences for the quality of results and is not easy. For
instance, λ and S are defined as point masses and hence are
impossible to sample. The simplest solution is to round our
projected point Kx to the nearest pixel. However, quite apart
from the aliasing that this is liable to cause, it is unsuitable
for optimization as the underlying representation of λZ and
SZ remains non-differentiable. As Fig. 15 shows, we require
a representation that is differentiable and has the appropriate
compactness for correctly representing the weight and depth
value of each point on the raster grid: points projected to
the raster grid should ‘spread’ their influence only where
necessary for differentiability.

6.2 Differentiable Image-Space Representation

A common smooth representation is tomodel the density x at
a three-dimensional scene point as a sum of scaled isotropic

Gaussians (Rhodin et al., 2015; Stoll et al., 2011). The prob-
lemwith this approach is that rendering all suchpointsx ∈ P
requires either ray-marching through the scene, or repre-
senting the viewing-frustum as a voxel grid. The former
is computationally expensive and the latter limits rendering
resolution. Moreover, with points defined in scene space, it
becomes difficult to ensure depth values are accurately splat-
ted onto discrete pixels. This is shown in Fig. 15e where the
scene point projecting onto a sub-pixel location ends up with
zero pixel weight—effectively vanishing.

Our proposed representation overcomes these problems
by modeling depth labels as scaled Gaussians centered at the
2D projection Kx of points x ∈ P , and using a higher-order
Gaussian (or super-Gaussian) for the label weight to ensure
non-zero pixel contribution from all points. A higher-order
Gaussian is useful for representing weight as it has a flatter
top, and falls off rapidly. Thus, its behavior is closer to that
of a delta function, and it minimizes the “leakage” of weight
onto neighboring pixels (Fig. 15c). But unlike a delta, it is
differentiable and can be sized to match some pixel extent so
that points do not vanish (Fig. 15d, e). Thus, we define the
discrete functions:

SZ(x, y) =
∑

x∈P
αx(x, y)S

Z

x (x, y), (29)

where αx(x, y) is a function that will merge projected labels
in screen space (wewill defineαx inSec. 6.3), andSZx declares
the label contribution at pixel (x, y) from a single scene point
x = (Xx, Yx, Zx) with projection Kx = (xx, yx). We define
SZx as:
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(b) (c) (d) (e)(a)

Fig. 15 Depth diffusion happens in image space, so how we splat a set
of scene points in R3 onto a pixel grid in Z2 has a significant impact on
the results. a The image-space projection of scene points are Dirac delta
functions which cannot be represented in discrete pixels. b Rounding
the projected position to the closest pixel provides the most accurate
splatting of depth labels for diffusion, even if it introduces position
error. Unfortunately, the functional representation of the splatted point
remains a non-differentiable Dirac delta. c Image-space Gaussians pro-

vide a differentiable representation, but the depth labels are not accurate.
Since the label weights λZ are no longer point masses, non-zero weight
is assigned to off-center depth labels. d Attempting to make λZ more
similar to a point mass by reducing the Gaussian σ results in sub-pixel
points vanishing: the Gaussian on the left no longer has extent over any
of the sampled grid locations. e Our higher-order Gaussian represen-
tation provides dense diffusion results closest to (a) while also being
differentiable

SZx (x, y) = Zx exp

(
− (x − xx)2 + (y − yx)2

2σ 2
S

)
. (30)

Similarly, the discrete label weights are defined as:

λZ(x, y) =
∑

x∈P
αx(x, y)λ

Z

x (x, y), (31)

with λZx taking the higher-order Gaussian form:

λZx (x, y) = wxexp

(
− (x − xx)2 + (y − yx)2

2σ 2
λ

)p

, (32)

for some scaling factor wx (Fig.16).

6.2.1 Discussion

One might ask why we do not use higher-order Gaussians
for the depth label, too. Depth labels require handling occlu-
sion (unlike their weights), and we model this using radiance
attenuation in the next section (Sect. 6.3). Using higher-order
Gaussians for depth requires differentiating a transmission
integral (upcoming Eq. (33)), yet no analytic form exists for
higher-order Gaussians (with an isotropic Gaussian, a repre-
sentation in terms of the lower incomplete gamma function
γ is possible, but the derivative is still notoriously difficult
to estimate).

Fig. 16 Left: The image-space projection Kx of scene points x ∈
P plotted in white. Middle: Our differentiable labeling function SZ

accurately splats depth labelswhile handlingocclusion.Right:Ahigher-
order Gaussian representation of λZ is differentiable, and provides
weights that are close to point masses without any points vanishing
during discretization

6.3 Rendering and Occlusion Handling

While a Gaussian has infinite extent, the value of the depth
label function SZx and the label weight function λZx at non-
local pixelswill be small and can be safely ignored. However,
weneed the operatorαx fromEquations (29) and (31) to accu-
mulate values at any local pixel (x, y) that receives significant
density contribution from multiple SZx . This accumulation
must maintain the differentiability of SZ and must ensure
correct occlusion ordering so that an accurate depth label
is splatted at (x, y). Using a Z-buffer to handle occlusion
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Fig. 17 We estimate depth labels at points overlapping in xy using
a radiative transfer formulation with Gaussians in orthographic space.
If σZ is small, the influence of the points u and v in scene space is
restricted to small windows around Zu and Zv. As σZ −→ 0, we assume
the density contribution at any point s along a ray comes from a single
Gaussian. This allows the attenuation effect of each Gaussian to be
calculated independently. The global attenuation function at s can be
calculated as the product of local attenuation for all points with z < s

by overwriting depth labels and weights from back to front
makes SZ non-differentiable.

We diffuse projected points in 2D; however, to motivate
and illustrate the derivation ofαx, wewill temporarily elevate
our differentiable screen-space representation to R3 and use
an orthographic projection—this provides the simplest 3D
representation of our ‘2.5D’ data labels, and allows us to
formulate αx using the setting of radiative energy transfer
through participating media (Rhodin et al., 2015).

Thus, we model the density at every 3D scene point as
a sum of scaled Gaussians of magnitude ρ centered at the
orthographic reprojection u = (xx, yx, Zx) of each x ∈ P .
Then, for a ray originating at pixel (x, y) and traveling along
z, the attenuation factor T at distance s from the image plane
is defined as:

T(x, y, s) = exp

(
−

∫ s

0
ρ

∑

x∈P
exp

(
−

( (x − xx)2

2σ 2
S

+ (y − yx)2

2σ 2
S

+ (z − Zx)
2

2σ 2
Z

))
dz

)
. (33)

As σZ −→ 0, the density contribution at any point s
along the ray will come from only a single Gaussian. Fur-
thermore, as the contribution of each Gaussian is extremely
small beyond a certain distance, and as the attenuation along

a ray in empty space does not change, we can redefine the
bounds of the integral in a local frame of reference. Thus, we
consider each Gaussian as centered at μz in its local coor-
dinate frame with non-zero density only on [0, t] (Fig. 17).
The independence of Gaussians lets us split the integral over
[0, s] into a sum of integrals, each over [0, t] (please see
supplemental document for detailed derivation). Using the
product rule of exponents, we can rewrite Eq. (33) as:

T(x, y, s) =
∏

x

exp

(
−

∫ t

0
ρ
SZx (x, y)

Zx
·

exp

(
− (z − μz)

2

2σ 2
Z

)
dz

)

=
∏

x

Tx(x, y), (34)

where the product is over all x ∈ P | Zx < s. By looking
again at Eq. (30), we can see that SZx (x, y)/Zx is simply the
normalized Gaussian density in xy.

Each Tx is independent, allowing parallel calculation:

Tx(x, y) = exp

(√
π

2

σZ ρ SZx (x, y)

Zx
(

− erf

(
μz

σZ
√
2

)
− erf

(
t − μz

σZ
√
2

)))

= exp

(
c
SZx (x, y)

Zx

)
,

(35)

where erf is the error function. We can now define the label
contribution of each x at pixel (x, y). For this, we use the
radiative transfer equation, which describes how light passes
through a participating medium (Rhodin et al., 2015):

SZ(x, y) =
∫ ∞

0
T(s, x, y)a(s, x, y)P(s, x, y) ds, (36)

where T, a, and P are the transmittance, albedo, and density,
respectively, at a distance s along a ray originating at (x, y).
Albedo represents the proportion of light reflected towards
(x, y), and intuitively, we may think of it as the color of the
point seen on the image plane in the absence of any occlusion
or shadows. In our case, we want the pixel value to be the
depth label Zx. Making this substitution, and plugging in our
transmittance and Gaussian density function, we obtain:

SZ(x, y) =
∫ ∞

0
T(x, y, s)

∑

x∈P
Zx ρ exp

(
− (x − xx)2

2σ 2
S

+ (y − yx)2

2σ 2
S

+ (s − Zx)
2

2σ 2
Z

)
ds. (37)
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Again, with σZ −→ 0, the density contribution at a given
s may be assumed to come from only a single Gaussian.
This lets us remove the summation over x, and estimate the
integral by sampling s at step length ds over a small interval
Nx around each Zx:

SZ(x, y) =
∑

x∈P

∑

s∈Nx

ds T(x, y, s) ρ SZx (x, y)·

exp

(
− (s − Zx)

2

2σ 2
Z

)

=
∑

x∈P
SZx (x, y)

∑

s∈Nx

ds T(x, y, s) ρ ·

exp

(
− (s − Zx)

2

2σ 2
Z

)

=
∑

x∈P
αx(x, y) S

Z

x (x, y). (38)

This allows us to arrive at a differentiable form of our screen-
space aggregation function αx:

αx(x, y) = ρ ds

Zx

∑

s∈Nx

T(s, x, y) ρ ·

× exp

(
− (s − Zx)

2

2σ 2
Z

)
. (39)

6.4 Optimization by Gradient Descent

To restate our goal, we want to optimize the parameters
� = {SZ, λZ, ϑZ} for dense depth diffusion (Eq. (28)).
The function SZ(x, y) proposes a depth label at pixel (x, y),
λZ(x, y) determines how strictly this label is applied to the
pixel, and ϑZ(x, y) controls the smoothness of the output
depth map at (x, y). We find � by using gradient descent
to minimize a loss function L(�). Using our differentiable
representation, we can express SZ and λZ in terms of the
image-space projection of the sparse point set P . This pro-
vides strong constraints on both the initial value of these
functions and on how they are updated at each step of the
optimization, leading to faster convergence.

6.4.1 Supervised Loss

To validate our image-space representation and optimization,
we first use ground truth depth to supervise the optimization
of the different parameters in �. This generates high-quality
depth maps, and shows the potential of our differentiable
sparse point optimization and diffusion method. Please see
the “Appendix” for details.

Fig. 18 Our everyday intuition says that depth edges should be sharp,
but a limited sampling rate blurs them in the RGB input (a). This can
cause unintended high error during optimization via losses computed
on RGB reprojections. In (b), the depth edge is sharp, but reprojecting
it into other views via warping causes high error as the edge in the RGB
image is blurred. Counterintuitively, in (c), the depth edge is soft and
less accurate, but leads to a lower reprojection error. If sharp edges are
desired, we can reward high gradient edges in the error (Eq. (41))

Fig. 19 Over optimization iterations, mean squared error reduces and
‘bad pixels’ are significantly suppressed. Most remaining errors lie
along edges, where depth is not well defined (Fig. 18)

6.4.2 Self-supervised Loss

Workingwith a set of multi-view images I = {I0, I1, . . . , In}
allows us to define a self-supervised loss function for the
optimization. Given a dense depth map D� generated by
diffusion with parameters �, we define the warping operator
W� to reproject each view Ii onto Ic; where Ic is the view we
want to compute dense depth for. The warping error is then
calculated as:

E�(x, y) = 1
∑

i M
i
�(x, y) + ε

·
∑

i

(
|I(x, y) − W�[Ii ](x, y)| Mi

�(x, y)

)
, (40)

where Mi
�(x, y) is the binary occlusion mask for view i ,

computed dynamically at each iteration.
We observe that E� is non-zero even if we use the ground

truth depth map because small pixel errors are inevitable
during the sub-pixel interpolation for warping. However, the
more significant errors come from an unexpected source:
the sharpness of depth edges. Depth labels are ambiguous at
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pixels lying on RGB edges, and limited sampling frequency
blurs these edges within pixels (Fig. 18). By assigning a fixed
label to these pixels, sharp depth edges cause large errors.
Consequently, the optimization process smooths all edges.
While doing so minimizes the reprojection error, it may be
desirable to have sharp depth edges for aesthetic and prac-
tical purposes, even if the edge location is slightly incorrect
(Figs. 19, 20).

Therefore, we add a loss term to reward high gradients in
E�, effectively allowing the optimization to ignore errors
caused by sharp depth edges. In addition, we include a
smoothness termES similar to Ranjan et al. (2019) to encour-
age depth to be guided by image edges, and a structural
self-similarity error (Wang et al., 2004) ESSIM which is used
to regularize warping error. Our final loss function is:

L(�) =
∑

(x,y)

(
E�(x, y) + ES + ESSIM − ∇E�(x, y)

)
.

(41)

7 Evaluating the Differentiable Approach

7.1 Additional Datasets

Along with the previous scenes (Sect. 5), we add new syn-
thetic Living Room and Piano scenes with more realistic
lighting, materials, and depth ranges. We path trace these
with Arnold in Maya at 512 × 512 pixels. Each light field
has 9 × 9 views, and each multi-view image set has five
unstructured views with a mean baseline of ≈ 25 cm.

7.2 Light Fields

While learning-based methods (Jiang et al., 2018; Shi et al.,
2019; Li et al., 2020) tend to do well on the HCI dataset,
their quantitative performance degrades on the more difficult
Piano andLivingRoom scenes (Table 4).A similar qualitative
trend shows the learning-based methods performing worse
than diffusion on the real-world light fields (Fig. 21). Our
method provides more consistent overall performance on all
datasets. Moreover, our non-differentiable diffusion-based
method has few pixels with very large errors but many pixels
with small errors, producing consistently lowMSE but more
bad pixels. In contrast, our differentiablemethod consistently
places in the top three on the bad pixel metrics.

For breadth of comparison, we also compare to Jin and
Hou’s learning-based self-supervised method (Jin & Hou,
2022) and a state-of-the-art supervised learning approach in
Wang et al.’s cost-constructor method (Wang et al., 2022).
Like ourmethod, Jin andHou also do not need any labels, but

unlike our method, it is trained on data. MSE performance
is slightly worse than our non-differentiable approach and
comparable to our differentiable approach, but with more
extreme outliers as shown by the BP(0.07) metric. Wang
et al.’s method provides superior performance on the HCI
dataset, butmust be re-trained for each newdataset to account
for different disparity ranges and dilation rates in their cost
construction step.

Finally, as is common, it is possible to post-process our
results with a weighted median filter to reduce MSE (e.g.,
Dino 0.54 vs. 0.86) at the expense of increased bad pixels
(BP(0.01) of 39.6 vs. 25.6). We report results with this filter.

7.3 Multi-view Stereo

7.3.1 Baselines andMetrics

Wecompare to dense reconstruction fromCOLMAP (Schön-
berger et al., 2016) and to DeepMVS (Huang et al., 2018).
Our method uses the sparse output of COLMAP as the ini-
tial point set, which is considerably sparser than the initial
set for light fields (500 vs. 50k). To increase the number of
points, we diffuse a preliminary depth map and optimize the
smoothness parameter for 50 iterations. Then, we sample this
result at RGB edges. Using this augmented set, we optimize
all parameters in turns of 25 iterations, repeated 5 times. In
addition, we also evaluate a variant of our method, Ours-
C, with sparse labels initialized from the dense COLMAP
output at RGB edges.

For metrics, we use MSE and also report the 25th per-
centile of absolute error as Q25. As the depth output of each
method is ambiguous up to a scale, we estimate a scale factor
for each result using the least squares fit the ground truth at
500 randomly sampled valid depth pixels.

7.3.2 Results

To account for the error in the least squares, Table 3 presents
the minimum of ten different fits for each method. Both
DeepMVS and COLMAP generate results with many invalid
pixels.We assign such pixels themeanGTdepth.Ourmethod
outperforms the baselines with a sparse point set (only≈ 700
points) and generates smooth results that qualitatively have
fewer artifacts. Using 4× as many initial points (≈ 2800
points) in theOur-C variant leads to additional improvements
(Fig. 20).

7.4 Sparsity Evaluation

We use the differentiable model to extract a minimal set
of points that satisfies our completeness criterion, thereby
achieving compactness of representation as well. This is
accomplished by optimizing the projected data weight λZ to
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Fig. 20 Depth results on the synthetic Piano-MVS scene. Left to right:
Ground truth, dense reconstruction fromCOLMAP (Schönberger et al.,
2016; Schönberger & Frahm, 2016), DeepMVS (Huang et al., 2018),

our method using 702 sparse points in P , and our method with 2808
sparse points from dense COLMAP output

Table 3 Quantitative results for
wider-baseline unstructured
five-camera cases, as the Living
Room-MVS and Piano-MVS
scenes

MVS MSE Q25
D-MVS C-Map Ours Ours-C D-MVS C-Map Ours Ours-C

Living Room 1.99 1.37 0.30 0.17 64.9 4.44 14.8 4.22

Piano 1.51 2.56 0.81 0.69 6.87 42.6 2.15 1.37

Average 1.75 1.97 0.56 0.43 35.9 23.5 8.48 2.80

Fig. 21 Top: Disparity results on the synthetic Living Room light field.
Bottom: Disparity results on a real light field. Left to right: Zhang et al.
(2016), Jiang et al. (2018), Shi et al. (2019), Li et al. (2020), our non-

differentiable approach as ‘Khan20’ (Sects. 3 & 4), a baseline diffusion
result without any optimization, our differentiable constraint results.
The top synthetic light field also adds ground truth to the far left
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Table 4 Quantitative comparison on synthetic HCI light fields

Light Field
)10.0(PB001*ESM

Zhang
at al.
(2016)

Li
at al.
(2020)

Jiang
at al.
(2018)

Shi
at al.
(2019)

Jin and
Hou
(2022)

Wang
et al.
(2022)

Ours† Ours∇
Zhang
at al.
(2016)

Li
at al.
(2020)

Jiang
at al.
(2018)

Shi
at al.
(2019)

Jin and
Hou
(2022)

Wang
et al.
(2022)

Ours† Ours∇

Sideboard 1.02 1.89 1.96 1.12 1.79 0.54 0.89 2.23 78.0 62.3 47.4 53.0 - - 73.8 43.0
Dino 0.41 3.28 0.47 0.43 0.69 0.08 0.45 0.86 81.2 52.7 29.8 43.0 - - 69.4 25.6
Cotton 1.81 1.95 0.97 0.88 0.80 0.16 0.68 3.07 75.4 58.8 25.4 38.6 - - 56.2 31.1
Boxes 7.90 4.67 11.6 8.48 7.45 2.89 6.69 9.17 84.7 68.3 51.8 66.5 - - 76.8 60.3

)70.0(PB)30.0(PB

Sideboard 42.0 18.0 18.3 20.4 - - 37.4 16.5 14.4 6.50 9.31 9.02 14.2 3.35 16.2 8.35
Dino 48.9 12.8 8.81 13.1 - - 30.9 7.69 7.52 5.82 3.59 4.32 8.25 1.00 10.4 4.06
Cotton 34.8 14.0 6.30 9.60 - - 18.0 7.82 4.35 4.11 2.02 2.74 8.46 0.31 4.86 4.06
Boxes 55.3 28.0 27.0 37.2 - - 47.9 32.7 18.9 13.4 18.3 21.9 26.2 10.7 28.3 20.5

The top three results are highlighted in gold , silver and bronze . BP(x) is the number of bad pixelswhich fall above threshold x in error. ‘Ours†’
denotes our non-differentiable method, ‘Ours∇’ denotes our differentiable method with an unsupervised loss. Note: Jin and Hou (2022) do not
report BP(0.01) nor BP(0.03). (Best viewed in color)

Table 5 Quantitative comparison on more realistic synthetic light fields

Living Room 0.67 0.57 0.23 0.25 0.25 0.20 59.5 58.5 37.2 48.0 47.2 30.3

Piano 26.7 13.7 14.4 8.66 12.7 8.71 36.7 27.5 24.7 27.0 37.6 17.0

BP(0.3) BP(0.7)

Living Room 43.3 42.7 23.7 26.5 25.0 17.5 17.0 16.6 11.4 10.8 11.5 9.23

Piano 25.0 17.6 13.6 11.4 20.0 7.93 5.33 4.13 5.88 4.29 4.95 3.49

Light Field

Zhang et al. (2016) Li et al. (2020) Jiang et al. (2018) Shi et al. (2019) Ours† Ours Zhang et al. (2016) Li et al. (2020) Jiang et al. (2018) Shi et al. (2019) Ours† Ours

MSE * 100 BP(0.1)

The top three results are highlighted in gold , silver and bronze . BP(x) is the number of bad pixels which fall above threshold x in error. Higher
BP thresholds are used for Living Room and Piano as their average error is larger for all methods: they contain specular surfaces, larger depth ranges,
and path tracing noise. ‘Ours†’ denotes our non-differentiable method, and ‘Ours∇’ denotes our differentiable method with an unsupervised loss

be high for points that have a high contribution to the result,
and low for less important points and outliers. To achieve
such a gradation, we run the optimization by selecting at each
step only those points with a weight larger than one to use for
dense depth diffusion. To prevent points from being trapped
in a discarded state, and thus receiving no gradients, we add
a random jitter to the weights at each iteration. Moreover,
this forces the optimization to push the weight of important
points higher so that they can never be randomly discarded,
and vice versa for outliers and superfluous points.

We demonstrate the results of our sparsification approach
using a supervised loss optimized on the light fields of the
HCI dataset (Fig. 22).We run the optimization for 2500 steps
for each light field and only optimize the data weight param-
eter. We evaluate two variants of our approach:

• OursN∇ selects the N points with the highest weight,
allowing us to generate a point set with a fixed size budget
(e.g., for storage cost). For a fair comparison to other spar-
sification methods that cannot set proportional weights,
we do not use our optimized weight values (Fig. 23);
using them leads to a slight performance increase.

• OursT∇ selects all points with weight greater than a
threshold of one during optimization, and also uses the

optimized weight values of those selected points instead
of ignoring them. Rather than a controller for a size bud-
get like OursN∇ , this can be thought of as a strategy to
produce a controller for quality.

We also compare our approach to three naive methods:
sparsification by random sampling, by stratified sampling in
screen space (2D), and by bucketing and averaging points
into voxels on a regular 3D grid (3D).

Table 6 shows the percentage improvement in each met-
ric over the baseline from Sect. 3, and Table 7 shows the
number of points used per scene. In general, all methods
yield some improvement, indicating the presence of outliers
and superfluous points in the baseline. However, sampling
using our differentiable diffusion approach produces a lower
mean-squared error and bad pixel metrics than the other
methods for the same number of points (Fig. 23). Further,
the naive sparsification baselines sometimes decrease per-
formance, while our approaches empirically always improve
performance. Comparing our two methods, OursT∇ leads
to greater improvement thanOursN∇ , e.g., an average MSE
decrease of 38.4% rather than 33.72%, though more points
are retained on average (15,975 vs. a fixed 7500).
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Fig. 22 Qualitative comparison of the depth maps obtained using different sparse sampling methods. Our approach to sparsification maintains
smooth surfaces and sharp edges better than naive methods

Table 6 Sparsification improves performance by removing redundant confounding points.

The percentage change in each metric over the baseline presented in Sect. 3, using 25–85k points per scene (Table 7). We evaluate uniform random
samplingRnd, 2D tile-based stratified sampling StrS, 3D voxel-based samplingVoxS, and two variants of our differentiable diffusion-based approach:
OursN∇ selects the N points with highest confidence, whereas OursT∇ selects all points with confidence greater than a threshold of one. We use
N = 7500 for OursN∇ and Rnd where we have direct control over the output set size, and aim for a roughly similar number of points in StrS and
VoxS through hyper-parameter adjustment. The exact number of points in the sparse set output by each method is provided in Table 7. (Best viewed
in color.)
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Table 7 Edge set size can be significantly reduced without reducing performance through sparsification.

Light Field Number of multi-view edge samples/Percentage of total pixels in single view
RndSamp 2DStratSamp VoxelSamp OursN∇ OursT∇ Base

Sideboard 7500/2.86% 7552/2.88% 14178/5.41% 7500/2.86% 9382/3.58% 50623/19.3%

Dino 7500/2.86% 7544/2.88% 10759/4.10% 7500/2.86% 28195/10.8% 85807/32.7%

Cotton 7500/2.86% 7551/2.88% 10749/4.10% 7500/2.86% 19653/7.46% 60921/23.2%

Boxes 7500/2.86% 7238/2.76% 8453/3.22% 7500/2.86% 6670/2.54% 25332/9.66%

The size of the edge set generated by each sparsification method. Base is the original sparse set generated by the first-principles method described
in Sect. 3. We present the percentage relative to the number of pixels in a single 512 × 512 view of the light field. However, it should be noted that
our sparse multi-view edge set is complete for reconstructing the geometric information contained in all the views. Hence, the actual compactness
achieved by our model is much higher

Fig. 23 Our sparsification approach achieves better performance than
naive baselines. Evaluating the quality of the depth reconstruction from
edge sets obtained using four sparsification methods on the four light

fields of the HCI dataset. The error is along the y-axis. The x-axis labels
show both the number of edge samples (bottom) and the percentage of
total pixels in a single light field view (top)

8 Discussion

Whenweconsider themaximal possible performance achiev-
able of our method, when considering the results in Fig. 2,
we see a considerably minimized error, but not a perfect
reconstruction. This can be attributed to certain implementa-
tional constraints that limit the model’s ability to encode and
reconstruct all depth features: while the optimization process
proposed in Sect. 6.4 can discard noisy labels, it cannot add
new labels to the original edge set P . Such errors are some-
what mitigated by starting with many points and sparsifying
them. However, our evaluation is ultimately limited by our

original edge set: a good set of edges will be more complete
than a bad one; the empty set will never be complete.

Another source of errors is the so-called “island problem”
where a value must be propagated across depth boundaries
(Kim & Kim, 2017). This can be observed in our results for
the boxes scene in the grill (Fig. 26). However, this failure
does not imply that our model is incomplete. The depth of
a featureless “island” cannot be ambiguously determined by
any method, and our estimate is as inaccurate as any other.
Imagine looking at a textureless surface through a small
hole: it is impossible to uniquely determine the depth of the
textureless surface using stereo cues alone. Since the depth
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information of such an “island” region is not encoded in the
input, it cannot be retrieved without using some prior on sur-
face configurations.

Furthermore, as stated, our model assumes Lambertian
surfaces. However, since non-Lambertian surfaces violate
EPI linearity, our multi-view edge estimation pipeline can
reliably discard them as outliers. Such a surface is then
assigned a depth value diffused from the closest non-
refractive edge, leading to a fronto-parallel surface recon-
struction. Thus, diffusion allows our method to fall back on
a piece-wise planar reconstruction for refractive surfaces.

Finally, the baseline of a camera system affectsmulti-view
edge recovery. We have shown our approach on narrow and
widebaseline light fields (synthetic, Lytro, andStanford), and
on front-facingmulti-view stereo scenes, but larger baselines
from sparse setups may cause trouble in reliably finding and
propagating edges. While our approach is occlusion-aware,
reliably finding occluded elements in very sparse point sets
in wide multi-view stereo setups is difficult. As such, we did
not test our method on sparse wide baseline setup datasets as
might be found in the Tanks and Temples (Knapitsch et al.,
2017), DTU (Aanæs et al., 2016), or ETH3D (Schops et al.,
2017) datasets. For example, our existing multi-view point
sets use 700–2800 points, as compared to 7500 minimally
for light fields. On these additional datasets, point sparseness
would only increase.

9 Conclusion

Multi-view edges encode all relevant information for sup-
porting higher-level tasks that rely on depth reconstruction.
Inspired by the work of Elder (1999), this was demonstrated
byproposing a representation formulti-viewdepth as a sparse
model based on multi-view edges that satisfies the criteria of
explicitness, concision, and completeness. The proposed rep-
resentation has explicitness in that it provides more useful
information than the multi-view RGB input. This includes
edges, occlusion surfaces, and depth boundaries. The rep-
resentation has concision as it stores depth labels for each
edge pixel only once, and exploits a smoothness assump-
tion to deal with traditionally noise-prone areas such as
specular and texture-free regions. The completeness of the
representation—its ability to capture all relevant information
for higher-level tasks—was demonstrated through estimating
representation parameters—an edge code—froma structured
light field and by a reconstruction method that inverts the
edge code to retrieve a dense 2D depth map. Given that dif-
ferent applications are variously dependent on the quality
dimensions of depth reconstruction, we defined complete-
ness for computational photography tasks using occlusion
edges and view consistency along with the common accu-
racy metric.

However, practical use can still be limited by the inac-
curacy of the representation parameters, leading to errors 
in the diffusion process. As such, we created a differen-
tiable variant of the representation that redefines multi-view 
edges as Gaussians in 3D space that can be splatted to 
a camera in an occlusion-aware way via radiative trans-
port. Then, representation parameters can be optimized 
via gradient descent guided by a multi-view reprojection 
loss. This loosens the requirement on estimating multi-
view edges from structured light field and additionally 
allows optimizing point clouds recovered from unstruc-
tured multi-view images. Further, the differentiable form 
can optimize concision via sparsity.

In comparative evaluation, we observe that the recon-
structed dense depth is comparable to existing methods on 
each of the three metrics: accuracy, occlusion-edge 
localization, and view-consistency, and is comparatively 
good at reducing bad pixels via its reprojection loss. First, 
these findings provide strong evidence that multi-view 
depth edges are indeed complete. Second, they sug-gest that 
compact, efficient, and well-defined edge codes have value 
amid deep learning. Third, they provide evi-dence that this 
value is derived from the underlying struc-tural information 
contained within images—that of high-confidence depth 
estimates from well-defined multi-view edges—and not 
contained within images—where we must make 
assumptions in regions of low confidence (be they data-
driven or otherwise). As a way of handling low con-fidence 
regions through sparsity, diffusion-based methods are still a 
reasonable approach, and that careful constraint estimation 
and optimization ultimately determines the final quality.
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Appendix A

A.1 Variable Table

Please reference Table 8 at the back of this document for a 
list of all variables used within the paper and their meaning, 
definition, and values where appropriate.

A.2 Implementation Software and Hardware

Our non-differentiable method was implemented in MAT-
LAB (except the C++ Poisson solver), as were the three 
non-data-driven comparison algorithms and parts of Jiang
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et al. All networks were implemented in TensorFlow. Our
differentiable method was implemented in PyTorch. For dif-
fusion, we implement a differentiable version of Szeliski’s
LAHBPCG solver (Szeliski, 2006). All CPU code was run
on an AMD Ryzen Threadripper 2950X 16-Core Processor,
and GPU code on an NVIDIA GeForce RTX 2080Ti.

A.3 Supervised Loss

In the main paper, we describe a validation of our differen-
tiable rendering and diffusion approach using a supervised
loss against ground truth data. In Fig. 24,we presentMSEand
bad pixel metrics over iterations of the optimization for both
the HCI dataset and our new living room and piano realistic
scenes. For comparison, we also mark the performance of
five existing methods. In Fig. 25, this experiment shows that
our approach can produce errors close to zero, and validates
the potential of such an approach in the best case.

Still, why do the errors not reduce to zero? As Fig. 25
shows, the presence of outliers in the original point set and
the lack of labels in regions with fine detail prevents the
diffusion from entirely eliminating errors. Such sources of
error occur in all six light fields to varying degrees.

A.4 Differentiable Implementation Details

Our proposed framing of the diffusion problem allows us to
express SZ and λZ as differentiable functions of the points
setP , and thus, to calculate ∂ L/∂ x. SinceP provides strong
constraints on the shape of these functions, we optimize
over the parameters Zx, Kx, wx, and ϑZ instead of directly
over � (wx is the scaling factor from Eq. (32)). To regu-
larize the smoothness and data weights, we further define
ϑZ(x, y) = exp(−Q(x, y)) and wx = exp(−R(x)), for
some unconstrained R and Q that are optimized. Thus, our
final parameter set is �̄ = {Zx,Kx, R, Q}.We initialize R(x)
to zero for all x, and Q(x, y) to the magnitude of the image
gradient ‖∇ I‖.

Distance

Both RGB and VGG16 features can be used as distances for
a warping loss E�; we found VGG16 features to outperform
RGB. VGG loss has a better notion of space from a larger
receptive field and handles textureless regions better. Thus,
we take each warped image in Eq. (40), run a forward pass
through VGG16, then compute an L1 distance between the
64 convolution activation maps of the first two layers. ∇E�

is computed using the 2D channel-wise mean of E�; ES and
ESSIM are calculated in RGB space.

Hyperparameters

This requires a trade-off between resource use and accuracy.
The parameter σS in Eq. (29) determines the pixel area of a
splatted depth label Zx. Ideally, we want the label to be Zx

over all pixels where λZx > ε. The case where the label falls
off while the weight is much larger than zero is illustrated
in Fig. 15c and leads to incorrect diffusion results. However,
ensuring a uniform weight requires having a large value of
σS, and this may cause the labels of neighboring points to
be occluded. We found that using σS = 1.3 provides a good
balance between accuracy and compactness. This spreads
the label density over three pixels in each direction before it
vanishes, so we use a Gaussian kernel size of 7 × 7.

For σZ , we want the spread to be as small as possible.
However, if the value is very small then we must use a large
number of samples inNx when calculating the quadrature in
Eq. (39). An insufficient number of samples causes aliasing
when calculating αx at different pixel locations (x, y). We
found that a value of σZ = 1.0 and 8 samples in each Nx

works well in practice.
We use a Gaussian of order p = 2 to represent λZx

(Eq. (31)). As the order is increased, the Gaussian becomes
more similar to a box function and leaks less weight onto
neighboring pixels. However, its gradients become smaller,
and the loss takes longer to converge. With p = 2, we cal-
culate σλ = 0.71 to provide the necessary density to prevent
points from vanishing (Fig. 15d).

Routine

We use Adam (Kingma & Ba, 2014). We observe a lower
loss when a single parameter is optimized at once. Thus,
we optimize each parameter separately for 13 iterations, and
repeat for 5 passes.

Efficiency

The set of edge pixels require to represent a high-resolution
image can run into the tens of thousands, and naively opti-
mizing for this many points is expensive. This is true both of
computation time and of memory. Calculating SZ in Eq. (29)
by summing over all points x is impossibly slow for any
scene of reasonable complexity. Fortunately, in practice, we
only need to sum the contribution from a few points x at
each pixel and, so, the computation of αx(x, y) in Eq. (39) is
serialized by depth only for points in a local neighborhood.
By splitting the image plane into overlapping tiles, non-local
points Kx can be rendered in parallel. The amount of over-
lap equals the kernel size in xy, and is needed to account for
points that may lie close to the boundary in neighboring tiles.
Using this parallelization scheme, we can render more than
50k points in correct depth order, solve the diffusion problem
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Table 8 Reference table for all variables used throughout the manuscript

Variable Interpretation Type, specification, or value

Light field parameterization

LF Light field

x, y, u, v Light field ray intersections in two-plane model

H Central row of views in light field LF(x, y, uc, v)

V Central column of views in light field LF(x, y, u, vc)

I An image sampled from a light field RGB 8-bit

I A 2D perspective image in 3rd column and 5th row of light field. LF(x, y, 2, 4)

Ei Epipolar image in light field; horizontal Ei (x, u) = I (x, yi , u)

E j Epipolar image in light field; vertical E j (y, v) = I (x j , y, v)

Model parameterization—all parameters shared across all scenes.

Line fitting

w, h Epipolar image (EPI) width and height Per light field, e.g., h = 9

l Parametric model of a line within an EPI

λ Perpendicular distance in confidence map within which to discard other lines. h/5

k Number of samples that a line must lie across to be included h/4

τ f Line filtering threshold π/13

τv Line visibility threshold π/10

Entropy refinement

t Line visibility threshold 0.88

α Line visibility threshold 0.15

Number of iterations 10

Disparity trilateral filtering

σs Spatial filter bandwidth 10

σd Disparity filter bandwidth 0.1

σc Color filter bandwidth (Lab) 0.5

Diffusion—all parameters shared across all scenes.

p Point in set

A Point set

λd Bi-directional solve data term 106 if p ∈ A; 0 otherwise

λs Bi-directional solve smoothness term 1/‖∇ I (p)+ε‖
r , ε Weighted median filter parameters 7, 10−6

Ed (·) Data term in optimization defined over discrete pixels

Es(·, ·) Smoothness term in optimization defined over pairs of pixels

Differential optimization

I Set of n multi-view images I = {I0, I1, . . . , In}
P Noisy scene points in R3

S(·, ·) Sparse depth labels in continuous image space S : R2 → R

λ(·, ·) Splatting function in continuous image space λ : R2 → R

ϑ(·, ·) Local smoothness weight in continuous image space ϑ : R2 → R

SZ(·, ·) Sparse depth labels in discrete pixel space S : Z2 → R

λ(·, ·)Z Splatting function in discrete pixel space λ : Z2 → R

ϑ(·, ·)Z Local smoothness weight in discrete pixel space ϑ : Z2 → R

σs The spatial spread of the Gaussian label 1.3

σλ The spatial spread of the super-Gaussian weight 0.71

σZ The spatial spread of a 3D Gaussian in the depth dimension 1.0

used for modeling occlusion of point labels

p Order of higher-order Gaussian (super-Gaussian) labeling funciton 2
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Fig. 24 a Evaluation metrics plotted over all iterations of the optimiza-
tion with supervised loss (HCI Dataset). The top row shows results on
individual light fields in the dataset. The bottom row compares the aver-
age performance over the dataset with the baseline methods of Zhang et

al., Khan et al., Li et al., Shi et al. and Jiang et al. The bumps in the curve
occur where we switch optimization parameters. b Evaluation metrics
for the Piano and Living Room light fields with supervised loss
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Fig. 25 Disparity maps generated by our method using supervised loss.
a–f :Boxes,Dino, Sideboard,Cotton, Living Room andPiano. The pres-
ence of outliers in the original point set (green boxes), and the lack of

labels in regions with fine detail (blue boxes) prevents the diffusion
from entirely eliminating errors. Such sources of error occur in all six
light fields to varying degrees (Color figure online)

of Eq. (28), and back-propagate gradients through the solver
and renderer in five seconds.

A.5 Additional Results for Non-differentiable
Approach

Please see Figs. 26 and 27 for additional qualitative results.

A.6 Additional RelatedWork

Many researchers and their work have inspired our approach.
We describe in greater detail how these works address depth
estimation.

Light Field Depth Estimation

Light field depth estimationmethods typically seek to exploit
the regular structure of an EPI (Park & Lee, 2017). Wanner
& Goldluecke’s (2012) work was among the earliest widely-
applicable method to use EPI lines for local depth estimates.
They use a structure tensor to estimate depth as the gradi-

ent in EPI space. The estimate is refined in a variational
framework—first in the angular dimension to enforce vis-
ibility constraints, and then in the spatial dimension. Many
subsequent methods have adopted a similar approach by pos-
ing depth estimation as an energy-minimization problem in
EPI space. However, the latter optimization does not include
any cross-view consistency constraints. Thus, while capable
of generating depth maps for off-center views, their results
are not consistent. Moreover, the variational approach turns
out to be computationally untenable when generating results
for each view. Due to the local nature of the structure tensors,
Wanner and Goldluecke’s method can only reliably detect
pixels with a disparity no larger than two pixels. This limits
its application to light fields with larger baselines.

Diebold andGoldluecke (2013) address this by refocusing
each EPI to several virtual depth layers before local disparity
estimation. In addition, they present a method for handling
incoherent depth estimates around occlusion boundaries.
While this generates sharper edges in the resultant depth
map, it requires the integration of estimates over all views
and so restricts the output to a disparity map for the cen-
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Fig. 26 HCI dataset. Top to bottom: light field central view, Shi et al.
(2019), Jiang et al. (2018), our non-differentiable method, ground truth
depth, error maps in clockwise order (Shi, Jiang, Ours). In general, our
method has a lower mean squared error (MSE) with fewer large outliers

(please zoom into error maps), captures thin features better, and gener-
ates more view-consistent depth maps. However, their depth maps are
more geometrically accurate more often (lower bad pixel percentages)
and less sensitive to texture variations
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Fig. 27 Real-world light fields from the Stanford (left pair) and EPFL
(right pair) datasets. Top to bottom: central RGB view, Shi et al.
(2019), Jiang et al. (2018), and our non-differentiable method. While
our method has more bad pixels and can be sensitive in narrow base-

line cases (far right: limitation Sphynx case), in general, our method
has equivalent or lower view consistency error, runs faster, and has no
training data or pre-trained network dependency

tral view only. Zhang et al.’s (2016) spinning parallelogram
operator works in a similar fashion on EPIs, but has larger
support than the 3 × 3 Scharr filters used by Wanner and
Goldluecke (2012) and Diebold and Goldluecke (2013), and
provides more accurate estimates. This approach is similar to
Tošić & Berkner’s (2014) convolution with a set of specially
adapted kernels to create light field scale-depth spaces.Wang
et al. (2015), Wang et al. (2016a) build on this by propos-
ing a photo-consistency measure to address occlusion. Their
method computes depthmaps with sharp transitions at occlu-
sion edges but only produces depth for the central light field
view. Tao et al.’s (2013) work considers higher dimensional
representations of EPIs that allows them to use both cor-

respondence and defocus for depth estimation. These latter
two works use graph cuts (Kolmogorov & Zabih, 2002) to
minimize an NP-hard energy function.

The relation between defocus and depth is also exploited
by the sub-pixel cost volume of Jeon et al. (2015) who also
present a method for dealing with the distortion induced by
micro-lens arrays.An efficient and accuratemethod forwide-
baseline light fieldswas proposed byChuchvara et al. (2020).
They use an over-segmentation of each view to get ini-
tial depth proposals that are then iteratively improved using
PatchMatch (Barnes et al., 2009). Their work demonstrates
the use of superpixels for higher-level vision tasks. Closely
related to our method of edge-aware bidirectional diffusion
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is the work of Holynski and Kopf (2018) who present an
efficient method for depth densification from a sparse set
of points for augmented reality applications. Similar to our
smooth reconstruction method, Yucer et al. (2016) present
a diffusion-based method that uses image gradients to esti-
mate a sparse label set. However, their method is designed to
work only for light fields with thousands of views. Chen et
al. (2018a) estimate accurate occlusion boundaries by using
superpixels in the central view to regularize the depth esti-
mation process. In general, densification methods (Xu et al.,
2019; Wang et al., 2018; Cheng et al., 2018b) largely seek to
recover accurate metric depth without considering occlusion
boundaries.

In recent years, many methods have sought to use data-
driven methods to learn priors to avoid the cost of dealing
with a large number of images, and to overcome the loss
of spatial information induced by the spatio-angular tradeoff
in lenslet images. Alperovich et al. (2018) use an encoder-
decoder architecture to perform an intrinsic decomposition
of a light field, and also recover disparity for the central cross-
hair of views. Huang et al. (2018) provide a network-based
solution that handles an arbitrary number of uncalibrated
views. Jiang et al. (2018), Jiang et al. (2019) fuse the dis-
parity estimates at four corner views estimated using a
deep-learning optical-flowmethod. Shi et al. (2019) build on
this by adding a refinement network to the fusion pipeline.
Finally, self-supervised approaches using learning also exist,
for instance, that of Jin and Hou (2022).

Depth Occlusion Edge Estimation

High-accuracy depth edges are vital for image editing tasks;
however, correctly localizing depth edges proves difficult.
CNNs trained on a mean loss over all pixels fail to capture
high frequencies (also due in part to spectral bias (Rahaman
et al., 2019; Basri et al., 2020) and the averaging effect
implicit in convolution). Methods such as Neural Radi-
ance Fields (Mildenhall et al., 2020) also inherently have
a smoothness bias that lets them avoid degenerate solutions
that may result from the shape-radiance ambiguity (Zhang
et al., 2020) and can require positional encoding for high-
frequency details (Tancik et al., 2020; Sitzmann et al., 2020).
Similar smoothing artifacts can be observed in depth fusion
approaches (Weder et al., 2020; Choe et al., 2021), espe-
cially those based on averaging signed distance functions
(Curless & Levoy, 1996; Izadi et al., 2011). Many depth esti-
mationmethods, including top performers on theMiddlebury
Stereo Dataset (https://vision.middlebury.edu/stereo/), miti-
gate the blurriness of depth edges by using a discrete range
of depth values. Others enforce strong occlusion edges with
a weighted median filter on depth (Ma et al., 2013; Kopf et
al., 2020; Shih et al., 2020).

Sparse Depth Reconstruction

Early work in the field of depth densification and completion
from sparse inputs used cross-bilateral filters to complete
missing depth samples (Richardt et al., 2012). Chen et
al. learn to upsample low-resolution depth camera input and
regularize it from paired RGB data (Chen et al., 2018a).
Imran et al. consider the problem of depth pixels being inter-
polated across discontinuities, and compensate by learning
inter-depth object mixing (Imran et al., 2019). Efficient com-
putation is also addressed by Holynski and Kopf (2018),
who estimate disparity maps for augmented reality. With
accurate depth samples, such as from LIDAR, simple image
processing-based methods are competitive with more com-
plex learning-based methods (Ku et al., 2018). Our method
considers the problem of when depth samples themselves
may not be accurate, and any resulting densification without
correcting the samples will lead to error.
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