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Examples. We conclude with some examples. They will also be used to show that
certain results are sharp. Details for how to derive these results are given in §3.1.

(1) The complete graph Kn, for n ≥ 2, has constant resistance curvature
n/(2n−2). Moreover, if G is a graph on n vertices with curvature bounded
from below by K > 0, then K ≤ n/(2n − 2) making the complete graph
Kn the most curved graph on n vertices.

(2) The cycle graph Cn has constant curvature Kn = 6/(n2 − 1). We believe
that among all graphs on n vertices with constant curvature, the minimal
curvature is attained by the cycle graph. We prove that if G is a graph
with constant curvature K on n vertices, then K ≥ 1/(n(n− 1)).

(3) The hypercube Qn with V = {0, 1}n and E given by all pairs of vertices at
Hamming distance 1 has constant curvature Kn = (1 + o(1)) · n · 2−n−1.

(4) The d-dimensional discrete tori Cn,d, defined on V = {1, 2, . . . , n}d with
vertices connected in the usual toroidal structure, have constant curvature

Kn(2) = Θ

(

1

n2 lnn

)

, Kn(d) = Θd

(

1

nd

)

, d ≥ 3,

where fn = Θ(gn) means c−1 ≤ fn/gn ≤ c for some c > 0.

2. Results

2.1. Diameter. One usually asks of curvature that it provides some sort of control
on the size of graph. Graphs with gigantic diameter should not have very large
positive curvature everywhere. In the continuous setting, this is known as the
Bonnet-Myers theorem [26]. Various notions of graph curvature have such a result.

Theorem 1. Let G = (V,E) be a connected graph with maximal degree ∆ and

resistance curvature bounded from below by K > 0. Then

diam(G) ≤
⌈

√

∆

K
· log |V |

⌉

For the cycle graph Cn, we have

diam(G) = Θ (n) as well as ∆ = 2 and K = Θ
(

n−2
)

,

showing that the dependence on the curvature is sharp. It is an interesting ques-
tion whether the overall bound can be improved, a suggestive conjecture being
diam(G) ≤ c ·K−1/2 in analogy with the continuous Bonner-Myers theorem [26].

2.2. Spectral Gap. The Lichnerowicz inequality in the continuous setting (after
[19]) shows that the curvature of a positively curved manifolds can be connected
to the spectral gap of the Laplacian. As in the case of the first result, such an
inequality is true for a variety of notions of graph curvature.

Theorem 2. Suppose G = (V,E) has resistance curvature bounded from below by

K > 0, then the smallest positive eigenvalue of D −A satisfies

λ2 ≥ 2K.

This is sharp up to a constant. On the cycle graph Cn, we have

λ2 = (1 + o(1)) · 4π
2

n2
and K =

6

n2 − 1
.
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For the graph G = K3, we have λ2 = 4K. The first nontrivial eigenvalue λ2 is
usually regarded as a measure for the overall connectivity of the graph, it is also
sometimes known as ‘the algebraic connectivity’. λ2 being small means that the
graph can be separated by moving very few edges. Theorem 2 provides a functional
strenghtening of this statement by showing that for any function f : V → R with
mean value 0, we have

∑

(u,v)∈E

(f(u)− f(v))2 ≥ 2K
∑

v∈V

f(v)2.

2.3. Commute Time. A way of measuring connectedness of a graph is via the
associated random walk and how quickly it leads from one vertex to another vertex.
It is also a way of excluding bottlenecks since these greatly increase the commute
time. We provide two-sided bounds on the commute time in terms of curvature.

Theorem 3 (Commute Time Pinching). Suppose G = (V,E) has curvature bounded
from below by K > 0 and bounded from above by K2. Then, for all vertices x ∈ V ,

2

K2

|E|
|V | ≤ max

y∈V
commute(x, y) ≤ max

y,z∈V
commute(y, z) ≤ 4

K

|E|
|V | .

These inequalities are accurate for a large number of different examples. In partic-
ular, they are necessarily accurate up to a factor of at most 2 for all graphs with
constant curvature since then K = K2. On the complete graph Kn we have

2

K2

|E|
|V | = (1 + o(1)) · 2n and max

y∈V
commute(x, y) = 2n− 2

which shows that the lower bound is sharp. The cycle graph C4 shows that the
constant 4 in the upper bound cannot be replaced by any constant smaller than 3.2.
The proof actually implies slightly sharper bounds where instead of the smallest
lower bound we can use the average curvature of the graph. If a graph has curvature
bounded below by K > 0, then for all x ∈ V there exists a point y ∈ V far away

max
y∈V

commute(x, y) ≥ 2 · |E|
∑

v∈V κv
.

This estimate is again sharp for the complete graph Kn but can lead to slightly
improved estimates in general. In a similar spirit, the maximal commute time is
bounded from above by

max
y,z∈V

commute(y, z) ≤ 4 · |E|
∑

v∈V κv
.

This is at the very least close to optimal: an example shows that the constant 4 in
this refined upper bound cannot be replaced by any number smaller than 3.87.

2.4. Mixing Time. The commute time estimates imply a bound on the mixing
time of the corresponding Markov chain.

Theorem 4. Let πx,t be the law of the simple random walk on G = (V,E) starting
at x after t steps, and let π be its stationary law. If the graph has resistance

curvature bounded from below by K > 0, then

dTV(πx,t, π) ≤
4

K

|E|
|V |

1

t
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While the bound is far from optimal in general, it is sharp for a cycle graph. It is
worth comparing this bound with that coming from a lower bound of the Ollivier-
Ricci curvature K̃, which is of the form

dTV(πx,t, π) ≤ diam(G)
(

1− K̃
)t

.

For random walk on a cycle, one has K̃ = 0 and no bound on the mixing time can
be obtained. In contrast, our Theorem 4 is sharp up to constants (order n2 are
necessary and sufficient to mix in total variation, see e.g. [18]). More general, our
bound is well-adapted for diffusive problems, where hitting times are comparable
to the mixing time. On the other hand, for highly connected graphs such as the
hypercube Qn, the Ollivier-Ricci curvature is K̃ = n−1 and diam(G) = n, giving
the correct answer up to constants (order n lnn steps are necessary and sufficient
to mix, with a much more precise result given in [5]), while our bound is off by an
exponential factor. This comes as no surprise: in this case hitting a specific vertex
takes much longer than hitting a stationary walker.

2.5. Equilibrium result. We conclude with an equilibrium result which tells us
that the sum over all curvatures gives a way of measuring how well-connected a
graph is. Large curvature means that all the points are close to each other in the
sense of commute time and, in particular, for any set of vertices there is another
vertex that is close to ‘most’ of them (and one that is far away).

Theorem 5 (Minimax Theorem). Let G = (V,E) have nonnegative curvature.

Then, for any probability measure µ on V , there are a, b ∈ V with

min
a∈V

∑

v∈V

Ωav · µ(v) ≤
(

∑

v∈V

κv

)−1

≤ max
b∈V

∑

v∈V

Ωbv · µ(v).

Moreover, 1/
∑

v∈V κv is the unique real number with that property.

We recall that, up to scaling, Ωab is the commute time between two vertices. The
result therefore states that, no matter how a probability measure µ is distributed
on the set of vertices, there is always another vertex a ∈ V with a small average
commute time to a µ−random vertex and there is another vertex b ∈ V with large
average commute to a µ−random vertex. What is remarkable is that the inverse
of the sum over all curvatures is the unique real number that is sharp for both
inequalities. The argument is largely based on a corresponding argument from [32]
which in turn uses the von Neumann Minimax Theorem [37]. We conclude by
noting a consequence of Rayleigh’s monotonicity law (see e.g. [6]): Ωij does not
increase when edges are being added. We conclude the following basic but intuitive
property that for a given graph with nonnegative curvature, the process of adding
additional edges must increase the curvature in at least some vertex. This makes
intuitive sense: adding edges makes the graph more positively curved.

2.6. Related work. There are many different notions of curvature. Some are
combinatorial [11, 34, 38], some are inspired by the behavior of the Laplacian

with prominent examples being given by Bakry-Émery curvature [2] or Forman
curvature [8]. More recent ideas tend to center around the behavior of optimal
transport (Lott-Villani [22], Sturm [35]) with important examples being given by
Ollivier-Ricci curvature [27, 28] and the Lin-Lu-Yau curvature [20] (see also [4]).
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The two notions most related to our work are the ones proposed by the third author
[32] and by the first author and Lambiotte [13] who suggested

κ =
Ω−11

〈1,Ω−11〉 .

As already mentioned above, the Devriendt-Lambiotte curvature coincides with our
notion up to a global multiplicative factor but this factor depends on the geometry
of a graph in a nontrivial way. In particular, one would expect graphs with vertex-
transitivity (such as the complete graph Kn, the cycle graph Cn and the hypercube
graph Qn) to have constant curvature. This is indeed the case for both notions.
However, the constant for Devriendt-Lambiotte curvature is always |V |−1 for any
graph with constant curvature while our notion is more dependent on the underlying
geometry: it is ∼ 1 for Kn, it is ∼ |V |−2 for Cn and ∼ (log |V |) · |V |−1 for Qn.
This dependency is also what enables us to prove result connecting the size of the
curvature to the geometry of the graph. Nonetheless, some results carry over. We
emphasize the following structural property for graphs with nonnegative curvature.

Theorem (Devriendt [14]). Positively curved connected graphs are 1-tough: re-

moving k vertices results in at most k connected components.

The next connection in the literature is to the concept of ‘resistance-regular’ graphs.
A graph has constant curvature iff the row sum of Ω are constant. Graphs with
this property (‘resistance-regular’) have been studied by Zhou, Wang & Bu [44].
They prove a number of interesting properties and raise some fascinating questions,
for example whether resistance-regular graphs are always regular. Additional con-
nections to the literature come from a basic observation connecting curvature to a
characteristic number of the graph known as the Kirchhoff index Kf(G).

Proposition 1. If G = (V,E) has curvature bounded from below by K > 0 and

from above by K2, then the Kirchhoff index satisfies

n

2K2
≤ Kf(G) =

∑

i<j

Ωi,j ≤
n

2K
.

The argument is very easy since

Kf(G) =
∑

i<j

Ωi,j ≤
1

2K

n
∑

i=1

n
∑

j=1

Ωijκj =
n

2K

with the other inequality being analogous. The Kirchhoff index has been actively
studied, see for example [16, 21, 40, 41, 42, 43]. Kf(G) has been connected to
many different graph properties and, thus via Proposition 1, one can deduce many
inequalities for and from curvature. For example, using a result of Sivasubramanian
[31], if G is a graph with non-negative curvature bounded from above by K2, then
the sum over the distance between all pairs is large whenever K2 is small

1

2

∑

u,v∈V

d(u, v) ≥ |V |
K2

.

This inequality is sharp up to constants for the cycle Cn since the sum on the
left-hand side runs over ∼ n2 terms of size ∼ n while |V | = n and K2 = 6/(n2− 1).
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3. Proofs

3.1. Examples. We collect the arguments for the examples discussed above.

The complete graph. Let G = Kn. Then it is clear that Ωij can only assume two
values (one of them being Ωii = 0). Let us denote the other value by x. Then

n(n− 1)

2
x =

∑

i<j

Ωi,j = n

n
∑

k=2

1

λk
,

where the second equation is sometimes attributed to McKay (see Mohar [25]) with
an independent rediscovery by Merris [24]. The eigenvalues of L = D − A are 0
and n (the second with multiplicity n − 1) and thus x = 2/n. The linear system
Ωκ = 1 is then easily seen to have the solution

κ =
n

2n− 2
1,

leading to a constant curvature Kn = n/(2n− 2).

Proposition 2. If G = (V,E) has curvature bounded below by K > 0, then

K ≤ 1

2

n

n− 1
.

Proof. Using Foster’s Theorem [9, 10]

n− 1 =
∑

(i,j)∈E

Ωij ≤
1

2

n
∑

i,j=1

Ωij ≤
1

2K

n
∑

i=1

n
∑

j=1

Ωijκi ≤
n

2K
.

�

The cycle graph. Recalling the definition of Ωij as the commute time, it is clear that
Ω will have the property that the sum over each row is constant. Thus curvature
is constant, it remains to understand which constant that is. We give two different
arguments where the second gives a more precise formula while the first one has
the nice property of requiring

∑∞
k=1 k

−2 = π2/6.

Proposition 3. The cycle graph Cn has constant curvature K = 6/(n2 − 1).

Proof. We start with a slightly rougher spectral argument that only leads to the
leading order expression but may be more broadly applicable in other settings. We
recall the identity of McKay (see [25])

∑

i<j

Ωi,j = n

n
∑

k=2

1

λk
.

to argue that

n =
∑

i,j

Ωi,jK = 2nK

n
∑

k=2

1

λk

and thus

K =

(

2
n
∑

k=2

1

λk

)−1

.



8

The non-zero eigenvalues of the cycle graph are well understood and given by

λk = 4 sin

(

πk

n

)2

k = 1, . . . , n− 1.

The relevant eigenvalues are those where k is close to 0 or close to n. Picking a
small value 0 < α � 1, we see that for α small

∑

k≤αn

1

4 sin
(

πk
n

)2 ∼ 1

4

∑

k≤αn

1
(

πk
n

)2 =
n2

4π2

∑

k≤αn

1

k2
∼ n2

24
.

By symmetry, the terms (1− α)n ≤ k ≤ n are of the same size and thus, invoking
ζ(2) = π2/6 and letting n → ∞

K = (1 + o(1)) · 6

n2
.

Here is an alternative proof, using instead the electrical network interpretation of
the resistance distance, that gives an exact result. Let i, j be two points with graph
distance k. The effective resistance Ωi,j between the two points can be thought
as the result of two resistances in parallel, each consisting of k and n − k unit
resistances in series, respectively. Standard reduction for electrical networks imply

Ωi,j =
1

1
k + 1

n−k

=
k(n− k)

n
.

If n is even, there are exactly two vertices at distance k from i, for each 1 ≤ k ≤
n/2− 1, and one at distance n/2. In particular, since for an arbitrary i

K
∑

j 6=i

Ωi,j = 1,

we deduce

1

K
=

n
2
−1
∑

k=1

2k(n− k)

n
+

n

4
=

(n− 2)(2n+ 1)

12
+

n

4
=

n2 − 1

6

If n is odd, for each 1 ≤ k ≤ n−1
2 there are 2 vertices at distance k from i, and

1

K
=

n−1

2
∑

k=1

2k(n− k)

n
=

n2 − 1

6
.

�

We note that, as a byproduct, we have proven the pretty identity

n−1
∑

k=1

(

sin
πk

n

)−2

=
n2 − 1

3
.

This identity is not new and appears in a 1996 paper of Kortram [15] (with a very
different derivation). It leads to a particularly simple proof of ζ(2) = π2/6. Related
identities are given by Hofbauer [12]. We conjecture that the cycle Cn is extremal
in the sense that its curvature is minimum among graph with constant curvature
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on n vertices. This is easy to prove up to constants. Since Ωi,j ≤ n for all i, j, the
resistance distance being bounded from above by the graph distance, we have

n
∑

j=1

Ωi,j ≤ n(n− 1),

i.e., K ≥ 1/(n(n − 1)). If a graph has constant curvature K and is Hamiltonian,
Rayleigh’s monotonicity law for resistances shows that K is at least as large as the
curvature of a cycle, confirming the conjecture. Unfortunately, there are examples
of vertex transitive (implying constant curvature) graphs that are not Hamiltonian,
such as the Petersen graph.

The hypercube graph. We proceed in the same way as in the cycle graph: clearly,
curvature has to be constant and the constant satisfies

K =
1

2
∑n

k=2
1
λk

.

The eigenvalues of Qn are 2k for 0 ≤ k ≤ n with 2k having multiplicity
(

n
k

)

. Thus

1

K
=

n
∑

k=1

1

k

(

n

k

)

.

Elementary probability theory tells us that binomial coefficients are strongly local-
ized around n/2 with the typical deviation between

√
n and thus

1

K
=

n
∑

k=1

1

k

(

n

k

)

= (1 + o(1)) · 2n

n/2

.
d-dimensional tori. Consider the graph given by the product of d cycles of length
n (i.e., a discrete d-dimensional torus), for d ≥ 2. Since all these graphs are vertex-
transitive, the curvature is constant and

Kn(d) =
1

∑

j 6=i Ωi,j

If d ≥ 3, it is known [18] that Ωi,j = Θd(1) and thus we obtain Kn(d) = Θd

(

n−d
)

since the number of vertices is nd. For d = 2, with k denoting the graph distance
between i and j, in [18] the authors show Ωi,j = Θ(ln (k + 1)) and thus, since there
are Θ(k) vertices at distance k from i,

∑

j 6=i

Ωi,j =

n
∑

k=1

Θ(k ln(k + 1)) = Θ
(

n2 lnn
)

.

Therefore, we obtain Kn(2) = Θ(n−2 ln−1 n).

3.2. Proof of Theorem 1.

Proof. Theorem 1 follows from a bound of Alon-Milman [1]

diam(G) ≤
⌈

√

2∆

λ2
· log |V |

⌉

,
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where λ2 is the smallest positive eigenvalue of L = D−A. Employing the generalized
sum rule, we deduce that

1

λ2
≤

n
∑

k=2

1

λk
=

1

2n

n
∑

i,j=1

Ωi,j ≤
1

2nK

n
∑

i=1

n
∑

j=1

Ωi,jκj =
1

2nK

n
∑

i=1

1 =
1

2K
.

This implies the desired result. �

We note that the first step of the argument appears to be somewhat wasteful and
does lead to an interesting question: is there an estimate along the lines of

diam(G) ≤ c

√

√

√

√∆
n
∑

k=2

1

λk
or maybe even diam(G) ≤ c

√

√

√

√

n
∑

k=2

1

λk
?

This would remove the factor log |V | or
√
∆ log |V | , respectively, in the statement.

In particular, the second one could then be written in the suggestive form

diam(G) ≤ c√
K

,

which would resemble the original Bonnet-Myers theorem very closely.

3.3. Proof of Theorem 2.

Proof. We have

n =

n
∑

i=1

1 =

n
∑

i=1

n
∑

j=1

Ωi,jκj ≥ K

n
∑

i,j=1

Ωi,j

At this point we recall McKay’s identity [25]

∑

i<j

Ωi,j = n
n
∑

k=2

1

λk
,

where λk are the nonzero eigenvalues of the Laplacian matrix D −A. Therefore,

n ≥ K

n
∑

i,j=1

Ωi,j = 2nK

n
∑

k=2

1

λk
≥ 2nK

λ2
.

�

3.4. Proof of Theorem 3.

Proof. The commute time between x and y is

commute(x, y) = 2 · |E| · Ωxy.

We give two proofs: an elementary argument that bypasses Theorem 4 and another
proof using Theorem 4. Using the triangle inequality for resistance distance and
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the fact that the graph has curvature bounded from below by K, we conclude

Ωxy ≤ 1

|V |
∑

z∈V

(Ωxz +Ωzy)

=
1

|V |
∑

z∈V

Ωxz +
1

|V |
∑

z∈V

Ωyz

≤ 1

|V |
1

K

|V |
∑

z=1

Ωxzκz +
1

|V |
1

K

|V |
∑

z=1

Ωzyκy =
2

K|V | .

A way of proving Theorem 3 using Theorem 4 is as follows: let

µ =
1

2
δx +

1

2
δy.

Then, applying Theorem 4, we have that there exists a ∈ V such that

1

2
(Ωax +Ωay) ≤

1
∑

v∈V κv
≤ 1

|V |
1

K
.

Then, however, using the fact that resistances are a metric,

Ωxy ≤ Ωax +Ωay

and the desired upper bound follows. As for the lower bound, we argue that, using
µ = δx, that there exists b ∈ V such that

Ωxb ≥
1

∑

v∈V κv
≥ 1

|V |
1

K2
.

We note that the arguments involving Theorem 4 naturally lead to
∑

v∈V κv which
implies the slightly refined statements already noted above. �

3.5. Proof of the Corollary.

Proof. Recall the coupling interpretation of total variation distance (see, e.g., [18]),
which states

dTV(πx,t, π) = inf P(Xx
t 6= X) (1)

where the infimum is taken over all couplings of πx,t and π (i.e., Xx
t , X are con-

structed on the same probability space withXx
t being marginally distributed as πx,t,

the law of the Markov chain after t steps starting from x, and X being marginally
distributed as the stationary distribution π). In our case, we consider the following
explicit coupling:

(1) Start with X ∼ π, call its value y.
(2) Run independently a random walk Xx

t ∼ πx,t up to first time Tx,y such
that Xx

Tx,y
= y = X.

(3) After that, keep running Xx
t and set X = Xx

t for all t ≥ Tx,y.

Notice that this is indeed a coupling, since Xx
t and X have the right marginal

distributions: this is obvious for Xx
t , while for X it follows from the strong Markov

property and the fact that a random walker starting from the stationary distribution
is invariant under the dynamic induced by the Markov chain (i.e., if y ∼ π, then
Xy

t ∼ π for all t). In particular, we obtain

P(Xx
t 6= X) ≤ sup

x,y∈V
P(Tx,y > t), (2)
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since the two random variable are equal after the first time they meet owing to our
construction. Therefore, combining (1) with (2), we have

dTV(πx,t, π) ≤ maxx,y∈V P(Tx,y > t) ≤ maxx,y∈V E[Tx,y]

t
,

where we used the Markov inequality in the last step. On the other hand, the
maximum hitting time is bounded by the maximum commute time, and thus

dTV(πx,t, π) ≤
maxx,y∈V commute(x, y)

t
.

The result now follows from Theorem 3. �

3.6. Proof of Theorem 4. The argument is remarkably similar to an argument
in [32] which we can explain for the convenience of the reader. It is centered around
the following important result.

Theorem (von Neumann [37]). Let A ∈ R
n×n by a symmetric matrix. There exists

a unique α ∈ R such that for all (x1, . . . , xn) ∈ R
n
≥0 satisfying x1 + · · ·+ xn = 1

min
1≤i≤n

(Ax)i ≤ α ≤ max
1≤i≤n

(Ax)i.

The statement deviates from how it the Minimax theorem is usually formulated.
We quickly deduce it from the more canonical formulation (see also [32]).

Proof. The way von Neumann’s Minimax theorem is usually formulated is as fol-
lows: given an arbitrary matrix A ∈ R

n×n (sometimes called the payoff matrix),
we consider the space of mixed strategies for both players

X =

{

z ∈ R
n : ∀ 1 ≤ i ≤ n : zi ≥ 0 and

n
∑

i=1

zi = 1

}

= Y,

where X is the set of all mixed strategies that can be played by Player 1 and Y
are all the mixed strategies that can be played by Player 2. The pay-off of any
given pair of mixed strategies (x, y) ∈ X×Y is the expected payoff of playing these
randomized strategies randomly against each other and is given by

xTAy = 〈x,Ay〉 .
We are in the setting of a zero-sum game, therefore the goal of Player 1 is to
maximize the pay-off, the number 〈x,Ay〉), while the goal of Player 2 is to minimize
said number. The Minimax Theorem [37] guarantees that the game has a value
which means that there exists an α ∈ R such that

max
x∈X

min
y∈Y

〈x,Ay〉 = α = min
y∈Y

max
x∈X

〈x,Ay〉 .

This can be rephrased as follows: the first equation ensures that there exists x∗ ∈ X
such that Player 1 can always guarantee payoff at least α independently of what
Player 2 is doing. The second equation, in a dual sense, shows the existence of a
strategy y∗ ∈ Y such that Player 2 can always guarantee a pay-off of at most α
independently of what Player 1 is doing. We will now additionally assume, for the
remainder of the argument, that the matrix A is symmetric. For any given action
by Player 2, y ∈ Y , it is clear how Player 1 would react: they would select the
largest pay-off (which may or may not be unique). Hence, for fixed y ∈ Y ,

max
x∈X

〈x,Ay〉 = max
1≤i≤n

(Ay)i,
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where (Ay)i denotes the i−th entry of the vector. Therefore

min
y∈Y

max
x∈X

〈x,Ay〉 = min
y∈Y

max
1≤i≤n

(Ay)i.

Using the symmetry of A , we can use the same logic to write

max
x∈X

min
y∈Y

〈x,Ay〉 = max
x∈X

min
y∈Y

〈Ax, y〉 = max
x∈X

min
1≤i≤n

(Ax)i.

Altogether, one arrives at

max
x∈X

min
1≤i≤n

(Ax)i = α = min
x∈X

max
1≤i≤n

(Ax)i.

It follows that for any arbitrary linear combination of the rows z ∈ X

min
1≤i≤n

(Az)i ≤ max
x∈X

min
1≤i≤n

(Ax)i = α = min
x∈X

max
1≤i≤n

(Ax)i ≤ max
1≤i≤n

(Az)i.

�

Proof of Theorem 4. We will now apply the von Neumann Minimax theorem in
the formulation above to the matrix Ω. We know there exists a value such that for
every probability measure µ, we have

min
1≤i≤n

(Ωx)i ≤ α ≤ max
1≤i≤n

(Ωx)i.

Suppose now that the graph has non-negative curvature. Then exists a nonnegative
vector κ ∈ R

n such that Ωκ = 1 and, for x = κ/‖κ‖`1 ,

min
1≤i≤n

(Ωx)i =
1

∑n
i=1 κi

= max
1≤i≤n

(Ωx)i and thus α =

(

n
∑

i=1

κi

)−1

.

�
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