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Abstract—Gridless direction-of-arrival (DOA) estimation with
multiple frequencies can be applied in acoustics source localiza-
tion problems. We formulate this as an atomic norm minimization
(ANM) problem and derive an equivalent regularization-free
semi-definite program (SDP) thereby avoiding regularization
bias. The DOA is retrieved using a Vandermonde decomposition
on the Toeplitz matrix obtained from the solution of the SDP. We
also propose a fast SDP program to deal with non-uniform array
and frequency spacing. For non-uniform spacings, the Toeplitz
structure will not exist, but the DOA is retrieved via irregular
Vandermonde decomposition (IVD), and we theoretically guar-
antee the existence of the IVD. We extend ANM to the multiple
measurement vector (MMYV) cases and derive its equivalent
regularization-free SDP. Using multiple frequencies and the
MMYV model, we can resolve more sources than the number
of physical sensors for a uniform linear array. Numerical results
demonstrate that the regularization-free framework is robust to
noise and aliasing, and it overcomes the regularization bias.

Index Terms—Atomic norm minimization, multiple frequen-
cies, Vandermonde decomposition, DOA estimation.

I. INTRODUCTION

IRECTION-OF-ARRIVAL (DOA) estimation is an im-

portant topic in sensor array processing [1] that has
a broad range of applications in wireless communication
[2], radar [3], remote sensing, etc. Conventional DOA esti-
mation methods (e.g. multiple signal classification (MUSIC)
[4], and estimation of signal parameters via rotational in-
variant techniques (ESPRIT) [5]) are mainly developed for
narrowband signals. In the past few decades, some wide-
band DOA estimation methods have been proposed [6], [7],
(8], [91, [10], [11], [12], [13], [14], [15], [16]. Recently
proposed methods based on sparse recovery and a multi-
frequency model [8], [10] have demonstrated superior per-
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formance in wideband DOA estimation problems. Before
introducing the contributions of this paper, we review the rele-
vant prior works.

A. Related Work

1) Wideband DOA Estimation and Multiple Frequencies:
Wideband signal DOA estimation has been studied for decades
[6], [11], [12], [13], [14]. In [6], a subspace-based wide-
band DOA estimation approach, the incoherent signal subspace
method (ISSM), was proposed. The coherent signal subspace
method (CSSM) [11] led to improved performance compared to
ISSM. A broadband spatial-spectrum estimation approach [12]
overcame the peak bias and source spectral content sensitivity
from CSSM. Variants of CSSM, such as the weighted average
of signal subspaces method [13] and the test of orthogonal-
ity of projected subspaces method [14] were also proposed.
Recently, some wideband DOA estimation methods based on
sparse recovery have also been developed [7], [8], [9], [10],
[15], [16], [17], [18], [19]. These sparsity-based methods have
demonstrated superior performance compared to conventional
methods and generally require much fewer samples.

The multi-frequency model [7], [8], [9], [10], [15], [16],
[20] has shown success in modeling wideband signals. The
multi-frequency model uses Ny (rather than 1) temporal fre-
quency bins in a frequency set {F1, ..., Fy, } to characterize a
wideband signal. All these frequencies are used for estimation,
as opposed to using a single frequency under the narrowband
model. One challenge for multi-frequency processing is aliasing
[8], [10], which will be present when the receiver spacing is
greater than the half wavelength of the highest frequency. The
performance of a DOA estimation method may degrade signifi-
cantly in the presence of aliasing. In [15], the authors present an
aliasing-free DOA estimation method based on sparse signal re-
covery. In [8], [9], [16], wideband signal DOA estimation based
on sparse Bayesian learning (SBL) with multiple frequencies
is proposed [8] and applied to matched field processing [16]
and robust ocean acoustic localization [9]. A DOA estimation
method based on low-rank structured matrix completion for
sparse arrays under the multi-frequency model is proposed in
[20]. A joint localization and dereverberation method based on
sparse regularization is also proposed in [7] for room source
localization and tracking.

2) Atomic Norm Minimization (ANM): ANM was initially
proposed in [21] as a general framework for promoting sparse
signal decompositions. The main benefit of ANM is that it
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TABLE I
SURVEY OF SDPs USED IN [10] AND THIS WORK

[10] This Work
Assumption ULA and uniform frequency NUA and NUF
Procedure Dual SDP — Polynomial rooting Primal SDP — IVD
Model SMV MMV

Noise-free SDPs  Dual uniform (20) (SDP equivalent to ANM)

Dual uniform (13) (SDP equivalent to MMV-MF ANM)

Fast dual (27)-(28) (extension of (20); nonuniform not tested)

Fast dual (17), extension of (13); accommodates NUA/NUF

Full-dimension primal (29) (dual of (20); uniform case)

Fast primal (19) (dual of (17); accommodates NUA/NUF)

Full-dimension primal (24) (dual of (13); uniform case)

Noisy SDPs Dual uniform (21), robust version of (20)

Dual uniform (15) (robust version of (13))

overcomes the grid mismatch error that plagues grid-based
methods. The pioneering ANM paper [22] proposed an
optimization-based continuous (temporal) frequency estimation
method and provided a theoretical guarantee when full data
are available. The authors in [23] studied continuous tempo-
ral frequency estimation based on randomly sampled data for
the single measurement vector (SMV) case. ANM for multi-
ple measurement vectors (MMVs) under the uniform (or eg-
uispaced) time samples (analogous to a uniform linear array,
or ULA) setup was studied in [24], [25], [26], and it was
extended to the non-uniform array (NUA) setting in [27]. It
was also extended to multiple frequencies for wideband DOA
estimation in [10], [28], [29]. The sample complexity of modal
analysis with random temporal compression was established
in [30]. See [31] for a comprehensive overview of ANM and
its applications.

3) Lifting: A “lifting trick” was applied to an ANM prob-
lem for point spread function (PSF) estimation in [32]. This
allowed a bilinear inverse problem to be transformed into a
linear inverse problem by assuming the PSF lies in a known
low-dimensional space. This lifting idea was also applied to
biconvex compressive sensing problems in [33] to formulate
them as convex programs.

4) Non-Uniform Array and More Sources Than Sensors:
An NUA enables the possibility to resolve more sources than
the number of physical sensors. Early works involving NUA

include the minimum redundancy array (MRA) [34], and the
minimum holes array (MHA) [35]. For a given number of
sources, MRA and MHA require an extensive search through
all possible sensor combinations to find the optimal design.
Recently, a new structure of NUA, known as a co-prime array
[36], was developed. The co-prime array has a closed-form
expression for the sensor positions so that the exhaustive search
over the sensor combinations is avoided. The nested array [37]
and co-array [38] based approaches were also proposed to de-
tect more sources than the number of sensors.

An alternative way to resolve more sources than sensors is to
use fourth-order cumulants [39], [40]. However, this approach
is limited to non-Gaussian sources. In [41], with the help of
the Khatri-Rao (KR) product and assuming quasi-stationary
sources, it was shown that one can identify up to 2N —1
sources using an N-element ULA without computing higher-
order statistics. Unfortunately, the quasi-stationary assumption
does not apply to stationary sources.

B. Our Contributions

In previous work [10], we developed a gridless DOA estima-
tion method for the multi-frequency model based on ANM. This
was formulated as a semi-definite program (SDP) problem so
that ANM is solved using off-the-shelf SDP solvers, e.g. CVX
[42]. The DOAs are retrieved by finding the roots of the dual
polynomial. The dual polynomial served as a certificate for the
optimality and an interpolation method that constructed the dual
certificate was presented.

In this work, we propose a wideband DOA estimation frame-
work that significantly expands the applicability from [10].
Our contribution is summarized in the following respects (see
also Table I).

1) Regularization-Free Framework: An SDP that is equiv-
alent to ANM is formulated in [10] based on the dual atomic
norm and the definition of the dual polynomial in the noise-
free case. When noise is present, a common strategy in ANM
works is giving some tolerance to the constraints using regular-
ization in the SDP [23], [25], [43]. In addition to the challenges
from the noise, [10] shows that for array spacing above half a
wavelength of the highest frequency and with multiple sources,
the performance may degrade remarkably due to a phenomenon
termed near collision [10]. To mitigate near collisions, an /1 o
regularization term is added. Although these regularization
terms prevent failures due to noise or near collisions, they lead
to bias. The performance of ANM degrades due to such bias
compared to the competing method SBL [44], especially at a
low signal-to-noise ratio (SNR).

Although most ANM works promote robustness to noise by
adding a regularization term, [27] demonstrates that it is possi-
ble to deal with the noise by solving a noise-free optimization
problem. In [27], the authors propose a two-step DOA estima-
tion approach. The first step is to apply the alternating projec-
tion (AP) algorithm to solve a noise-free optimization problem
and obtain a matrix with an irregular Toeplitz structure. The
second step computes an irregular Vandermonde decomposition
(achieved by generalized root-MUSIC) to retrieve the DOAs
from the irregular Toeplitz matrix. Although the optimization
problem solved in the first step does not have explicit robustness
to the noise, the second step enables the method to work in noisy
cases. This method effectively avoids the explicit bias and the
non-trivial effort required to tune the regularization parameter.

Inspired by [27], we formulate the dual problem of the noise-
free SDP in [10, eq. (20)] without regularization. This problem
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is again an SDP and we deem it as the primal domain SDP
(since [10] formulates its SDP in the dual domain). Both the
primal and dual SDPs involve a certain lifting mapping which
we define. Though different from [32], this lifting embeds the
problems in a higher dimensional space where it is more natural
to combine all frequencies.

Solving this SDP gives a Toeplitz matrix, and the DOAs
are further retrieved by Vandermonde decomposition of this
Toeplitz matrix. One computational method for Vandermonde
decomposition is root-MUSIC [45], and it has robustness to
both noise and near collisions. Therefore, with the help of “post-
SDP processing” (root-MUSIC), regularization is avoided and
no prior knowledge of the noise is needed. At low SNRs in
simulation, the method can achieve a better performance than
competing methods, and it approaches the Cramér-Rao bound
(CRB) [46], [47] for Gaussian noise.

2) Non-Uniform Frequencies and Irregular Vandermonde
Decomposition: We also develop a fast SDP for the primal
domain SDP. The fast SDP is derived based on the dual problem
of the fast algorithm in [10]. The fast algorithm can not only
improve the speed but also can extend the method to the non-
uniform frequency (NUF) case. In this case, the DOAs are
encoded in a matrix with an irregular Toeplitz structure. We
apply the irregular Vandermonde decomposition (IVD) [27] to
this matrix to retrieve the DOAs. Furthermore, we provide a
theoretical guarantee for the existence of the IVD which is not
shown in [27]. While it is mentioned in [10] that the fast dual
algorithm proposed therein can be applied to the NUF case, this
is not tested in [10], and our experiments (see Fig. 5) indicate
that the fast primal method is more effective.

3) Multiple Snapshots and More Sources Than Sensors:
The method in [10] is developed under the SMV case. Prior
works show that MMVs can give improved performance [24],
[25], [48]. That motivates us to extend the framework in [10]
to the MMV case. In the MMV setting, the received signal
from the sensor array is a three-dimensional tensor (sensors
x snapshots x frequencies). Based on the signal model, we
formulate the corresponding ANM problem and derive the
SDP (in the dual domain) that is equivalent to the ANM. The
dual problem of the SDP is then derived to obtain the SDP
in the primal domain. The purpose of the primal SDP is to
enhance the robustness to the noise and near collision with-
out regularization.

The multi-frequency setup also enables resolving more
sources than sensors case in the ULA setting. The maximum
number of uniquely identifiable sources in an Njs-element
ULA is Nps —1 [48, Sec. 11.2.3] for the single-frequency
case. Co-prime array techniques [36] can break through such
a limit with a carefully designed array structure, enabling the
resolution of more sources than the number of sensors. We
show that it is possible to resolve more sources than sensors
with a ULA under the multi-frequency model. The physical
intuition is that multiple frequencies increase the diversity of
the harmonics and these “new harmonics™ can serve as extra
“virtual sensors” in a large virtual array. Due to this intrinsic
property, it is possible to break through such a bottleneck in the
ULA setup. In many practical scenarios, the array geometry is
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fixed and ULA is one of the most commonly used arrays. This
result has a practical impact and demonstrates the benefit of
multi-frequency processing.

In summary, the framework proposed is superior to [10] in
terms of generality, practicality, performance, and complexity.
Our work also demonstrates the possibility of resolving more
sources than sensors under the ULA setup which is an important
merit of the multi-frequency model. This work also significantly
extends our preliminary conference paper [49]. It considers the
non-uniform array (NUA) case and includes more extensive the-
oretical analysis and numerical experiments. It also discusses
the connection between atomic fp norm minimization and
rank minimization.

C. Notation

Throughout the paper, the following notation is adopted.
Boldface letters are used to represent matrices and vectors.
Conventional notations (-)T, (-)¥, (-)*, (-,-)r, and (-,-) stand
for matrix/vector transpose, Hermitian transpose, complex con-
jugate, real inner product, and inner product, respectively. Tr(-)
is used to represent the trace of a matrix. || - ||, || - |7, and
|| - lus are used to express vector £, norm, matrix Frobenius
norm, and Hilbert-Schmidt norm for the tensor (for a 3D tensor
lAlltis = /> 4jx |aijk|?)- For a Hermitian matrix A, A =0
means A is a positive semidefinite matrix. The imaginary unit
is denoted by j = v/—1.

II. PRELIMINARIES

When multiple snapshots are available, DOA estimation
methods can have improved performance [24], [25], [48]. In this
section, we extend the SMV multi-frequency ANM framework
for gridless DOA estimation from [10] to the MMV setting;
we refer to the resulting framework as the MMV-MF model.
This model will help us explore the possibility of having more
sources than the sensors in Sec. V.

A. Assumptions

The following assumptions are made for the array configu-

ration and signal model:

1) The sensors comprise a linear array with positions drawn
from a uniform grid {0,1,..., Ny — 1} - d, where d is
the sensor spacing unit. Welet M C {0,1,..., Ny —1}
denote the indices of the actual sensors; the resulting
positions are thus {m - d|m € M}. We define N, :=
|M| < Ny as the number of sensors. When all sensors
are present, N, = Njs, and we have a uniform linear
array (ULA) case. When only some sensors are present,
N, < Ny, and we have a nonuniform array (NUA) case.

2) The sources have temporal frequency components drawn
from a uniform grid {1,...,Ng} - Fy, where F} is the
spacing between frequencies. Let A\; := ¢/F} denote the
wavelength corresponding to Fy, where c is the propa-
gation speed. We assume Ay = 2d where d is the sensor
spacing unit above; equivalently, d = ﬁ This spacing is
for simplifying the derivation and can be relaxed to any
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d< 521 (see [10] for details). We let F C{1,...,Np}
denote the indices of the active source frequencies; the
resulting frequencies are thus {f - Fi|f € F} and the
wavelengths are {\;/f|f € F}. We define N := [F| <
Np to be the number of active source frequencies. When
all frequencies are active, Ny = Np, and we refer to
this as the uniform frequency case. When only some
frequencies are active, Ny < Ng, and we refer to this as
the nonuniform frequency (NUF) case.

3) Suppose there are IN; snapshots (time samples) re-
ceived by each sensor. The source amplitude for the
f-th frequency (f€F) is Xu(f)=[z@(f)...z2"
(T eCM.

4) There are K active uncorrelated sources impinging on the
array from unknown directions of arrival (DOAs) 6, or in
directional cosines

w = Fidcos(f)/c = cos(6) /2. (D)

B. MMV-MF Model

We begin by considering the case of a ULA with uniform
frequencies, i.e., N;, = Ny and Ny = Np. (We incorporate the
NUA and NUF cases in Section IV.) The received signals can be
arranged into a tensor J) € CNM*NixNr (sensors x snapshots
x frequencies) with the following structure:

V=X+N 2)

X =" cula(l, w)xf(1)|...}a(Np, w)xg,(Nr)]

=) cwA(w) * X7 3)

where a(f,w)=[1e 2™/ e 2mwfNu—IT —1 .f
2IWu—D]T £ CNM (7 := ¢ 92"™") is the array manifold
vector for the f-th frequency. N € CNM>NixNr denotes
additive Gaussian uncorrelated noise in (2). Denote A(w) =
[a(l,w)...a(Np,w)] € CNuxNr  and X, = [Xu(1) ...
Xu(Np)]T € CNe*Ni, A(w) + XT is the “reshaped Khatri-
Rao product” defined as [A(w)* XL].; :=a(f, w)xL(f)
(f=1,...,Ng). When N; =1, the above matches the SMV
model in [10]. We assume || X[z =1, as the coefficient ¢,
can used to absorb any other scaling of the norm of the source
amplitude via the product ¢, X,,.
Finally, we define

N =Np(Ny —1)+1, 4)

noting that Np(Nys — 1) appears in the largest exponent of
any array manifold vector used in the MMV-MF model. Conse-
quently, N will determine the size of certain SDP formulations
such as (13).

C. Collision and Near Collision

A challenge for multi-frequency processing is the risk of a
phenomenon known as collision, which occurs when, at some
frequencies, the array manifold vectors for two DOAs coincide
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due to aliasing. Two DOAs wy and w, are said to have a
collision in the f-th frequency if [10, eq. (46)]

a(f7w1):a{f: IUQ). (35)

Such a collision occurs whenever wq
[10, eq. (47)]

and wy satisfy

o —wal =3 (FEF,f>1) ©)
A near collision is said to occur when [10, eq. (50)]
k
|w1—’w‘2|“? (feF, F>1). (7

D. Irregular Vandermonde and Toeplitz Matrices

Define some integer-valued vector ¥ = [v1 .. .’yNT]T € ZM,
complex-valued vector z = [z1 ...2x.]T € CV=, and w(v, 2)
:=[27...2"]T. For arbitrary dimensions N, and N, an
irregular Vandermonde matrix of size N, x N is a matrix
having the form [27, eq. (25)]

W=W(y,z)=[z"...2"%]T
=[W(v,21)...w(v, 2n,)]- (8)

Note that when the entries of -y form an arithmetic progression,
specifically y = [0... N, — 1]7, W(~, z) forms a regular Van-
dermonde matrix.

An (N, N.)-irregular Toeplitz matrix is any matrix T €
CN+*N+ that can be constructed from an irregular Vander-
monde matrix as follows [27, eq. (27)]:

T=W(y,2)DW(,2)", |z| =1, ©)

where v € Z¥ and z € CV=, and where D € RV=*"= js a
diagonal matrix. We refer to (9) as an irregular Vandermonde
decomposition (IVD). Note that any N., x N, positive semi-
definite regular Toeplitz matrix T with rank N, has a regular
Vandermonde decomposition of the form (9) in which~y € ZN~
is an arithmetic progression.

III. ATomMiC NORM MINIMIZATION FOR MMV-MF

In this section, we formulate the atomic norm minimization
problem for the MMV-MF model. Then, we derive an equiva-
lent SDP that makes the proposed framework computationally
feasible. We note that the ANM we derive has multiple frequen-
cies while the ANM in [24], [25] operates at a single frequency.
The multi-frequency model can be applied to wideband sig-
nals, while their MMV model can only be applied to narrow-
band signals.

Define the atomic set

A={A(w) * X5, | we [-1/2,1/2], [ XulF =1}.

The atomic norm of a tensor X € CNM*NixNF s defined
as || X4 = inf{3, |ewl|X = cwA(w) * XT | [Xullr =1}
The atomic norm minimization (ANM) problem for the noise-
free case can be expressed as

1l st

(10)

y=4a. (11)

min
X
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Q Np=4
1=R(@QD) Q:=R'(@2)
w1 R R 1R
N=7
N =3
Q: = R 0:=R(@)
Fig. 1. Demonstration for the lifting mapping R(-) and its adjoint

mapping R*(-). Njm=Npr =4, Nj=3, Ny =Np =2 N=(Ny —1)
Np+1=T.

When noise is present, the optimization problem is modified to
relax the equality constraint:

min X4 st |Y-Xlus<n (12
The following proposition guarantees that (11) is equivalent
to an SDP problem.
Proposition III.1: Problem (11) is equivalent to the following

SDP problem

Py Q
8%(9: y)]R s.L |QH ININF] t 07
N—k

Z Po(i,i + k) =0k, Q =[R(Q1) ... R(Qn,.)],

i=1
where Q=[Q4|...|Qn,] € CYM*NixNr g the dual vari-
able, Poc CY2N, Q= [Q4...Qn, | € CY2NYF and Qp=
R(Qy): Nar x Ni = N x N; is a mapping defined as
Qy(ml) for (i,1)=(f(m—1)+1,)

0 otherwise.

(13)

R(Qs)( D) :{ (14)

Proof: See Appendix A.

Fig. 1 demonstrates the mapping R. Across all frequencies,
R:Npa x Ny x Np — N x NiNp is a linear mapping and
can be expressed as a tall binary matrix multiply vec(Q) =
R vec(Q). The transpose of the matrix R describes the behavior
of the adjoint operator R*: N x NyNgp — Njpsr x N; x Np,
which is also demonstrated in Fig. 1.

To provide intuition for the role of R, recall from (3) that the
array manifold vectors in the MMV-MF model are frequency-
dependent, and so the rows of different slices of A corre-
spond to different space-frequency products. After lifting the
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dual variable tensor @ to a higher-dimensional space, however,
every row corresponds to the same space-frequency product
f(m — 1), allowing Q to play a similar role in the SDP to the
dual variables in more conventional ANM formulations.

In the noisy case, the equivalent SDP of (12) is the regular-
ized version of (13):

Py Q
51,%3;(@, Vir —nllQllas st [(:),H IN;NF] =0,
N—k

> Po(iyi+ k) =0, Q=[R(Q1) ... R(Qw,)],

i=1

(15)
where 7 depends on the noise level and is the same as in (12).

IV. REGULARIZATION-FREE SDP AND FAST ALGORITHM

In the previous section, we obtained an SDP that is equivalent
to ANM. This SDP relies on the dual norm and dual polynomial
(see Appendix A for the dual norm (39) and dual polynomial
(40)), and so we deem the SDP in (13) as the dual SDP. We
now derive the dual problem of the SDP in Sec. III; we deem
this as the primal SDP. The benefit of the primal SDP is that
it is regularization-free and it thus avoids regularization bias in
(15). In numerical experiments, this primal SDP is inherently
robust to noise and near collisions. Further, we derive a fast,
reduced-dimension version of the primal SDP. The fast pro-
gram improves the speed, and more importantly, it relaxes the
requirements that the sensor positions and temporal frequencies
be uniform.

A. Non-Uniform Array (NUA) and Non-Uniform Frequency
(NUF) Settings

We focused on the ULA and uniform frequency case. How-
ever, in general, the array spacing and frequency may not be
uniform. Thus we generalize the proposed framework to NUA
and NUF cases.

Recall that F C {1,..., Np} denotes the indices of the ac-
tive source frequencies, with Ny :=|F| < Np denoting the
number of active frequencies. The nonuniform frequency
(NUF) case corresponds to the scenario where N < Np,
i.e., only some of the frequencies are active. Similarly,
M C{0,1,...,Ny — 1} denotes the indices of the sensors,
with Ny, := | M| < Nj; denoting the number of sensors. The
nonuniform array (NUA) case corresponds to the scenario
where Ny, < Ny, i.e., only some sensors are present.

Recall that every exponent in an array manifold vector from
the MMV-MF model involves a product of one temporal fre-
quency and one sensor position. To capture all such products
in the nonuniform setting, we define a spatial-frequency index
set U as follows:

U={m- flmeM,feF} (16)

The cardinality of this set N,, := || < N, with N is defined in
(4). In many settings, N,, < N. In later sections, we see that
the size of the fast SDP depends on N, and its complexity is
greatly reduced compared to the original SDP.
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Nf=2

Q. = Ri (@)
R TR,

N=3
é; =Ry(Qy)

63 =Ry(Q2)

Fig. 2. Demonstration for the Ri(-) mapping and its adjoint map-
ping R;('} N—m ZNM =4, N; i N_f =NF =2,M = {{],1,2,3,4, 6}.
Ny = || =6.

B. Fast Dual SDP for the NUA and NUF Case

Proposition III.1 gives the SDP for the ULA and uniform
frequency case. We generalize the SDP to the NUA and NUF
cases. The SDP is not only more general but also can reduce the
complexity in the ULA and uniform frequency case. Inspired
by the fast algorithm in [10, Sec. III-F], the SDP in this section
is considered the fast algorithm for MMV.

For NUA and NUFE the measurement tensor ) &
CNmxNitxNs and the SDP in Proposition IIL1 is genera-
lized as

max (Q, V) st |E70 Q’”]zo,

H
Q.Pro Qr IN{N_;

> Pro(i,5) =0k, Qr = [R1(Q1) ... R1(Qn,)], (17)
Mj—:’.{i:k
where Q = [Q4]...|Qun,] € CNm*NtxN71 i the dual variable,
Py eC¥2M, Q.= [QL...Q [ O3 (Qf —
Rl(Qf) 1= CN“XNI), and Rl{Qf) 1 Nm X N; —)Nu > 4 M is
a mapping that pads zeros to the extra entries defined as

Qs (ml) for (U, 1)=(f - (m—1),1)
0 otherwise.

R1(Qg)(r 1) = {

(18)

Fig. 2 demonstrates the R (-) mapping. We note that any rows
of Q; which would have remained all-zero under the operator
R(-) (corresponding to unused space-frequency products) are
simply omitted in Rq(-).

Comparing (18) with (14), these two mappings pad zeros for
the same input Qs to obtain the output matrix with a different
dimension. The R mapping defined in (14) maps a matrix with
Ny s rows into one with IV rows, while R, defined in (18) omits
the unused products of temporal frequency and sensor position,
mapping a matrix with Ny, rows into one with only N,, rows.
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This not only gives a lower-dimensional formulation (the size
of Py decreases from N x N to N, x N,), but it naturally
accommodates the NUA and NUF settings. Still, (17) can be
applied to the ULA and uniform frequency case, where N,, will
often be somewhat smaller than V.

C. Fast Primal SDP for the NUA and NUF Case

In this section, we derive the dual problem of (17), yield-
ing a fast primal SDP that is regularization-free and naturally
accommodates the NUA and NUF settings.

Proposition IV.1: The dual problem of (17) is given by

min_[Tr(T(u)) + Tr(W)]

s,

s.t. [T%E) 3;;| =0,Y;=Ri(Ys),feF, (19
where Y € CNexNiNy W e CNiNr*NiNy Y e CNm* N1 g
the slice of the received signal tensor ) corresponding to
frequency f, and Y; € CV*M comes from taking the N;
columns of Y corresponding to frequency f. Ri(-): Ny x
N; — N, x N is the adjoint mapping of R;.

Proof: Consider the Lagrangian given by

‘C(Qs Pr‘{)s Ur-s A]_, AZ: A3: AQ: V)

A A P U,
—ee=([a &) [6F won ),
N-—-1
— vk | O Z Pro(7,7)
k=0 U;—Us=k
-3 (AL UI-R1(Q))r
feF
= > Qs Y )+ (AL, Ri(Qp))=H(Pro, Ad)r
fer
+ 2(A2, Uy +Tr(Asz)]—vo+ (Pro, T(V))r
- (AL Ul (20
fer

Note that we use the following fact during the deriva-
tion: Yo vk Yy, sk Pro(é, 5) = (Pro, T(V))r, where
T:N x1— N, x Ny is explicitly defined as (note * denotes
complex conjugate)

 fwpew Uy—Uz0
T(v)(z’”::{ugj; . U —Us <0
; j i .

i 3

1)

1 2
AH Aj
g’}? Ilir ’"J > 0 needs to be a PSD matrix to en-
sure that the inner prf)r uct between these two matrices is non-
negative so that the optimal value for the dual problem gives a
lower bound for the primal problem.

The dual matrix

We provide an example of this mapping in Sec. IV-E.
[P associated with the inequality

consfraint
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The dual function is

9(A1,A2,A3,Aq,V)
= inf ,C(Q PTO-;UT‘:A'!.:A21A3:‘AQ’V)

Q PrD Ur
Ay A
s.t. [ AT AJ = 0. (22)

The infimum of £ in (20) over @ is thereby infg J(Q)
=3 er[(Qr, Yt (AL REQp))RI=Y ;e [(Qr: Yy)m
+(Qr, Ri(AD))R] = X e (Qs, Y1 + Ri(AD))x. The in-
fimum of J(Q) is bounded only if Y = —’R’{(Aé) for any
f € F. Similarly, the infimum of £ over P, is bounded only
if T(v) = Ay = 0. The infimum of £ over U, is bounded only
if Af = —2Af C0n31dermg 2A5 =Y 7+ then we must have
Yy 2Ry H(AL)=Ri(2A]) = (Yf)

Considering Ag =1W and v = Zu, the dual function be-
comes —zTr(W) — 1Tr(T(u))

Therefore, the fast program in the primal domain is
given by (19). O

1) SMV Setup: The fast program (19) can not only improve
the execution time in the uniform cases, but it naturally ac-
commodates the NUA and NUF cases as well. (19) can also
be adapted to the SMV setup (i.e. N; =1). In that case, the
received signal Y will reduce to an N,,, x Ny matrix and (19)
will reduce to

min_[Tr(T(u)) + Tr(W)]

s,

st [T%ﬁ) “;‘| =0, Y;=Ri(Yys).feF, 3
where Y € CV=*Nr, W € CNr>*Ns Y € CVm*1 s the col-
umn of the received signal Y corresponding to frequency f,
and Y ; € CV=*1 comes from taking the column of Y corre-
sponding to frequency f.

2) Comparison to Full-Dimension Primal SDP: Recall
that (13) is the dual SDP for the ULA and uniform frequency
setting. A significant difference between (13) and (17) lies
in the dimensions of the matrices in the PSD constraint and
the equality constraint. Following the same procedure in this
section, the dual SDP of (13) can be obtained, yielding the
following full-dimension primal SDP for the ULA and uniform-
frequency case:

min [Tr(Toep(u)) 4+ Tr(W)]
W.u, Yy
T ¥ -
s.t l Osvpﬂ('u-) “,;r‘|t07Yf:R (YNf):f:]-?"')NF:
(24)

where Toep(-): N x1— N x N is the Toeplitz operator
that maps a vector to a self-adjoint Toeplitz matrix. Yy €
CN*NiNe R*(-): N x N; — Npy x N, is the adjoint map-
ping of R(-), and Y y; € CN*M is taking N, columns from
Yy (from the (f —1)- N; + 1-th to the f - N;-th column).
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Compared to (19), a main difference is that T(u) € CNuxNu
in (19) is changed to Toep(u) € CV*¥,

D. Existence of Irregular Vandermonde Decomposition (IVD)

The full-dimension primal SDP in (24) has an interesting
connection to the SDPs from the ANM literature which involve
trace minimization of a (regular) Toeplitz matrix [23], [25].
In ANM problems that involve trace minimization of a regu-
lar Toeplitz matrix, one typically computes the Vandermonde
decomposition of the resulting Toeplitz matrix to extract the
frequencies/DOAs. Indeed, as we discuss further in Section VI,
trace minimization serves as a convex relaxation of rank mini-
mization, and a formal connection can be established between
rank minimization and finding the sparsest decomposition in the
atomic set A.

In contrast, the fast primal SDPs (19) and (23) derived in the
previous section involve trace minimization not of a Toeplitz
matrix but rather a matrix of the form T'(u). (See Sec. IV-E for
an illustration of the structure of T(u).) However, as we estab-
lish in Theorem IV.2 below, there is an important connection
between T'(u) and Toeplitz matrices: T((u) is guaranteed to be
an irregular Toeplitz matrix, and therefore is guaranteed to have
an IVD. This inspires our proposed method for extracting DOA
information from T'(u), which we outline in Section IV-F.

Theorem IV.2: For any u such that Toep(u) is PSD, T(u) €
CN«*Nu js an (N, K)-irregular Toeplitz matrix, where K =
rank(Toep(u)). Specifically, T'(u) has an IVD of the form (9),
where v = [Uy, ... Un,]T.

Proof: First, let Py, : CV — CN« denote a linear restriction
operator that selects only the entries in a vector corresponding
to the positions indexed by U.

Now, consider Toep(u) € CV*¥_ and observe that T(u) €
CN«*Nu can be obtained by a mapping from Toep(u) as fol-
lows: T(u) := PyToep(u)B}. Since Toep(u) is PSD, it is
guaranteed to have a Vandermonde decomposition of the form
[48, Theorem 11.5]:

Toep(u) = V(z)DV (z)¥ (25)

where V(z) € CN*X is a Vandermonde matrix parameterized
by z with |z| =1, and D € R¥*¥ is a diagonal matrix with
positive diagonals. Hence,

T(u) = PyToep(w)PY = PyV(2)DV(2)" B
= (AV(2))D(V(2)" Pff)

=W(v,2)DW(v,2)", (26)

where W (y, z) :== P,V (z) will be an irregular Vandermonde
matrix of the form (8) withy = [U; .. .Uy, |T . Therefore, T(u)
is an (NN, K )-irregular Toeplitz matrix. O

E. An Example for T(v)

We demonstrate the structure of T(v) in the following ex-
ample. Consider M ={0,1,3,4} and F ={1,3,4}. There-
fore, Nyp = |M| =4, Ny = |F| =3,U={0,1,3,4,9,12, 16},
Nyr =5, Np =4, N:(NM —1)NF+1:17, and N, =
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U| =17. For v=[vg...v16]T, T(v) € CNu*Nu can be ex-
pressed as

vp V1 V3 V4 Vg UVi2 Vi
v; wp wa w3 Vg Vi1 Vis
vy vy Uy V1 Ug Vg U3
T(v)=|vi v v w vs vs vi2f.
vg vy VE Vi vy U3 Uy
v vh v v v w w
[vle vis vis viz v7 vy vo

Note vy and v14 do not appear in T(v). In Theorem IV.2, we
show that for any v such that such that Toep(v) is PSD, T(v) is
guaranteed to be an irregular Toeplitz matrix. In this case, T(v)
is guaranteed to have an IVD: T(v) = W(~v,z)DW(~v,z)7,
where D =diag(dy,...,dg) with K =rank(Toep(v)), and
where y=[013491216]".

E DOA Extraction

After solving the fast primal SDP (19) by an off-the-shelf
SDP solver (e.g., CVX [42]) and obtaining u, we propose to
extract the DOAs by exploiting the IVD of the irregular Toeplitz
T(u) =W(v,z)DW(+,2z)". Although this factorization is
not computed explicitly as part of solving the SDP, its existence
provides a means to estimate the entries of z, each correspond-
ing to a point on the unit circle whose complex angle encodes
a DOA.

Let T(u) denote an (NN, K)-irregular Toeplitz matrix that
has an IVD of the form T(u) = W (v, z)DW (v, z)", where
~ = [U; ...Uy,]T. Consider the eigen-decomposition of T(u):

T(u) = UsAsUg§ + UyANUYR, @7
where Ag € CK*K is a diagonal matrix containing the K
largest eigenvalues of T(u), Ug € CN«*K contains the cor-
responding eigenvectors, and Ay € CVu—K)x(Nu—K) apd
Uy e CNV«*xWu—K) contain the remaining (zero) eigenvalues
and corresponding eigenvectors. Ug and Uy are known as the
signal and noise subspaces, respectively. ~

For z € C, define the irregular null spectrum D(z) of T'(u)
as [27, eq. (29)]

D(z) =w(v,2)"UnUyw(v,2) =w(v,2)"Gw(v,2),
(28)

where G = Uy U%L. The behavior of the irregular null spec-
trum is plotted in Fig. 3.

Since G | W(~,z) and |z| =1, the DOAs encoded in z
are associated to the K roots of f)[_z) on the unit circle. [27]
suggests that the local minima of D(z) evaluated on the unit
circle give DOA estimates with similar accuracy as those given
by the actual roots. Therefore, z is estimated as [27, eq. (43)]
b=line K

7 =arg min D(z), (29)

|z]=1
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Fig. 3. Null spectrum contours (dB) using Nar = 16, K =3, N; = 5. For

a)-b) N = 1, and for c) - d) N = 3. The frequency set is {100,..., Ng -
100} Hz and ULA is applied. DOAs are [88,93, 155]°, marked by red x’s,
the red line marks the complex unit circle. a) and ¢): null spectrum from noise-
free measurement. b) and d): null spectrum from SNR = —5 dB measurement.

where arg mm';f denotes the argument, z, which produces the
kth smallest local minima. The DOAs 6,1, and Z are esti-
mated by

2 i e—jﬂ'cus(éj_ (30)

In summary, we first solve the SDP (19) via an off-the-shelf
SDP solver (e.g., CVX [42]). After u is obtained, the DOAs
can be retrieved by computing the irregular null spectrum f)(z)
of T(u) and following the steps mentioned in this section. The
implementation details of the proposed method are summarized
in Algorithm 1.

V. MORE SOURCES THAN SENSORS FOR ULA

Many prior works have demonstrated the possibility of re-
solving more sources than the number of array sensors based on
special array geometries such as MRA [34], [50], co-prime ar-
rays [36], and nested array [37]. However, for single-frequency
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Algorithm 1 Regularization-free DOA estimation

Input: Y € CNmxNixNy |
Initialization:
Solve (19) by CVX and obtain u
Obtain T'(u) based on (21)
[U, Al = eig(T(u))
Uy=U(;;K+1:N,)
G=UyUZ
Obtain D(z) based on (28)
2 = find(arg min(D(2)), 2| = 1)
f + 180 — acosd(angle(2/))
Output: 6

ULA. the maximum number of resolvable sources is Ny — 1
[48, Sec 11.2.3]. In this section, we will demonstrate the pos-
sibility of resolving more sources than sensors under the ULA
setup if multiple frequencies are available. We primarily solve
(24) and follow the procedures in Algorithm 1 to retrieve
the DOAs. In our multi-frequency ANM configuration, it can
resolve up to N —1=(Ny — 1)Np sources as Toep(u)
CN*N and Uy exists only if K < N — 1. The reason for
using (24) instead of (19) is that (19) can resolve up to N,, — 1
sources and (24) has the potential to resolve more sources than
(19) because Toep(u) in (24) has a higher dimension than
T(u) in (19). This idea was also demonstrated in [51] for co-
prime frequencies, though the method in [51] used grid-based
DOA estimation.

The key observation for the multi-frequency model is that
these frequencies increase the diversity of the harmonics. These
extra harmonics serve as “virtual” sensors in the array, and
they bring about an enhanced degree of freedom. For example,
consider a ULA with Ny =4 sensors and Ny =5 uniform
frequencies. Therefore, it can resolve up to (Npy — 1)Np =
15 sources. The SDP problem (19) can be interpreted as a
structured covariance matrix estimation problem (T'(u) can be
interpreted as the covariance matrix). We notice this covariance
matrix is in a higher dimension, which corresponds to our
intuition that there are more sensors in our “virtual” array.

As an example, suppose we have Nys =4 sensors, Np =5
frequencies ({100,..., 500} Hz), N; =1 noise-free snapshot,
and K =10,11,12, 13, 14, 15 sources with uniform and deter-
ministic across frequencies. For K = 10,12, and 15, the DOAs
are generated as the uniform distribution in the cosine domain
(i.e., the DOAs are |cos™1(—1+2([1: K] —0.5)/K)|). For
K =11, we pick up the last 11 sources in the K =12 case.
For K = 13, we pick up the middle 13 sources in the K =15
case, and for K = 14, we pick up the middle 14 sources. We
plot the estimated DOAs for ANM. From Fig. 4, we can see
our ANM can resolve up to (Nyr — 1)Np = 15 sources.

VI. RANK MINIMIZATION AND ATOMIC £j
NORM MINIMIZATION

In this section, we highlight the connection between rank
minimization and atomic £; norm minimization. More specif-
ically, atomic £y, norm minimization can be interpreted as a
covariance matrix estimation approach where low-rankness and
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Fig. 4. Estimated and true DOAs for ANM (“x” indicates the true DOAs

and the blue vertical line indicates the estimated DOAs). Np; =4, Ngp =5,
N;=1, and K =10,11,12,13, 14, 15. The RMSEs of ANM under K =
10,11,12,13, 14, 15 are 0.005°, 0.16°, 0.20°, 0.04°, 0.27°, and 0.27°.

Toeplitz structure are explicitly enforced [23], [25], [52]. How-
ever, atomic £y norm minimization is non-convex and may not
be computationally feasible. By considering ANM, the convex
relaxation of the atomic £y norm, we obtain (19) and (23) as
trace minimization problems that are computationally feasible
and in which the low-rankness and Toeplitz structure are im-
plicitly enforced. In this way, we can understand the benefits
of ANM compared to conventional covariance matrix estima-
tion using the sample covariance matrix. Before describing the
equivalence, we review the definitions of the covariance matrix
and the sample covariance matrix.

We assume N; = 1, noise-free measurement, uniform fre-
quency and ULA setup, and full dimensional SDP in this sec-
tion, and our discussion serves as a means to interpret (23).

A. Covariance Matrix Estimation

Suppose Y € CV*Nr s noise-free and defined as
K
?:szxf:[zl...zK][xl...XK]H:ZX (31)
k=1
where 7y :=[z0...2) T eCN, x= [I_E‘_.l) o I;(CNF)]T €
CNr, Z:=]z1...2x] eCV*E, and X:=x;...xg]7 €

CExNr_ Note that Z is a Vandermonde matrix and that Y
satisfies

Y =R*(Y). (32)

The sample covariance matrix Rj; and covariance matrix
Ry are defined as

YYH, (33)

(34)
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where A x := NL; E[XX*] is a diagonal matrix due to uncor-
related sources. Note that R is a Toeplitz Hermitian matrix in
the noise-free case, ZA xZ* is its Vandermonde decomposi-
tion, and the DOAs are encoded in the Vandermonde matrix Z.
The essence of some classical DOA estimation approaches (e.g.
MUSIC, and ESPRIT) lies in Vandermonde decomposition of
the estimated covariance matrix.

However, Y is not fully observed in our problem as only Y,
the image of the R* mapping is accessible. To further obtain
Y, the lifting mapping R needs to be applied. Note if we apply
R* first and then R on a matrix, we may not obtain the same
matrix as the white entries in Fig. 1 cannot be recovered after
the R* mapping. Therefore, the covariance matrix of Y must
be estimated by solving a convex optimization problem.

B. Connection Between Rank Minimization and Atomic f{g
Norm Minimization

As described in Sec. IV-F, after solving the SDP (23) and
obtaining u, DOAs are extracted by computing the IVD of
T(u). In light of the discussion in Section VI-A, then, (23) can
be interpreted as a covariance matrix estimation problem where
T(u) serves as an estimate for a covariance matrix that contains
the DOA information. In this section, we discuss this connection
more deeply.

From (34), the true covariance matrix in the noise-free case
R ;; has three important properties: (1) Toeplitz and Hermitian;
(2) PSD; (3) low-rank (its rank is K (number of sources) and
is usually much smaller than its size N,). A commonly used
estimate for the covariance matrix is the sample covariance
matrix Ry defined in (33), which is PSD. However, this esti-
mate does not promote the Toeplitz structure of the covariance
matrix. This limitation is overcome by the SDP formulation
in (23). The irregular Toeplitz structure is enforced in T(u).
Meanwhile, (23) also promotes low-rank structure, a fact that
warrants more discussion. _

The atomic £5 norm of an N x Nr matrix Y is defined as

K
Y= cimxg. o> 0} (35)

k=1

1Y ]l4,0 := inf {K

where zj, := [20 ... 2Y ~1T € CN such that |2zx| =1 and x;, =
M .. 2N]T e CNF such that ||xg|2 = 1.

The following proposition establishes an equivalence be-
tween the atomic {g norm and rank minimization.

Proposition VI.1 ([48, Theorem 11.13]): For any N x Np
matrix 'Y with an atomic decomposition of the form (35) (which
includes any Y satisfying (31)), || Y| 4,0 is equal to the optimal
value of the following rank minimization problem:

rank(Toep(u)) (36)

min
W.u

==l

b Toep(u) Y
il G w

Remark: To summarize our intuition, the proposition above
indicates that (23), which is essentially a reduced-dimension
convex relaxation of (36), will promote both low-rankness and
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Toeplitz structure and therefore yields a favorable covariance
matrix estimation that reveals the sparse decomposition of the
DOAs and is consistent with the observed data.

VII. NUMERICAL RESULTS

We use numerical experiments to examine the performance
of the method. In this section, Ny and N are used to denote
the number of frequencies for the uniform and non-uniform
frequency sets, respectively. Ny and Ny, are used to denote
the number of sensors for the uniform and non-uniform array
spacing sets, respectively. For each experiment and trial, K
DOAs are generated, and c,, = 1 for each source unless other-
wise specified. The source amplitude X, is complex Gaussian.
N, snapshots are collected. The uniform frequency set is defined
as {1, ..., Ng} - Fy (F; is the minimum frequency). The array
spacing for ULA is 521- where A; is the wavelength for the
minimum frequency in the frequency set. The noise for each
frequency and each snapshot is randomly generated from the
complex Gaussian distribution CA'(0,02) and then scaled to
fit the desired signal-to-noise ratio (SNR) defined as

X lms
W llss”

In the Monte-Carlo experiments, M C' = 100 trials are exe-
cuted to compute the root mean square error (RMSE) defined as

SNR = 201log

(37)

1 MC 1 K
1 et i ; =y g . 2 102
RMSE 3T 2 [mm (R ;(emk Omi)2, 10 )]

(38)

where émk, and 6, are (sorted) estimated DOAs, and (sorted)
ground-truth DOAs for the kth DOA and mth trial. A maxi-
mum threshold of 10° is used to penalize the incorrect DOA
estimates. We compare the proposed method with the multi-
frequency sparse Bayesian learning (SBL) [8]. The Cramér-Rao
bound (CRB) [46, Eq. (121)] for the multi-frequency model is
computed for reference.

A. Robustness to Aliasing/Collision

We first examine the robustness of aliasing/collision. Sup-
pose K =3 sources impinge in a ULA with Ny =16 sen-
sors. The source amplitudes are complex Gaussian and the
DOAs are randomly generated from a uniform distribution
with range [15°, 165°] with minimum separation 4/N; in the
cosine domain, a choice inspired by [10, Theorem 4.2] (here
the separation is in the cosine domain while in [10] it is in
the w domain). We consider Np =2 or 4 under the single-
snapshot and uniform frequency case (IN; = 1). All frequencies
other than the fundamental frequency will have the risk of
aliasing/collision. We solve the SDP program (23) by CVX [42]
and apply the root-MUSIC (Vandermonde decomposition) to
retrieve the DOAs.

From Fig. 5(a) and 5(b), the primal ANM (ANM P) is more
robust to the aliasing than SBL. It also overcomes the collision
issues for the dual ANM (ANM D) [10]. Moreover, the primal
ANM does not need any hyper-parameter tuning and it avoids
the bias from the regularization terms.
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Fig. 5. RMSE (°) versus SNR. Ny =16 ULA with d = A100/2. N; =1,
and K = 3 sources with randomly generated DOAs from [15°, 165°] with
minimum separation 4/Njys in the cosine domain. (a): Np =2 with fre-
quency set {100,200} Hz; (b) Ny =4 with frequency set {100,200,
300,400} Hz: (¢) Ny=4 with frequency set {100,200,300,500} Hz:
(d) Ny = 4 with frequency set {200, 300, 400, 500} Hz. The proposed primal
SDP program (ANM P) and the dual SDP program [10] (ANM D) as well as
SBL and CRB are shown. All source amplitudes are complex Gaussian with
unit variance and ¢, = 1.
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Fig. 6. Same setup as Fig. 5(b), but the ¢y of the three sources are (a) 1,
fé‘, V3 and (b) 1, 2, 4.

B. Non-Uniform cy,

In the previous section, the ¢,, is uniform across all sources.
In this section, we examine the case when ¢, of each source is
different. From Fig. 6, the proposed method (ANN-P) achieves
almost the same performance as the uniform case and could be
applied when the c¢,, of each source is different.

C. Non-Uniform Frequency Cases

We examine the performance under the non-uniform fre-
quency set. In this case, Ny =4, and the frequency set is
{100, 200, 300,500} Hz and {200, 300,400,500} Hz. Other
conditions are the same as in Sec. VII-A. Fig. 5(c) and 5(d)
demonstrates the effectiveness of the proposed method under
the non-uniform frequency case. We see superior performance
to the fast dual algorithm proposed in [10].
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Fig. 7. RMSE (°) versus SNR for MMV setup. Nys = 16 ULA with d =
A100/2. K =3 DOAs at [88°,93°, 155°] + e where « is the random offsets
from a uniform distribution [0, 1]. N; = 20. (a): Np = 2 with frequency set
{100, 200} Hz; (b) N = 8 with frequency set {100,...,800} Hz.
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Fig. 8. RMSE (°) versus N; for MMV setup. Njy =16 ULA with d =
A100/2. K = 3 DOAs at [88°,93°, 155°] + € where e is the random offsets
from a uniform distribution [0, 1]. SNR = 20 dB. (a): N = 2 with frequency
set {100, 200} Hz; (b) Np = 4 with frequency set {100, 200, 300, 400} Hz.

D. MMV Case

We examine the performance of ANM under the MMV
setup. We consider the case N; =20, and K =3 DOAs at
[88,93,155]° + € where € is a three dimensional random vector
with uniform distribution from [0, 1]. Fig. 7 demonstrates the
superior performance of ANM in the high SNR region, and it
follows the trend of CRB.

We then examine the performance of ANM with varying
numbers of snapshots N; for SNR = 20 dB, and the other setup
as Fig. 7. From Fig. 8, ANM follows the trend of CRB and out-
performs SBL. In addition, comparing Fig. 8(a) with Fig. 8(b),
ANM performs better with higher N, which demonstrates the
benefits of multi-frequency processing.

E. The Effect of Multiple Frequencies

We study the performance of the method under varying Np
in Fig. 9. From Fig. 9(a), the estimation error of ANM generally
goes down with increasing N, the only exception is Np =7,
where it increases by roughly 0.01°. To understand that, the true
and the aliasing DOAs are in Fig. 9(b). It can be seen that the
DOAs 93° and 155° nearly collide with each other at frequency
700 Hz. Referring to (1) and (7), this can be understood as
wy =1/2 - cos(93°), w3 =1/2 - cos(155°), |wy — w3| =~ 3/7,
and there is a near collision in frequency f =7 (i.e. 7- 100 =
700 Hz). There are other intersection points between the solid
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Fig. 9. (a) RMSE (®) versus Ny and (b) aliasing pattern for MMV

setup. Npy =16 ULA with d = A100/2. N; =10. The frequency set is
{100,...,Ng - 100} Hz. K = 3 DOAs at [88°,93°,155°] + € where « is
the random offsets from a uniform distribution [0, 1]. SNR = 20 dB. In (b),
the true (solid) and the aliasing DOAs (dashed) are shown, with true DOAs
[88° (red), 93° (blue), 155° (green)].

and dashed lines but none of them lie in any frequency that be-
longs to the frequency set. That explains why the error increases
when N increases from 6 to 7.

F. Co-Prime Array and More Sources than Sensors

We examine an N,, = 6 co-prime array, a particular example
of the non-uniform array (NUA). A co-prime array involves
two ULAs with spacing Mid and Myd. M; and M, are co-
prime integers and their greatest common divisor is 1. The
first ULA has M5 sensors and the second ULA has 2M; sen-
sors. Since the first sensor is shared, there are N,, = 2M; +
M3 — 1 sensors in the array. In this example, we consider
M, =2, My =3. Ny =3 and the non-uniform frequency set
is {100, 300,400} Hz. d = A1g0/2. The first ULA is [0, 2d, 4d]
and the second ULA is [0, 3d, 6d, 9d]. The entire co-prime array
is [0,2d,3d,4d,6d,9d]. N, =50, SNR = 20 dB, and K =7
DOAs with at {45, 60, 75, 90,105,120, 140}°. Note, K > N,
in this case.

From Fig. 10, the proposed method resolves more DOAs than
sensors in the NUA case, while SBL fails in this case and has
a high RMSE (The maximum RMSE is 10° as the maximum
threshold of the RMSE for one trial is 10° based on (38)).

Further, we examine the case when there are more DOAs than
sensors under the ULA setup. We have already demonstrated
that in Sec. V under a noise-free and uniform amplitude setup.
Here, we consider a more practical case when there is noise
and the amplitude is random. From Fig. 11, ANM can resolve 6
DOAs when only Nj; = 4 physical sensors are available under
the noisy and non-uniform amplitude case and it achieves lower
RMSE performance than SBL.

2017

# = {45°,60°,75°90°,105°,120° 140°}, ANM  The same 6 as (a), SBL
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Fig. 10. Histogram for the estimated DOAs for (a) ANM, and (b) SBL

under the co-prime array with Ny, = 6 (sensor locations are [0, 2, 3,4, 6, 9]),
Ny = 3 ([100,300,400] Hz), N; = 50, SNR = 20 dB, and K = 7. The
RMSE for ANM is 0.2° and for SBL 8.6°.

9 = {40°,60°,80°, 105°,120°140°}, ANM The same 0 as (a), SBL
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Fig. 11. Histogram for the estimated DOAs for an ULA (a) ANM, and

(b) SBL. Nj; =4, Np =3 ([100, 200, 300] Hz), N; = 50, SNR = 20 dB
and K = 6. The RMSE for ANM is 0.90°, and for SBL 1.10°.

Although we only demonstrated the co-prime array as an im-
portant example of NUA, the proposed method can be applied
to any NUA satisfying the assumptions in Sec. II-A1.

G. Practical Test

We consider a case with Ny = 20 frequencies, N; = 10 snap-
shots, and Njps = 20 sensors. In previous examples, the number
of frequencies is small, but in practical cases, there may be
many more frequencies in the wideband signal. We compare
the performance to the SBL with high resolution 0.01°. From
Fig. 12, our method can deal with such a practical case with
lower RMSE than the high-resolution SBL.

H. Robustness to Imperfect Estimation of K

In the previous examples, we used perfect knowledge of the
number of sources K. In practice, K can be estimated using
any of a variety of classical source estimation methods (e.g.
Gerschgorin disk method). However, it is possible that this
estimate may not be exactly correct. In the following example,
we demonstrate robust results when a larger K is assumed (i.e.,
Key > K ).

The setup is the same as in Fig. 4 except K.y = 15. From
Fig. 13, the proposed method can still capture the K true
sources for all cases in this example. Therefore, it has robust-
ness to the case when K is overestimated. In practice, if K is
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Fig. 12. RMSE (°) versus SNR for MMV setup. Ny = 20 ULA with d =
A00/2. K =3 DOAs at [88°,93%, 155°] + € where € is the random offsets
from a uniform distribution [0, 1]. Ny = 10. (a): Ng = 20 with frequency set
{100, ...,2000} Hz.

ANM, K =10 ANM, K =11
"
0
g
0.5
g
0
@ (®)
ANM, K =12 ANM, K =13
1
g 0.5
[Z]
£
0
© (d
ANM, K =14 ANM, K =15
1
w
g 0.5
£
0
DOA (°) DOA ()
© ®
Fig. 13. Estimated and true DOAs for ANM (“x” indicates the true DOAs

and the blue vertical line indicates the estimated DOAs). The same setup as
Fig. 4 except K is estimated as 15 for all cases.

TABLE T
AVERAGE CPU RUN TIME (5) UNDER THE
SAME SETUP AS FIG. 5(b)

—10dB | 10dB | 30 dB

Proposed .1 ] 1.0

ANM [10] 38 3.8 37
SBL 7.0 49 48

unknown, we can feed a reasonably large K to the proposed
method and it may still be possible to resolve all the true
sources.

L. Complexity

We compare the average CPU time of the proposed method
with the dual ANM [10] and SBL (with a 0.01 ° grid) over
100 trials with the setup used in Fig. 5(b) with SNR values of
— 10, 10, and 30 dB. In these results, presented in Table II, the
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proposed method is at least 3 times faster than both the dual
ANM and SBL.

VIII. CONCLUSION

This paper proposes a gridless DOA estimation method based
on regularization-free SDP and Vandermonde decomposition.
‘We further extend this framework to MMV, NUA, and non-
uniform frequency cases. Under the NUA and non-uniform fre-
quency case, the Toeplitz structure will not hold. However, we
demonstrate the possibility of using IVD in these cases, and the
existence of IVD is theoretically guaranteed. With the help of
multiple frequencies, the method can resolve more sources than
the number of physical sensors under the ULA setup. Therefore,
multi-frequency processing can reduce the number of physical
sensors and increase the maximum resolvable sources. Numer-
ical results demonstrate the proposed framework is robust to
noise and aliasing and can achieve a superior performance under
the MMV, NUA, and NUF setup.

APPENDIX
A. Proof for Proposition 111.1

Proof: The primal atomic norm |AX'||4 is expressed in
terms of the dual atomic norm || Q|| as

[Xlla= sup (Q,X)g= sup (QV)r, (39)
@l <t 1% <1

where the last equality is only for the noise-free case. For any

dual variable Q, we can define the dual polynomial matrix

T(Q,w) € CNrxNi gg

¥(Q,w) =[Qf'a(l,w)...QF, a(Nr,w)]".

Since each frequency has different array manifold vectors,
it is difficult to express ¥(Q,w) as a matrix multiplication
of @ and a vector. To construct a homogeneous representa-
tion for ¥(Q, w), we will leverage z := [20... 2V 1T e CV
(z = z(w) := e~ 7?™), an ensemble of the array manifold, and
the matrix Q, € CV*M defined as follows [10, eq. (14)]

3,(.1) :{Qf(m,s) for (i,1)=(f - (m—1)+1,1)

0 otherwise,

(40)

(41)

or Q; =R(Q;y). With the help of Q; and z, ¥(Q,w) has
the representation
& (Qw)=[Q1'z...QR, 2"

Now, we consider || Q||*%, which appears in the constraint in
(39). Recalling that || X, ||z =1, we have a similar derivation
to [10, eq. (17)]:

Q% :== sup (QX)r=
1] 4<1 I

42)

sup (Q,A(w) * XD)g
Xl a<

A<l

Np
=supTr | 3 Qffa(f, w)x(f)

w f=1
= sup Tr[W 7 X ] = sup || ¥ (Q, w)|| . (43)
X w

w
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Fig. 14. Dual polynomial visualization. A ULA with Ny =16 sen-

sors and spacing d=¢/2F7 (F1 =100 Hz) is used. Np =5, N;=
5, 8= [87.7076°,93.4398°,154.1581°], and w = [0.02,—0.03, —0.45].
(a) ||v(Q,w)|| g versus w; (b) R(w) versus w.

Using (43), the condition || Q|[* <1 can be equivalently for-
mulated as an SDP constraint. Construct a similar polynomial
as in [10, eq. (23)]:

R(w) =1~ [|¥(Q,w)|} =1~ T[T (Q, w)¥(Q,w)]

Ng Ng
=1-T(}_ Qfzz"Q)=1-) z7Q,;Qf=
f=1 F=1
(a4)

Therefore, ||Q||% < 1 holds if and only if R(w) > 0 for all w €
[-1/2,1/2].

Now, suppose there exists a matrix Py € CV*V such that
the constraints in (13) hold. We must argue that F(w) > 0 and
therefore || Q||% <1 for all w. Consider the expression z” Pz
and note that

N-1

E Tkz_k

k=—(N-1)

zHPyz = Tr(zzHPy) = (45)

where 1 = Zi\;k Py(i,i+k) for k>0 and rp =17, for
k < 0. Since 1% Py (i, i + k) = d holds, we can conclude
that z7Ppz=2:"=1. Define P;:= Z?r:l E);éf =QQH
and substitute this fact into R(w). We have

R(w) =2z"Pyz — 27 Pz =2 (P — P,)z.
P, Q

Since QH trss
QI Q¥ =Py —P; =0, and so R(w)>0 for all we
[—1/2,1/2].

Next, suppose R(w) >0 for all w € [-1/2,1/2]. We need
to argue that there exists a matrix Po € CV*V = 0 such that
the constraints in (13) hold. Since R(w)<0, 1> zHPz,
where P; :=Y"1", Q;Q¥ = QQ. From [53, Lemma 4.25]
and the fact that 1 and z” P,z are both univariate trigono-
metric polynomials, it follows that there exists Py = Py such
that 1 =z Pyz and S 1" Py (i, + k) = &}, hold. The matrix

P Q

QY I,
Ppo—P; =0, and therefore this matrix is positive semi-
definite. This concludes the proof. |

(46)

=0, its Schur complement Py —

has Schur complement Py — E!Il}i Q=

2019
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