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We prove that among all 1-periodic configurations � of points on the real line R the quantities
minx∈R

∑
γ∈� e−πα(x−γ )2

and maxx∈R
∑

γ∈� e−πα(x−γ )2
are maximized and minimized, respectively, if and

only if the points are equispaced and whenever the number of points n per period is sufficiently large
(depending on α). This solves the polarization problem for periodic configurations with a Gaussian
weight on R for large n. The first result is shown using Fourier series. The second result follows from
the work of Cohn and Kumar on universal optimality and holds for all n (independent of α).

1 Introduction and Main Result
We study the following question: for fixed α > 0, among all periodic configurations of points � with
given density on the real line, for which one is the function

pα(x) =
∑
γ∈�

e−πα(x−γ )2
(1)

as close to constant as possible? Factoring out scales, periodicity, and symmetries, this is equivalent to
the problem of placing n points on T ∼= S

1 so that

fα(x) =
n∑

j=1

∑
k∈Z

e−παk2
e2π ik(x−xj) (2)

is as close to constant as possible. The equivalence of the two problems arises from the duality between
(1) and (2) caused by the Poisson Summation Formula, which we explain in detail in §3. We note that
(2) can be expressed by means of the Jacobi theta function θ(x; α) (details are given in §3);

θα(x) = θ(x; α) =
∑
k∈Z

e−παk2
e2π ikx.

The problem arises naturally in a variety of settings, see §2. Such problems are often related to optimal
sphere packing/covering. Since sphere packing in one dimension is trivial, one would expect equispaced
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points to be optimal. Indeed, Cohn and Kumar [19] showed that equispaced points on the line are
universally optimal. Their result can be applied in our setting.

Proposition 1.1 (Application of Cohn and Kumar [19]). Among all periodic configurations � ⊂ R

of the form

� = n
δ

(
n⋃

k=1

(Z + xk)

)
, {x1, . . . , xn} ⊂ [0, 1), xk �= x�, k �= �,

of fixed density δ > 0 and for any fixed parameter α > 0, the quantity

max
x∈R

pα(x) = max
x∈R

∑
γ∈�

e−πα(x−γ )2
is minimized

if and only if the points are equispaced. Moreover, among all sets of n points on the torus T ∼= S
1

and for any fixed parameter α > 0, the quantity

max
x∈T

fα(x) = max
x∈T

n∑
j=1

θα(x − xj) is minimized

if and only if the points are equispaced.

This result is not surprising, it is exactly what one would expect. However, to the best of our
knowledge no “easy” proof of the theorem of Cohn and Kumar is known. As a consequence, since
our proof of Proposition 1.1 makes use of the result of Cohn and Kumar, we do not currently have
an “elementary” proof. We refer to §2.1 for an in-depth discussion of this result and give the proof in §4.

Proposition 1.1 is concerned with minimizing the maximum. The main result of our paper is the dual,
maximizing the minimum, which we prove in the regime when the number of points is sufficiently large,
where “sufficiently large” depends only on the width α of the Gaussian. The proof is given in §5.

Theorem (Main Result). For n ≥ N(α) (depending only on α) and among all 1-periodic configura-
tions � ⊂ R of density n, that is,

� =
n⋃

k=1

(Z + xk), {x1, . . . , xn} ⊂ [0, 1), xk �= x�, k �= �,

the quantity

min
x∈R

pα(x) = min
x∈R

∑
γ∈�

e−πα(x−γ )2
, α > 0, is maximized

if and only if the points are equispaced. Moreover, for n ≥ N(α) sufficiently large (depending
only on α)

min
x∈T

fα(x) = min
x∈T

n∑
j=1

θα(x − xj) is maximized

if and only if the points are equispaced.

Just as in Proposition 1.1, the two statements are dual by the Poisson Summation Formula. We remark
that the parameter α in the result for pα corresponds to 1/α in the statement for fα (see §3). Note that
the results are invariant under global shifts z as the sets {x1, . . . , xn} and {x1 + z, . . . , xn + z} both yield the
same energy and polarization (see §2). Also, equispaced is always understood periodically. The argument
is structurally completely different from the Cohn and Kumar framework [19] of universal optimality,
the proof invokes very different tools. The main obstacles when establishing our results are:
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7916 | M. Faulhuber and S. Steinerberger

1) the location of the minimum depends on the xj in a complicated way and
2) for equispaced points the difference between minimum and mean is super-exponentially small in

n, which forces an analysis on very small scales.

The proof of the main result is completely Fourier-analytic, which makes it somewhat robust and
applicable to a wider range of functions than just the Gaussian function; if one has, generally, a function
of the type

g(x) =
∑
k∈Z

ĝ(|k|)e2π ikx,

with ĝ(|k|) decaying sufficiently fast (say, faster than exponential), then much (but not all) of the
argument carries over verbatim. For simplicity of exposition, the remainder of the paper only deals
with the Gaussian case, which is arguably the most natural. The proof is explicit enough that bounds
on N(α) could be obtained; however, since one would naturally assume that the result is true for all
n ≥ 1, independently of the value of α, we will not track this dependency. The condition n ≥ N(α) is
necessary in many different steps of our argument, and it appears that an unconditional argument for
all n ≥ 1 would require some new ideas. Of course the case n = 1 is trivial and we provide a proof valid
for all α > 0 when n = 2 in §6. It appears that already the case n = 3 poses some nontrivial difficulties.

2 Related Results
2.1 Energy minimization
Energy minimization problems have received much attention in recent years. A seminal result due
to Cohn, Kumar, Miller, Radchenko, and Viazovska [21] states that the E8-lattice and Leech lattice
are universally optimal in their respective dimension, meaning that they uniquely minimize energy
Eg(�) among periodic configurations � and for a large class of (radial) potential functions g. A periodic
configuration in R

d is the union of finitely many shifted copies of a lattice 	. We recall that a lattice is
discrete co-compact subgroup of Rd and its density is 1/vol(Rd/	) and refer to the textbook of Conway
and Sloane [22] for an introduction to lattices. The energy of a periodic configuration

� =
n⋃

k=1

(	 + xk), {x1, . . . , xn} ∈ R
d/	, xk �= xj, k �= j

is given by

Eg(�) = 1
n

n∑
k=1

n∑
j=1

∑
λ∈	\{xj−xk}

g(|λ + xj − xk|). (3)

So, it is the pairwise interaction of the points under the potential g excluding self-interactions (as the
potential may be singular at the origin). We refer to [19, 21] for details on the energy minimization
problem and to the textbook of Conway and Sloane [22] for an introduction to lattices, packing problems,
and covering problems as well as to the article of Schuermann and Vallentin [40]. In [19], Cohn and
Kumar showed that on the real line R (and at all scales) the scaled integer lattice is universally optimal.
They obtained their result by constructing a “magic function” (using a version of the classical sampling
theorem), which proved that the linear programming bounds for the problem (obtained in the same
work) are indeed sharp for the scaled integer lattice. An alternative proof, also given in [19], is via
spherical designs. Numerically, the hexagonal lattice also meets the linear programming bound for
the energy minimization problem in dimension 2. However, a proof of its universal optimality is still
missing. The results are linked to optimal sphere packings and the linear programming bounds for the
sphere packing problem obtained by Cohn and Elkies [18]. In seminal work, the sphere packing problem
in dimension 8 was solved by Viazovska [46] and in dimension 24 by Cohn, Kumar, Miller, Radchenko,
and Viazovska [20]. The problem of energy minimization has also been treated on the sphere S

d−1 ⊂ R
d,

which in the case of d = 2 is a problem of distributing points on the circle line S
1 ∼= T. Often, for

general d ≥ 2, a connection to spherical t-designs is given when distributing points on a sphere. We
refer to the review by Brauchart and Grabner [17] and to Hardin and Saff [27] for the classical problem
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Maximal Polarization for Periodic Configurations | 7917

of Riesz energy minimization. More recent results on energy minimizing point distributions on spheres
were obtained by Beltrán and Etayo [5] or Bilyk, Glazyrin, Matzke, Park, and Vlasiuk [10]. For spherical
t-designs, we refer to the breakthrough of Bondarenko, Radchenko, and Viazovska [12] and to work of
the second author [42] for upper bounds.

2.2 Polarization problems
The polarization problem asks to place light sources such that the darkest point has maximal illumi-
nation. Often such problems are considered for compact manifolds, such as the sphere. We refer, for
example, to articles, published in different constellations, by Borodachov, Boyvalenkov, Hardin, Reznikov,
Saff, and Stoyanova [13–16]. For more numerical investigations and algorithms, we refer to the work by
Rolfes, Schüler, and Zimmermann [38]. The problem of polarization for Riesz potentials and lattices
in R

d was asked by Saff (cf. Problem 1.06 in the collection curated by American Institute of Mathematics
for the workshop Discrete Geometry and Automorphic Forms [49]). We note that many physically important
potentials, such as the Riesz potential, can be written as a Laplace transform of a non-negative measure
μ. More precisely, any completely monotone function f : R+ → R+, meaning (−1)kf (k)(x) ≥ 0, ∀k ≥ 1,
is the Laplace transform of a non-negative Borel measure as a consequence of the Bernstein–Widder
theorem [6, 48] (see also the textbook of Schilling, Song, and Vondracek [39, Chap. 1]). Some results
on polarization on S

1 for sufficiently fast decaying and convex potentials have been obtained in [15,
Chap. 14.3]. We remark that the Gaussian potential does not fall into the class of completely monotone
functions as it is not convex. However, by adjusting distance to squared distance, we get completely
monotone functions of squared distance, that is, r 	→ g(r2) where g is completely monotone (compare
[21]):

g(r) =
∫ ∞

0
e−αr dμ(α).

As remarked in [21, Sec. 1.2], it may seem more natural to take completely monotone functions of
distance, rather than squared distance, but using squared distance allows for the use of the Gaussian
function. In fact, one can check that any completely monotone function of distance is also a completely
monotone function of squared distance. We refer to [21, Sec. 1.2] for this fact and more details. As
an example, we name the Riesz potentials, also known as inverse power laws, which are obtained as
(compare again, e.g., [21])

1
rs

=
∫ ∞

0
e−αr2 αs/2−1

�(s/2)
dα.

If our result were to hold for all α > 0 (when n is fixed), one would immediately have a corresponding
result for Riesz potentials as well as the whole class of completely monotone functions of squared
distance (given sufficiently fast decay):

∑
γ∈�

(∫ ∞

0
e−αγ 2

dμ(α)

)
=
∫ ∞

0

⎛⎝∑
γ∈�

e−αγ 2

⎞⎠ dμ(α).

2.3 Lattices in R
2

Despite the seminal work of Cohn, Kumar, Miller, Radchenko, and Viazovska [21] and overwhelming
numerical evidence, the universal optimality of the hexagonal lattice, also known as A2 root lattice or
sometimes triangular lattice, is still open to date. The best available result is due to Montgomery [33] and
states that the hexagonal lattice is optimal among lattices at all scales. More recently, the polarization
problem among 2-dimensional lattices has been solved by the authors in joint work with Bétermin [8].
Local optimality of the hexagonal lattice for lattice polarization and certain potential functions has been
derived by the authors in [23]. In [7], Bétermin and the first author showed that the hexagonal lattice
maximizes Madelung-like lattice energies (lattice points have alternating signs). This result is somewhat
in-between the result of Montgomery [33] and the joint result of the authors with Bétermin [8] as it
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7918 | M. Faulhuber and S. Steinerberger

does neither clearly relate to sphere packing nor covering. Related results concerning the Lennard–
Jones potential (see Bétermin and Zhang [9]), which is r 	→ r−12 − 2r−6 and neither non-negative nor
monotonic nor convex, show that for different densities different geometrical arrangements can be
optimal. This phenomenon is widely called phase transition. Some physically relevant consequences
of the conjectured universal optimality of the hexagonal lattice (and proven optimality of E8 and
Leech lattice) are discussed by Petrache and Serfaty [37]. A general survey is given by Lewin and
Blanc [30].

2.4 Heat equation sampling
Our result solves the following problem on S

1 as a byproduct. The problem was originally discussed by
Pausinger and the second author [35] on T

2. Suppose there is an unknown distribution of heat f ∈ L1(S1)

and we are interested in estimating the total heat
∫
S1 f (x)dx. If the function f is only in L1, then no

effective sampling strategies are possible. If we now assume, however, that some time t > 0 has passed,
then the solution of the heat equation et�f with f as initial condition satisfies

∫
S1

f (x)dx =
∫
S1

[
et�f

]
(x)dx

and is also a more regular function for which sampling strategies should be possible.

Corollary 2.1. For any t > 0 and all n ≥ N(t) sufficiently large (depending only on t) the worst case
sampling error

sup
f∈L1(S1)

1
‖f‖L1

∣∣∣∣∣1n
n∑

k=1

[
et�f

]
(xk) −

∫
S1

f (x)dx

∣∣∣∣∣
is minimized if and only if the sampling points {x1, . . . , xn} are equispaced.

Proof. Interpreting the solution of the heat equation as a Fourier multiplier,

1
n

n∑
k=1

[
et�f

]
(xk) =

〈
et�f ,

1
n

n∑
k=1

δxk

〉
=
〈
f ,

1
n

n∑
k=1

et�δxk

〉
.

The solution of the heat equation started with a Dirac delta is the Jacobi θ-function

[
et�δxk

]
(x) = θt(x − xk)

and thus

〈
f ,

1
n

n∑
k=1

et�δxk

〉
=
〈
f ,

1
n

n∑
k=1

θt(x − xk)

〉
=
〈
f , 1 + 1

n

n∑
k=1

(θt(x − xk) − 1)

〉

=
∫
S1

f ∼ dx +
〈
f ,

1
n

n∑
k=1

(θt(x − xk) − 1)

〉
.

Using L1 − L∞ duality, we arrive that

sup
f∈L1(S1)

∣∣∣∣∣
〈
f ,

1
n

n∑
k=1

(θt(x − xk) − 1)

〉∣∣∣∣∣ =
∥∥∥∥∥1

n

n∑
k=1

(θt(x − xk) − 1)

∥∥∥∥∥
L∞

.

Our results show that the maximum is minimized and the minimum is maximized if and only if the
points are equispaced. This implies the statement. �
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Remark. It was pointed out to us by one of the referees that we can drop the condition n ≥ N(t)
as Proposition 1.1 is sufficient in order to prove the above corollary for any t and all n. The
argument goes along the same lines as above, but then continues in the following way. We
need to show that ∥∥∥∥∥

n∑
k=1

θt(x − xk) − n

∥∥∥∥∥
L∞

≥
∥∥∥∥∥

n∑
k=1

θt

(
x − k

n

)
− n

∥∥∥∥∥
L∞

. (4)

Using a trivial estimate and then Proposition 1.1, we get

∥∥∥∥∥
n∑

k=1

θt(x − xk) − n

∥∥∥∥∥
L∞

≥ max
x

(
n∑

k=1

θt(x − xk) − n

)
≥ max

x

(
n∑

k=1

θt

(
x − k

n

)
− n

)
.

In order to show (4) it now suffices to show that

max
x

n∑
k=1

θt

(
x − k

n

)
− n ≥ n − min

x

n∑
k=1

θt

(
x − k

n

)
⇐⇒ max

x

n∑
k=1

θt

(
x − k

n

)
+ min

x

n∑
k=1

θt

(
x − k

n

)
≥ 2n.

It is a remarkable property of the theta function (cf. [22, Chap. 4, eq. (22)]) that

max
x

n∑
k=1

θt

(
x − k

n

)
+ min

x

n∑
k=1

θt

(
x − k

n

)
= max

x

2n∑
k=1

θt

(
x − k

2n

)
≥ 2n.

The details of this argument are provided in §3 and §4. The crucial property is that, in
the equispaced case, the minimum is achieved exactly midway between the points and the
maximum at the points themselves.

2.5 Shift invariant systems
A shift invariant system V2(g) on R with a generator g ∈ L2(R) is a space of functions of the form

V2(g) = {f (x) =
∑
k∈Z

ck g(x − k) | (ck) ∈ �2(Z)}.

An example is the classical Paley–Wiener space PW(R) of band-limited functions, that is, supp(̂f ) ⊂
[−1/2, 1/2], which is generated by sinc(x) = sin(πx)/(πx). For a set � ⊂ R, we say that it is a set of
sampling for V2(g) if and only if there exist positive constants 0 < A ≤ B < ∞, depending on g and �,
such that

A‖f‖2
L2(R)

≤
∑
γ∈�

|f (γ )|2 ≤ B‖f‖2
L2(R)

, ∀f ∈ V2(g).

For the motivation of (non-uniform) sampling in V2, we refer to the article by Aldroubi and Gröchenig
[2]. Characterizing sampling sets for given generator g is a very difficult problem. A necessary condition
is that the (lower Beurling) density of the set is at least 1. The case of density 1 is referred to as
critical sampling. For a large class of functions, including the Gaussian function x 	→ e−αx2

, α > 0,
the problem was solved by Gröchenig, Romero, and Stöckler [26]. The case of critical sampling with
Gaussian generator is treated by Baranov, Belov, and Gröchenig [4].

Our results suggest that for the space V2(φα), where φα is a Gaussian, the bound B is minimal
and A is maximal for equispaced sampling. Lastly, we mention the relatively new area of dynamical
sampling introduced by Aldroubi, Cabrelli, Molter, and Tang [1]. This combines the sampling problem
with dynamical systems. In particular, we find connections between the heat equation and the sampling
problem, as described by Aldroubi, Gröchenig, Huang, Jaming, Krishtal, and Romero [3]. Ulanovskii and
Zlotnikov [45] described sampling sets for PW(R) so that f can be reconstructed from samples of f ∗ ϕt,
where ϕt is a convolution kernel of a dynamical process. It would be interesting to see how our results
connect to this area.
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7920 | M. Faulhuber and S. Steinerberger

3 Notation and Remarks
3.1 Basic notation
To clarify normalization, we note that we use the following version of the Fourier transform of a suitable
function f on the real line:

f̂ (ω) =
∫
R

f (x)e−2π iωx dx, so ‖f‖L2(R) = ‖̂f‖L2(R).

Thus, the Poisson Summation Formula reads (see, e.g., Gröchenig [25, Chap. 1.4])

∑
k∈Z

f (k + x) =
∑
�∈Z

f̂ (�) e2π i�x.

The Fourier transform of a Gaussian is another Gaussian, differently scaled (see, e.g., Folland [24, App.
A]):

if φα(x) = e−παx2
, α > 0, then φ̂α(ω) = (1/

√
α) e−(π/α)ω2 = (1/

√
α) φ1/α(ω).

The periodization of φα will be called a periodic Gaussian:
∑

k∈Z φα(x+k). A periodic configuration � ⊂ R

with period δ is a set of points of the following form:

� =
n⋃

k=1

(	 + xk), where 	 = δZ, δ > 0, xk �= xj, k �= j, xk ∈ [0, δ).

The density ρ of a configuration � is the number n of points per period ρ = n/δ.

3.2 Polarization on the real line
We are now interested in the following polarization problem: which periodic configuration of fixed
density ρ maximizes

min
x

1√
α

∼
∑
γ∈�

φ1/α(x − γ ) ?

We quickly note that, fixing the amounts of points per period, a minimizer always exists by compact-
ness. We call the above quantity the polarization of � and seek to find the maximal polarization. In
general, the minimum depends on � and its density ρ as well as on α. For equidistributed points,
however, the minimum is always achieved midway between successive points (as we will prove as part
of the proof of the main result). The polarization may more explicitly be written in one of the following
ways:

min
x

1√
α

∑
γ∈�

φ1/α(x − γ ) = min
x

1√
α

n∑
j=1

∑
k∈Z

e−π δ2
α

(
k+ xj−x

δ

)2

(5)

= min
x

1
δ

n∑
j=1

∑
k∈Z

e−π α

δ2 k2
e2π ik

(xj−x)

δ , (6)

where the second equality is due to the Poisson Summation Formula. Note that in this explicit formula
{x1, . . . , xn} ⊂ [0, δ). By identification of a configuration � with (x1, . . . , xn) ∈ (δT)n, we see that a
maximizing configuration must exist by compactness. Clearly, neither the factor 1/

√
α nor the factor

1/δ are of relevance for the minimization process or determination of the maximizing configuration.
We will next show that for (5) and any fixed n, α > 0, and δ > 0 there is always an equivalent problem
with the same n, δ = 1 and different α. For � = ⋃n

j=1(δZ + xj), x ∈ [0, δ), xj ∈ [0, δ), we simply write

n∑
j=1

∑
k∈Z

e−πα(δk+xj−x)
2 =

n∑
j=1

∑
k∈Z

e−πα̃(k+x̃j−x̃)
2

,
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Maximal Polarization for Periodic Configurations | 7921

where x̃ = x/δ ∈ [0, 1), x̃j = xj/δ ∈ [0, 1), and α̃ = αδ2. We see that we may thus assume that the
points {x1, . . . , xn} are distributed in [0, 1) and that � is 1-periodic (and of density n). Using the Poisson
Summation Formula, we see that finding the optimal configuration for (6) is the same as maximizing

min
x

n∑
j=1

∑
k∈Z

e−παk2
e2π ik(xj−x) = min

x

n∑
j=1

θα(xj − x).

This is (up to flipping the argument) exactly the quantity fα(x) from (2) considered in our main result.
Note that by the Poisson Summation Formula

fα(x) = 1√
α

p1/α(x).

3.3 Theta functions
The problem can be written as a variational problem for a finite superposition of real-valued theta
functions. For parameter τ ∈ H (complex upper half-plane) and argument z ∈ C, the classical theta
function is

ϑ(z; τ) =
∑
k∈Z

eπ iτk2
e2π ikz.

This function is holomorphic in τ and entire in z. For τ = iα, α > 0, and z = x ∈ R, the function becomes
real-valued and we use the notation:

θ(x; α) =
∑
k∈Z

e−παk2
e2π ikx =

∑
k∈Z

e−παk2
cos(2πkx) = 1 + 2

∑
k≥1

e−παk2
cos(2πkx).

Note that the function θ(x; α) is the heat kernel on the flat torus R/Z. As such, it has mean value 1,
which is easily verified by a small computation;

∫ 1

0

∑
k∈Z

e−παk2
e2π ikx dx =

∑
k∈Z

e−παk2
∫ 1

0
e2π ikx dx =

∑
k∈Z

e−παk2
δk,0 = 1,

where δk,0 is the Kronecker delta. The function ϑ(z; τ) and, hence, θ(x; α) can be expressed as an infinite
product known as the Jacobi triple product, which is a special case of the Macdonald identities for affine
root systems [31]:

ϑ(z; τ) =
∏
k≥1

(
1 − e2kπ iτ

) (
1 + e(2k−1)π iτ e2π iz

) (
1 + e(2k−1)π iτ e−2π iz

)

=
∏
k≥1

(
1 − e2kπ iτ

) (
1 + 2 cos(2πz)e(2k−1)π iτ + e2(2k−1)π iτ

)
.

We refer to textbooks of Mumford [34], Stein and Shakarchi [41], or Whittaker and Watson [47] for more
details on elliptic functions.

4 Proof of Proposition 1.1
Proposition 1.1 follows relatively easily from the work of Cohn and Kumar [19] and the Poisson
Summation Formula. The heart of the argument has three ingredients:

1) first, universal optimality shows that, for any fixed α > 0, the interaction energy

1
n

n∑
k,j=1

θα(xj − xk) is minimized for equispaced points.
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7922 | M. Faulhuber and S. Steinerberger

2) The second ingredient is a trivial estimate that arises from replacing an average (arithmetic mean)
of values by its maximum

max
x

n∑
k=1

θα(x − xk) ≥ 1
n

n∑
j=1

n∑
k=1

θα(xj − xk). (7)

3) The third ingredient is that (2) is sharp whenever the points are equispaced (which, simultaneously,
by universal optimality, minimizes the lower bound in (2) just above). There is a magic ingredient
where, for equispaced points, the maximum of

∑n
k=1 θα(x − xk) is attained at the points xj

themselves.

We remark that the counterpart to (1) is false for the minimization problem. Likewise, regarding
(3), the location of the minimum depends in a highly nonlinear fashion on the location of the
points. Understanding the minimum and the considered polarization problem thus requires a different
approach.

Proof. (1) We note that the energy for the potential � = 1/
√

α φ1/α is given by

E�(�) = 1
n

n∑
k=1

n∑
j=1

∑
�∈Z

1√
α

φ1/α(� + xj − xk) = 1
n

n∑
k=1

n∑
j=1

θα(xj − xk), (8)

where the second equality comes from the Poisson Summation Formula. The potentials are sitting on
the periodic configuration �. However, not only their sum is considered but all their pairwise interactions
and the sum over all of them. The condition λ ∈ 	\{xk − xj} in (3) excludes self-interaction as the
potential function g is allowed to be singular at 0 (this is also of physical relevance). For the Gaussian,
we may allow self-interaction (which adds a fixed additive constant determined by normalization, but
independent of �) and we do not need to exclude it. If �0 = ⋃n

j=1(Z+ (j − 1)/n) = (1/n)Z, then the energy
can be written as (after applying the Poisson Summation Formula)

E�(�0) = 1
n

n∑
k=1

n∑
j=1

θα

(
� + j − k

n

)
= 1

n

n∑
k=1

n∑
j=1

θα

(
� + j

n

)
=

n∑
j=1

θα

(
� + j

n

)
,

where the second and third equalities are due to the periodicity of θα . The universal optimality of the
(scaled) integers due to Cohn and Kumar [19] states, for all α > 0,

E�(�0) ≤ E�(�) with equality if and only if � = �0 + z, z ∈ R. (9)

Note that the result in [19] as well as ours also hold for arbitrary scaling.
(2) is a trivial observation and does not require any more details.
(3) For �0 the maxima of pα (or likewise fα) are attained at the equispaced points {0, 1/n, . . . , (n − 1)/n}

(compare Proposition 5.1). This follows by a simple application of the Poisson Summation Formula and
the triangle inequality. This allows for various additional tools to be used, in particular, it allows for
a lossless application of the triangle inequality. We give the proof for the integers Z but the proof can
easily be adjusted to scaled integers δZ (replace k by k/δ and adjust the Poisson Summation Formula
accordingly). We perform the following small computation for α > 0:

1√
α

p1/α(x) = fα(x) =
∑
k∈Z

e−παk2
e2π ikx ≤

∑
k∈Z

e−παk2
∣∣∣e2π ikx

∣∣∣ =
∑
k∈Z

e−παk2 = fα(0) = 1√
α

p1/α(0). (10)

So, the maximum is attained at 0 and by periodicity at all points in Z (or δZ).
Note that E�(�) builds the average of all values taken on � (see Figure 1). Now recall that (10) tells

us that for the equispaced configuration �0 the maximum is attained exactly on �0. It readily follows
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Maximal Polarization for Periodic Configurations | 7923

Fig. 1. Illustration of the result of Cohn and Kumar [19]. Building the average of pα(x) at the points {x1, . . . , xn} (in
this case n = 3) for periodic, non-equispaced configuration always yields a larger value than for the equispaced
points. As we sum n times the maximum in the equispaced case, it follows that the maximum of pα(x) is minimal
only for the equispaced configuration.

from (7), (8), and (9) that

max
x

fα(x) = max
x

n∑
j=1

θα

(
x + xj

)
is minimal if and only if � is equispaced.

This gives Propositions 1.1 as a simple consequence of the result in [19]. �

5 Proof of the Main Result
We start with an overall overview of the argument. It is fairly modular and the subsections reflect
its overall structure. We also emphasize that, due to the fast decay of the Fourier coefficients, the
argument is somewhat forgiving when it comes to polynomial estimates in the number of points. As a
consequence, some of the subsequent proofs are given in its simplest rather than their optimal form.
The main argument comes in two parts: the first part shows that optimizing configurations have to be
exponentially close (in n) to the equispaced distribution. The structure of the first part is as follows.

1) §5.1 uses some basic facts about theta-functions. We show that if the points are equispaced, then
the minimum is attained exactly at the midpoints between the equispaced points. This then allows
us to deduce

min
x

n∑
j=1

θα

(
x − j

n

)
= n − 2ne−παn2 + O(ne−4παn2

),

which already shows some of the difficulty: the difference between the average and the minimum
can be super-exponentially small in n.

2) §5.2 introduces a trivial L1-estimate (essentially pigeonholing) and a nontrivial estimate: the
McGehee–Pigno–Smith inequality [32], and independently discovered by Konyagin [29]. It was
pointed out to us by an anonymous referee that the McGehee–Pigno–Smith inequality can be
avoided and we present this more elementary argument as well.

3) §5.3 combines these ingredients to prove that if {x1, . . . , xn} ⊂ [0, 1) is an optimal configuration
(meaning one maximizing the minimum), then the first n − 1 Fourier coefficients of the measure
μ = ∑n

j=1 δxj must be small, more precisely

max
1≤|k|≤n−1

∣∣∣∣∣∣
n∑

j=1

e−2π ikxj

∣∣∣∣∣∣ ≤ 2000 · n2 · e−πα(2n−1).
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7924 | M. Faulhuber and S. Steinerberger

4) We note that for equispaced points the first n−1 Fourier coefficients all vanish. §5.4 proves a basic
estimate, invoking the classical Fejér kernel, showing if the first n − 1 Fourier coefficients of μ are
close to 0, then the n points are (quantitatively) close to n equispaced points. Since the estimate
from (3) is extremely small, exponentially small in n, we get that any optimal configuration has to
be exponentially close to equispaced.

The second part of the proof shows that the only configuration that is exponentially close (in n) to
the equispaced distribution and has maximal polarization is the equispaced distribution: this part can
be understood as a detailed analysis of the perturbative regime. The main idea lies in making the ansatz
xj = j/n + εj together with the explicit Fourier series representation

n∑
j=1

θα

(
x − j

n
+ εj

)
=
∑
k∈Z

e−παk2

⎛⎝ n∑
j=1

e2π ikεj e−2π ik j
n

⎞⎠ e2π ikx.

Since the problem is invariant under shifts, we can (and have to) assume that ε1+· · ·+εn = 0 to eliminate
the invariance of the problem under translation. The argument is then structured as follows.

1) In §5.5 we show that the frequencies where k is a multiple of n are exactly the terms that contribute
when the points are equispaced: among these frequencies only k ∈ {−n, 0, n} have a sizeable
contribution, the rest is small. The equispaced points yield n local minima and our goal is to show
that at least one of these minima further decreases unless εj = 0 for all 1 ≤ j ≤ n (meaning the
points are equispaced again).

2) We consider the trigonometric polynomial g1(x), which is the restriction to the first (n − 1)/2
frequencies. By a modified Poincaré inequality, we will prove in §5.6 that any such trigonometric
polynomial assumes a small negative value at at least one of the points of the form (k + 1/2)/n,
for 0 ≤ k ≤ n − 1. This negative contribution is going to make at least one of the minima much
smaller. It remains to make sure that this cannot be counteracted by contributions coming from
the other frequencies.

3) There are two remaining parts to analyze: g2(x) defined by restricting summation to the frequen-
cies n/2 ≤ |k| ≤ n − 1 and h(x) for all the remaining frequencies. We will prove in §5.7 that
‖g2‖L∞ , ‖h‖L∞ � ‖g1‖L2 . Indeed, these terms are many orders of magnitude smaller.

4) The main ingredient for showing the last step is a surprising appearance of the Discrete Fourier
Transform (see §5.8) hidden in the Fourier coefficients: since the sum of the perturbations ε1 +· · ·+
εn = 0, we can approximate the Fourier coefficients whenever k is not a multiple of n, as

n∑
j=1

e2π ikεj e−2π ik j
n = 2π ik

n∑
j=1

εje
−2π ik j

n + O

⎛⎝k2
n∑

j=1

ε2
j

⎞⎠ ,

where the sum is merely a Discrete Fourier Transform of the ε1, . . . , εn. This allows us to deduce
a certain type of symmetry (because the εj are real-valued), which will be used to prove ‖g2‖L∞ �
‖g1‖L2 . It also guarantees that not all Fourier coefficients are small (via a Plancherel identity).

5) The final inequality, established in §5.9, is, assuming the perturbations εj are exponentially close
to 0, that the minimum

Z = min
0≤k≤n−1

n∑
j=1

θα

(
k + 1/2

n
− j

n
+ εj

)

satisfies

Z ≤
⎡⎣min

0≤x≤1

n∑
j=1

θα

(
x − j

n

)⎤⎦− Ce−πα( n−1
2 )

2

⎛⎝ n∑
j=1

ε2
j

⎞⎠1/2

,

which then forces all the perturbations to vanish.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/9/7914/7597823 by U
niversity of W

ashington Law
 School - G

allagher Law
 Library user on 30 July 2024



Maximal Polarization for Periodic Configurations | 7925

5 Part 1 of the proof
5.1 Minimizer for equidistributed points
We first prove that for equispaced points the minimum is attained exactly midway between two
subsequent points. It is somewhat remarkable, and indicative of the difficulty of the problem, that
even this very intuitive statement does not appear to have a very simple proof.

Proposition 5.1. We have, for all 0 ≤ � ≤ n − 1

min
x∈T

n∑
j=1

θα

(
x − j − 1

n

)
=

n∑
j=1

θα

(
� + 1/2

n
− j − 1

n

)
.

Proof. Suppose {x1, . . . , xn} ⊂ [0, 1) are equispaced points, xj = (j − 1)/n. Then

n∑
j=1

θα

(
x − xj

) =
n∑

j=1

∑
k∈Z

e−παk2
e2π ik(x−xj) =

∑
k∈Z

e−παk2

⎛⎝ n∑
j=1

e−2π ikxj

⎞⎠ e2π ikx.

As the points are equispaced, we have

n∑
j=1

e−2π ikxj =
⎧⎨⎩n whenever n

∣∣k
0 otherwise.

Therefore,

n∑
j=1

θα

(
x − j − 1

n

)
= n

∑
k∈Z

e−παk2n2
e2π iknx = n · θ(nx; n2α). (11)

We use the Jacobi triple product representation of the theta function

θ(x; α) =
∏
k≥1

(
1 − e−2kπα

) (
1 + 2 cos(2πx)e−(2k−1)πα + e−2(2k−1)πα

)
. (12)

Only now it is easy to find the minimum: in the product formula of θ each factor is minimized if and only
if x ∈ Z + 1/2, as the cosine-term is decisive and assumes its minimum there. The following inequality
is an immediate consequence:

n · θ

(
1
2

; n2α

)
≤ n · θ(nx; n2α), ∀α > 0,

where equality holds if and only if x ∈ 1
n

(
Z + 1

2

)
. The result follows from (11). �

This fact will be used frequently since it allows for the natural point of comparison (see Figure 2).
The next step consists in computing the actual size of the minimum. Using, again, the fact that unit
roots sum to 0 we end up with

n∑
j=1

θα

(
x − j

n

)
= n

∑
k∈Z

e−παk2n2
e2π iknx = n + 2ne−παn2

cos (2πnx) + O(ne−4παn2
).
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7926 | M. Faulhuber and S. Steinerberger

Fig. 2. For the sum of equispaced periodic Gaussians, the minimum is achieved midway between successive shifts.
For sums of shifts by a general periodic configurations, it is rather difficult to grasp the minimum. For the plot, we
have normalized the sum to oscillate around 1, that is, the integral over a period is 1.

Since we know from Proposition 5.1 that the minimum is attained exactly in the middle between two
subsequent points, we have the explicit representation

min
x

n∑
j=1

θα

(
x − j − 1

n

)
=

n∑
j=1

θα

(
1

2n
− j − 1

n

)
= n

∑
�∈Z

e−πα�2n2
e2π i�n 1

2n

= n + 2n
∞∑

�=1

(−1)�e−πα�2n2 = n − 2ne−παn2 + O(ne−4παn2
).

5.2 L1-estimates
We continue with a basic L1-estimate and a not so basic L1-estimate. The reason why L1 is a natural
space to bound deviation from the mean is given by the following elementary pigeonhole argument.

Lemma 5.2. Suppose g : [0, 1] → R is a periodic, continuous function with mean value 0. Then

min
0≤x≤1

g(x) ≤ −‖g‖L1

2
.

Proof. Since g has mean value 0, we have

∫ 1

0
max(0, g(x))dx = −

∫ 1

0
min(0, g(x))dx

and thus

∫ 1

0
min(0, g(x))dx = −‖g‖L1

2
.

The argument then follows from

− ‖g‖L1

2
=
∫ 1

0
min(0, g(x))dx ≥ min

0≤x≤1
g(x).

�
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We also use an inequality discovered independently by McGehee, Pigno, and Smith [32] and Konyagin
[29]. It arose in their solutions of the Littlewood conjecture.

Theorem (McGehee, Pigno, Smith [32]). For any set of integers λ1 < λ2 < · · · < λn, we have

∫ 1

0

∣∣∣∣∣∣
n∑

j=1

aje
2π iλj t

∣∣∣∣∣∣dt ≥ 1
200

n∑
j=1

|aj|
j

.

We note that Konyagin [29] did not explicitly provide the constant. McGehee, Pigno, and Smith work
over the interval [0, 2π ] and show that the inequality holds with constant c = 1/30, which leads to
1/(60π) ≥ 1/200 being an admissible constant when working over the interval [0, 1]. Stegeman [44]
showed that one can take c = 4/π3 on [0, 2π ], which would lead to a constant of 1/50 being admissible
after rescaling to [0, 1]. In any case, the precise value of the constant will not be of importance for the
subsequent argument. We will use the McGehee–Pigno–Smith inequality to derive a lower bound on the
L1-norm of the deviation of the sum of Jacobi θ-functions from their mean. We note that if the lower
bound is large, then the L1-norm is large and, as a consequence, the minimal value attained by the
function has to be quite a bit smaller than its average. Since we want to avoid this, this will implicitly
force the first few Fourier coefficients to be small. It has been pointed out by an anonymous referee
that, for the purposes of our argument, the McGehee–Pigno–Smith inequality can be avoided as follows:
we have, for any 1 ≤ k ≤ n that

∫ 1

0

∣∣∣∣∣∣
n∑

j=1

aje
2π iλj t

∣∣∣∣∣∣dt =
∫ 1

0

∣∣∣∣∣∣e−2π iλkt
n∑

j=1

aje
2π iλj t

∣∣∣∣∣∣dt =
∫ 1

0

∣∣∣∣∣∣
n∑

j=1

aje
2π i(λj−λk)t

∣∣∣∣∣∣dt

≥
∣∣∣∣∣∣
∫ 1

0

n∑
j=1

aje
2π i(λj−λk)tdt

∣∣∣∣∣∣ = |ak|

and therefore also

∫ 1

0

∣∣∣∣∣∣
n∑

j=1

aje
2π iλj t

∣∣∣∣∣∣dt ≥ 1
n

n∑
j=1

|aj|.

This estimate is indeed sufficient for the remainder of the argument. This is partially due to the fact that
the multipliers in the Fourier series decay extremely rapidly (i.e., like a Gaussian). Using the McGehee–
Pigno–Smith inequality instead of the more elementary inequality might prove advantageous when
trying to establish an analogous result with a kernel whose Fourier transform decays more slowly. Using
the McGehee–Pigno–Smith or the more elementary inequality gives the following.

Lemma 5.3. We have, for all {x1, . . . , xn} ⊂ [0, 1) that

∥∥∥∥∥∥
n∑

j=1

θα

(
x − xj

)− n

∥∥∥∥∥∥
L1

≥ 1
400n

∑
k �=0
|k|≤n

e−παk2

∣∣∣∣∣∣
n∑

j=1

e−2π ikxj

∣∣∣∣∣∣− O(ne−πα(n+1)2
).

Proof. Our object of interest

n∑
j=1

θα

(
x − xj

) =
∑
k∈Z

e−παk2

⎛⎝ n∑
j=1

e−2π ikxj

⎞⎠ e2π ikx
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7928 | M. Faulhuber and S. Steinerberger

is not quite of the required form since it is not a trigonometric polynomial. However, a simple application
of the triangle inequality leads to

∥∥∥∥∥∥
n∑

j=1

θα

(
x − xj

)−
∑
|k|≤n

e−παk2

⎛⎝ n∑
j=1

e−2π ikxj

⎞⎠ e2π ikx

∥∥∥∥∥∥
L∞

� ne−πα(n+1)2
.

We apply the McGehee–Pigno–Smith inequality to the trigonometric polynomial

∥∥∥∥∥∥
∑
|k|≤n

e−παk2

⎛⎝ n∑
j=1

e−2π ikxj

⎞⎠ e2π ikx − n

∥∥∥∥∥∥
L1

≥ 1
400n

∑
k �=0
|k|≤n

e−παk2

∣∣∣∣∣∣
n∑

j=1

e−2π ikxj

∣∣∣∣∣∣ .

Combined with the truncation error, this leads to the lower bound

∥∥∥∥∥∥
n∑

j=1

θα

(
x − xj

)− n

∥∥∥∥∥∥
L1

≥ 1
400n

∑
k �=0
|k|≤n

e−παk2

∣∣∣∣∣∣
n∑

j=1

e−2π ikxj

∣∣∣∣∣∣− O(ne−πα(n+1)2
).

�

5.3 The first n − 1 Fourier coefficients are small.
The purpose of this section is to show that the first n − 1 Fourier coefficients of any minimizing
configuration are exponentially small in n.

Lemma 5.4. Let {x1, . . . , xn} ⊂ [0, 1) be a configuration of points that maximizes the minimum.
Then

max
1≤|k|≤n−1

∣∣∣∣∣∣
n∑

j=1

e−2π ikxj

∣∣∣∣∣∣ ≤ 2000n2 · e−πα(2n−1).

Proof. Combining Lemma 5.2 with Lemma 5.3, we deduce that for any set {x1, . . . , xn} ⊂ [0, 1] the
function

f (x) =
∑
k∈Z

e−παk2

⎛⎝ n∑
j=1

e−2π ikxj

⎞⎠ e2π ikx

satisfies the inequality

min
0≤x≤1

f (x) − n ≤ − 1
800n

∑
k �=0
|k|≤n

e−παk2

∣∣∣∣∣∣
n∑

j=1

e−2π ikxj

∣∣∣∣∣∣+ O(ne−πα(n+1)2
).

We know that equispaced points satisfy

min
0≤x≤1

n∑
j=1

θα(x − xj) = n − 2ne−παn2 + O(ne−4παn2
).

Therefore, if we now assume that {x1, . . . , xn} ⊂ [0, 1) is a configuration maximizing the minimum, we
have that

min
0≤x≤1

n∑
j=1

θα(x − xj) ≥ n − 2ne−παn2 + O(ne−4παn2
),
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which then implies

1
800n

∑
k �=0
|k|≤n

e−παk2

∣∣∣∣∣∣
n∑

j=1

e−2π ikxj

∣∣∣∣∣∣ ≤ 2ne−παn2 + O(ne−πα(n+1)2
).

This implies that for 1 ≤ |k| ≤ n and n sufficiently large (depending only on α)

∣∣∣∣∣∣
n∑

j=1

e−2π ikxj

∣∣∣∣∣∣ ≤ 2000n2 · e−πα(n2−k2).

This allows us to conclude that the first n − 1 Fourier coefficients of the measure given by the sum of
the n Dirac measures in x1, . . . , xn is exponentially small

max
1≤|k|≤n−1

∣∣∣∣∣∣
n∑

j=1

e−2π ikxj

∣∣∣∣∣∣ ≤ 2000n2 · e−πα(2n−1). (13)

�

Remark. We note that the proof actually shows quite a bit more since the last step of the argument
is only sharp when k = n − 1. We note the stronger inequality

∣∣∣∣∣∣
n∑

j=1

e−2π ikxj

∣∣∣∣∣∣ ≤ 2000n2 · e−πα(n2−k2)

but this will not strictly be required in the remainder of the argument.

5.4 The gaps are regular
If we have n equispaced points, then the first n−1 Fourier coefficients vanish. We prove a stability version
of this statement: if the first n − 1 Fourier coefficients are small, the points are almost equispaced.

Lemma 5.5. Suppose {x1, . . . , xn} ⊂ [0, 1) has the property that

max
1≤|k|≤n−1

∣∣∣∣∣∣
n∑

j=1

e−2π ikxj

∣∣∣∣∣∣ ≤ ε.

Then, for ε > 0 sufficiently small (say ε ≤ 1/(1000n4)), there exists a permutation π : Sn → Sn

and a global shift z ∈ [0, 1] such that ∣∣∣∣xπ(j) − j
n

− z
∣∣∣∣ ≤ ε.

Proof. We use the Fejér kernel

Fn(x) =
∑
|k|≤n

(
1 − |k|

n

)
e2π ikx = 1

n

(
sin (πnx)

sin (πx)

)2

≥ 0.
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7930 | M. Faulhuber and S. Steinerberger

Note that Fn(0) = n. Therefore,

n∑
i,j=1

Fn(xi − xj) =
n∑

i,j=1

∑
|k|≤n

(
1 − |k|

n

)
e2π ik(xi−xj)

=
∑
|k|≤n

(
1 − |k|

n

) n∑
i,j=1

e2π ik(xi−xj)

=
∑
|k|≤n

(
1 − |k|

n

) ∣∣∣∣∣∣
n∑

j=1

e2π ikxj

∣∣∣∣∣∣ 2.

Hence, applying the assumption of the first n − 1 non-zero Fourier coefficients being small, we get

n∑
i,j=1

Fn(xi − xj) = n2 +
n∑

i,j=1
i �=j

Fn(xi − xj) =
∑
|k|≤n

(
1 − |k|

n

) ∣∣∣∣∣∣
n∑

j=1

e2π ikxj

∣∣∣∣∣∣ 2

= n2 +
∑
|k|≤n
k �=0

(
1 − |k|

n

) ∣∣∣∣∣∣
n∑

j=1

e2π ikxj

∣∣∣∣∣∣ 2 ≤ n2 + 2nε2.

From the above calculation, we also conclude that, for any index i �= j,

Fn(xi − xj) ≤
n∑

i,j=1
i �=j

Fn(xi − xj) ≤ 2nε2.

This inequality, by itself, is not tremendously powerful: we bound a term by a sum containing ∼ n2

similar terms. However, we have the luxury that we will only apply the Lemma in a regime where ε is
already exponentially small in n, which allows for losses at a polynomial scale. The roots of Fn on [0, 1)

are exactly the points of the form k/n for 1 ≤ k ≤ n − 1. Since

Fn(x) = 1
n

(
sin (πnx)

sin (πx)

)2

we have

d2

dx2
Fn(x) = 2π2 csc2(πx)

n
X,

where

X =
(
n2 cos2(πnx) − sin2

(πnx)
(
n2 − 3 csc2(πx) + 2

)− 2n cot(πx) sin(2πnx)
)

.

At points of the form x = k/n this expression simplifies to

d2

dx2
Fn(x)

∣∣∣
x= k

n

= 2π2n csc2
(

kπ

n

)
≥ 2π2n.

Therefore, for y sufficiently close to 0, we have

Fn

(
k
n

+ y
)

≥ 2ny2.
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A similar argument can be used to give an upper bound on the third derivative. The Taylor formula with
remainder shows that the inequality is valid for y in a region around 0 that shrinks polynomially in n
and from this we deduce the validity of the inequality for ε sufficiently small. The previous inequality

Fn(xi − xj) ≤
n∑

i,j=1
i �=j

Fn(xi − xj) ≤ 2nε2

implies that xi − xj has to be of the form xi − xj = k/n + δ with some δ ≤ ε. Moreover, since Fn(0) = n, we
can also deduce that |xi − xj| > 1/2n (provided ε is sufficiently small), which then forces the existence
of a global perturbation. �

5.4 Part 2 of the proof
5.5 The Main Contribution
We quickly recall what we already know from the first part of the proof. We know that any optimal
configuration {x1, . . . , xn} has to be close to the case of equispaced points. More precisely, it has to be of
the form

xi = i
n

+ z + εi where |εi| ≤ 2000n2 · e−πα(2n−1)

is exponentially small in n and z ∈ R is an arbitrary shift. By translation symmetry, we can assume that
z = 0 and

∑
j εj = 0 and will do so in all subsequent arguments.

We can rewrite the sum over θ−functions as a Fourier series

n∑
j=1

θα

(
x − j

n
+ εj

)
=

n∑
j=1

∑
k∈Z

e−παk2
e2π ik(x− j

n +εj)

=
∑
k∈Z

e−παk2

⎛⎝ n∑
j=1

e2π ik(εj− j
n )

⎞⎠ e2π ikx

=
∑
k∈Z

e−παk2

⎛⎝ n∑
j=1

e2π ikεj e−2π ik j
n

⎞⎠ e2π ikx.

We remark that, as already noted above, when all the εj = 0, then

n∑
j=1

θα

(
x − j

n

)
= n + 2ne−παn2

cos (2πnx) + O(ne−4παn2
).

In that case, the minimal value is very close to the mean value n. It remains to show that small
perturbations decrease the minimal value. Using the Taylor formula with the remainder term, we note
that the frequency k = n contributes

e−παn2

⎛⎝ n∑
j=1

e2π inεj

⎞⎠ e2π inx = e−παn2

⎛⎝n + 2π in
n∑

j=1

εj + O

⎛⎝n2
n∑

j=1

ε2
j

⎞⎠⎞⎠ e2π inx

= e−παn2
ne2π inx + O

⎛⎝n2e−παn2
n∑

j=1

ε2
j

⎞⎠
and the same contribution arises for k = −n. Thus, the three terms

B =
∑

k∈{−n,0,n}
e−παk2

⎛⎝ n∑
j=1

e2π ikεj e−2π ik j
n

⎞⎠ e2π ikx
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7932 | M. Faulhuber and S. Steinerberger

contribute, up to a small error term, the same quantity as the unperturbed case εj = 0 and

B = n + 2ne−παn2
cos (2πnx) + O

⎛⎝n2e−παn2
n∑

j=1

ε2
j

⎞⎠ .

Recall that, in the unperturbed case, the minima are attained at (k + 1/2)/n, 0 ≤ k ≤ n − 1. We will show
that a small perturbation necessarily makes one of the minima smaller and argue by contradiction: if
there was a small perturbation of the points that increases the minimum, then, in particular, the size of
the perturbation would have to be positive at all points of the form (k+1/2)/n, 0 ≤ k ≤ n−1 (since that is
where the minima are attained in the unperturbed case). The remainder of the argument is dedicated
to showing that this cannot happen.

5.6 A Trigonometric Lemma
This section proves a self-contained Lemma, which shows that a trigonometric polynomial of degree
at most (n − 1)/2 assumes negative values at at least one of the points (k + 1/2)/n, for 0 ≤ k ≤ n − 1.
The obtained bound is likely far from optimal but suffices for our purpose. Indeed, the rapid decay of
the Gaussian weight ensures that any type of polynomial bound would suffice for the remainder of the
argument.

Lemma 5.6. If f : [0, 1] → R is a trigonometric polynomial of the form

f (x) =
∑

1≤|j|≤ n−1
2

aje
2π ijx then min

0≤k≤n−1
f
(

k + 1/2
n

)
≤ −‖f‖L2([0,1])

3n2
.

We note that the restriction on the frequency |j| ≤ (n − 1)/2 is tight. Suppose n is even and consider
the trigonometric polynomial

f (x) = e2π i n
2 x + e−2π i n

2 x = 2 cos (πnx),

which satisfies

f
(

k + 1/2
n

)
= 2 cos (π(k + 1/2)) = 0.

Before stating the proof of Lemma 5.6, we establish one of the two main ingredients: a modified
Poincaré inequality for functions that do not quite vanish on the boundary. Needless to say, the tools and
arguments used to establish this inequality are completely standard and we do not claim the inequality
to be novel in any sense. Many similar inequalities are known in the general context of trace inequalities
and embedding results for Sobolev spaces.

Proposition 5.7 (Modified Poincaré Inequality). Let f : [a, b] → R be continuous and differentiable
on (a, b) satisfying |f (a)| ≤ M and |f (b)| ≤ M. Then

∫ b

a
f (x)2dx ≤ M2(b − a) + 2M

√
b − a

(
(b − a)2

π2

∫ b

a
f ′(x)2dx

)1/2

+ (b − a)2

π2

∫ b

a
f ′(x)2dx. (13)

Proof. The following makes sense in the more general Sobolev space H1 (as opposed to the smaller space
C1), but this will not be relevant here. We first note that replacing f (x) by |f (x)| does not change ‖f‖L2

and leaves ‖f ′‖L2 invariant. It thus suffices to prove the inequality for non-negative f (x). We proceed
with basic facts: the first is the standard Poincaré inequality, implying that if g : [c, d] → R satisfies
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g(c) = g(d) = 0 then

∫ d

c
g(x)2dx ≤ (d − c)2

π2

∫ d

c
g′(x)2dx.

This one-dimensional inequality is sometimes known as the Wirtinger inequality (e.g., in Blaschke’s 1916
book Kreis und Kugel [11]). However, we note that it seems to have been discovered many times: for
example, Hurwitz [28] already used it in his 1901 proof of the isoperimetric inequality. We refer to Payne
and Weinberger [36] or work of the second author [43] for more on Poincaré inequalities. This inequality
then implies that

∫ b

a
(f (x) − M)21f (x)≥M dx ≤ (b − a)2

π2

∫ b

a
f ′(x)21f (x)≥M dx,

which we can square out and write as

∫ b

a
f (x)21f (x)≥M dx + M2 | {f ≥ M

} | ≤ 2M
∫ b

a
f (x)1f (x)≥M dx + (b − a)2

π2

∫ b

a
f ′(x)21f (x)≥M dx

The first integral on the right-hand side can be bounded with Cauchy–Schwarz

∫ b

a
f (x)1f (x)≥M dx ≤ | {f ≥ M

} |1/2

(∫ b

a
f (x)21f (x)≥M dx

)1/2

,

which leads to the estimate, abbreviating Z =
(∫ b

a f (x)21f (x)≥M dx
)1/2

,

Z2 − 2M | {f ≥ M
} |1/2Z + M2 | {f ≥ M

} | ≤ (b − a)2

π2

∫ b

a
f ′(x)21f (x)≥M dx.

The left-hand side can be factored as

(Z − M | {f ≥ M
} |1/2)2 ≤ (b − a)2

π2

∫ b

a
f ′(x)21f (x)≥M dx

and thus

Z ≤ M | {f ≥ M
} |1/2 +

(
(b − a)2

π2

∫ b

a
f ′(x)21f (x)≥M dx

)1/2

.

We also have the trivial estimate

∫ b

a
f (x)21f (x)≤M dx ≤ | {f (x) ≤ M

} | M2.

Adding the last estimate to the square of the penultimate estimate and using | {f ≥ M
} | ≤ b − a, we

arrive at

∫ b

a
f (x)2dx ≤ M2(b − a) + 2M(b − a)1/2

(
(b − a)2

π2

∫ b

a
f ′(x)21f (x)≥M dx

)1/2

+ (b − a)2

π2

∫ b

a
f ′(x)21f (x)≥M dx.

�
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Proof of Lemma 5.6. The minimum is necessarily ≤ 0 since

min
0≤k≤n−1

f
(

k + 1/2
n

)
≤ 1

n

∑
0≤k≤n−1

f
(

k + 1/2
n

)
= 1

n

n−1∑
k=0

∑
1≤|j|≤n−1

aje
2π ij(k+1/2)/n

= 1
n

∑
1≤|j|≤n−1

n−1∑
k=0

aje
2π i j

2n e2π ijk/n = 1
n

∑
1≤|j|≤n−1

aje
2π i j

2n

n−1∑
k=0

e2π ijk/n = 0.

Let us now assume that the minimum is negative but very close to 0

X = min
0≤k≤n−1

f
(

k + 1/2
n

)
≤ 0.

Roots of unity summing to 0 then shows, just as above, that

0 =
∑

0≤k≤n−1

f
(

k + 1/2
n

)
≥ (n − 1)X + max

0≤k≤n−1
f
(

k + 1/2
n

)
≥ nX + max

0≤k≤n−1
f
(

k + 1/2
n

)
, (13)

from which we deduce

max
0≤k≤n−1

f
(

k + 1/2
n

)
≤ (−X)n.

Using this in combination with the modified Poincaré inequality with M = n|X|, we deduce

∫ k+3/2
n

k+1/2
n

f (x)2dx ≤ nX2 + 2|X|√n

√√√√ 1
n2π2

∫ k+3/2
n

k+1/2
n

f ′(x)2dx + 1
n2π2

∫ k+3/2
n

k+1/2
n

f ′(x)2dx.

Summing over all the intervals (periodically interpreted), we get

∫ 1

0
f (x)2 dx ≤ n2X2 + 1

n2π2

∫ 1

0
f ′(x)2 dx + 2|X|√n

n−1∑
k=0

√√√√ 1
n2π2

∫ k+3/2
n

k+1/2
n

f ′(x)2 dx.

As for the remaining sum, we use the Cauchy–Schwarz inequality to bound

n−1∑
k=0

1 ·
√√√√ 1

n2π2

∫ k+3/2
n

k+1/2
n

f ′(x)2 dx ≤ √
n

√√√√n−1∑
k=0

1
n2π2

∫ k+3/2
n

k+1/2
n

f ′(x)2 dx = √
n

√
1

n2π2

∫ 1

0
f ′(x)2 dx.

Altogether, this implies

∫ 1

0
f (x)2 dx ≤ n2X2 + 1

n2π2

∫ 1

0
f ′(x)2 dx + 2|X|n

√
1

n2π2

∫ 1

0
f ′(x)2 dx.

As f is a trigonometric polynomial of degree at most (n − 1)/2, we have

∫ 1

0
f (x)2dx =

∑
1≤|j|≤ n−1

2

|aj|2

as well as

∫ 1

0
f ′(x)2dx =

∑
1≤|j|≤ n−1

2

(2π j)2|aj|2 ≤ (n − 1)2π2
∑

1≤|j|≤ n−1
2

|aj|2 = (n − 1)2π2
∫ 1

0
f (x)2 dx.
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Plugging this in, we get

∫ 1

0
f (x)2dx ≤ 1

n2π2

∫ 1

0
f ′(x)2 dx + X2n2 + 2|X|

√
1

n2π2

∫ 1

0
f ′(x)2 dx

≤
(

1 − 1
n

)2 ∫ 1

0
f (x)2 dx + X2n2 + 2|X|n

(
1 − 1

n

)√∫ 1

0
f (x)2 dx.

For an arbitrary parameter γ > 0, the inequality

γ 2 ≤
(

1 − 1
n

)2

γ 2 + X2n2 + 2|X|n
(

1 − 1
n

)
γ

can be simplified using (1 − 1/n)2 ≤ 1 − 1/n and (1 − 1/n) ≤ 1 to imply that

X2n2 + 2|X|nγ − γ 2

n
≥ 0,

which, by solving the quadratic equation, can be seen to imply that

|X| ≥
√

n2 + n − n
n2

γ ≥ γ

3n2
,

which is the desired result. �

Remark. Much of the difficulty comes from the fact that we only evaluate the trigonometric
polynomial in equispaced points. If one was just interested in the minimum being small in
some place, there is a very elementary argument, which we conclude for the sake of context.

Lemma 5.8. Let f (x) = ∑
1≤|j|≤n−1 aje2π ijx be a real-valued trigonometric polynomial. Then

min
0≤x≤1

f (x) ≤ −‖f‖L2

3
√

n
.

Proof. We also have the trivial estimate

∫ 1

0
f (x)2 ≤ ‖f‖L∞‖f‖L1 and thus ‖f‖L1 ≥ ‖f‖2

L2

‖f‖L∞
.

Appealing to Lemma 5.2, we deduce

min
0≤x≤1

f (x) ≤ − 1
2

‖f‖L1 ≤ − 1
2

‖f‖2
L2

‖f‖L∞
.

We have, via Plancherel, that

‖f‖2
L2 =

∑
1≤j≤n−1

|aj|2

and, via the triangle inequality and Cauchy–Schwarz inequality, that

‖f‖L∞ ≤
∑

1≤j≤n−1

|aj| ≤ √
2n

⎛⎝ ∑
1≤j≤n−1

|aj|2
⎞⎠1/2

= √
2n‖f‖L2 .

From this and 2
√

2 ≤ 3, the result follows. �
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5.7 Outline of the remaining argument
In this section, we outline how the argument will be concluded. We first recall that

n∑
j=1

θα

(
x − j

n
+ εj

)
=
∑
k∈Z

e−παk2

⎛⎝ n∑
j=1

e2π ikεj e−2π ik j
n

⎞⎠ e2π ikx.

The main contribution is coming from the three terms k ∈ {−n, 0, n}

B =
∑

k∈{−n,0,n}
e−παk2

⎛⎝ n∑
j=1

e2π ikεj e−2π ik j
n

⎞⎠ e2π ikx,

which contribute

B = n + 2ne−παn2
cos (2πnx) + O

⎛⎝n2e−παn2
n∑

j=1

ε2
j

⎞⎠ .

We will choose to sum over even more terms (even though they are rather small), namely k ∈ nZ, so as
to allow for a comparison to the minimal value attained by equidistributed points. For this purpose, we
set

A(x) =
∑
k∈nZ

e−παk2

⎛⎝ n∑
j=1

e2π ikεj e−2π ik j
n

⎞⎠ e2π ikx =
∑
k∈nZ

e−παk2

⎛⎝ n∑
j=1

e2π ikεj

⎞⎠ e2π ikx,

where the simplification comes from the fact that these exponential expressions are all 1 when k is a
multiple of n. In particular, all the Fourier coefficients are reasonably close to n. More precisely, using
again that the sum over all displacements εj equals 0, we get

n∑
j=1

e2π ikεj = n +
n∑

j=1

(
e2π ikεj − 1

)
= n +

n∑
j=1

(
e2π ikεj − 1 − 2π ikεj

)
.

We have, for all x ∈ R that |eix − 1 − ix| ≤ x2 and thus

∣∣∣∣∣∣−n +
n∑

j=1

e2π ikεj

∣∣∣∣∣∣ ≤ 4π2k2
n∑

j=1

ε2
j .

Combining this with

∑
k∈nZ|k|>n

k2e−παk2 � n2e−παn2

we deduce that

A(x) =
n∑

j=1

θα

(
x − j

n

)
+ O

⎛⎝n2e−παn2
n∑

j=1

ε2
j

⎞⎠ .

It is our goal to show that the perturbation induced by εj �= 0 has to decrease the value in at least one
of the minima. To this end, we split the function as

n∑
j=1

θα

(
x − j

n
+ εj

)
= A(x) + g1(x) + g2(x) + h(x),
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where A sums over all multiples of n, g1 sums over the first (n − 1)/2 frequencies, g2 sums frequencies
between (n − 1)/2 and n − 1, and h sums over the rest, frequencies larger than n and where n does not
divide k. Thus,

g1(x) =
∑

1≤|k|≤ n−1
2

e−παk2

⎛⎝ n∑
j=1

e2π ikεj e−2π ik j
n

⎞⎠ e2π ikx

while g2 sums over the remaining small frequencies

g2(x) =
∑

n−1
2 <|k|≤n−1

e−παk2

⎛⎝ n∑
j=1

e2π ikεj e−2π ik j
n

⎞⎠ e2π ikx,

and h sums over the remaining terms

h(x) =
∑

|k|≥n+1
n � k

e−παk2

⎛⎝ n∑
j=1

e2π ikεj e−2π ik j
n

⎞⎠ e2π ikx.

The remaining argument proceeds as follows:

1) We show, in the next section, that ‖g1‖L2 is not too small (in terms of
∑n

j=1 ε2
j ). The Discrete Fourier

Transform naturally arises in the process.
2) Lemma 5.6 then implies that

min
0≤k≤n−1

g1

(
k + 1/2

n

)
≤ −‖g1‖L2

3n2

is fairly negative.
3) We show ‖g2‖L∞ � ‖g1‖L2 (which follows again from the properties of the Discrete Fourier

Transform) and that the same is true for h.
4) Thus the sum of the three terms is fairly negative in at least one of the points of the form (k+1/2)/n

and this then implies the result.

5.8 Discrete Fourier Transform
We recall again that

n∑
j=1

θα

(
x − j

n
+ εj

)
=
∑
k∈Z

e−παk2

⎛⎝ n∑
j=1

e2π ikεj e−2π ik j
n

⎞⎠ e2π ikx.

We also note that the εj are fairly small: (13) together with the proof of Lemma 5.5 gives

max
1≤j≤n

|εj| = O
(
n2 · e−2παn) ,

where the implicit constant depends on α. As it turns out, since these are exponentially small in n, the
basic Taylor expansion

e2π ikεj = 1 + 2π ikεj + O(k2ε2
j )

is highly accurate and we deduce, as long as k is not a multiple of n, that

n∑
j=1

e2π ikεj e−2π ik j
n = 2π ik

n∑
j=1

εje
−2π ik j

n + O

⎛⎝k2
n∑

j=1

ε2
j

⎞⎠ . (13)
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We observe that this is, up to various types of rescaling, simply a Discrete Fourier Transform of
(ε1, . . . , εn). Since the εj are all real-valued, we have the symmetry

∣∣∣∣∣∣
n∑

j=1

εje
−2π ik (n−j)

n

∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

εje
−2π ik j

n

∣∣∣∣∣∣
The Discrete Fourier Transform preserves the �2-norm and therefore

n
n∑

j=1

ε2
j =

n−1∑
k=1

∣∣∣∣∣∣
n∑

j=1

εje
−2π ik j

n

∣∣∣∣∣∣ 2

where we omit the k = 0 term because ε1 + · · · + εn = 0. This implies

n∑
j=1

ε2
j = 1

n

n−1∑
k=1

∣∣∣∣∣∣
n∑

j=1

εje
−2π ik j

n

∣∣∣∣∣∣ 2 ≤ max
1≤k≤n−1

∣∣∣∣∣∣
n∑

j=1

εje
−2π ik j

n

∣∣∣∣∣∣ 2.

This immediately implies that at least one Fourier coefficient is large

max
1≤k≤n−1

∣∣∣∣∣∣
n∑

j=1

εje
−2π ik j

n

∣∣∣∣∣∣ ≥
⎛⎝ n∑

j=1

ε2
j

⎞⎠1/2

� O

⎛⎝n2
n∑

j=1

ε2
j

⎞⎠
and, in particular, is many orders of magnitude larger than the error terms (recall that the error terms
are exponentially small in n).

5.9 The final estimates
This also implies, using the Plancherel identity, that g1 is large in L2 since

‖g1(x)‖L2 =
∥∥∥∥∥∥

∑
1≤|k|≤ n−1

2

e−παk2

⎛⎝ n∑
j=1

e2π ikεj e−2π ik j
n

⎞⎠ e2π ikx

∥∥∥∥∥∥
L2

=
⎛⎝ ∑

1≤|k|≤ n−1
2

e−2παk2

∣∣∣∣∣∣
n∑

j=1

e2π ikεj e−2π ik j
n

∣∣∣∣∣∣ 2

⎞⎠1/2

.

The worst case is when most of the Fourier energy is localized at high frequencies and thus we can
remove the smallest weight and deduce

‖g1(x)‖L2 ≥ e−πα( n−1
2 )

2

⎛⎝ ∑
1≤|k|≤ n−1

2

∣∣∣∣∣∣
n∑

j=1

e2π ikεj e−2π ik j
n

∣∣∣∣∣∣ 2

⎞⎠1/2

.

At this point, we can invoke a Taylor expansion and argue that

‖g1(x)‖L2 ≥ e−πα( n−1
2 )

2

⎛⎝ ∑
1≤|k|≤ n−1

2

∣∣∣∣∣∣
n∑

j=1

εje
−2π ik j

n + O

⎛⎝k2
n∑

j=1

ε2
j

⎞⎠∣∣∣∣∣∣ 2

⎞⎠1/2

.

Now, the argument from the previous section comes into play: we do not have information about any
individual Fourier coefficient, but we know that at least one of them is large

max
1≤k≤n−1

∣∣∣∣∣∣
n∑

j=1

εje
−2π ik j

n

∣∣∣∣∣∣ ≥
⎛⎝ n∑

j=1

ε2
j

⎞⎠1/2

� O

⎛⎝n2
n∑

j=1

ε2
j

⎞⎠
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and thus, for n sufficiently large,

‖g1(x)‖L2 ≥ e−πα( n−1
2 )

2

2

⎛⎝ n∑
j=1

ε2
j

⎞⎠1/2

.

It is rather easy to show that g2 is many orders of magnitude smaller than g1 as the Fourier coefficients
are very nearly the same. Since the discrete Fourier transform has the symmetry

∣∣∣∣∣∣
n∑

j=1

εje
−2π ik (n−j)

n

∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

εje
−2π ik j

n

∣∣∣∣∣∣ ,
the same Plancherel argument shows that, for n sufficiently large,

‖g2‖L2 ≤ 20n3/2e−πα(n/2)2

⎛⎝ n∑
j=1

ε2
j

⎞⎠1/2

.

This is exponentially smaller than g1(x) because

e−πα(n/2)2
is exponentially smaller than e−πα( n−1

2 )
2

.

We will require pointwise estimates for what follows. However, the decay is sufficiently strong so
that we can simply take a triangle inequality. Using again the cancellation of the sum of roots of unity
together with the fact that for k ≤ n we have k2ε2

j � |kεj|, we get for sufficiently large n

∣∣∣∣∣∣
n∑

j=1

e2π ikεj e−2π ik j
n

∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

(1 + 2π ikεj + O(k2ε2
j ))e−2π ik j

n

∣∣∣∣∣∣
= (1 + o(1))

∣∣∣∣∣∣2π ik
n∑

j=1

εje
−2π ik j

n

∣∣∣∣∣∣ ≤ 10k

∣∣∣∣∣∣
n∑

j=1

εje
−2π ik j

n

∣∣∣∣∣∣ .
We deduce, since k > (n − 1)/2 and thus k ≥ n/2, that for n sufficiently large,

∥∥g2
∥∥

L∞ ≤
∑

n−1
2 <|k|≤n−1

e−παk2

∣∣∣∣∣∣
n∑

j=1

e2π ikεj e−2π ik j
n

∣∣∣∣∣∣ ≤ 10
∑

n−1
2 <|k|≤n−1

e−παk2
k

n∑
j=1

|εj|

≤ 20ne−πα(n/2)2
n∑

j=1

|εj| ≤ 20n3/2e−πα(n/2)2

⎛⎝ n∑
j=1

ε2
j

⎞⎠1/2

� ‖g1‖L2

n100
.

A similar argument can be applied to h. We argue that

‖h(x)‖L∞ =

∥∥∥∥∥∥∥∥
∑

|k|≥n+1
n � k

e−παk2

⎛⎝ n∑
j=1

e2π ikεj e−2π ik j
n

⎞⎠ e2π ikx

∥∥∥∥∥∥∥∥
L∞

≤
∑

|k|≥n+1
n � k

e−παk2
2πk

n∑
j=1

|εj| ≤
⎛⎝ n∑

j=1

ε2
j

⎞⎠1/2 √
4π2n

∑
|k|≥n+1

n � k

e−παk2
k.
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We deduce that, again for n sufficiently large,

∥∥h
∥∥

L∞ � ‖g1‖L2

n100
.

We can now conclude the argument

n∑
j=1

θα

(
x − j

n
+ εj

)
= A(x) + g1(x) + g2(x) + h(x)

=
n∑

j=1

θα

(
x − j

n

)
+ O

⎛⎝ne−παn2
n∑

j=1

ε2
j

⎞⎠+ g1(x) + g2(x) + h(x).

Applying all the prior results, for n sufficiently large, we get

min
x

f (x) ≤ min
0≤k≤n−1

n∑
j=1

θα

(
k + 1/2

n
− j

n
+ εj

)

≤
⎡⎣min

0≤x≤1

n∑
j=1

θα

(
x − j

n

)⎤⎦+ O

⎛⎝ne−παn2
n∑

j=1

ε2
j

⎞⎠− ‖g1‖L2

n3/2
+ ‖g2‖L∞ + ‖h‖L∞

≤
⎡⎣min

0≤x≤1

n∑
j=1

θα

(
x − j

n

)⎤⎦− 1
2

‖g1‖L2

n3/2
.

Recalling that

‖g1(x)‖L2 ≥ e−πα( n−1
2 )

2

2

⎛⎝ n∑
j=1

ε2
j

⎞⎠1/2

we deduce that the minimal value of f (x) is maximal if and only if

ε1 = ε2 = · · · = εn = 0.

As the equidistributed points provide that the minimum is taken exactly in between them, we obtain
equality in the last calculation and, hence, derive our main result.

6 Small n and Shifting One Point
The case when n is small needs, as mentioned in §1, new ideas. We have not tried to find solutions for
say n = 3, 4, 5 and we believe it is a hard problem. However, at least the case n = 2, that is, � = Z∪ (Z+ c),
is fairly easy: the fact that x = 1/2 gives the minimizer of θα(x) suggests that we should place the second
point exactly midway between the integers. It follows from Proposition 5.1 that we now have minima at
1/4 and 3/4 (in between the maxima at 0, 1/2 and 1). Taking these as points of reference it is not hard to
show that the equispaced distribution is optimal. In fact, this idea leads to the following generalization.

Lemma 6.1. Let α > 0 be fixed, x1 ∈ [0, 1) be arbitrary and xk = (k − 1)/n, for k = 2, . . . n. Then pα

has maximal polarization if and only if x1 = 0. Equivalently, minx fα(x) is maximal if and only
if x1 = 0, that is, if the points are equispaced.

Proof. It is seen from the product formula (12) that θα(x) is symmetric in x and a decreasing function
on (0, 1/2) (see also [33]). Hence, we have

θα(y) < θα(x0) = θα(1 − x0), y ∈ (x0, 1 − x0), x0 ∈ [0, 1/2).
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Recall from Proposition 5.1 that

min
x

n∑
k=1

θα

(
x − k − 1

n

)
=

n∑
k=1

θα

(
� + 1/2

n
− k − 1

n

)
, � = 0, . . . , n − 1.

Now, we pick � = 0 and compare (taking periodicity into account) values at 1/(2n):

n∑
k=1

θα

(
1
2n

− k − 1
n

)
= θα

(
1

2n

)
+

n−1∑
k=1

θα

(
1

2n
− k

n

)
> θα

(
1

2n
+ y

)
+

n−1∑
k=1

θα

(
1

2n
− k

n

)
, y ∈

(
0, 1 − 1

n

)
.

The inequality holds true when shifting by y ∈ (−1 + 1/n, 0) (so periodically to the right) and picking
� = n − 1, by symmetry. �
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