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SOME REMARKS ON THE ERDOS
DISTINCT SUBSET SUMS PROBLEM

STEFAN STEINERBERGER

ABSTRACT. Let {a1,...,an} C N be a set of positive integers, a, denoting the
largest element, so that for any two of the 2™ subsets the sum of all elements is
distinct. Erdds asked whether this implies a,, > ¢-2™ for some universal ¢ > 0.
We prove, slightly extending a result of Elkies, that for any a1,...,an, € Rso

sinz ) 2 ™
/ ( ) H cos (a;z)de > —
R\ T i=1 2n

with equality if and only if all subset sums are 1-separated. This leads to a
new proof of the currently best lower bound a, > /2/7n -2"™. The main new
insight is that having distinct subset sums and a, small requires the random
variable X = +aj £ a2 £ --- £ an, to be close to Gaussian in a precise sense.

1. INTRODUCTION

A problem of Erdds [I1] is as follows: if {a1,...,a,} C Nis a set of positive integers,
assumed to be ordered as a; < ag < -+ < ay, such that for each of the 2™ subsets
the sum of all elements is unique, does this force a,, > ¢ - 2™ for some universal
¢ > 07 The problem is quite old. Erdés [I3] refers to it as “perhaps my first serious
conjecture which goes back to 1931 or 32”. Since the sums over all subsets leads to
2" — 1 distinct positive integers, one has > a; > 2" — 1 (sharp for the powers of
2) and a,, 2 2"/n. Currently, the best known bound is
2n
an > (c— 0(1))%

where different estimates for ¢ have been given over the years
c>1/4 Erdds and Moser [11]
>2/3%/2 Alon and Spencer [2]
>1/vr Elkies [10]
>1/V3 Bae [3] , Guy [15]

> \/3/27 Aliev [1]
>\2/7 Dubroff, Fox and Xu [9].

The literature (see [I]) mentions an unpublished manuscript of Elkies and Glea-
son also showing ¢ > /2/m. Dubroff, Fox and Xu give two different proofs: one
appeals to the Berry-Esseen Theorem, the other uses an isoperimetric principle of
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Harper [17]. In the other direction, we note that the powers of 2, with a, = 2"~ 1,
are not extremal: already in 1968, Conway and Guy [§] (answering another ques-
tion by Erdés [12]) produced a candidate construction showing that a, < 2772 is
possible (see Bohman [5]). The currently best construction is due to Bohman [6]
showing a,, < 0.88008 - 2”2, see also [4, [7, [18, [19] 20]. It is an interesting ques-
tion whether relaxing the condition somewhat can give rise to interesting examples.
More concretely, are there sets {a1,...,a,} C N such that the subset sums attain
(1 —o0(1)) - 2™ distinct values and a,, = o(2")?

The main purpose of our paper is to give a new proof of ¢ > /2/7. Many ar-
guments, starting with Erdés and Moser [11], have considered the random walk
X =+a; £as = --- £ a,, where all signs are chosen independently and uniformly
at random. If all subset sums are distinct, then all 2" possible outcomes of the
random walk are equally likely and they are all at least distance 2 from each other.
A well-known argument (see [3, [111 15 [18]) exploits this by using

- 2 4m — 1
n~aiZZaf:E(X2)>—LZ(Qk—l)Qz
=1

which shows ¢ > 1/v/3. This was further refined by Dubroff, Fox and Xu [9] who
argued, using the Berry-Esseen theorem, that if a2 is relatively small compared to
S, a? (the variance of the random walk), then the random walk is well-described
by a Gaussian. Our argument will imply a somewhat converse result: unless the
distribution of the random walk is close to a Gaussian (in a sense that will be made
precise), the set cannot have distinct subset sums and a,, small. This leads to an
interesting reformulation of the Erdds distinct subset sums problem as a problem
in probability theory: whether it is possible for random walks with a large variance
but relatively small largest stepsize to emulate a Gaussian distribution very well.

2. RESULTS

2.1. Main Results. We start with a basic analytic characterization of what it
means for a set of n positive real numbers to have the property that all subset sums
are at least distance 1 from each other (if all numbers are integers, then this is the
same as asking them to be distinct).

Theorem 1. Let aq,...,a, > 0 be positive, real numbers. Then

. 2 n
sin 27w 9 1
[ (5057) empororin= i

Equality occurs if and only if all subset sums are distance > 1 from each other.

This result is very similar to the analytic approach of Elkies [I0] based on Laurent
series. If all a; are integers, the product is 27-periodic which simplifies the integral
and recovers the characterization used by Elkies.

Corollary 1 (Elkies [10]). Let ay,...,a, > 0 be positive integers. Then

1 n
1
/ Hcos (2ma;z)?de > —
0 =1 2

with equality if and only if all subset sums are distinct.



All cosines in the product are aligned around x = 0. A natural approach is thus
to bound the contribution coming from a small interval around the origin of length
~ 1/a,. If a, is too small, that contribution is too large (see Lemma 1) and this
was Elkies’ original approach to prove ¢ > y/1/7 (see Lemma 1). The main novelty
of our approach is to analyze the contribution coming from outside that interval.
This leads to Corollary 2.

Corollary 2. We have

2 2"

T/n

While Corollary 2 itself does not tell us anything new, the proof establishes a
connection to probability theory which will be discussed in §2.2 and §2.3.

an > (1 —0(1)) -

2.2. Proof of Corollary 2: Outline. We use Theorem 1. The first ingredient is
a lower bound on how much the integrand contributes to the integral close to the
origin where all the cosines are aligned.

Lemma 1 (see Elkies [10]). Suppose that {ai,...,a,} is a subset of the positive
real numbers. Then

. 2 n
sin 27x 11 1
2ra;z)ide > (1 1)) = ——.
/|r|s< 27 ) ECOS(FH) @2 {L+o(l)) 2an /70

This Lemma in conjunction with Theorem 1 already shows ¢ > 1/4/7. The main
new idea is to prove that contributions far away from the origin can also be analyzed
and that they also contribute a substantial amount.

Lemma 2. Let ¢ > 0. Suppose that {ay,...,an} C Rsq has I-separated subset

sums and, for some € > 0, we have a2 < c- n—2/3-¢ Z?:l a?. Then, as n — oo,

K3

—1/2
/ sin 272 \ 2 ﬁ s (2raz)2de > (1+ (1))E i i /
|@|> 12— 2mx 7;:1COb e = ? 2ﬁ “ .

=1

We note that this lower bound can be bounded from below in terms of a, using
the trivial bound Y1 ; a? < n-a?. Combining this with Theorem 1 and Lemma
1, we see that if all subset sums are 1-separated, then

1 11 1 Vv2-1 1 _ 1+4o0(1)
2n+12(1+0(1)) (2%\/ﬁ+ e \/ﬁ'an>_\/ﬂ\/ﬁ-an

which shows ¢ > /2/m. Lemma 2 appears to be very technical but contains an
interesting idea which will tell us something new. Lemma 2 can be written in a
completely different way (Theorem 2) and this alternative formulation is also how
we are going to prove Lemma 2.

2.3. Subset Sums and Gaussian Densities. Let A = {a1,...,a,} CRso be a
set of positive reals. As already indicated above, we consider the random variable
X = > &ia; where g; € {—1,1} independently and with equal likelihood (also
known as Rademacher random variables). This random variable is distributed
according to some probability measure g on R. Note that we can write

X:—Zn:ai—l—an:ai.
i=1 i=1

g;=1



If the minimal distance between the sum of two different subsets of A is 1, then the
minimal distance between any two distinct values of X is two. Moreover, by the
subset sum condition, X assumes 2" distinct values which implies

2’7l
1 .
B= o g O, where min |z, — z;| = 2.
Py 7]

Our main question of interest will now be whether p is close to a Gaussian (and, if
so, in what sense). Consider first a simple example: the set {1, 2,..., 2"‘1}. It is
easy to see that all subset sums are distinct (the uniqueness of binary expansion)
and, following the construction, we see that p is supported on all 2" odd num-
bers in [—2",2"] roughly emulating a uniform distribution over that interval. A
uniform distribution is not particularly close to a Gaussian overall. This will now
be compared to a better construction: we take the first 22 terms induced by the
Conway-Guy sequence [§] (where 22 was chosen so as to be ‘large’ while still com-
putationally feasible). We end up with a set {aq,...,a22} C N with distinct subset
sums and agy = 1051905 ~ 0.51-22!, The probability distribution of the associated
random walk p is shown in Figure 1. This is quite a bit closer to a Gaussian than
uniform distribution would be. This is not a coincidence.

_2x107 —1x107 0 1x107 2x107

FIGURE 1. A histogram of the discrete measure p derived from
the first 22 terms from the Conway-Guy sequence.

We start by trying to understand which Gaussian we should compare the distribu-
tion p to. A Gaussian is uniquely determined by mean and variance. Since g is
symmetric around the origin, the expectation is EX = 0. Simultaneously, we have
an explicit expression for the variance and

n 2 n n
E (XQ) =E (Z eia,) =E Z €i€;a;a5 = Za?
i=1 i,j=1 i=1
The probability density function of that Gaussian will be abbreviated as

n —1/2 n -1
1 , 22 ,
v(z) = \/72—71_ <Z Cli) exp Yy (; ai>

i=1



Note that ~ is a smooth function while p is a singular measure. To facilitate a
comparison between the two, we will introduce a smoothed version of . Consider
the normalized characteristic function h(x) = (1/2)- x|—1,1). Since both y and h are
probability measures, their convolution
1 1
(hx*p)(z) = on Z o Xlwi—1zi+1] ()
i=1

is also a probability measure. We observe that h % p is a sum of characteristic
functions centered at the points x; at which p is supported. Since u is distributed
over exponentially large scales, smoothing at scale 1 does not change any relevant
characteristics. With this language in place, the second main result is as follows.
Theorem 2. Let ¢ > 0. Suppose {ai,...,a,} C Rsqo has 1-separated subset sums

2 —1/25 02
and aZ <c-n > iy a;. Then, as n — oo, we have

/R ((h* p)(z) —7(@))* dz = /|z|>4; <Sin 2”>2f[cos (2ra;x)2dz + o(27™).

2mx
We emphasize that h * p only assumes the values 0 and 27"~1 (and the second
value is assumed on 2" intervals of length 2). This implies that

n ~1/2
/]R(h * ) (z)?de = 271“ while /Rv(x)de = % (Z a?) .

i=1

We also remark that the probability density of the random walk behaving similarly
to a Gaussian was already used by Dubroff, Fox and Xu who invoked the Berry-
Esseen theorem. Under a slightly stronger assumption (a? < ¢-n=2/3-¢ S a?)
the Berry-Esseen theorem guarantees that

i) - [ v(y)dy’ —o(1)

— 00

sup
z€R

which shows convergence of the cumulative distribution functions. Theorem 2 es-
tablishes that sets with distinct subset sums satisfy (using Theorem 1)

[ (e @ - e < 20
R

measuring proximity of the probability density functions in the L?—sense.

2.4. Concluding Remarks. Theorem 2 has a fascinating implication insofar as it
allows us to reinterpret the Erdés distinct subset sums problem (the general version
with real numbers being 1-separated) as a genuine problem in probability theory
asking whether particularly excellent random walks exist. More precisely, are there
positive real numbers ayq,...,a, > 0 such that the random unbiased random walk
X = 4ay £ ag -+ % a, has, simultaneously, (1) a large standard deviation, (2) a
small largest element a,, and (3) the ability to approximate the normal distribution
very well in a concrete sense?

Problem. Fix ¢ > 0. As n — oo, are there random walks X =
+a;, £ as -+ a, such that the largest step size is small compared
to the variance

largest stepsize = a, < ¢-n~/3VVX.



and, simultaneously, X has a large variance and approximates a
Gaussian well in the sense of

~ 1+40(1)

If there exist {ai,...,a,} C N with distinct subset sums and a, < n='/3-¢.2",
then such random walks do indeed exists: this follows from combining Theorem 1,
Theorem 2 and the computation carried out after the proof of Lemma 1.

Note that, considering the constraint on a,, being as small as possible and consid-
ering the structure of the first term, it does seem like one would like to have many
of the a; to be roughly comparable to a,,. The Conway-Guy [§] sequence has this
property: for each € > 0 at least n — ¢, logn terms satisfy a; > (1 — €)a,,. We also
observe that for sets of that type, where many of the a; are comparable in size to
an, one can draw additional information from Theorem 1

[ (25 Tlotran- ¢

The cosines are all aligned at = 0, the contribution to the integral coming from
close to the origin is really just a function of Y., a? (see the comment after the
proof of Lemma 1) and fairly independent of the arithmetic structure. The next
interesting point is ¢ = 7/a,,: if we have a; = (1+0(1))a, for many 1 <i<n-—1,
then many of the cosines will still be aligned at 7/a,. The only way to avoid a
large contribution is to have an a; ~ (1 +0(1))a, /2. So it is not inconceivable that
Theorem 1 suggests a sort of multi-scale structure as being possibly favorable. The
argument can then be continued for x = kn/a,, for small k € Z. As k gets larger,
one would expect the cosines to decorrelate.

3. PROOFS
3.1. Proof of Theorem 1.

Proof. As already mentioned, we will smooth i by convolving with the normalized
characteristic function h(x) = (1/2) - x[—1,1]- Since both p and h are probability
measures, their convolution

271,
1 1
(hxp)(z) = on Z §X[$i—1,xi+1]

i=1

is also a probability measure. We observe that h % p is a sum of characteristic
functions and its L'—norm is 1. Its L?—norm is minimized if and only if these
characteristic functions do not overlap which is equivalent to min,»; |x; — z;| > 2
and therefore, in turn, equivalent to all subset sums being at least distance 1 from



each other. Formally,
2

271,
1 1
”h * /1'”%2 = 474 (Z 2X[$i_17l’i+1]> dx

=1
2"74
1 1 1
Rz,]:l
2’”/
1 1 1
> 47/RZ§X[wi—1,mi+1]§X[wi—1,zi+1]d:€
=1
I |
T 4n T oon+l’

This is the only inequality in the entire argument and is attained if and only if all
x; are 2—separated. Using that the Fourier transform is unitary on L? and sends
convolution to products,

il = Bl = A1 = [ (6P a(e)?de
It remains to compute the Fourier transforms: the Fourier transform of the char-

acteristic function h is completely explicit

i) = 2,

The measure p can itself be defined as a convolution

_ 5—01 +5al * 6—112 +&£ * * 5—1111, +5an
=13 2 2 2 2 2 )

Using again that the Fourier transform sends convolution to products and

- 2mi(—a;)€ 2mia; €
(5_(1,; + 5117: ) (6) — € + € = COS (27'((115)

2 2 2 2

leads to
f(€) = [ ] cos (2ma;g).
i=1
Thus
sin 27\ % 9 1
2ma;x)*dr >
/R< S ) Z1;[1(:08( ra;x)*dr > TS

with equality if and only if all subset sums of {ay,...,a,} are 1-separated. O

3.2. Proof of Corollary 1.

Proof. 1f all a; are integers, then the product is 1—periodic and, together with

3 <s11217fz;(ac_k)k))2 _ 1+co; (27r:c)’

kEeZ

this implies

sin 2mx 2n 1 n
2 Irasx)dr = 1 ) Q)2 de.
/R< o ) il;[lcos( ma;x) de /O (14 cos ( m(:))Hcos( ma;x) dx

i=1




To further evaluate the integral, we switch back to exponentials and note that
1 e4m‘aix + e—47ria,-ac

cos (2ma;r)* = =3 + 1

n e47riaiz + 6747Tiaix
IT(1+ .
=1

leading to the integral

1 1 e2miz + e—2miz
N 1 4
A 2

Selecting the constant 1 in all terms leads to a contribution of 27". Any other
choice of combinations from the big product leads to exponentials of the form
exp(4mikx) where k € Z \ {0} whenever all subset sums are distinct. Thus every
other contributions leads to 0 and

1
/ Hcos (2ma;x) 2dx > o

if all subset sums are distinct. Conversely, if not all subset sums are distinct, then
there is a corresponding choice of combinations in the product leading to a zero
frequency: since all coefficients are nonnegative, we see that the integral will then
be larger than 27", O

2

i=

3.3. Proof of Lemma 1.

Proof, close to Elkies [10]. Note that, for example, a,, > 2" /n, already implies that
the interval is very close to the origin where sin (272)/(27z) ~ 1 and thus

sin 2mx
cos (2ra;x)*dr = (1 — o(1) / cos (2ma;x)
1o (5 Tomteres 1

On this interval, we have, for all 1 <7 <n — 1 that cos (2mwa;z) > cos (2ra,x) and

/ Hcos (27a;x)*da >/ cos (2ra,z)?"dx
2| < 5m || < g

A change of variables and evaluating the integral (see [10]) shows that

1
/ cos (27ma,x)*"dr = / cos (z)?"dx
2| < gar

2may,

<
B 27Tan 4n < )

11
=(1 il
(+o 2a

“71

[ME)

3

where evaluating [ cos (2)*"dx in terms of binomial coefficients is classical [16]. O

This implies a lower bound on a,, since

1 sin 2wz
W:/< S ) Hcos 2ma;x)

sin 27wx 11 1
> (2ma; d > (1 1
/||< P ) HCOS maw) dr 2 L+ o)z Jam
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showing that a,, > 2™/+/mn which is, in spirit, the original argument of Elkies. We
note that, provided a, is small, i.e. a, = o(}>_;_, a?), one can Taylor expand the

cosines and, for x small,

n n
H cos (2ma;x)*dx ~ exp (—471'21‘2 Z af)
i=1

i=1
which then leads to the slightly refined estimate

n n ~1/2
1+o(1
/|m< Hcos (2ma;z)?drds > (2\/7%)) < E a?) .

1
S7a, i=1 i=1
At this point, we do not know of any argument that excludes the possibility that n—
o(n) of the a; satisfy a; = (1+0(1))a, and this refined estimate does not currently
lead to any information different from that provided by the cruder estimate above.
Indeed, the Conway-Guy sequence is an example of a set with distinct subset sums
and this type of behavior, perhaps extremal configurations do behave like that.

3.4. Technical Lemma. The goal of this section is to establish an upper bound
on the difference between i and the approximating Gaussian measure close to the
origin. Lemma 3 will then quickly imply Theorem 2.

Lemma 3. Let ¢ > 0. Suppose {ay,...,an} C Rsq has 1-separated subset sums
and a2 < c-n~Y23°" a2 Then, as n — oo, we have

sin (27z) 14 9 2% o
_— cos (2ma;x) —exp | —27°x a;
/IxS 1 2mx H ( ’ ) 1:21 ’

Ta, =1

2
dz = o(27").

Proof. The first step is a Taylor expansion around z = 0

1) o - By (S x|

2 4 2rx .
=1 =1

sin (2rz) exp <Z log (1 — 27%ajz”® + (’)(afx‘l)))

2rx ‘
=1

. 2 n
sin (2mz) exp <Z —2r2ala? + O(a?az‘l))

2rx 5
=1
n
= 0@ +naya?h) exp <—27T2.’L‘2 Z a?) .
i=1
The goal is to bound

2
X = dx

. 2 n n
% H cos (2ma;x) — exp (—2#%2 ; af)

i=1

2| < gar

which, considering asymptotic expansion, can be bounded as

n
exp (—4772x2 Z a?) dz.
i=1

This bound by itself is a little bit too crude but is reasonably close to the origin:
note that the integrand is the product of two functions the first of which is small

2
X < / ‘60(12—}-71&‘;14) _ 1‘
o< 2L
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for small values of = and the second of which is small for large x. This suggests
splitting the integral into the regions: for some 0 < § < 1/(4a,) to be optimized

later, we write I; = {z: |z| <0} and let Iy = {z:0 < |z| <1/(4a,)}. Provided
62 + na2d* = O(1), we can estimate the integral over I; as

n
O +naya?) _ 1‘2 exp (—4#%2 Z af) dx
i=1
n
exp (—4772952 Z a?) dx
i=1

n ~1/2
— (82 454 1 2
=0($ —&—nané)-ﬁ Zai .

i=1

Y =

I

< O(82 + naté*) - /
R

We use a different type of expansion for the second region: note that, for |z| < /2,

2

log (cos (x)) < — £l

and thus, for || < 1/(4ay), cos (2ma;x) < exp (—2n2z2a?) from which we deduce

1 - -
Vgl < go- 0= [Jeos 2main) < exp (Wﬁ ;a3> -

i=1

Therefore the contribution of the integrand to X over I, which is

" in (27x)
7 922 2\ sin ( 9
/12 exp( Tex ;az v Hcos( Ta;T)

i=1
can be trivially bounded from above by

2
n 9 00 n
Zg/ exp —27721‘22%2 dr < f/ T exp _47723522‘1? dz
I i=1 0.Js i=1
_ 2 1 2_2 S 2 1 1 2 - 2
= gm exp <—45 T ;ai S Sm exp - ;ai .

K3

2
dx,

We want all error estimates to be 0(27") and achieve this by setting

n -1/2
0= ay (Z a?)
i=1

with a, an arbitrarily slowly growing sequence (think of «,, = logloglogn). We
start by checking whether our first asymptotic expansion is valid in this regime, i.e.
whether 6% 4+ naZd* = O(1). Moser’s estimate implies Y ., a? > 4™ and thus

62 +nalét = 0(a247") + O(na2at4=2") = o(27™).

The next step is an estimate on Y. Importing our upper bound on a,, shows

n —1/2 n —5/2 n —1/2
Y < O(8% + naid?) (Z a?) < napal (Z a?) <n°¢ (Z af)
i=1 i=1 i=1
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which is O(n=27") = 0(27"). Finally, for the last error term,

1 1 2 S 2 27" —a? —n
Z < gmexp <5 Zai> §10a—ne n=o0(27").
This proves Lemma 3. (Il
3.5. Proof of Theorem 2.

Proof. Theorem 2 is a relatively easy consequence of Lemma 3. Recall that

—1/2 —

() (5 ()
= 5= a; XP| — 5 a;
2 i 2 i=1

and y(x) = exp(—272z? Zz 1 Z) Using the Fourier transform we get that
X = /]R |(h o ) (@) = () Pde = /R (7 # ) () — () 2 d
can be written as
(2 n ) )
x= [ I eo (race) ~exp (_sz ;g)

Lemma 3 implies that if {a1,...,a,} C Rso has l-separated subset sums and
a2 <c-n~Y2ST a2, then

2
2 n
/ LD i Hcos 2ma;x) — exp (—27r2x2 Za?)
< i=1

i=1
implying that, by splitting the integral into {|z| < 1/(4a,)} and {|z| > 1/(4an)},

sin (27x) 9 9
271_[005 (2ma;x )—exp( 2z Za)

i=1

dr =0(27")

X =

1
2|2 52

dzx 4+ o(27").

Using the upper bound on a,,

exp | —4n?z? af) dx < 8an/ T exp <4W2x2 af) dx
/z|>1/(4an) ( ; 1/(4an) ;

2 n 2
< ey (- B
Zz 1 z 4 an

1 NG
o (Siad)”

With Moser’s estimate Y .-, a? > 4™ one deduces

exp( 272 220,72) X\T|_4a
i=1

~

3

o—evn L
< o
L2(R)
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Using the triangle inequality in L?, we see that

sin (272) -
% [T cos 2maiz) — exp <—27T2332 Z}azﬂ Xla|> 11

i=1
1
Ofe V).
()

L2(R)
Squaring both sides and using Theorem 1, we deduce

Z:‘

L2(R)

sin (27)

sin (27z) [ 1 cos @maiz) x> 2
i1 n

2rx

2rx

X=2+002"") = /

1
‘$|Zm

. 2 n
2
(sm mc) Hcos (2ma;z)?dx + o(27™).
i=1

3.6. Proof of Lemma 2. Throughout this proof, we will abbreviate

-1/2 —1
1 - x? "
o () (5 (E)

i=1

for the Gaussian approximating . Before proving Lemma 2, we quickly recall the
Berry-Esseen theorem which, in our setting, says that

< Z?=1 a?
= 3/2°
(i a?)

Assuming that a2 = O (n’2/3’5 >, a?), one can bound this by

p(l-oc.al) - | ()

—00

sup
z€R

Z?:l a’? < n- a’i < —3,75 _
7 913/2 ~ an 932~ = o(1).
(> i1 a7) (> im1 af)

The way we will use this information is that, for any interval J C R

\uw— [ s

Note that this argument was also used by Dubroff, Fox and Xu [9] for J an interval
centered at the origin whose length is proportional to a small multiple of the stan-
dard deviation of the Gaussian. We will quickly summarize their short argument
at an appropriate place in the proof of Lemma 2.

=o(1).

Proof of Lemma 2. We start the argument with a lower bound on

X = [ 1 e) =1 (a)* do.

Taking a Fourier transform,

sin (272) 1= -

We split the integral into two regions: |z| < 1/(4a,) and the remaining region.
Lemma 3 implies that the integral over the first region is 0(27"), it remains to

2
dx.
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analyze the integral over the second region. Arguing exactly as in the proof of
Theorem 2, we deduce that

sin 2wz

2 n
X = < ) H cos (2ra;x)?dx + o(27™).
‘I|Zﬁ 2rx i

The next argument is completely independent of all the previous arguments: we
will derive a lower bound on the same quantity via a completely different argument
which will then imply Lemma 2. Recall that

X=/R\(u*h)(x)—7(x)l2dx~

w* h only assumes the values {O, 2*”’1}. Moreover, by the argument above,

/J(u*h)(:r)dzf/J'y(as)dz

This leads to an amusing setting: we know that u*h approximates the Gaussian in
probability over intervals. Simultaneously, % h can only assume two values one of
which is 0: thus, the local density of the Gaussian predicts the density of intervals
in the region where p * h assumes its nonzero value 27"~!. An example of what
this could look like is shown in Fig. 2. We conclude with a simple proposition.

sup
JCR
J interval

=o(1).

Proposition. Let pi be the probability density function of a N'(0,0?) Gaussian. Let
(vn)n be a sequence of probability density functions such that

(1) vy — p in probability: for every interval J C R we have

lim Jyn(x)dm:[]u(x)dm

n—oo

(2) and vy (z) only assumes two values {0, z,} for some z, > 0.
Then
V2-1
2\/mo

Proof of the Proposition. The density of u is simply given by

(@) 1 1 22
T) = exp|—=— |-
a 2ro P 202

We note that both Properties combined require (by taking J to be a small interval
centered around the origin) that

lim inf/R(u(:c) — vy (2))%dx >

n—oo

lim inf 2, > () = —
minf 2 mexu(@) =

Let now J be a small interval centered around zg € R, say J = (xg — &,20 + €).
The two properties combined tell us what can be expected of v,: since

| woyte = 2eua) + 0(e2)
we have
lim [ v,(x)dz = / w(z)dr = 2ep(xo) + O(e2).
J J

n—0o0
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This allows us to deduce that the fraction « of the interval J where v, assumes
the value z, and the remaining fraction (1 — «) where it assumes the value 0 is
determined by

az, = (o) + lower order terms.

This tells us that
_ w() p()
[ uta) = a2z = 1+ o0) [ (o) - 2+ (1 - ) u(z)d.

R ZTL Zn

The integral algebraically simplifies to

/R () (u(w) — 20)* + (1 _ M(ﬂﬁ)) w(z)?de = /Ru(x)(zn — plx))dz.

Zn Zn

At this point, we recall that, up to lower order terms, z, > u(0). Thus

1 1 1
z)(z, — p(x))dr > T —u(x) ) de = - —
[ e = e = [ o) (o o) o = o
which is the desired result. O

N

RN

! 4

FIGURE 2. A step function assuming only two values approximat-
ing a Gaussian density.

At this point can we quickly note, in passing, the original argument of Dubroff, Fox
and Xu [9]: the Gaussian attains its maximum density at the origin and therefore

" ~1/2
1(0) = o= (Zaf) < (14 o(1)) - flux bl = EAD

i=1

from which one deduces

n 1/2
V- an > (Z(ﬁ) > (1+o<1))\/32".

We can now conclude by applying the Proposition. The variance o of the mollified
random walk is, up to lower order terms, given by the variance of the random walk
which is Y7, a?. Thus, applying the Proposition, as n becomes large,

3=1 "% "
V2 -1
n 1/2°
2/ (Y )

X > (1+0(1))
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