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Abstract. For any f : Rn → R≥0 the symmetric decreasing rearrangement

f∗ satisfies the Pólya-Szegő inequality ∥∇f∗∥Lp ≤ ∥∇f∥Lp . The goal of
this paper is to establish analogous results in the discrete setting for graphs

satisfying suitable conditions. We prove that if the edge-isoperimetric problem

on a graph has a sequence of nested minimizers, then this sequence gives rise to
a rearrangement satisfying the Pólya-Szegő inequality in L1. This shows, for

example, that a specific rearrangement on the grid graph Z2, going around the

origin in a spiral-like manner, satisfies ∥∇f∗∥L1 ≤ ∥∇f∥L1 . The L∞−case is
implied by an optimal ordering condition in vertex-isoperimetry. We use these

ideas to prove that the canonical rearrangement on the infinite d−regular tree

satisfies the Pólya-Szegő inequality for all 1 ≤ p ≤ ∞.

1. Introduction

1.1. Rearragements. Rearrangement principles are a cornerstone of analysis. If
f : Rn → R≥0 is a nonnegative function, then its symmetric decreasing rearrange-
ment f∗ : Rn → R≥0 is defined by asking that

(1) the super-level sets {x ∈ Rn : f∗(x) ≥ s} are balls centered at the origin
(2) which have the same measure as the original super-level set

|{x ∈ Rn : f(x) ≥ s}| = |{x ∈ Rn : f∗(x) ≥ s}| .

If one looks at the domains where f and f∗ assume values in a certain interval [a, b],
then these domains have the exact same volume. This implies that ∥f∥Lp = ∥f∗∥Lp

for all p > 0 (sometimes known as ‘layer cake formula’ or ‘bathtub principle’). The
celebrated Pólya-Szegő inequality implies that rearrangement is ‘smoothing’ in the
sense of decreasing the size of the gradient and, for all 1 ≤ p ≤ ∞,

∥∇f∗∥Lp ≤ ∥∇f∥Lp .

This property has many applications in analysis, partial differential equations and
mathematical physics, we refer to the excellent books by Baernstein [1], Lieb-Loss
[14] and Pólya-Szegő [16]. One particularly important application concerns certain
partial differential equations. Consider, for example, the equation −∆u = up on
Rn. It arises naturally as the Euler-Lagrange equation of the energy functional

J(u) =

∫
Rn

1

2
|∇u(x)|2 − u(x)p+1

p+ 1
dx.
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If the functional J assumes a global minimum, then global minimum will solve
−∆u = up. Applying the Pólya-Szegő inequality implies that J(u∗) ≤ J(u) showing
that the existence of a minimum implies the existence of a radially symmetric
solution of the partial differential equation.

1.2. Graphs. One could ask whether similar things are possible on combinatorial
graphs G = (V,E). Here, V is the set of vertices which we always assume to be
countable, E ⊂ V ×V is the set of edges. For our results to be meaningful, we always
require that the graphs have locally finite degree. We recall that if f : V → R, then
the Lp−norm of the function f and its derivative ∇f are defined as

∥f∥pLp =
∑
v∈V

|f(v)|p and ∥∇f∥pLp =
∑

(v,w)∈E

|f(v)− f(w)|p.

Our definition of a rearrangement on a graph follows the approach of Pruss [17].
Given a graph G = (V,E), possibly infinite, a rearrangement is a permutation
of the vertices v1, v2, . . . . Having fixed such a permutation of the vertices, the
rearrangement procedure for any given non-negative function f : V → R≥0 defines
a new function f∗ : V → R≥0 via

f∗(vk) = the k − th largest value assumed by f.

This means that f∗ always assumes its largest value in v1, its second largest value
in v2 and so on. This construction automatically implies ∥f∗∥Lp = ∥f∥Lp for all
possible rearragements: the remaining question is whether there are rearrangements
leading to ‘smooth’ functions as in ∥∇f∗∥Lp being smaller or at the very least not
much larger than ∥∇f∥Lp . We also note the pointwise inequality ∇|f | ≤ |∇f |.
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Figure 1. Pruss showed that for the canonical rearrangement on
the d−regular infinite tree one has ∥∇f∗∥L2 ≤ ∥∇f∥L2 . Here:
d = 3 and only the first three layers shown.

The study of this problem can perhaps be said to have been initiated by Hardy-
Littlewood [12] in their work on (discrete) rearrangement inequalities on the integer
lattice Z and the half-line N. The conceptual leap to general graphs seems to be due
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to Pruss [17] who showed that the canonical rearrangement on the infinite d−regular
tree (see Fig. 1) satisfies the Pólya-Szegő inequality for p = 2. Pruss obtains more
general results, in particular a Riesz convolution-rearrangement inequality which
then implies the Pólya-Szegő inequality for p = 2. An example on the lattice Z is
shown in Fig. 2.

6 4 2 1 3 5 7

Figure 2. A rearrangement on the lattice Z satisfying the Pólya-
Szegő inequality ∥∇f∗∥Lp ≤ ∥∇f∥Lp for all 1 ≤ p ≤ ∞ (see [10]).

Few such results are available [3, 7, 8, 10, 11, 17, 18]; this is perhaps not too sur-
prising, the Pólya-Szegő inequality reflects the overall symmetry of the Euclidean
ball. One would perhaps not expect to be able to find counterparts of such results
in the general discrete setting outside of a few special cases: the symmetries of
the continuous setting are difficult to replace. In much the same vein, various re-
arrangement inequalities in the continuous setting are known to hold on Rn,Sn,Hn

but not much is known (or expected to be true) on general manifolds.

Figure 3. A part of the standard grid graph (Z2, ℓ1).

The impossibility of a Pólya-Szegő inequality was recently very clearly demon-
strated for the grid graph (Z2, ℓ1). The vertices of this graph are Z2 and two
vertices are connected if their coordinates differ in one entry by 1 (see Fig. 3).

Theorem (Hajaiej, Han & Hua [11]). There does not exist a rearrangement of
(Z2, ℓ1) such that for all functions

∥∇f∗∥L2 ≤ ∥∇f∥L2 .

We give a short proof of the general non-existence for 1 < p < ∞ (inspired by
the idea in [11]) in §3.4. It would be interesting if this failure of Pólya-Szegő
could be made quantitative: what is the largest constant δ > 0 such that for every
rearrangement there exists a function with ∥∇f∗∥L2 > (1 + δ)∥∇f∥L2? One could
also wonder about substitute results: for example, we prove that there exists a
rearrangement satisfying ∥∇f∗∥L2 ≤

√
2 · ∥∇f∥L1 . It suggests a general question.

Question. When does a graph admit a rearrangement satisfying
∥∇f∗∥Lp ≤ cp∥∇f∥Lp? How small can cp be? When is cp = 1?

The purpose of our paper is to show that the endpoint cases are quite interesting
and naturally related to the edge-isoperimetric problem (p = 1) and the vertex-
isoperimetric problem (p = ∞). (Note added in print: we have since considered
this question on the lattice graph Zd in joint work with Shubham Gupta [9]).
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2. Main Results

2.1. Spiral Rearrangement. We were motivated by the spiral rearrangement
illustrated in Fig. 4 and Fig. 5. It rearranges a function f : Z2 → R≥0 by sending
its largest value to the vertex with the label 1, the second-largest is sent to the
vertex with label 2 and so on in a decreasing fashion spiraling around the origin.
The choice of spiraling counterclockwise as opposed to clockwise was arbitrary. It
seems like a good rearrangement on the grid graph Z2.

1 2

345

6

7 8 9 10

11

12

13141516

Figure 4. The spiral rearrangement on Z2.

Our first result makes this intuition precise, the spiral rearrangement is a good way
of rearranging non-negative functions (meaning functions f : Z2 → R≥0 = [0,∞]):
it satisfies the Pólya-Szegő inequality ∥∇f∗∥L1 ≤ ∥∇f∥L1 .

Theorem 1. Let f : Z2 → R≥0 and let f∗ denotes its spiral rearrangement. Then

∥∇f∗∥L1 ≤ ∥∇f∥L1 and ∥∇f∗∥L∞ ≤ 2 · ∥∇f∥L∞ .

Using vector interpolation ∥v∥ℓp ≤ ∥v∥1/pℓ1 · ∥v∥1−1/p
ℓ∞ , we can combine these inequal-

ities to deduce that the rearrangement is not too badly behaved in other norms

∥∇f∗∥Lp ≤ 21−1/p · ∥∇f∥L1 and 1 ≤ p ≤ ∞.

This leads to a number of interesting questions: is it possible to prove an estimate
∥∇f∗∥Lp ≤ cp ·∥∇f∥Lp? Is cp ≤ 2? Which rearrangement has the smallest constant
cp? We refer to [9] for some progress on these questions.

Figure 5. Left: an example of a function f : Z2 → R≥0 compactly
supported around the origin (larger values are brighter). Right:
the same function rearranged using the spiral rearrangement.

Theorem 1 also suggests an interesting way to think about rearrangements on
graphs in general: instead of asking for the full Pólya-Szegő inequality (and thus,
implicitly, require a great a deal of underlying symmetry) one could instead try
to look for ‘reasonable’ rearrangements satisfying ∥∇f∗∥Lp ≤ cp∥∇f∥Lp with the
constant cp ≥ 1 being as small as possible.



5

2.2. L1−Pólya-Szegő inequality. We now provide a more general framework for
the L1−inequality. As is well understood in the continuous setting, the quan-
tity ∥∇f∥L1 is related to the level sets of the function f via the coarea formula
[6] and this establishes a natural connection to isoperimetry. The same kind of
argument works in the discrete setting: the relevant geometric notion will be edge-
isoperimetry. For any subset A ⊆ V , the edge boundary ∂E(A) is defined as

∂E(A) = {e ∈ E : e runs between A and V \A} .
The problem of minimizing the size of the edge boundary #∂E({v1, . . . , vk}) among
all sets of k vertices, also known as the edge-isoperimetric problem, is well-studied
in a variety of settings (see, for example, Bollobás & Leader [4, 5], Harper [13],
Lindsey [15], Tillich [19] and the survey of Bezrukov [2]).

Figure 6. 5 vertices (highlighted) with #∂E(A) = 10. A solves
the edge-isoperimetric problem: any set of 5 vertices in (Z2, ℓ1) has
a at least 10 edges (dashed) connecting it to the complement.

Theorem 2 will prove that if solutions to the edge-isoperimetric problem are nested,
meaning that an edge-isoperimetric set for k+1 elements can be obtained by adding
a suitable vertex to an edge-isoperimetric set with k elements, then such a nested
set of extremizers correspond to a rearrangement satisfying the L1−Pólya-Szegő
inequality ∥∇f∗∥L1 ≤ ∥∇f∥L1 . The proof shows slightly more: ‘nearly’ optimal
sets ‘nearly’ imply the inequality in L1 (however, this extension will not be used
anywhere else in the paper).

Theorem 2 (L1−Pólya-Szegő). Let v1, v2, . . . be a permutation of the vertices V
such that, for some α ≥ 1, β ≥ 0 and all N ∈ N,

#∂E({v1, . . . , vN}) ≤ β + α inf
A⊆V

#A=N

# ∂E(A).

Then the associated rearrangement satisfies

∥∇f∗∥L1 ≤ α∥∇f∥L1 + β∥f∥L∞ .

The best possible case is α = 1 and β = 0. Several of the known edge-isoperimetric
sets in different graphs such as (Zd, ℓ1) or (Zd, ℓ∞) have this property. We also note
that Theorem 2 is optimal: consider the indicator function f = χ{v1,...,vN}, then

∥∇f∥L1 = #∂E({v1, . . . , vN})
and this identity can now be applied twice, a second time to the set of vertices
minimizing # ∂E(A) to deduce that the inequality cannot be improved in general.
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2.3. L∞−Pólya-Szegő. We propose a condition that can be used to show that
certain rearrangements satisfy ∥∇f∗∥L∞ ≤ c∥∇f∥L∞ for some constant c ∈ N. In
contrast to the L1−theory, which was concerned with edge-isoperimetric problems,
the L∞−theory requires vertex-isoperimetry: given a graph G and an integer k ∈ N,
we define the vertex-isoperimetric profile ∂V (k) as the largest integer such that any
set A ⊂ V with #A = k vertices is adjacent to at least ∂V (k) other vertices.

Theorem 3 (L∞−Pólya-Szegő). Let G = (V,E) be an infinite graph and assume
that ∂V : N → N is non-decreasing. Suppose v1, v2, . . . is a permutation of the
vertices so that, for some c ∈ N and all N ∈ N{

v ∈ V : min
1≤i≤N

d(v, vi) ≤ 1

}
⊆

{
v1, v2, . . . , vN+c·∂V (N)

}
.

Then the rearrangement associated to the permutation v1, v2, . . . satisfies

∥∇f∗∥L∞ ≤ c · ∥∇f∥L∞ .

The condition in Theorem 3 can be summarized as follows: when considering the
set of vertices {v1, . . . , vN}, this set is guaranteed to be adjacent to at least ∂V (N)
other vertices (and it might be adjacent to many more). In particular, there is
at least one vertex vj adjacent to {v1, . . . , vN} with j ≥ N + ∂V (N). Theorem
3 guarantees that if there is an inverse inequality up to a multiplicative constant,
meaning that if none of the adjacent indices exceed N + c · ∂V (N) for some c ∈ N,
then this implies an L∞−Pólya-Szegő inequality with the same constant c.

2.4. The full range. We conclude with a setting for which we can obtain the full
range 1 ≤ p ≤ ∞ of the Pólya-Szegő inequality. Let v1, v2, . . . be an arbitrary
permutation of the vertices. The vertex-isoperimetric profile and the definition of
edge- and vertex-neighborhood are naturally related and

∂V (N) = inf
A⊂V

#A=N

#∂V (A) ≤ #∂V ({v1, . . . , vN}) ≤ #∂E ({v1, . . . , vN}) .

If all three quantities coincide and the vertex-neighborhood is optimally arranged,
then the rearrangement satisfies the Pólya-Szegő inequality for all 1 ≤ p ≤ ∞.

Theorem 4. Let G = (V,E) be a graph and let v1, v2, . . . be a permutation of the
vertices so that for all N ∈ N we have both ∂V (N) = #∂E ({v1, . . . , vN}) and

∂E ({v1, . . . , vN}) ⊆
{
v1, . . . , vN+∂V (N)

}
.

Then the associated rearrangement satisfies, for all 1 ≤ p ≤ ∞ ,

∥∇f∗∥Lp ≤ ∥∇f∥Lp .

As a first example we revisit the canonical reordering on the lattice Z (see Fig. 7)
for which it is known that ∥∇f∗∥Lp ≤ ∥∇f∥Lp for all 1 ≤ p ≤ ∞ (see [10]). The
permutation satisfies ∂V (N) = 2 = #∂E ({v1, . . . , vN}) and the neighbors of the
first N elements are the first N + 2 elements, thus Theorem 4 applies.

6 4 2 1 3 5 7

Figure 7. A rearrangement on Z satisfying ∥∇f∗∥Lp ≤ ∥∇f∥Lp .
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2.5. Example: the regular tree. Let G be the infinite d−regular tree. There is
a canonical order where the largest value of the function f is sent to the root, the
next d values are distributed over the children of the root, the d − 1 values after
that are attached to the children of the vertex labeled 2 and so on (see Fig. 1).

Corollary 1. Let G be an infinite d−regular tree and let f∗ denote the rearrange-
ment corresponding to the canonical ordering. Then, for all 1 ≤ p ≤ ∞

∥∇f∗∥Lp ≤ ∥∇f∥Lp .

This extends a result of Pruss [17] who showed that the canonical rearrangement
satisfies ∥∇f∗∥L2 ≤ ∥∇f∥L2 . The proof shows how the canonical ordering on the
infinite regular tree is optimal with respect to both edge isoperimetry and vertex
isoperimetry.

2.6. Example: competing rearrangements. As another example to illustrate
the applicability of the results, we consider the graph N× {0, 1} with two vertices
being connected if their Hamming distance differs by 1, see Fig. 8. There are at least
two different rearrangements that appear to be somewhat natural on this graph:
they are shown in Fig. 8 and we will refer to them as the snake rearrangement and
the lexicographic rearrangement.

1

2 3

4 5

6

1

2 4

3 5

6

Figure 8. The graph (N× {0, 1} , ℓ1) (left), the snake rearrange-
ment (middle) and the lexicographic rearrangement (right).

Applying Theorem 2 and Theorem 3 allows us to quickly derive suitable bounds
for both rearrangements. The snake rearrangement is well behaved with respect
to the edge-isoperimetric properties and satisfies the Polyá-Szegő inequality in L1.
The lexicographic rearrangement is well-behaved in both L1 and L∞.

Corollary 2. The snake rearrangement satisfies

∥∇f∗∥L1 ≤ ∥∇f∥L1 and ∥∇f∗∥L∞ ≤ 2 · ∥∇f∥L∞ .

The lexicographic rearrangement satisfies

∥∇f∗∥L1 ≤ ∥∇f∥L1 and ∥∇f∗∥L∞ ≤ ∥∇f∥L∞ .

These examples illustrate how different rearrangements on the same graph can lead
to different outcomes and how the size of the constant cp in ∥∇f∗∥Lp ≤ cp∥∇f∥Lp

can be used as an implicit measure of quality of the rearrangement.

3. Proofs

We start by establishing Theorem 2 in §3.1 and Theorem 3 in §3.2. These will then
be used to prove Theorem 1 in §3.3. §3.4 contains a short proof of the result of
Hajaiej, Han & Hua [11] showing that no rearrangement on (Z2, ℓ1) can satisfy the
inequality for p = 2 (this argument is independent of the others). §3.5 contains a
proof of Theorem 4 which is then used to prove Corollary 1 in 3.6. Finally, §3.7
gives a proof for Corollary 2.
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3.1. Proof of Theorem 2.

Proof. We assume without loss of generality that ∥f∥L∞ = 1. By definition

∥∇f∥L1 =
∑

(v,w)∈E

|f(v)− f(w)|.

We define, for each 0 ≤ s ≤ 1, the superlevel set

{f ≥ s} = {v ∈ V : f(v) ≥ s} ⊆ V.

We will use the coarea formula, already using that without loss of generality
∥f∥L∞ = 1, in the form (see, for example, [19, Lemma 1])

∥∇f∥L1 =

∫ 1

0

∫
∂{f≥s}

1 dxds =

∫ 1

0

#∂ {f ≥ s} ds.

This coarea formula can be seen as follows: suppose (v, w) ∈ E. This edge con-
tributes |f(v)− f(w)| to the left-hand side while contributing 1 over an interval of
length |f(v)− f(w)| on the right-hand side. We note that, by definition,∫ 1

0

#∂ {f ≥ s} ds ≥
∫ 1

0

inf
A⊂V

#A=#{f≥s}

#∂E(A)ds.

By definition of the rearrangement, we have # {f ≥ s} = # {f∗ ≥ s} . As an as-
sumption of Theorem 2,

#∂E({v1, . . . , vN}) ≤ β + α inf
A⊆V

#A=N

# ∂E(A),

from which we deduce, applying the coarea formula once more,

∥∇f∥L1 ≥
∫ 1

0

inf
A⊂V

#A=#{f≥s}

#∂E(A)ds =

∫ 1

0

inf
A⊂V

#A=#{f∗≥s}

#∂E(A)ds

≥ 1

α

∫ 1

0

#∂ {f∗ ≥ s} − β ds

= −β

α
+

1

α
∥∇f∗∥L1 .

This can rearranged as

∥∇f∗∥L1 ≤ β + α∥∇f∥L1 .

which, recalling the normalization ∥f∥L∞ = 1 now implies the result. □

3.2. Proof of Theorem 3.

Proof. We assume without loss of generality that ∥∇f∥L∞ = 1. Suppose that
v1, v2, . . . is a rearrangement with the desired properties. We want to show that
for all i ≥ 1, if the vertex vi has a neighbor (vi, vj) ∈ E, then the value of f∗ in vj
is not much smaller than f∗(vi). Formally:

inf {f∗(vj) : j ≥ i and (vi, vj) ∈ E} ≥ f∗(vi)− c.

We note that the function f has few large values in the sense that it assumes a
value at least as large as f∗(vi) a fixed number of times: by definition, f∗(vi) is the
i−th largest value and thus

# {v ∈ V : f(v) ≥ f∗(vi)} ≥ i.
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We note that the inequality need not be strict, it could be that the value f∗(vi)
is attained many more times. We call this set A = {v ∈ V : f(v) ≥ f∗(vi)}. By
definition of the vertex-isoperimetric profile and the fact that it is non-decreasing
(which is one of the assumptions), we have

# {v ∈ V : d(v,A) ≤ 1} ≥ i+ ∂V (#A) ≥ i+ ∂V (i).

If ∂V is monotonically non-decreasing then, for any k ≥ 1,

# {v ∈ V : d(v,A) ≤ k + 1} ≥ # {v ∈ V : d(v,A) ≤ k}
+ ∂V (# {v ∈ V : d(v,A) ≤ k})
≥ # {v ∈ V : d(v,A) ≤ k}+ ∂V (#A)

≥ # {v ∈ V : d(v,A) ≤ k}+ ∂V (i)

from which one obtains, by iteration,

# {v ∈ V : d(v,A) ≤ k} ≥ i+ k · ∂V (i).
We deduce that, for any arbitrary integer k ≥ 1, there are at least i + k · ∂V (i)
vertices w satisfying f(w) ≥ f∗(vi) − k (since ∥∇f∥L∞ = 1, we know f can only
decrease by at most 1 each step) and thus the (i + k · ∂V (i))−th largest value
assumed by f is at least f∗(vi) − k. By assumption, there is c > 0 such that vi is
not connected to vertices with a much larger index: i ≤ j and (vi, vj) ∈ E, then we
have j ≤ i+c·∂V (i). Setting k = c implies that there are at least i+c·∂V (i) vertices
on which the function is at least f∗(vi)−c and thus, since f∗(vj) is the j−th largest
value assumed by the function and j ≤ i + c · ∂V (i), we have f∗(vj) ≥ f∗(vi) − c.
We deduce

|f∗(vi)− f∗(vj)| ≤ c = c · ∥∇f∥L∞

and since i ≤ j were arbitrary (subject to (i, j) ∈ E), we arrive at the result. □

3.3. Proof of Theorem 1. The proof of Theorem 1 consists in showing that the
spiral rearrangement leads to a reordering of the vertices of (Z2, ℓ1) such that The-
orem 2 is applicable with α = 1, β = 0 and Theorem 3 is applicable with c = 2.

The L1−inequality. The first step amounts to showing that the first n elements
of the spiral rearrangement have as few neighbors as possible for a set of that size.
These problems have been solved in much greater generality and in more difficult
settings, see Bollobás & Leader [4, 5]. We include a self-contained elementary
argument for this much simpler special case.

Proof. Let A ⊂ Z2 be an arbitrary set on n elements. We can project the set onto
the x−axis, i.e. Ax = {x ∈ Z : ∃y ∈ Z such that (x, y) ∈ A} and likewise onto the
y−axis leading to Ay. We have A ⊆ Ax × Ay and thus #Ax · #Ay ≥ n. Each
element in Ax identifies at least two unique edges between A and Ac (at the top
and the bottom of that slice) and, likewise, each element in Ay identifies at least
two unique edges (from the left and right end of the slice). Thus

#∂E(A) ≥ 2#Ax + 2#Ay ≥ 4
√
#Ax

√
#Ay ≥ 4

√
n.

Equality in the second inequality can only occur if #Ax = #Ay and equality in
the last inequality can only happen if #Ax#Ay = n. Moreover, since all three
numbers #Ax,#Ay, n are integers, one can get a little extra information out of
the inequality which turns out to be sufficient. We first observe that the inequality
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immediately implies optimality of the spiral rearrangement whenever n is a square
number. Let us now fix n to be a square number and consider the case of n + k
where 1 ≤ k < 2

√
n + 1. Assuming w.l.o.g. that #Ax =

√
n − ℓ for some ℓ ≥ 0

implies #Ay ≥
√
n+ ℓ+ 1 since, if #Ay ≤

√
n+ ℓ, then #Ax#Ay < n which is a

contradiction. Thus #Ay ≥
√
n+ℓ+1 which implies that #∂E(A) ≥ 4

√
n+2. The

spiral construction has exactly 4
√
n + 2 neighbors as long as k ≤

√
n and is thus

optimal in this range. It remains to analyze the case where
√
n < k ≤ 2

√
n. In that

case, assuming w.l.o.g. #Ax =
√
n−ℓ for some ℓ ≥ 0, we see that #Ay ≥

√
n+ℓ+2

since, as above, if we had #Ay ≤
√
n+ ℓ+ 1, then #Ax#Ay ≤ n− ℓ2 +

√
n− ℓ ≤

n+
√
n which is another contradiction. #Ay ≥

√
n+ℓ+2 implies #∂E(A) ≥ 4

√
n+4

matching again the spiral construction. □

The L∞−inequality.

Proof. Our goal is to show that Theorem 3 is applicable with constant c = 2. This
means that we want to establish that, for the spiral arrangement,

∂V ({v1, . . . , vN}) ⊆
{
v1, . . . , vN+2·∂V (N)

}
.

This requires us to analyze the size of ∂V (N) and to understand the neighborhood of
the first N elements in the spiral embedding ∂V ({v1, . . . , vN}). The neighborhood
question is easiest, we see that the spiral embedding satisfies

∂V ({v1, . . . , vN}) ⊆ {v1, . . . , vM} ,

where, asymptotically to leading order, M ∼ N + 4
√
N . The vertex-isoperimetric

problem on (Z2, ℓ1) has been solved byWang &Wang [20] (they solve the problem in
all dimensions), the asymptotically optimal shape is asymptotically an ℓ1−ball (in
contrast to the edge-isoperimetric problem where the optimal shape is an ℓ∞−ball).

1

2

34

5

67

8

9

10

11

12

13

N 1 2 3 4 5 6
#∂V (N) 4 6 7 8 8 9

N 1 2 3 4 5 6
M 8 11 14 15 18 19

Figure 9. Left: a sequence of nested minimizers of the vertex-
isoperimetry problem (Wang & Wang [20]). Right: values of
#∂V (n) for small n as well as the smallest m such that the neigh-
bors of the first n elements are contained in the first m elements.

The asymptotic ℓ1−ball with N elements has ∂V (N) ∼ 4
√
N neighbors. This

shows that things asymptotically match (even with asymptotic constant c = 1). It
remains to analyze the case of small values. This is done in Fig. 9: we see that
c = 1 + ε is sufficient asymptotically and that c = 2 is enough to ensure that the
initial values satisfy M ≤ N + c · ∂V (N) and thus

∥∇f∗∥L∞ ≤ 2∥∇f∥L∞ .

□
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2
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11

1

00

00

f

2

1

10

0

11

00

f∗

Figure 10. An example showing ∥∇f∗∥L∞ ≤ 2∥∇f∥L∞ is opti-
mal for the spiral rearrangement.

3.4. Rearrangements on (Z2, ℓ1) in L2. We give a short proof that no rearrange-
ment on the grid graph (Z2, ℓ1) can satisfy ∥∇f∗∥L2 ≤ ∥∇f∥L2 . This result was
recently proven by Hajaiej, Han & Hua [11], our proof is heavily inspired by theirs.

Proposition. Let 1 < p < ∞. The lattice graph (Z2, ℓ1) does not admit a re-
arrangement procedure such that ∥∇f∗∥Lp ≤ ∥∇f∥Lp for all functions f .

Proof. We first assume that there exists such a rearrangement procedure. By look-
ing at a very particular function, we deduce where the first 5 terms have to be
placed. We then show that a different function has increasing gradients under this
procedure. Consider first a function assuming the non-zero values (n, 1, 1, 1, 1) with
n ≫ 1 (and assuming value 0 everywhere else). One natural way the values could
be arranged is to have n in the center be surrounded by 4 times the value 1. This
arrangement leads to a function f1 with

∥∇f1∥pLp = 4(n− 1)p + 12.

Suppose we have any other arrangement f2: then the largest value n is surrounded
by at most 3 times the value 1 and thus

∥∇f2∥pLp ≥ np + 3(n− 1)p = 4(n− 1)p + (np − (n− 1)p).

We see that for p > 1 and n sufficiently large, we have ∥∇f1∥pLp < ∥∇f2∥pLp which
shows that the optimal arrangement, if it exists, has to be the one shown in Fig. 11.
On the other hand, if we consider a function assuming the values (1, 1, 1, 1, 1) (and
0 everywhere else), then it is easily seen that the same central rearrangement leads
to an energy of ∥∇f1∥pLp = 12 while a suitable asymmetric ‘block-’rearrangement
leads to ∥∇f2∥pLp = 10. □

n 1

010

1

0 1 0

1 1

110

0

0 1 0

Figure 11. Two competing configurations (invisible lattice points
have value 0): the configuration on the left is an optimal rearrange-
ment on the grid graph Z2 for n sufficiently large. However, the
configuration on the right does better when n = 1 which shows that
no universal rearrangement satisfying ∥∇f∗∥L2 ≤ ∥∇f∥L2 exists.

We quickly note that the proof can be quantified to yield the following.
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Proposition. Given an arbitrary rearrangement on (Z2, ℓ1), there always exists a
function f : Z2 → R≥0 such that

∥∇f∗∥L2 ≥ 1.01 · ∥∇f∥L2

Proof. We consider again a function assuming values (n, 1, 1, 1, 1) and the value 0
everywhere else. If the rearrangement happens to be the one that places the largest
value in the center and the four next values around it, then we choose n = 1 and
compare to the right configuration in Fig. 11 and obtain

∥∇f∗∥2L2 = 12 =
6

5
· 10 =

6

5
· ∥∇f∥2L2 .

If the rearrangement is of any other type, then we assume f to be as in the left
configuration of Fig. 11. The largest value in the rearrangement is surrounded by
at least one square containing the, at most sixth largest value, which happens to
be 0 in our construction. We obtain

∥∇f∗∥2L2 ≥ n2 + 3(n− 1)2 + 5.

Comparing to the original function with ∥∇f∥2L2 = 4n2 − 8n + 16 and optimizing
in n leads to the result. □

It would be nice if the constant in the estimate could be improved: it can be said
to measure the impossibility of a Pólya-Szegő inequality, see also [9].

3.5. Proof of Theorem 4. The standard coarea formula says that

∥∇f∥pLp =

∫ 1

0

∫
∂E{f≥s}

|∇f |p−1
dxds

and was already used in the proof of Theorem 2 for p = 1: the idea being each
edge contributes |f(v) − f(w)|p to the left-hand side and |f(v) − f(w)p−1 over an
interval of length |f(v)− f(w)|. We will now use a small modification of the idea:
the advantage of this new formulation is that the values in {f ≥ s} no longer show
up in the inner integral which is solely determined by s and the values outside.

Lemma (Modified Coarea Formula). Suppose ∥f∥L∞ = 1 and 1 ≤ p < ∞. Then

∥∇f∥pLp = p

∫ 1

0

∫
∂E{f≥s}

|∇min(f, s)|p−1
dxds.

Proof. We consider again a single edge (v, w) ∈ E. The contribution to the left-
hand side is |f(v)− f(w)|p. The contribution to the right-hand side is∫ max{f(v),f(w)}

min{f(v),f(w)}
(s−min {f(v), f(w)})p−1

ds =
|f(v)− f(w)|p

p
.

□

Proof of Theorem 4. Let now f : V → R≥0 be normalized to ∥f∥L∞ = 1 but
otherwise arbitrary. The modified coarea formula is

∥∇f∥pLp = p

∫ 1

0

∫
∂E{f≥s}

|∇min(f, s)|p−1
dxds.

Let us now fix an arbitrary value 0 < s < 1 and analyze the inner integral

J =

∫
∂E{f≥s}

|∇min(f, s)|p−1
dx.
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We may think of the function values of f as sorted

f∗(v1) ≥ f∗(v2) ≥ · · · ≥ f∗(vj) ≥ s > f∗(vj+1) ≥ f∗(vj+2) ≥ . . .

The integral J runs at least over #∂E {f ≥ s} ≥ #∂V {f ≥ s} different edges.
Abbreviating k = #∂V {f ≥ s}, we deduce∫

∂E{f≥s}
|∇min(f, s)|p−1

dx ≥
k∑

i=1

(s− f∗(vj+i))
p−1.

At the same time, since by assumption

#∂V {f ≥ s} ≥ #∂V {f∗ ≥ s} = #∂E {f∗ ≥ s}
as well as ∂E ({v1, . . . , vN}) ⊆

{
v1, . . . , vN+∂V (N)

}
, we deduce

k∑
i=1

(s− f∗(vj+i))
p−1 =

∫
∂E{f∗≥s}

|∇min(f∗, s)|p−1
dx

from which it follows that

∥∇f∥pLp = p

∫ 1

0

∫
∂E{f≥s}

|∇min(f, s)|p−1
dx ds

≥ p

∫ 1

0

∫
∂E{f∗≥s}

|∇min(f∗, s)|p−1
dx ds = ∥∇f∗∥pLp .

□

3.6. Proof of Corollary 1. We start with a Lemma which probably exists some-
where in the literature. However, we were unable to locate the statement for the
vertex expansion and therefore add a quick argument.

Lemma. Let G be the infinite d−regular tree. Then, for any subset A ⊂ V of
vertices, the edge boundary satisfies

#∂E(A) ≥ (d− 2)#A+ 2

and A is adjacent to at least

#∂V (A) ≥ (d− 2)#A+ 2

vertices and these bounds are best possible.

Proof. It is clear that if A is connected, then the tree-structure implies that each
outgoing edge goes to a unique vertex and thus, in that case, #∂E(A) = #∂V (A).
It remains to show that sets minimizing the vertex-neighborhood are connected.
We prove, using induction on n, that any set of n vertices minimizing the number
of adjacent vertices has to connected. The statement is vacuous for n = 1. For
n = 2, note that two connected vertices have 2(d− 1) neighbors while two vertices
that are not connected have at least 2d− 1 neighbors (with equality if and only if
they are distance 2). Let now n be arbitrary, pick an arbitrary vertex v0 ∈ A to be
the root of the tree (for navigational purposes) and pick v1 ∈ A to be a vertex that
has the largest distance from v0. The set A\{v1} has, by induction assumption, at
least (d− 2)(#A− 1)+ 2 neighbors with equality only if A is connected: moreover,
none of the d − 1 neighbors of v1 that are distance d(v0, v1) + 1 from v0 can be
neighbors of A \ v1. Adding the point v1 back, we recover at least those d − 1
neighbors while removing one neighbor from the set of neighbors (v1 itself) if and
only if A is connected. □
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Proof of Corollary 1. The Lemma implies that

∂V (N) = (d− 2)N + 2

while the canonical reordering can be seen to satisfy

#∂E ({v1, . . . , vN}) = (d− 2)N + 2

as follows: clearly, for the root, we have #∂E ({v1, . . . , vN}) = d. Then, whenever
adding a new point, we add (d − 1) new boundary vertices while removing one of
the existing boundary vertices (exactly the new point that has been added). Hence
the first condition of Theorem 4. is satisfied. It suffices to prove

∂E ({v1, . . . , vN}) ⊆
{
v1, . . . , vN+(d−2)N+2

}
.

Fixing an arbitrary vertex v1 and denoting it to be the root, we see that there are
d · (d− 1)k−1 vertices at distance k. We distinguish two cases: the first case is that
2 ≤ N ≤ d+ 1. An explicit computation shows that

∂V {v1, . . . , vN} =
{
v1, . . . , vd+1+(N−1)(d−1)

}
and, as required by Theorem 4 d+ 1+ (N − 1)(d− 1) ≤ N + (d− 2)N + 2. Let us
now assume that N ≥ d+ 2. Let us introduce k = d(v0, vN ) as the distance to the
root v0. Since N ≥ d+2, we have k ≥ 2 and thus we can narrow down the possible
value of N in terms of Nk−1, the number of points at distance at most k − 1, and
Nk, the number of points at distance at most k via

Nk−1 = 1 + d+ d

k−2∑
j=0

(d− 1)j < N ≤ 1 + d+ d

k−1∑
j=0

(d− 1)j = Nk.

The neighbors of {v1, . . . , vN} are then {v1, . . . , vM} where M = Nk + (N −
Nk−1)(d − 1). We would like to have M ≤ N + (d − 2)N + 2 = (d − 1)N + 2.
This inequality is equivalent to Nk − (d − 1)Nk−1 ≤ 2 which is easily seen to be
true (in fact, equality holds). Theorem 4. applies and Corollary 1 follows. □

3.7. Proof of Corollary 2.

Proof. We first consider the edge-isoperimetric problem. If #A = 1 and we are
dealing with a single vertex, then #∂EA ≥ 2 with equality if and only if it is on
the left boundary (vertex 1 or vertex 2 in Fig. 8). It now suffices to consider
#A ≥ 2. If A is fully contained in the upper or the lower row, one can easily see
that #∂E(A) ≥ #A+1 is quite large. It suffices to deal with the case where A has
both elements in the upper and lower row. It is easy to see (by staying in each row
and going to infinity) that for any set A with an even number of elements, the best
possible bound is #∂E(A) ≥ 2. If #A is odd, then we can consider the number of
elements in the lower row and the number of elements in the upper row and notice
that one of them has to be even and the other one has to be odd leading to at
least one edge between rows and two edges when going to ∞, thus #∂E(A) ≥ 3.
Altogether, we have

#∂E(A) ≥


2 if #A = 1

3 if #A ≥ 2 and odd

2 if #A even
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Both the snake and the lexicographic rearrangement satisfies exactly the same
bounds and thus Theorem 2 is applicable and we deduce, for both rearrangements,

∥∇f∗∥L1 ≤ ∥∇f∥L1 .

As for vertex expansion, it is easy to see that #∂V (A) ≥ 2 and that for the proposed
rearrangement, this is sharp at each step. Moreover, for the snake rearrangement
we see that

∂V ({1, 2, . . . , N}) ⊆ {1, 2, . . . , N + 3}
and since 3 ≤ 2 · 2 we have, with Theorem 3, ∥∇f∗∥L∞ ≤ 2 · ∥∇f∥L∞ . It is easy to
see that this is optimal, see Fig. ??.

2

1 0

1 0

0

2

1 1

0 0

0

Figure 12. f (left) and its snake rearrangement (right). We have
∥∇f∗∥L1 = 5 = ∥∇f∥L1 and ∥∇f∗∥L∞ = 2 = 2 · ∥∇f∥L∞ .

The lexicographic rearrangement additionally satisfies

∂V ({1, 2, . . . , N}) ⊆ {1, 2, . . . , N + 2}

which implies, with Theorem 3, ∥∇f∗∥L∞ ≤ ∥∇f∥L∞ . □

We conclude by remarking that since both the snake rearrangement and the lex-
icographic rearrangement satisfy ∥∇f∗∥L1 ≤ ∥∇f∥L1 one can apply them both
consecutively without changing the L1−norm of the derivative even though the
function is actually rearranged differently each time. This hints at an underlying
symmetry and might be useful in practice (see the ‘technique of competing sym-
metries’ in [14]). It stands to reason that examples of graphs that admit multiple
different rearrangements satisfying the Pólya-Szegő inequality are probably rare.

Acknowledgment. I am grateful to a very diligent anonymous referee whose
suggestions greatly improved the manuscript.
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