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A NOTE ON APPROXIMATE HADAMARD MATRICES

STEFAN STEINERBERGER

ABSTRACT. A Hadamard matrix is a scaled orthogonal matrix with +1 entries.
Such matrices exist in certain dimensions: the Hadamard conjecture is that
such a matrix always exists when n is a multiple of 4. A conjecture attributed
to Ryser is that no circulant Hadamard matrices exist when n > 4. Recently,
Dong and Rudelson proved the existence of approzimate Hadamard matrices
in all dimensions: there exist universal 0 < ¢ < C' < oo so that for all n > 1,
there is a matrix A € {—1,1}"*" satisfying, for all x € R™,

evnllzllz < [[Az]l2 < CVnllx]2.

We observe that, as a consequence of the existence of flat Littlewood polyno-
mials, circulant approximate Hadamard matrices exist for all n > 1.

1. INTRODUCTION AND RESULT

1.1. Hadamard matrices. Hadamard matrices are n x n matrices all of whose
entries are =1 which are rescaled orthogonal matrices: the rows are orthogonal and
thus, in particular, |[Hz|2 = v/n - ||z]|2. Small examples of such matrices are

-1 1 1 1

11 1 -1 1 1
(1), (1 —1) : 1 1 -1 1}/
1 1 1 -1

Hadamard matrices are central objects in a number of different areas, we refer to the
books by Agaian [1] and Horadam [9]. Sylvester [22] was the first prove existence
in dimensions n = 2% by noting that if H is an n x n Hadamard matrix, then
H ® Hs is a 2n x 2n Hadamard matrix. It is known that if H is a n x n Hadamard
matrix and n > 4, then n needs to be a multiple of 4. The famous Hadamard
conjecture, sometimes ascribed to Paley [16], states that this necessary condition is
also sufficient. A conjecture ascribed to Ryser [19], but possibly older [20], is that
the 4 x 4 Hadamard matrix shown above is the largest circulant Hadamard matrix.

1.2. Approximate Hadamard matrices. Motivated by an explicit problem of
Riesz bases in random frames, Dong and Rudelson [8] recently introduced the (in-
trinsically interesting) concept of approzimate Hadamard matrix: this is a matrix
A whose entries are +1 that is ‘close’ to an isometry in the sense that

cllz|| < JAz| < Cllz|| and the ratio C/c is small.

¢ is the smallest singular value of the matrix A while C is the largest. The ratio
k(A) = C/c > 1 is also known as the condition number which is 1 if and only if the
matrix is a (scaled) orthogonal matrix. One has k(A4) > 1 when n is not a multiple
of 4 (since no Hadamard matrix exists): can the condition number stay bounded?
Can it be close to 1?7 Other notions of ‘almost’ Hadamard matrices exist [3] 10} [17].
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Theorem (Dong-Rudelson [8]). There exist universal 0 < ¢ < C < oo such that
for all m > 1, there exists a matriz A € R™*"™ whose entries are 1 such that

cv/nllzllz < [[Az[l2 < CV/nllz]l2.

The proof is highly nontrivial and uses a number of sophisticated ingredients. One
ingredient is a construction due to Matolcsi-Rusza [14] to build approximate ¢ x
¢ Hadamard matrices by using quadratic residues in Z,: the structure of Gauss
sums implies flatness of the Fourier spectrum. Another ingredient is Vinogradov’s
theorem that every sufficiently large odd number is the sum of three prime numbers,
a sophisticated gluing procedure is then used to conclude the result.

1.3. Result. The main purpose of this short note is to note that the above result
is true under the additional condition that the matrix is a circulant matrix with
entries £1. Recall that a circulant matrix is a matrix of the form

ap ap—1 QAp—2 ... Q1
aq ag Apn—1 ... QA2

A =
ap—1 QAp—2 Gp-3 ... Qg

These matrices have a number of desirable properties: in particular, they are diag-
onalized by the discrete Fourier Transform and inversion is fast. They can also be
interpreted as discrete convolution operators. Hadamard matrices are useful and
circulant matrices are useful, their (approximate) combination may also be useful.

Theorem. There exist universal 0 < ¢ < C' < oo such that for all n > 1, there
exists a circulant matriz A € R™"*™ whose entries are &1 such that

cv/nllzllz < [[Az[l2 < CV/nllzl2.

The argument is short at the cost of invoking a powerful result: we prove that
flat Littlewood polynomials can be used to construct circulants that are also ap-
proximately Hadamard. Balister-Bollobds-Morris-Sahasrabudhe-Tiba [2], solving a
long-standing conjecture of Littlewood [13], proved that flat Littlewood polynomi-
als exist and the result follows. As a consequence, for a suitable (absolute) choice
of constants 0 < ¢ < C < oo, one might be inclined to believe that a great many
approximate Hadamard matrices should exist: even the strong requirement of be-
ing a circulant is not prohibitive. It could be nice to have explicit constructions of
approximate Hadamard matrices with C/c guaranteed to be small.

2. PrROOF

Proof. The singular values of a circulant A are given by the absolute value of its
(possibly complex) eigenvalues (see, for example, [I2]). There are several ways of
seeing this: a canonical approach is to use the Fourier matrix

F = L (6—27rimk/n)n_l

\/ﬁ m,k=0
and note that every circulant matrix can be written as A = F~!DF for some di-
agonal matrix D. This is simply one way of stating that (discrete) convolution is
diagonalized by the (discrete) Fourier transform. The singular values of A are the
square root of the eigenvalues of AT A which can be computed from that repre-
sentation. The question is therefore whether we can find a circulant matrix with



the property that the absolute value of its eigenvalues are all comparable up to
a universal multiplicative factor that is independent of the size of the matrix. An
(unordered) list of the eigenvalues A; of a circulant os given by, where 0 < j < n—1,

Aj =ap+ a1’ + asw® + - + ap_qw™ I with  w = exp(27wi/n)

being a primitive n—th root of unity. Introducing the polynomial

p(z) = ao+arz+asz* + -+ ap_12"""

we see that

a(A) = Dlzli=1 [Az]| Maxo<j<n A
min||z||=1 Az || ming<;<n |A;|

_ max.n—1 [p(z)| _ maxj;=1 Ip(2)]

© minge—y [p(2)] ~ min; |-y [p(z)|

A polynomial

p(z) =ag+ a1z + a2+ 4 ap_12" !

is said to be a Littlewood polynomial if all coefficients are in {—1,1}. Balister-
Bollobés-Morris-Sahasrabudhe-Tiba [2] showed the existence of constants 0 < ¢ <
C < oo such that for each n € N there exists a Littlewood polynomial satisfying

eV < Ip(e)| < C.

This shows that taking the coeflicients of a flat Littlewood polynomial gives rise to
a circulant approximate Hadamard matrix which completes the argument. (Il

3. REMARKS

3.1. Upper bounds. There have been extensive efforts to find ‘good’ polynomials:
a celebrated example are the Golay-Rudin-Shapiro polynomials [7], [I8, 2I] which
are known to satisfy the upper bound [p(e®)| < C'y/n. Such polynomials give rise
to circulants satisfying ||Az| < C+/n|jz| and there are at least some guarantees
that the lower bound is not violated on too large a subspace. We note that this
is better than choosing the +1 coefficients randomly: in that case one only gets
an upper bound of < Cv/nlognlz||. However, it is less clear whether any of this
can be used to perturb the matrix A into a non-circulant that is approximately
Hadamard with small constants.

3.2. Lower bounds. As an example in the other direction, we note the following
nice and completely explicit construction by Carroll-Eustice-Figiel [6]: if P(2) is
a polynomial of degree d with all coefficients in 41, then Q(z) = P(z)P(z%+!) is
a polynomial of degree d(d + 2) all of whose coefficients are +1. If |P(e®)| > 1,
then the minimal modulus of @ is at least the square of the minimal modulus of P
and one obtains growth. Initializing this procedure with a very good polynomial of
degree 12, Carroll-Eustice-Figiel show that the arising sequence satisfies

min |P(e®)| > (deg P)431.

This leads to a sequence of circulant matrices satisfying || Az|| > ¢-n%43||z|| which
is not as good as the main result but follows from a very simple iterative procedure.
One wonders whether other such procedures might exist.



3.3. Ultra-flat polynomials. It is a famous open problem whether ultra-flat poly-
nomials exist: these are polynomials with +1 coefficients such that

(1 Wi < Ip(e)] < (1 + )V

(for any € > 0 and n sufficiently large depending on ). We note that when one
relaxes the condition a; = +1 and allows for complex coefficients, |a;| = 1, then
Kahane [I1] showed that such ultraflat polynomials exist (see also Bombieri &
Bourgain [4]). This problem is also naturally connected to the problem of non-
existence of Barker sequences since Barker sequences could be used to construct
ultra-flat polynomials [5]. Recent extensive numerical work by Odlyzko [15] suggests
that ultraflat polynomials with £1 coefficients might simply not exist.

All these ideas suggest a natural conjecture which unifies a strenghtened version of
Ryser’s conjecture as well as a ‘sampling’ version of the conjectured non-existence
of ultra-flat polynomials. We state them separately.

Conjecture (Version A: Quantitative Ryser). There exists 9 > 0 so that for all
n >4 and all n X n circulants with +1 entries there exist a vector x € R™ with

[ Azl = v/ - Jlzll| = eon'/*.

This conjecture says that circulant matrices with £1 entries not only fail to be
Hadamard matrices, they do so in a precise quantitative sense. We note that
the power 1/4, if true, would be optimal up to logarithmic factors: a classical
argument, first given in Matolcsi-Ruzsa [I4] Theorem 9.2] and also discussed by
Jaming-Matolcsi [10, Proposition 3.2] and Dong-Rudelson [8, Corollary 2.4], shows
that when ¢ is prime, a small probabilistic modification of the Legendre symbol
in Z, leads to circulants attaining the upper bound n'/4\/Togn in the conjecture.
The construction, while probabilistic, is explicit enough to be easily implemented
on a computer (see below). It requires a ‘magic’ ingredient, Gauss sums giving a
wonderfully flat Fourier spectrum; thus, while not inconceivable that better con-
structions exist, one would expect that they would require ‘at least as much magic’.
By the reasoning above, one is led to a natural ‘sampling’ variant of the ultra-flat
polynomial problem: instead of asking the polynomials to be flat everywhere, one
could asks them to only be flat at roots of unity. This is a very different problem.

Conjecture (Version B: Ultra-flat at Roots of Unity). There exists g > 0 so that
for all n > 4 and every polynomial

p(z) =ap+arz+---F+a, 12"t with a; = +1

one has

2mij 1/4
o222l (55 [ = v 2 ot
These two conjectures are equivalent. Since the conjecture implies Ryser’s conjec-
ture concerning the non-existence of circulant Hadamard matrices, it is presumably
difficult. On the other hand, maybe it is simply too strong; that would also be in-
teresting as it would lead to even better ‘almost-Hadamard’ circulant matrices (for
Version A) and a rather interesting sequence of polynomials (for Version B). We
note that it is already interesting that the scaling changes quite dramatically when
switching from ultra-flat (from n'/?) to ultra-flat at roots of unity (to n'/4, at least
when n is prime). To illustrate this, we took the 500th prime number n = 3571
(with \/n = 59.7...) and illustrated the construction in a particular (random) in-
stance. This leads to a complex polynomial of degree n — 1 whose behavior is shown



in Fig. 1 (for a very small range of values, p(e®t) for 1 < ¢t < 1.05, otherwise the
picture would be mainly black).

FIGURE 1. Left: p(e®) for 1 <t < 1.05. Right: a histogram of
the values of |p () | when evaluated at the roots of unity.

We see that said polynomial is far from ultra-flat, however, it has very good be-
havior when evaluated at the n roots of unity. In particular, one can see hints of

a Gaussian centered at /n with standard deviation ~ n

1/4 This particular poly-

nomial corresponds to a 3571 x 3571 circulant matrix with £1 entries and with
condition number ~ 2.42. Asymptotically, the construction leads to n X n circulant
matrices with 41 entries and a condition number of 1+ ¢-n~'/4/logn (n prime).
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