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ABSTRACT

Mutation operators are crucial for evolutionary algorithms to make
progress through a search landscape. Sometimes a mutation strat-
egy that works in one part of the landscape is less effective in other
regions of the landscape. If nothing is known about the best muta-
tion operator, many strategies (such as self-adaptation, heavy-tailed
mutation, variable neighborhood search) exist to overcome this.
However, in some cases, some limited information may be avail-
able, either a priori or after probing. In this paper, we study the
setting of a mixture of binomial distributions for pseudo-Boolean
optimization. We show that, when a limited amount of information
is available, evolutionary algorithms using mutation based on a
mixture of binomial distributions can hill-climb and escape local
optima efficiently.
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1 INTRODUCTION

Designing efficient optimization algorithms is a challenging task.
Multiple factors complicate this task, for example, how much in-
formation is known about the problem’s structure and how much
time is available to come up with a solution. Off-the-shelf heuristics
like evolutionary algorithms usually require tuning before being
deployed. This tuning is problem-sensitive and is influenced by
the search landscape at hand. A general assumption about the
landscapes of hard optimization problems is that they contain
pathological features such as multiple local optima, fitness val-
leys, deceptive regions, neutrality, etc. These structural features are
problem-dependent and impact the performance of optimization
algorithms. In a fitness landscape, a locally optimal solution is a
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solution where its neighbors do not contain improving solutions.
Local optima bend the fitness landscape and create valleys of less
fit candidate solutions. Once an algorithm hits a local optimum, it
needs to take steps to escape fitness valleys in order to find fitter
solutions.

Escaping local optima can often require considerable changes
to the local optimal solution. For example, in the iterated local
search algorithm [15], a perturbation mechanism coupled with a
local search algorithm are used to escape locally optimal solutions.
Evolutionary algorithms employ several strategies for navigating
fitness valleys. Populations allow the algorithm to simultaneously
maintain different optimization paths, and non-elitist replacement
mechanisms allow valleys of lower fitness to be traversed. Muta-
tion and crossover can also be leveraged for crossing fitness valleys
[4, 6]. On one hand, a large mutation rate makes significantly large
jumps in Hamming distance, whereas a comparatively small mu-
tation rate (e.g., the commonly recommended rate of 1/n for bit
strings of length n) do not often make large jumps, which can make
them easily stuck at local optima. On the other hand, a smaller
mutation rate allows an algorithm to hill-climb efficiently, but does
not easily jump over fitness valleys, especially in the context of
elitist algorithms.

In this paper, we consider the question of designing mutation
operators that can, at the same time, hill-climb and jump over fit-
ness valleys efficiently. Our idea is to have two components, one
that enables hill-climbing efficiently and another one that would
enable an optimization algorithm to escape from local optima fast.
Concretely, we design our mutation operator by mixing the bino-
mial distribution using the mutation rate %, with another binomial
distribution that uses a mutation rate proportional to the jump size.
The motivation is the simple observation that in a multi-modal
fitness landscape with local optima and valleys, an optimization
algorithm would hit a local optima and get stuck until fitter solu-
tions are sampled. If an algorithm is equipped with the classical %
mutation rate, it is shown that it will hill-climb efficiently. But this
operator becomes inefficient to escape local optima. In an elitist
setting, the probability that mutation with a 1/n rate finds the exact
and correct bits to flip in order to sample fitter candidate solutions
diminishes exponentially as the fitness valley grows.

If nothing is known about the landscape, then most likely the best
strategy is to use heavy-tailed mutation or self-adaptation [1, 12].
However, if a small set of good candidates for different mutation
rates are available a priori (due to problem analysis or probing),
a mutation rate distribution consisting of a mixture of binomials
might be more efficient. Considering mixtures of distributions is
especially interesting from the perspective of automated algorithm
configuration as it would enable tuning packages like i-race [14] to
search for the best mixture of distributions to use.
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2 RELATED WORK

The challenges posed by multimodal fitness landscapes have been
addressed with a number of different approaches. Most of these
approaches focus on designing EAs that can escape local optima
efficiently.

When no a priori information is available about the best mutation
rate for escaping local optima, one of the best approaches is to
use so-called heavy-tailed mutation [6]. In this scenario, a random
mutation rate d/n is used each time where d is drawn from a power-
law distribution. In the context of Jumpy, functions, this approach
results in a runtime that is only a polynomial factor in m slower
than the optimal mutation rate for jumping over the gap from the
local optimum to the optimal solution [6].

A drawback to the canonical Jump benchmark function is that it
is fairly well structured in the sense to leave a local optimum, it is
necessary to jump directly to the global optimum. This behavior
may not generalize well to realistic functions, and to address this,
Bambury, Bultel and Doerr [2] introduced the generalized jump
functions in which valleys of low fitness with tunable width can lie
at an arbitrary distance from the global optimum. They extend the
results of heavy-tailed mutation to this class, but also point out that
efficiencies on randomized local search equipped with stagnation
detection [17] do not translate to the generalized scenario.

Friedrich et al. [10] investigate heavy-tailed mutation (both
power law mutation and a probability that does not exponentially
decay) on Jump as well as the combinatorial optimization problems
minimum vertex cover and maximum cut.

Rajabi and Witt [16] introduced a stagnation detection mechanism
that operates by systematically increasing the mutation rate as
long as an improving move has not been generated. They proved
that the expected runtime on JumMp is asymptotically equivalent to
the optimal mutation rate and outperforms heavy-tailed mutation
approaches. The same authors developed this idea further to add
the concept of radius memory that incorporates past successful
mutation strength values into the calculation of the budget [17].
Recently, Doerr and Rajabi [7] have also investigated combining
stagnation detection with heavy-tailed mutation.

Witt [19] further investigated variants of the Jump function in-
cluding the generalized jump function mentioned above, as well
as a version in which the optimum appears within the fitness gap.
For the former, he showed that techniques (such as the cGA and
a majority voting algorithm) that estimate the relative benefit of
setting bits to one or zero can cross the gap of the offset jump
even with comparatively large gaps. In contrast, the majority vote
approach fails when the optimum is moved into the gap whereas
the the cGA remains efficient.

Lehre and Qin [13] also study settings in which a static mutation
rate fails. In particular, they analyze self-adaptation of two mutation
rates in the context of non-elitist EAs under a prior noise model.
They also prove that a uniform mixture of two mutation rates can
optimize LEADINGONES in quadratic time, but fails in certain noisy
envrionments. In [8], Doerr et al. studied the (1+1) EA on linear
functions in which mutation is an arbitrary unbiased distribution
over bit flips. They provided runtime bounds for linear functions
taking into account only the mean of the distribution and the single
bit-flip probability.
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Figure 1: Mixture of two binomial distributions. ¢ is the
number of bits to flip.

3 ALGORITHMS

We consider the (1+1) EA detailed in Algorithm 1 as a simple evo-
lutionary algorithm framework. The (1+1) EA maintains a single
candidate solution, a bit string of length n, that is mutated using
a mutation operator in each generation. The produced solution
replaces the current solution if it has a fitness superior or equal
to the current solution’s fitness. This process of mutation, fitness
evaluation and replacement is repeated until a stopping condition
is met. The mutation is carried out by sampling the number ¢ of
bits to flip from a distribution D. In the common setting of EAs,
mutation is carried out by flipping each bit with probability % This
is equivalent to sampling the number ¢ bits to flip from the bino-

mial distribution Bin (n, %) and then choosing uniformly which ¢

bits of the n to flip. As we are interested in different probability
distributions to design mutation operators, we define our (1+1) EA
independently of the distribution used. Once the number of bits to
flip is sampled, the flip(x, ) function is used to flip ¢ different po-
sitions in the offspring, and these locations are sampled uniformly
at random.

Throughout this paper, we focus on distributions defined over
binary search spaces X = {0, 1}". For a binary search space, we can
use the Hamming distance between two solutions which counts
the number of disagreements between two strings. Formally, let
x,y € X be two candidate solutions; the Hamming distance between
xandyis H(x,y) = {i € [n] | x; # yi}|.

Algorithm 1: (1+1) EA maximizing a function f: X — R.

1 x « initialize solution u.a.r;

2 while stop condition not met do
3 sample £ ~ D;

y « flip(x,?);

if f(y) > f(x) then

6 Lx<—y;

-

«w

7 return Xx;

3.1 Binomial distribution based mutation
operator

The binomial distribution Bin(n, p) is a probability distribution

on {0, 1,...,n}, which translates to a distribution over the search

space via uniform bit flips. Concretely, when using the binomial
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Algorithm 2: flip(x, )

1 select ¢ different positions iy, ..., i € [n] v.ar;
2 Y — x5

3 foreachiy,..., iy do

1 | yli] « 1-ylil;

5 return y;

distribution the probability of obtaining solutions at Hamming
distance H(x, y) is

Pr[H(xy) = 0] = (Z)p‘ﬂ -

A mutation operator based on this distribution can be implemented
by setting the parameters n and p. As noted above, the classical
setting for EAs is p = %, and when using this mutation probability,
there is a probability of (1 - %)” to not flip any bit. Unless the
optimization scenario at hand for which evaluating the same solu-
tion multiple times can be beneficial, as when optimizing a noisy
problem, it does not make sense to evaluate the fitness of the solu-
tion again. To mitigate this, one could condition the distribution
on nonzero value, e.g., by resampling from the distribution until a
nonzero value is obtained. As we do not consider noise in this paper,
repeatedly evaluating the same solution is a waste of computational
budget. Thus, when the sampled number of bits to flip £ equals zero,
we resample from the distribution until £ > 1. As noted by [9], this
resampling results in a slightly modified probability distribution

()t -p)nt
1-(1-p)"

Throughout the rest of the paper, except where otherwise noted, the
binomial distributions we consider use this resampling technique.

Pr[H(x,y) =¢] =

3.2 Mixed binomial based mutation operator

The mixed binomial distribution is a probability distribution that
mixes multiple binomial distributions into a single distribution. Con-
sider a mixed binomial distribution with ¥ components. Each com-
ponent i € [k] is described by a binomial distribution Bin(n;, p;),
with its own parameters n; and p;. We associate a mixing coeffi-
cient «; to each distribution, such that 0 < «; < 1 and Z;‘:l a; =1,
The probability mass function of the mixed binomial distribution is
given by the weighted sum of the probability mass functions of the
individual binomial components:

Pr[H(xy) =] = ) ai(';")pf (1= p)" /(1= (1= p)™).
i=1

In this paper, we focus on the simplest nontrivial setting of
k = 2. Let p; and ps be the distributional parameter binomial
distribution respectively, and a the mixing coefficient. We will
study the distribution formally stated below.

D = aBin(n, p1) + (1 — a) Bin(n, p2).

In the case of two components, the probability mass function be-
comes Pr[H(x,y) = ] = a(})pi(1-p)" /(1 - (1-p1)™) + (1 -
a) (7)p5(1 = p2)" /(1= (1= p2)™).
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Using this distribution, we define the mixed binomial mutation
operator as shown in Algorithm 3 (we refer to this operator as
m-bin). The mixed binomial mutation operator proceeds by se-
lecting the component to use according to the mixing coefficient.
The selection of the component is done as follows. We sample r
uniformly at random and compute the cumulative sums of mixing
coefficients. For the first mixing coefficient with a cumulative sum
greater than or equal to r, we sample the variate £ from the corre-
sponding binomial distribution and return ¢. A subsequent call to
flip(x, ¢) flips ¢ bits uniformly at random.

Algorithm 3: Mixed binomial distribution m-bin
1 r « rand([0, 1]);

2 for i€ [k] do

3 C e« Z;zl aj;

4 if r < C then

5 sample £ ~ Bin(n, p;);

6 return /;

3.3 Heavy-tailed mutation operator

The heavy-tailed mutation operator was proposed in [6]. In a heavy-
tailed operator, the number of bits to flip is chosen according to

the power-law distribution Df /2 for a fixed f. The main idea be-

hind using a discrete power-law distribution Df /2 is to increase
the chances of flipping a large number of bits. More specifically,

the distribution Df is defined as follow. Let > 1, if a random

/2

variable X follows Df/z then Pr[X = «] = (Cf/z)_la_ﬂ, where

Cf/z = Z?:/lz ip. Using this distribution, Doerr et al. [6] defined
the fast mutation operator fmutg. The mutation operator proceeds
by sampling the mutation rate « from [1,n/2], and flipping each
bit in a binary string with a probability of a/n.

4 ANALYSIS

4.1 Pseudo-Boolean Optimization Problems

We consider optimization problems defined over binary strings of
size n, {0, 1}".

4.1.1  OneMax function. We use the ONEMAX function as a simple
model for assessing the hill-climbing performances of using mixed
binomial distributions. We focus on the impact of the mixing coef-
ficient « on the leading constant in the nlogn optimization time.
Indeed, as far the % mutation rate is used with constant probability,
then we trivially still have an O(nlogn) upper bound. The inter-
esting point is how the mixing with of % with other distributions
might impact this bound.

ONEMAX(x) = in. (1)
i=1

4.1.2  Generalized Jump. The generalized jump class of functions
was recently introduced independently by Bambury et al. [2] and
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Rajabi and Witt [17]. We consider this function class as a simple
model to study the capacity of (1+1) EA to escape locally optimal
solutions. For x € {0, 1}", the generalized jump function is defined
as

|x] if|x|<n-kor|x|>n-k+34.
Jompy 5(x) = ) @)
—|x| otherwise.
where |x| = [{i : x; = 1}| = X, x; is the number of ones in a

string, § is the gap size, and k tunes the location of the gap size on
the Jumpy s (i.e., the larger k, the further the gap is from the global
optimum.).

4.1.3 MAX-SAT. One of the most studied problems in optimiza-
tion and artificial intelligence is propositional satisfiability (SAT).
Indeed, this problem is NP-complete, and many hard combinatorial
problems can be naturally reduced to SAT. It can be used to repre-
sent many crucial problems, for instance in systems verification.
SAT is a decision problem that can be stated as follows. A SAT
formula is defined as a conjunction of m clauses ¢c; A - - - A ¢y Let
X1,...,Xp be Boolean variables. A clause is defined as a disjunction
of k literals I; V - - - V I, where a literal is a Boolean variable x; or
its negation —x;. A formula is satisfiable if there is an assignment
to the Boolean variables such that the formula is true.

The optimization problem that corresponds to SAT is the MAX-
SAT problem. In the MAX-SAT problem, the objective is to find an
assignment to the boolean variables that maximize the number of
true clauses in a propositional formula. Formally we can state the
MAX-SAT as:

maximize fmaxsat

. . 3
where fiaxsat (x) := |[{c € F : c is satisfied by x}|. @
where F is the set of clauses and x is an assignment to the {x1,...,x,}
Boolean variables.

4.2 Theoretical Analysis

Runtime bounds for static mutation rates can usually be easily
be translated to the mixture mutation setting as we show in the
following lemma.

LEMMA 4.1. Let T* = T*(n) be the runtime of the (1+1) EA on
some problem class using a static mutation probability p* = p*(n).
Suppose E[T*] < g(n) where g(n) is a bound obtained using the
fitness level method [18].

Let D be a mixture of binomial distributions with {p1, p2, ..., px}-
Ifp* € {p1,p2, ..., px}, then the expected runtime of the (1+1) EA us-

ing binomial mixture mutation D is bounded above bymax;{a; ' }g(n).

If D is a uniform mixture, then the expected runtime is at most kg(n).

PRrOOF. Let {Ay,...,Ap} be a partition of the search space into
nonempty sets such that forall 1 < i < j < m and for all x € A;,
y € Aj it holds that f(x) < f(y) and Ap, contain only global
optima.

Let s; be a lower bound on the probability of the (1+1) EA using a
static mutation rate p* creating an offspring in A j 1 U- - -UAy, given
that the current point is in A j, Then by the fitness-level method [18,
Theorem 2], E[T*] < Z;":_ll L = g(n).

Sj
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Figure 2: The landscape of generalized Jumpy 5.

Now consider the runtime of the (1+1) EA on the same prob-
lem class with binomial mixture mutation 9 with parameters
{p1,- .., px}, and suppose there is some 1 < i < k such that p; = p*.
It follows that level A; can be escaped in one step by choosing muta-
tion rate p; (which happens with probability «;) and then mutating
the point with mutation rate p*. Thus the escape probability for A;
in this setting is at least a;s;. Again, by the fitness level method,

the expected runtime is bounded above by

m—1 1 m-—1 1
=— ) — < max{a; '}g(n).
aiSj aj = i i

©w

In the case of a uniform mixture, a; = 1/k forall 1 < i < k, so we
would have maxi{ai_l} =K. O

For generalized jump function with parameters k and 8, the
asymptotically optimal static mutation rate was proved by Bambury
etal. [2].

THEOREM 4.2 (THEOREM 8 OF [2]). Letd < k = o(n1/3). For the
(1+1) EA with static mutation rate on JuMPy s, the mutation rate in

[o, %] that asymptotically minimizes the expected runtime is §/n and

results in a runtime of
k en\6
(1+0(1))(5) (%)

Moreover, for any constant € € (0,1), a mutation rate of (1 + €)d/n
results in an increase in the runtime by a factor exponential in J.

-1

Theorem 4.2 provides the optimal static mutation rate for the
(1+1) EA, which is required for the process to jump over the size §
gap. However, in the case where § is large, once the process clears
the gap, the §/n mutation rate could be too strong to hill-climb
efficiently to the global optimum.

To illustrate this, we consider two subsets of the landscape of
Jumpy 5: the left slope, which is the set L = {x € {0,1}": f(x) <
n—k, and the right slope, which isthe set R = {x € {0,1}": n—k+J <
f(x) < n.This is illustrated in Figure 2. The optimal static mutation
rate for generalized jump is too high to efficiently hill-climb on the
right slope. This is captured by the following theorem.

THEOREM 4.3. Letn—k+38 > n/2 withd = w(logn). Consider the
(1+1) EA with on Jumpy s using the optimal static mutation rate of
&/n. After the first time the EA generates some point on the right slope,
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it requires in expectation at least e%/2 additional steps to generate the

global optimum, which is superpolynomial in n.

ProoF. We consider the point in time after the (1+1) EA using
static mutation rate of §/n generates for the first time a point x € R
on the right slope of the Jumpy 5 landscape. Since the (1+1) EA is
elitist, after this time, every subsequent point accepted must have
fitness at least n — k + §, and thus must have at least n — k + & ones.
A necessary condition for generating the global optimum is that
mutation must not flip any of these ones to zero. For a §/n static
rate, the probability that mutation does not flip any ones to zero is
thus at most

n—k+6
(1 _ é) . (_M) < o9

n n

since (k — §)/n < 1/2. The waiting time until this event occurs
is distributed geometrically with success probability bounded as
above, and the expected waiting time until the global optimum is
generated is at least e%/2 as claimed. O

A simple binomial mixture mutation that includes both the opti-
mal rate and the 1/n rate alleviates the problem of hill-climbing the
right slope, which we show in the following theorem. Furthermore,
it would only contribute at most an extra « factor to the waiting
time to reach the right slope from the left slope.

THEOREM 4.4. Let & € (0,1) and let D be a mixture of two bi-
nomial distributions a Bin(n, 1/n) and (1 — a) Bin(n, §/n). Consider
the (1+1) EA with on Jumpy s using binomial mixture distribution D.
After the first time the EA generates some point on the right slope, it
requires in expectation at most (en/a) log n + en/a additional steps
to generate the global optimum.

Proor. Consider the point in time after the process has gener-
ated a point x € R on the right slope. Hereafter, it is always possible
to generate an improving move by flipping a single zero bit to a
one. If x is the current point, this event occurs with probability

a,(n—|x|),(1_1)”‘l , @ln—lx)
n n en

We may thus consider the potential function ¢ = x +— n — |x]|.
Starting from the first time after a point on the right slope is gen-
erated, let (X;);en be the stochastic process corresponding to the
value of the potential function in iteration t of the EA. Then the
drift of the potential is bounded as

as
E[X; = X1 | Xp =5] 2 —.
en
Let T = inf{t: X; = 0} be the number of iterations until the po-
tential is zero (and thus the optimum has been generated). By the

multiplicative drift theorem [5],

E[T] < enlog(n —k+9) . g.
a a
m}

Note that the runtime bounds of Theorem 4.3 and 4.4 assume
standard mutation without the resampling procedure outlined in
Section 3.1. Using the resampling procedure speeds up the runtime
by a constant factor that lies between 1/(2e) and 1/e, but this does
not impact the bounds.
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Figure 3: Mean optimization time, and standard deviation,
divided by nlog(n) of (1+1) EA with mixed binomials on One-
Max as a function of n for different a.

4.3 Experimental Analysis

In this section, we detail our experimental analysis. We run EAs us-
ing mutation operators based on various distributions on different
pseudo-boolean benchmarks. We first present our experiment de-
sign in section 4.3.1, then report our results and analysis in section
4.3.2.

4.3.1 Experiment Design.

Optimization time analysis. In this first empirical analysis,
we focus on the growth of the expected optimization time as a
function of problem size. We compare mixed binomial mutation
operations against using a single binomial distribution, specifically
the classical Bin(n, 1/n) mutation operator. We also considered
the heavy-tailed mutation operator. As benchmark problems, we
consider the ONEMAX function, the generalized Jump s function,
and the MAXSAT problem.

Our motivation for choosing the ONEMAX function is to char-
acterize how well the (1+1) EA equipped with mixed binomial
mutation can perform simple hill-climbing. We consider ONEMAxX
instances with dimension n € {100, ...,1000}. We consider a mixed
binomial distribution with two components, where p; = % and

p2 = w. For the mixing coefficient @, we consider the follow-
ing settings {%, %, % %}.

With the generalized Jump function, our goal is to consider a
simple multimodal model to characterize the capacity of mixed
binomial mutations on fitness landscape with valleys, local op-
tima, and global optima solutions. We consider the following pa-
rameters for Jumpy s. For the problem size n € {50,...,150} and
k € {iflog(n)] | i € {2,...,9}}. The gap size § is considered as
a function of the parameter k. That is, for a fixed k we consider
de {% | i € {4,...,10,}}. The shown statistics', the mean and the
standard deviation, are computed over 100 independent runs of the
algorithm for each considered instance. For each run, we fixed a
budget of 10n3 function evaluations, after which the algorithm is
stopped.

'We use log,, base to plot the number of fitness evaluations.
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Figure 4: Mean optimization time of (1+1) EA with mixed binomials on Jump; s as a function of n,k, § for different a. (a)

k = 8[log(n)1,8 = k/4. (b) n = 100,8 = [log(n)]. (¢) n = 100, k = 40.

Mixing coefficient and mutation rates. For the second empir-
ical analysis, we focus more on understanding mixing of binomial
distributions. We study the interaction between the mixing coeffi-
cient and the choice of mutation rates for each binomial distribution.

MaxSat instances. For the MAXSAT problem we consider in-
stances from SATLIB [11] benchmark which are uniform random
instances and real-like instances in which variable frequency fol-
lows a power law [3]. From SATLIB, we selected randomly three in-
stances with 50 variables. These instances are uf50-062, uf50-077,
and uf50-084. The number of clauses for all three instances is 218.
All three instances are satisfiable. For the real-like instances, we
used the generator of [3] to generate three instances with 50 vari-
ables. For these instances, the number of clauses is 150, 165, and 175
respectively. We consider these clause counts so that the ratio of
clauses to variables (i.e., 3.0, 3.3, and 3.6 for the consider instances)
is in the region of difficult instances as shown in [3]. The power
law’s parameter is set to f# = 2.5. For both uniform and power law
instances, every clause was length three.

4.3.2  Experimental results.

Hill-climbing behavior. Figure 3 reports the mean optimization
time of (1+1) EA using mixed binomial operator as a function of
problem dimension n on ONEMAX, for different mixing coefficient a.
We notice that (1+1) EA with m-bin hill climbs efficiently, especially
for higher « values. Notice also that for the considered range of
mixing coefficients, the (1+1) EA optimizes ONEMAX in nlog(n).
The mixing coefficient impacts the leading constant and induces a
slowdown factor proportionate to a. The lower «, the higher the
leading constant. This behavior is expected as small « allows more
trails to the second component, which becomes inefficient as the
algorithm gets close to the optimum especially when the mutation
probability of this component is high.

Analysis of (1+1) EA on Jumpy 5. In figure 4, we plot the mean
optimization time of (1+1) EA with mixed binomial mutation op-
erator as a function of problem size n and parameters k and . All

the experiments reported in this figure are carried out with the
distribution a Bin(n, 1/n) + (1 — a)Bin(n,d/n). Note that « = 0
means that we only use the Bin(n, §/n) as a probability distribution.
From figure 4a where k = 8log(n) and & = k/4, we can see for the
considered problem sizes that the (1+1) EA with a mixed binomial
distribution can solve the Jumpy s efficiently compared with only
using the optimal static Bin(n, §/n) for mutation.

Figure 4b shows the optimization time as a function of parameter
k. In this experiment, we fix n = 100 and § = log(n). We can see
that when k is set to high values (k > 20), the (1+1) EA with mixed
binomial distributions performs better compared to only using §/n
as a mutation rate, especially for small mixing coefficient values.
This can be explained by the fact that once (1+1) EA jumps over
the gap, using the mixing can find improving solutions on the right
slope faster compared to only using d/n as it can flip single bits
more often.

To understand the impact of the gap size in Jump s, we plot
in figure 4c the optimization time of (1+1) EA as a function of 6.
Here we set k = 40 and n = 100. We can see that (1+1) EA with
mixed binomials performs better compared with only using §/n.
We also notice that for large §, taking a small mixing coefficient
further improves the optimization time. This is expected, as a larger
gap size requires more time to jump over, thus giving more trials
to the second component (i.e., taking small &) would improve the
optimization time. At the same time, large @ would increase the
optimization time as Bin(n, 1/n) probability is unlikely to sample
solutions at some Hamming distance greater than 6.

Mixed binomial mutation operator analysis. After character-
izing the optimization time of the (1+1) EA using mixed binomials
on JuMP s, now we aim to better understand the behavior of the
mixed binomial mutation operator by considering the interaction
between the binomial distribution and the mixing coefficient. We
focus on the interaction of the second component Bin(n, p2) and
a. For all the experiments we report here we fix p; = % In figure
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Figure 5: Heat-map of mean optimization time of (1+1) EA
with mixed binomial on Jumpss g as a function of « and p;
(p2 = c2/n). n = 100.

5, we plot the heat-map of mean optimization time for the inter-
action of a and pp. We fix n = 100,k = 25,8 = 8, and consider
pre{d—-4,...,6+4}and @ € {0.0,0.1,...,0.7}.

In the heat-map figure 5, we can observe how varying the setting
of the second component (i.e., p2) and a impacts the optimization
time of (1+1) EA. We see that for py small than § quickly increases
the optimization time, compared to when py is set to values greater
than 8. Surprisingly mixing p; = 1/n with p2 = (5 + 3)/n seems
to perform better than mixing 1/n with §/n. We think this can be
explained by the fact that large § increases the chances of flipping
more than § bits, compared to setting p, = /n. This also tells us
that we do not need to the exact gap size, and that we can allow
some uncertainty in the setting of p2. We expect this to be a strength
for mutation operators especially for complex landscapes in which
valleys are of different sizes.

To complete our analysis of the mixed binomial parameters,
we plot the impact of the mixing coefficient « in figure 6 on the
performance of the (1+1) EA. This figure indicates that lower «
performs better, i.e., 0.4, 0.1 for § = 4, 6, respectively. For the case of
6 = 8 and k = 25, taking a between 0.0 and 0.1 performs better. This
is expected for large gap sizes, as applying §/n mutation rate more
often would be faster than giving more trials for the hill-climbing
component, also because, for the considered gap size, the time to
jump dominates the time to hill climb.

Mixed binomial mutation vs. fast mutation. Here we com-
pare the optimization time of (1+1) EA using mixed binomial mu-
tation against fast mutation [2] on Jumpy 5. For this comparison,
we fix n = 100 and consider k = 20,40 and § = 4, 10. For the mixed
binomial mutation, we mix 1/n with §/n using a mixing coefficient
a = 1/4. For the fast mutation operator, we set its parameter f = 1.5
as this is the setting used in [2]. For each k, we plot in Figure 7
the empirical cumulative distribution of the success rates of the
(1+1) EA using mixed binomial mutation and fast mutation over 100
independent runs. We note of course that the superior performance
of mixed binomial mutation in this setting depends entirely on
knowing the optimal rate beforehand.
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Figure 6: Mean optimization time of (1+1) EA with mixed
binomials on Jump;; s as a function of a, for 6 = 4, 6, 8. n = 100.
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Figure 7: Empirical cumulative distribution function of
(1+1) EA using mixed binomial (m-bin) vs. fast mutation
(fmut). n = 100.

Mixed binomial mutation on MaxSat. The third benchmark
function we consider is the MaxSat problem. We compare the
(1+1) EA using mixed binomial mutation operators against the
% static mutation rate. We experimented with different mixing co-
efficients @ and a mixed binomial distribution with p; = 1/n and
different py € {c/n | ¢ € {3,5,7,9}}. Figure 8 reports the empir-
ical cumulative distribution function (ECDF) for the considered
instances. For each instance, the ECDFs are computed over 30 inde-
pendent runs of each algorithm, with a maximum number of fitness
evaluations 10n® (n here is the number of variables which is 50 for
the considered instances.). For each instance we plot the configu-
ration that performed the best. When a = 0,1 this means running
(1+1) EA with a single binomial distribution with p = ps, and
p = 1/n respectively. In figure 8, the first row plots the ECDFs for
uniform random instance, and the power law instance are plotted
on the second row. For the two first uniform instances (uf50-062
and uf50-084), the (1+1) EA with mixed binomial distribution has
a higher success rate (100%) compared to (1+1) EA using a static mu-
tation rate. Notice that while allocating more computational budget
for the (1+1) EA with mixed binomial mutation improves its success
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Figure 8: Empirical Cumulative Distribution Function of (1+1) EA with mixed binomial mutation on the considered MaxSat
instances. For each instance we give the setting of o and p; that performed the best.

rate until it reaches 100%, the (1+1) EA with a static rate, though
its success rate increases with more computation budget, does not
attain 100%. For the instance uf50-084, all three algorithms have
a low success rate around 30%. For the power-law instance, we
observe similar behavior on the first two instances. We note that
the (1+1) EA was always successful on the first instance, and has a
lower optimization time compared to the two other settings. For
the second instance, the success rate is a little above 80%, while
using a single mutation has a lower success rate. The third instance
seems to be challenging, and mixed binomial mutation could only
achieve a 53% success rate. Note that the 1/n mutation has less than
30% success rate. Overall, on the considered instances, the mixed
binomial mutation does improve the optimization performance of
(1+1) EA.

5 CONCLUSION

In this paper we have investigated a technique for designing mu-
tation operators over binary strings comprised of a mixture of
binomial distributions. This approach may be useful in settings
where a collection of promising mutation strengths are already
known due to domain knowledge or landscape probing.

On generalized jump functions, we proved that mixing the stan-
dard 1/n rate with the optimal rate can obtain a speed-up in some
regions of the search space over the optimal static mutation rate

alone. This is due to the fact that after the process has jumped
over the gap, the strong mutation rate becomes detrimental to the
remaining hill-climbing process. We also presented a number of
experimental results that investigate different settings for which
the mixed mutation rate may be beneficial. Our empirical results
provide concrete running time comparisons for different bench-
mark parameters as well as a detailed investigation of the influence
of the mixing coefficient on the success rate distribution for solving
propositional satisfiability instances.

There are several directions for future work. First, studies on the
mixtures of more than two distributions along with a sensitivity
analysis of the mixing coefficients are needed. It would be also
straightforward to apply mixed binomial mutation to more sophis-
ticated evolutionary algorithms such as ones that use a population.
Another important research direction would be to design other
benchmarks that require significantly different mutation rates in
different search space regions. This likely would require moving
beyond simple functions of unitation in order to introduce more de-
tailed landscape structures. Also using tuning methods to automate
the search for mixtures of distributions would be an interesting
question to investigate. Finally, the compelling effect we observed
on maximum satisfiability problems suggests that further explo-
ration of the approach on complicated combinatorial landscapes is
crucial.
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