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ABSTRACT

Malware represents a significant security concern in today’s
digital landscape, as it can destroy or disable operating sys-
tems, steal sensitive user information, and occupy valuable
disk space. However, current malware detection methods,
such as static-based and dynamic-based approaches, struggle
to identify newly developed (“zero-day”) malware and are
limited by customized virtual machine (VM) environments.
To overcome these limitations, we propose a novel malware
detection approach that leverages deep learning, mathemati-
cal techniques, and network science. Our approach focuses
on static and dynamic analysis and utilizes the Low-Level
Virtual Machine (LLVM) to profile applications within a
complex network. The generated network topologies are
input into the GraphSAGE architecture to efficiently distin-
guish between benign and malicious software applications,
with the operation names denoted as node features. Im-
portantly, the GraphSAGE models analyze the network’s
topological geometry to make predictions, enabling them to
detect state-of-the-art malware and prevent potential damage
during execution in a VM. To evaluate our approach, we con-
duct a study on a dataset comprising source code from 24,376
applications, specifically written in C/C++, sourced directly
from widely-recognized malware and various types of benign
software. The results show a high detection performance
with an Area Under the Receiver Operating Characteristic
Curve (AUROC) of 99.85%. Our approach marks a substan-
tial improvement in malware detection, providing a notably
more accurate and efficient solution when compared to cur-
rent state-of-the-art malware detection methods. The code is
released at https://github.com/HantangZhang/MGN.

Index Terms— Malware detection, Graph neural net-
work, Complex network

1. INTRODUCTION

Malware refers to malicious software designed to cause dam-
age to the Internet, computers and cyber-physical systems.
Malware could intrude into PC, collect user’s personal infor-
mation and sensitive data, and gain administrative privileges
on a host, trigger havoc on PC’s operating system, and lead

*Both authors contributed equally to this work

979-8-3503-4485-1/24/$31.00 ©2024 IEEE 4845

to the loss of billions of dollars. For instance, malware-
based cyber-attacks can target industrial control systems
(ICS) to slow down industrial processes or destroy critical
components, causing significant financial damages, safety,
and life-threatening events [1].

To prevent catastrophic events, researchers focus on mal-
ware detection using static and dynamic analyses. Static anal-
ysis involves scanning software binary byte-streams to gen-
erate signatures, like printable strings, n-grams, and instruc-
tions [2]. Kim et al. proposed a multimodal deep learning
scheme to detect Android mobile malware by analyzing var-
ious factors such as strings, method APIs, permissions, com-
ponents, and environment [3]. While static analysis is accu-
rate for specific malware types, it struggles with “’zero-day”
malware, where signatures change due to updates [4].

Dynamic analysis monitors and controls malware during
execution. Deep learning models are now applied in this ap-
proach. Classic convolutional- (CNN) and recurrent- neural
network (RNN) can learn features from the sequential data
extracted from software [5] and image data [6]. For instance,
Zhang et al. [7] designed a CNN-LSTM model to analyze fea-
tures from each API call for detecting malicious files. Despite
overcoming static analysis limitations, deep learning based
dynamic approaches’ inherent black-box nature hinders the
interpretability of its feature attribution [8, 9, 10].

This paper introduces the Malware Graph Network (MGN),
a robust deep learning framework addressing challenges in
static and dynamic analysis for malware detection. MGN
involves adopting a Low-Level Virtual Machine (LLVM)
intermediate representation (IR) compiler [11] to transform
suspected malware software into a complex weighted net-
work, where nodes represent instructions, and edges indicate
data and control dependencies among LLVM instructions.
The weights associated with the network can represent data
sizes or latency values. This compiler approach eliminates the
need to execute suspected applications on a virtual machine.
This complex network representation allows capturing the
spatiotemporal characteristics of software and interpreting
the differences between benign and malicious files by reveal-
ing the intrinsic correlations between APIs and the software’s
instructions. To process these intricate network structures
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Fig. 1: Overview of the Proposed Method: (a) C/C++ files are transformed into LLVM IR and converted into a weighted
complex network by capturing operations from the source code. The generated weighted networks are passed into an embedding
layer to compute node features, resulting in an n x N matrix representation. (b) Leveraging these matrices, the GraphSAGE
architecture extracts information from the neighbors of each node. Lastly, the classification layer predicts whether the file is

malicious or benign.

that have been extracted, we incorporate a GNN-based deep
learning architecture called GraphSAGE into MGN for mal-
ware classification. This approach surpasses state-of-the-art
baselines, such as N-gram Analysis [12], Grayscale Image
Analysis [13, 14], Operation Code Analysis [15], and Byte
File Analysis [16, 7].

2. METHOD

To create a robust and interpretable malware detection strat-
egy capable of effectively handling malware evolution and
obfuscation, we present MGN, illustrated in Figure 1. MGN
comprises two primary components: (1) utilizing a com-
piler approach built on LLVM to compile source code into
a sophisticated network representation and (2) feeding the
constructed networks into a GNN-based deep learning archi-
tecture for the purpose of malware detection. This two-part
framework forms the foundation of our proposed approach
for enhanced malware detection.

2.1. Compiler Analysis and Network Modeling

In this section, we leverage code compilation tools to trans-
form source code into a graph representation. Specifically, we
transform input applications into a corresponding dependency
graph [17] through LLVM compiler and transparent by intro-
ducing IR as a common model for analysis, transformation,
and synthesis. The LLVM is a compiler framework which
makes program analysis lifelong. The resulting graph encom-
passes the structure of the graph itself, which includes nodes
and the connections between them, as well as node features.
For each graph, its node features are derived from the op-
eration names present in the code, such as “store”, “getele-
mentptr”’, and “load”.

We first run the applications with representative inputs to
collect dynamic LLVM IR traces to resolve dynamic mem-

ory dependencies. Next, we analyze the traces to figure out
whether source registers of the current instruction depend on
destination registers of the previous instructions. If such de-
pendencies exist, we add edges between these two nodes to
represent dependencies. Then, these instructions are profiled
to get the precise data sizes as edge weights in the graph. For
example, a part of dynamic traces has been shown as follows:
%3 = sub %1, %2; %5 = sub %3, %4. The second instruction
has the register %3, which depends on the destination register
%3 of the first instruction.

Hence, we find a dependency between the last two in-
structions and an edge is inserted between these two nodes.
After following these compiled steps, a suspected application
is profiled into a complex weighted network that will be an-
alyzed in the following section to predict whether this appli-
cation is benign or malicious. Figure 1 shows the steps of
dynamically profiling the applications into graphs.

After the transformation of the suspected files into graph
representations, we encode the node features, represented by
operation names, into one-hot vectors. Each graph’s node fea-
tures can be denoted by a matrix of dimensions n x N, where
n signifies the number of distinct operation names present in
a given graph and N denotes a constant that represents the
union of operation names across the entire dataset. Moreover,
each graph is assigned a label indicating whether it represents
malware or benign software.

2.2. GraphSAGE Neural Network Modeling

In this study, we choose GraphSAGE to analyze the prepro-
cessed features represented as complex networks. Graph-
SAGE can efficiently analyze large graph structures, where
many software source codes often consist of numerous
nodes [18]. Furthermore, GraphSAGE employs inductive
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learning and ensures excellent generalizability, which allows
it to generate embeddings for previously unseen nodes. This
character can be highly effective for classification tasks. In-
stead of relying on manually crafted features to describe
malware, this property becomes invaluable in malware detec-
tion, given the frequent emergence of new malware variants
and families.

Through an in-depth examination of GraphSAGE’s struc-
ture and the graphs representing malware and benign soft-
ware, we have devised our deep learning architecture. It com-
prises of the following components: an embedding layer, 6
GraphSAGE layers, 1 global pooling layer, and 1 output layer.
In the input layer, we incorporate node features and edge in-
dices, where the node features denote operation name for the
instruction and the edge indices represent edge lists. The
GraphSAGE employs the mean aggregator as its initial step,
which calculates the mean of node features within the neigh-
borhood. Subsequently, the number of neighbors sampled in
each layer depends on the average degree of nodes.

While GraphSAGE layer achieved the most exceptional
performance in graph neural network model, the number of
SAGE layers and the choice of activation functions have a
significant impact on the final model’s performance. This was
evident in our ablation experiments.

3. EVALUATION

Following the same training and testing strategy with all the
baselines, our model is trained and evaluated on 24,376 ap-
plications (12,815 malware and 11,561 benign software). All
these applications are source code gathered from real-world
programs. For malware representation, we select a diverse
array of types, including Spyware, Botnet, Trojan, among
others. As for benign software, we choose programs from
gaming, system development, application software, mobile
apps, and artificial intelligence to guarantee that our dataset
comprehensively includes various domains. For every soft-
ware, we identify their main execution functions as data
points. These are then compiled using our toolset and trans-
formed into a graph, serving as individual data entries. The
entire dataset is randomly split into 80% as training set and
the remaining 20% is testing set. The model performance is
assessed via the AUROC and accuracy (ACC).

3.1. Ablation study

To gain a comprehensive understanding of the significance of
different components in our malware detection model and to
determine the most effective architecture, we performed an
ablation study, varying hyperparameters and settings. Table 1
presents a summary of our findings. In the table, “EL” and
“LReLU” refer to the embedding layer and Leaky-ReL.U ac-
tivation function, respectively. The presence of a v indicates
that the embedding layer or Leaky-ReLLU was utilized, while a
X denotes their absence (for activation function, we use ReLU
instead). The first column represents the different numbers of
SAGE layers chosen for the ablation study.

Table 1: Comparison of malware detection results using dif-
ferent hyperparameters and settings. The best results are

highlighted in red.

SAGE | EL | LRelu | ACC AUROC | F1-score
X X 96.29% | 99.38% 96.81%

4layers v v 97.45% | 99.72% 97.76%
v X 97.17% | 99.57% 97.54%
X X 95.79% | 99.33% 96.08%

6layers v v 98.55% | 99.85% 98.72%
v X 97.45% | 99.73% 97.78%
X X 96.51% | 99.61% 96.96%

8layers v v 98.18% | 99.79% 98.40%
v X 97.45% | 99.59% 97.78%
X X 95.65% | 99.37% 95.95%

10layers | v v 96.03% | 99.46% 96.30%
v X 95.82% | 99.40% 96.11%

In this study, we introduce a fully-connected embedding
layer before the GNN architecture, which plays an essential
role in capturing initial feature representations. The absence
of this embedding layer results in a performance drop of ap-
proximately 2.76%. Furthermore, we incorporate 6 SAGE
layers, each connected to a hidden layer with 128 hidden
units. We choose Leaky-ReLU as the activation function for
each SAGE layer.

3.2. Experimental results

The comparison results for malware detection are presented in
Table 2 and Fig. 2. In this section, we select state-of-the-art
deep learning-based malware detection models as our base-
lines, as referenced in previous works [13, 19, 20, 7, 21, 16].
All these models are trained and tested on our malware dataset
to ensure a fair comparison.

As indicated in Table 2, our MGN demonstrates remark-
able performance in classifying malware and outperforms all
other models in terms of both ACC and AUROC. To provide
a visual representation of these comparisons, Fig. 2 panels
(a) and (b) display quantitative results for ACC and AUROC,
respectively. Panels (c) and (d) respectively present the learn-
ing curve comparisons between MGN and selected baselines
(specifically, ARI-LSTM, EE-DNN, and H-CNN, which uti-
lize N-gram, Bytes, and Opcode as features, respectively).
Hence, our findings suggest that network-based features used
in MGN can significantly enhance the performance of dis-
tinguishing between malware and benign software within the
context of deep learning. For comprehensive information,
please refer to Table 2.

Table 3 presents a detailed breakdown of various malware
types, along with their respective performance metrics ob-
tained through our method and ARI-LSTM [19]. We choose
to include ARI-LSTM in this table because of its notable ac-
curacy, as well as the similarity of its features to our node-
based features.
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Table 2: Comparison of malware detection results (ACC and

AUROQC) across different models. The best results are high-
lighted in red.
Baselines Features | ACC | AUROC
CNN [13] Image 93.09% | 98.31%
ARI-LSTM [19] N-gram | 98.28% 99.5%
Bi-GRU-CNN [16] Bytes 96.36% | 99.43%
EE-DNN [20] Bytes 97.45% | 99.72%
SA-CNN [7] Opcode | 97.38% | 99.66%
H-CNN [21] Opcode | 98.18% | 99.74%
MGN Networks | 98.55% | 99.85%
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Fig. 2: Performance comparison of MGN against baselines
on the test set, showing (a) ACC and (b) AUROC; (c) ACC
and (d) AUROC comparisons of MGN against baselines at
different epochs.

Table 3: Classification accuracy comparison between our
model (MGN) and the state-of-the-art model (ARI-LSTM)
across various malware types. The best results are highlighted
in red.

Malware Samples | Text Samples | MGN | ARI-LSTM
Spyware 4757 950 98.32% 98.11%
Botnet 1548 300 98.67% 97.00%
Trojan 4645 900 99.11% 98.89%
Rootkit 3048 600 98.33% 97.67%
Trojan-Backdoor 3097 600 98.50% 97.83%
Worm 1548 300 100.00% 99.00%
Ransomware 900 180 100.00% 100.00%
Injection 900 180 98.89% 98.33%
Mixed 3933 750 100.00% 99.60%

3.3. Interpretability Analysis

Figure 3 provides a clear two-dimensional t-SNE visualiza-
tion, illustrating the clustering behavior of network topo-
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Fig. 3: Two-dimensional t-SNE visualization of network
topological features. Blue circles and red squares represent
benign and malicious networks, respectively.

logical features which includes the number of nodes and
edges, average closeness-, average degree-, and average
betweenness-centrality. These features are derived from
the network representations of source files. We randomly
selected around 900 instances from both the benign and ma-
licious network classes for visual clarity. This visualization
effectively highlights the capability of our proposed methods
in discerning the inherent topological distinctions between
benign and malicious codes. Consequently, it enhances the
interpretability of our approach.

4. CONCLUSION

In this paper, we propose an innovative deep learning frame-
work known as MGN, designed for malware detection. MGN
utilizes a graph-based representation and harnesses the power
of the LLVM compiler to capture intricate software depen-
dencies, resulting in the creation of a complex network. This
network is then subjected to classification using a GNN archi-
tecture, significantly improving the precision of distinguish-
ing between benign and malicious programs. Through careful
design of the model architecture, MGN demonstrates superior
performance compared to state-of-the-art baselines, achiev-
ing higher accuracy and AUROC measurements. It is impor-
tant to highlight that MGN’s ability to transform software into
the network’s topology enhances its interpretability, setting it
apart from other baseline approaches.
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