
DISCOVERING MALICIOUS SIGNATURES IN SOFTWARE FROM STRUCTURAL

INTERACTIONS

Chenzhong Yin1,∗ Hantang Zhang1,∗ Mingxi Cheng1

Xiongye Xiao1 Xinghe Chen1 Xin Ren1 Paul Bogdan1

1University of Southern California, Los Angeles, CA, USA

ABSTRACT

Malware represents a significant security concern in today’s

digital landscape, as it can destroy or disable operating sys-

tems, steal sensitive user information, and occupy valuable

disk space. However, current malware detection methods,

such as static-based and dynamic-based approaches, struggle

to identify newly developed (“zero-day”) malware and are

limited by customized virtual machine (VM) environments.

To overcome these limitations, we propose a novel malware

detection approach that leverages deep learning, mathemati-

cal techniques, and network science. Our approach focuses

on static and dynamic analysis and utilizes the Low-Level

Virtual Machine (LLVM) to profile applications within a

complex network. The generated network topologies are

input into the GraphSAGE architecture to efficiently distin-

guish between benign and malicious software applications,

with the operation names denoted as node features. Im-

portantly, the GraphSAGE models analyze the network’s

topological geometry to make predictions, enabling them to

detect state-of-the-art malware and prevent potential damage

during execution in a VM. To evaluate our approach, we con-

duct a study on a dataset comprising source code from 24,376

applications, specifically written in C/C++, sourced directly

from widely-recognized malware and various types of benign

software. The results show a high detection performance

with an Area Under the Receiver Operating Characteristic

Curve (AUROC) of 99.85%. Our approach marks a substan-

tial improvement in malware detection, providing a notably

more accurate and efficient solution when compared to cur-

rent state-of-the-art malware detection methods. The code is

released at https://github.com/HantangZhang/MGN.

Index Terms— Malware detection, Graph neural net-

work, Complex network

1. INTRODUCTION

Malware refers to malicious software designed to cause dam-

age to the Internet, computers and cyber-physical systems.

Malware could intrude into PC, collect user’s personal infor-

mation and sensitive data, and gain administrative privileges

on a host, trigger havoc on PC’s operating system, and lead

∗Both authors contributed equally to this work

to the loss of billions of dollars. For instance, malware-

based cyber-attacks can target industrial control systems

(ICS) to slow down industrial processes or destroy critical

components, causing significant financial damages, safety,

and life-threatening events [1].

To prevent catastrophic events, researchers focus on mal-

ware detection using static and dynamic analyses. Static anal-

ysis involves scanning software binary byte-streams to gen-

erate signatures, like printable strings, n-grams, and instruc-

tions [2]. Kim et al. proposed a multimodal deep learning

scheme to detect Android mobile malware by analyzing var-

ious factors such as strings, method APIs, permissions, com-

ponents, and environment [3]. While static analysis is accu-

rate for specific malware types, it struggles with ”zero-day”

malware, where signatures change due to updates [4].

Dynamic analysis monitors and controls malware during

execution. Deep learning models are now applied in this ap-

proach. Classic convolutional- (CNN) and recurrent- neural

network (RNN) can learn features from the sequential data

extracted from software [5] and image data [6]. For instance,

Zhang et al. [7] designed a CNN-LSTM model to analyze fea-

tures from each API call for detecting malicious files. Despite

overcoming static analysis limitations, deep learning based

dynamic approaches’ inherent black-box nature hinders the

interpretability of its feature attribution [8, 9, 10].

This paper introduces the Malware Graph Network (MGN),

a robust deep learning framework addressing challenges in

static and dynamic analysis for malware detection. MGN

involves adopting a Low-Level Virtual Machine (LLVM)

intermediate representation (IR) compiler [11] to transform

suspected malware software into a complex weighted net-

work, where nodes represent instructions, and edges indicate

data and control dependencies among LLVM instructions.

The weights associated with the network can represent data

sizes or latency values. This compiler approach eliminates the

need to execute suspected applications on a virtual machine.

This complex network representation allows capturing the

spatiotemporal characteristics of software and interpreting

the differences between benign and malicious files by reveal-

ing the intrinsic correlations between APIs and the software’s

instructions. To process these intricate network structures

4845979-8-3503-4485-1/24/$31.00 ©2024 IEEE ICASSP 2024
Authorized licensed use limited to: University of Southern California. Downloaded on July 30,2024 at 23:46:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Overview of the Proposed Method: (a) C/C++ files are transformed into LLVM IR and converted into a weighted

complex network by capturing operations from the source code. The generated weighted networks are passed into an embedding

layer to compute node features, resulting in an n × N matrix representation. (b) Leveraging these matrices, the GraphSAGE

architecture extracts information from the neighbors of each node. Lastly, the classification layer predicts whether the file is

malicious or benign.

that have been extracted, we incorporate a GNN-based deep

learning architecture called GraphSAGE into MGN for mal-

ware classification. This approach surpasses state-of-the-art

baselines, such as N-gram Analysis [12], Grayscale Image

Analysis [13, 14], Operation Code Analysis [15], and Byte

File Analysis [16, 7].

2. METHOD

To create a robust and interpretable malware detection strat-

egy capable of effectively handling malware evolution and

obfuscation, we present MGN, illustrated in Figure 1. MGN

comprises two primary components: (1) utilizing a com-

piler approach built on LLVM to compile source code into

a sophisticated network representation and (2) feeding the

constructed networks into a GNN-based deep learning archi-

tecture for the purpose of malware detection. This two-part

framework forms the foundation of our proposed approach

for enhanced malware detection.

2.1. Compiler Analysis and Network Modeling

In this section, we leverage code compilation tools to trans-

form source code into a graph representation. Specifically, we

transform input applications into a corresponding dependency

graph [17] through LLVM compiler and transparent by intro-

ducing IR as a common model for analysis, transformation,

and synthesis. The LLVM is a compiler framework which

makes program analysis lifelong. The resulting graph encom-

passes the structure of the graph itself, which includes nodes

and the connections between them, as well as node features.

For each graph, its node features are derived from the op-

eration names present in the code, such as “store”, “getele-

mentptr”, and “load”.

We first run the applications with representative inputs to

collect dynamic LLVM IR traces to resolve dynamic mem-

ory dependencies. Next, we analyze the traces to figure out

whether source registers of the current instruction depend on

destination registers of the previous instructions. If such de-

pendencies exist, we add edges between these two nodes to

represent dependencies. Then, these instructions are profiled

to get the precise data sizes as edge weights in the graph. For

example, a part of dynamic traces has been shown as follows:

%3 = sub %1, %2; %5 = sub %3, %4. The second instruction

has the register %3, which depends on the destination register

%3 of the first instruction.

Hence, we find a dependency between the last two in-

structions and an edge is inserted between these two nodes.

After following these compiled steps, a suspected application

is profiled into a complex weighted network that will be an-

alyzed in the following section to predict whether this appli-

cation is benign or malicious. Figure 1 shows the steps of

dynamically profiling the applications into graphs.

After the transformation of the suspected files into graph

representations, we encode the node features, represented by

operation names, into one-hot vectors. Each graph’s node fea-

tures can be denoted by a matrix of dimensions n×N , where

n signifies the number of distinct operation names present in

a given graph and N denotes a constant that represents the

union of operation names across the entire dataset. Moreover,

each graph is assigned a label indicating whether it represents

malware or benign software.

2.2. GraphSAGE Neural Network Modeling

In this study, we choose GraphSAGE to analyze the prepro-

cessed features represented as complex networks. Graph-

SAGE can efficiently analyze large graph structures, where

many software source codes often consist of numerous

nodes [18]. Furthermore, GraphSAGE employs inductive

4846
Authorized licensed use limited to: University of Southern California. Downloaded on July 30,2024 at 23:46:50 UTC from IEEE Xplore. Restrictions apply.

learning and ensures excellent generalizability, which allows

it to generate embeddings for previously unseen nodes. This

character can be highly effective for classification tasks. In-

stead of relying on manually crafted features to describe

malware, this property becomes invaluable in malware detec-

tion, given the frequent emergence of new malware variants

and families.

Through an in-depth examination of GraphSAGE’s struc-

ture and the graphs representing malware and benign soft-

ware, we have devised our deep learning architecture. It com-

prises of the following components: an embedding layer, 6

GraphSAGE layers, 1 global pooling layer, and 1 output layer.

In the input layer, we incorporate node features and edge in-

dices, where the node features denote operation name for the

instruction and the edge indices represent edge lists. The

GraphSAGE employs the mean aggregator as its initial step,

which calculates the mean of node features within the neigh-

borhood. Subsequently, the number of neighbors sampled in

each layer depends on the average degree of nodes.

While GraphSAGE layer achieved the most exceptional

performance in graph neural network model, the number of

SAGE layers and the choice of activation functions have a

significant impact on the final model’s performance. This was

evident in our ablation experiments.

3. EVALUATION

Following the same training and testing strategy with all the

baselines, our model is trained and evaluated on 24,376 ap-

plications (12,815 malware and 11,561 benign software). All

these applications are source code gathered from real-world

programs. For malware representation, we select a diverse

array of types, including Spyware, Botnet, Trojan, among

others. As for benign software, we choose programs from

gaming, system development, application software, mobile

apps, and artificial intelligence to guarantee that our dataset

comprehensively includes various domains. For every soft-

ware, we identify their main execution functions as data

points. These are then compiled using our toolset and trans-

formed into a graph, serving as individual data entries. The

entire dataset is randomly split into 80% as training set and

the remaining 20% is testing set. The model performance is

assessed via the AUROC and accuracy (ACC).

3.1. Ablation study

To gain a comprehensive understanding of the significance of

different components in our malware detection model and to

determine the most effective architecture, we performed an

ablation study, varying hyperparameters and settings. Table 1

presents a summary of our findings. In the table, “EL” and

“LReLU” refer to the embedding layer and Leaky-ReLU ac-

tivation function, respectively. The presence of a 6 indicates

that the embedding layer or Leaky-ReLU was utilized, while a

: denotes their absence (for activation function, we use ReLU

instead). The first column represents the different numbers of

SAGE layers chosen for the ablation study.

Table 1: Comparison of malware detection results using dif-

ferent hyperparameters and settings. The best results are

highlighted in red.

SAGE EL LRelu ACC AUROC F1-score

4layers

: : 96.29% 99.38% 96.81%

6 6 97.45% 99.72% 97.76%

6 : 97.17% 99.57% 97.54%

6layers

: : 95.79% 99.33% 96.08%

6 6 98.55% 99.85% 98.72%

6 : 97.45% 99.73% 97.78%

8layers

: : 96.51% 99.61% 96.96%

6 6 98.18% 99.79% 98.40%

6 : 97.45% 99.59% 97.78%

10layers

: : 95.65% 99.37% 95.95%

6 6 96.03% 99.46% 96.30%

6 : 95.82% 99.40% 96.11%

In this study, we introduce a fully-connected embedding

layer before the GNN architecture, which plays an essential

role in capturing initial feature representations. The absence

of this embedding layer results in a performance drop of ap-

proximately 2.76%. Furthermore, we incorporate 6 SAGE

layers, each connected to a hidden layer with 128 hidden

units. We choose Leaky-ReLU as the activation function for

each SAGE layer.

3.2. Experimental results

The comparison results for malware detection are presented in

Table 2 and Fig. 2. In this section, we select state-of-the-art

deep learning-based malware detection models as our base-

lines, as referenced in previous works [13, 19, 20, 7, 21, 16].

All these models are trained and tested on our malware dataset

to ensure a fair comparison.

As indicated in Table 2, our MGN demonstrates remark-

able performance in classifying malware and outperforms all

other models in terms of both ACC and AUROC. To provide

a visual representation of these comparisons, Fig. 2 panels

(a) and (b) display quantitative results for ACC and AUROC,

respectively. Panels (c) and (d) respectively present the learn-

ing curve comparisons between MGN and selected baselines

(specifically, ARI-LSTM, EE-DNN, and H-CNN, which uti-

lize N-gram, Bytes, and Opcode as features, respectively).

Hence, our findings suggest that network-based features used

in MGN can significantly enhance the performance of dis-

tinguishing between malware and benign software within the

context of deep learning. For comprehensive information,

please refer to Table 2.

Table 3 presents a detailed breakdown of various malware

types, along with their respective performance metrics ob-

tained through our method and ARI-LSTM [19]. We choose

to include ARI-LSTM in this table because of its notable ac-

curacy, as well as the similarity of its features to our node-

based features.

4847
Authorized licensed use limited to: University of Southern California. Downloaded on July 30,2024 at 23:46:50 UTC from IEEE Xplore. Restrictions apply.

Table 2: Comparison of malware detection results (ACC and

AUROC) across different models. The best results are high-

lighted in red.

Baselines Features ACC AUROC

CNN [13] Image 93.09% 98.31%

ARI-LSTM [19] N-gram 98.28% 99.5%

Bi-GRU-CNN [16] Bytes 96.36% 99.43%

EE-DNN [20] Bytes 97.45% 99.72%

SA-CNN [7] Opcode 97.38% 99.66%

H-CNN [21] Opcode 98.18% 99.74%

MGN Networks 98.55% 99.85%

Fig. 2: Performance comparison of MGN against baselines

on the test set, showing (a) ACC and (b) AUROC; (c) ACC

and (d) AUROC comparisons of MGN against baselines at

different epochs.

Table 3: Classification accuracy comparison between our

model (MGN) and the state-of-the-art model (ARI-LSTM)

across various malware types. The best results are highlighted

in red.

Malware Samples Text Samples MGN ARI-LSTM

Spyware 4757 950 98.32% 98.11%

Botnet 1548 300 98.67% 97.00%

Trojan 4645 900 99.11% 98.89%

Rootkit 3048 600 98.33% 97.67%

Trojan-Backdoor 3097 600 98.50% 97.83%

Worm 1548 300 100.00% 99.00%

Ransomware 900 180 100.00% 100.00%

Injection 900 180 98.89% 98.33%

Mixed 3933 750 100.00% 99.60%

3.3. Interpretability Analysis

Figure 3 provides a clear two-dimensional t-SNE visualiza-

tion, illustrating the clustering behavior of network topo-

Fig. 3: Two-dimensional t-SNE visualization of network

topological features. Blue circles and red squares represent

benign and malicious networks, respectively.

logical features which includes the number of nodes and

edges, average closeness-, average degree-, and average

betweenness-centrality. These features are derived from

the network representations of source files. We randomly

selected around 900 instances from both the benign and ma-

licious network classes for visual clarity. This visualization

effectively highlights the capability of our proposed methods

in discerning the inherent topological distinctions between

benign and malicious codes. Consequently, it enhances the

interpretability of our approach.

4. CONCLUSION

In this paper, we propose an innovative deep learning frame-

work known as MGN, designed for malware detection. MGN

utilizes a graph-based representation and harnesses the power

of the LLVM compiler to capture intricate software depen-

dencies, resulting in the creation of a complex network. This

network is then subjected to classification using a GNN archi-

tecture, significantly improving the precision of distinguish-

ing between benign and malicious programs. Through careful

design of the model architecture, MGN demonstrates superior

performance compared to state-of-the-art baselines, achiev-

ing higher accuracy and AUROC measurements. It is impor-

tant to highlight that MGN’s ability to transform software into

the network’s topology enhances its interpretability, setting it

apart from other baseline approaches.

5. ACKNOWLEDGEMENT

The authors acknowledge the support by the National Science

Foundation (NSF) under the Career Award CPS-1453860,

CCF-1837131, MCB-1936775, CNS-1932620 and award

No. 2243104, Center for Complex Particle Systems (COM-

PASS), U.S. Army Research Office (ARO) under Grant No.

W911NF-23-1-0111, DARPA Young Faculty Award and

DARPA Director Award under Grant Number N66001-17-1-

4044, and a Northrop Grumman grant. The views, opinions,

and/or findings in this article are those of the authors and

should not be interpreted as official views or policies of the

Department of Defense or the National Science Foundation.

4848
Authorized licensed use limited to: University of Southern California. Downloaded on July 30,2024 at 23:46:50 UTC from IEEE Xplore. Restrictions apply.

6. REFERENCES

[1] Scott Steele Buchanan, “Cyber-attacks to industrial con-

trol systems since stuxnet: A systematic review,” 2022.

[2] Mamoru Mimura and Ryo Ito, “Applying nlp techniques

to malware detection in a practical environment,” Intl.

Journal of Information Security, vol. 21, no. 2, 2022.

[3] TaeGuen Kim, BooJoong Kang, Mina Rho, Sakir Sezer,

and Eul Gyu Im, “A multimodal deep learning method

for android malware detection using various features,”

IEEE Transactions on Information Forensics and Secu-

rity, vol. 14, no. 3, 2018.

[4] Leyla Bilge and Tudor Dumitraş, “Before we knew it:

an empirical study of zero-day attacks in the real world,”

in Proceedings of the 2012 ACM conference on Com-

puter and communications security, 2012.

[5] Weizhong Qiang, Lin Yang, and Hai Jin, “Efficient and

robust malware detection based on control flow traces

using deep neural networks,” Computers & Security,

2022.

[6] Charlotte Pelletier, Geoffrey I Webb, and François Petit-

jean, “Deep learning for the classification of sentinel-2

image time series,” in IGARSS 2019-2019 IEEE Inter-

national Geoscience and Remote Sensing Symposium.

IEEE, 2019, pp. 461–464.

[7] Bin Zhang, Wentao Xiao, Xi Xiao, Arun Kumar San-

gaiah, Weizhe Zhang, and Jiajia Zhang, “Ransomware

classification using patch-based cnn and self-attention

network on embedded n-grams of opcodes,” Future

Generation Computer Systems, vol. 110, 2020.

[8] Chenzhong Yin, Phoebe Imms, Mingxi Cheng, Anar

Amgalan, Nahian F Chowdhury, Roy J Massett,

Nikhil N Chaudhari, Xinghe Chen, Paul M Thompson,

Paul Bogdan, et al., “Anatomically interpretable deep

learning of brain age captures domain-specific cognitive

impairment,” Proceedings of the National Academy of

Sciences, vol. 120, no. 2, pp. e2214634120, 2023.

[9] Chenzhong Yin, Mihai Udrescu, Gaurav Gupta, Mingxi

Cheng, Andrei Lihu, Lucretia Udrescu, Paul Bogdan,

David M Mannino, and Stefan Mihaicuta, “Fractional

dynamics foster deep learning of copd stage prediction,”

Advanced Science, vol. 10, no. 12, pp. 2203485, 2023.

[10] Xiongye Xiao, Defu Cao, Ruochen Yang, Gaurav

Gupta, Gengshuo Liu, Chenzhong Yin, Radu Balan, and

Paul Bogdan, “Coupled multiwavelet operator learn-

ing for coupled differential equations,” in The Eleventh

International Conference on Learning Representations,

2022.

[11] Chris Lattner and Vikram Adve, “Llvm a compila-

tion framework for lifelong program analysis transfor-

mation,” in Proceedings of the international sympo-

sium on Code generation and optimization feedback-

directed and runtime optimization. IEEE Computer So-

ciety, 2004, p. 75.

[12] Enmin Zhu, Jianjie Zhang, Jijie Yan, Kongyang Chen,

and Chongzhi Gao, “N-gram malgan: Evading machine

learning detection via feature n-gram,” Digital commu-

nications and networks, vol. 8, no. 4, pp. 485–491, 2022.

[13] Daniel Gibert, Carles Mateu, Jordi Planes, and Ramon

Vicens, “Using convolutional neural networks for clas-

sification of malware represented as images,” Journal of

Computer Virology and Hacking Techniques, 2019.

[14] Iman Almomani, Aala Alkhayer, and Walid El-Shafai,

“An automated vision-based deep learning model for ef-

ficient detection of android malware attacks,” IEEE Ac-

cess, vol. 10, pp. 2700–2720, 2022.

[15] Junwei Tang, Ruixuan Li, Yu Jiang, Xiwu Gu, and

Yuhua Li, “Android malware obfuscation variants de-

tection method based on multi-granularity opcode fea-

tures,” Future Generation Computer Systems, vol. 129,

pp. 141–151, 2022.

[16] Rajasekhar Chaganti, Vinayakumar Ravi, and Tuan D

Pham, “Deep learning based cross architecture internet

of things malware detection and classification,” Com-

puters & Security, vol. 120, pp. 102779, 2022.

[17] Yao Xiao, Yuankun Xue, Shahin Nazarian, and Paul

Bogdan, “A load balancing inspired optimization frame-

work for exascale multicore systems a complex net-

works approach,” in Proceedings of the 36th Intl. Conf.

on Computer-Aided Design, 2017, pp. 217–224.

[18] William L. Hamilton, Rex Ying, and Jure Leskovec,

“Inductive representation learning on large graphs,” in

NIPS, 2017.

[19] Rakshit Agrawal, Jack W Stokes, Karthik Selvaraj, and

Mady Marinescu, “Attention in recurrent neural net-

works for ransomware detection,” in ICASSP 2019-2019

IEEE international conference on acoustics, speech and

signal processing (ICASSP). IEEE, 2019.

[20] Daniel Gibert, Carles Mateu, and Jordi Planes, “An

end-to-end deep learning architecture for classification

of malware’s binary content,” in International Confer-

ence on Artificial Neural Networks. Springer, 2018, pp.

383–391.

[21] Daniel Gibert, Carles Mateu, and Jordi Planes, “A hier-

archical convolutional neural network for malware clas-

sification,” in 2019 International joint conference on

neural networks (IJCNN). IEEE, 2019, pp. 1–8.

4849
Authorized licensed use limited to: University of Southern California. Downloaded on July 30,2024 at 23:46:50 UTC from IEEE Xplore. Restrictions apply.

