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Secure Aggregation for Clustered Federated
Learning With Passive Adversaries
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AbstractÐ Clustered federated learning is a popular paradigm
to tackle data heterogeneity in federated learning, by training
personalized models for groups of users with similar data
distributions. A critical challenge is to protect the privacy
of individual user updates, as the latter can reveal extensive
information about sensitive local datasets. To do so, a recent
promising approach is information-theoretic secure aggregation,
where parties learn the aggregate (sum) of user updates,
but no further information is revealed about the individual
updates. In this work, we present the first single-server secure
aggregation framework in the context of clustered federated
learning, to learn the aggregate of user updates for any clustering
of users, but without learning any information about the
local updates or cluster identities. Our framework can achieve
linear communication complexity under formal information-
theoretic privacy guarantees, while providing key trade-offs
between communication and computation complexity, adversary
tolerance, and resilience to user dropouts.

Index TermsÐ Clustered federated learning, secure aggrega-
tion, distributed learning, coded computing.

I. INTRODUCTION

FEDERATED learning (FL) is a distributed learning
framework to train machine learning models over the

data stored and processed locally across a large number of
wireless devices (users) [1]. Unlike traditional centralized
training architectures, where all data is collected by a central
party who performs training, FL keeps the data on device.
Instead, each user updates the trained model locally on their
local data, and then the local updates (e.g., gradients) are
aggregated (often by a central server) to form a global model.
In doing so, users always keep the data on device, and send
only the intermediate computations (e.g., local gradients).

Due to this on-device learning architecture (data never
leaves the device, but only the local updates are commu-
nicated), FL has been highly popular in privacy-sensitive
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applications, such as healthcare. On the other hand, recent
gradient inversion attacks have shown that the local updates
sent by the users (such as gradients) can still reveal extensive
information about the local datasets [2], [3], [4]. Secure
aggregation (SA) protocols have been introduced to address
this challenge, by revealing only the sum of the local

updates to the server during training, while hiding the
contents of individual updates sent from each user using
information-theoretic or cryptographic tools [5], [6], [7],
[8], [9], [10], [11], [12]. In doing so, SA ensures that no
further information is revealed beyond the sum of the local
updates, preventing the server from associating the aggregated
updates with any particular user. SA can further be combined
with complementary privacy-preserving mechanisms such as
differential privacy [13], [14] and can even benefit the
latter [15], [16].

A major challenge of FL is the severe data heterogeneity
across the users, which slows down training, and degrades
model accuracy [17]. More importantly, training a single
model (across the entire network) may disproportionately
penalize the performance of underrepresented users [18].
Clustered FL is a recent approach to tackle this challenge by
training multiple models, each adapted to a group of users with

similar data distributions [19], [20], [21], [22], [23], [24], [25].
The training process alternates between clustering the users
with respect to their data distributions, and training a distinct
model within each cluster. For the latter, the server collects
and aggregates the local updates (gradients) from the users
assigned to each cluster, to update the model designated for
that cluster. Several complementary approaches also explore
addressing data heterogeneity by designing a personalized
model for each user through fine-tuning or meta-learning [26],
[27], [28], [29]. In contrast, clustered FL targets group-

level personalization, where the server maintains personalized
models to serve groups of users with similar characteristics,
while avoiding excessive memory and storage costs to handle
a large number of models.

In this work, our goal is to develop an SA framework for
clustered FL. A naive approach is to leverage conventional SA
protocols to aggregate the local gradients of the users assigned
to each cluster (independently from other clusters). On the
other hand, doing so requires the server to learn the cluster
identity of each user, which itself is highly sensitive informa-
tion, revealing which users have similar data distributions [23].
An adversarial user can further infer sensitive information
about the characteristics of honest users assigned to the
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same cluster, simply by leveraging the similarity between the
distributions. Importantly, underrepresented users are the most
vulnerable to these types of attacks, due to the lack of a large
number of honest users with similar data distributions, i.e.,
same cluster identity. Moreover, clusters may vary throughout
the training, using which one may reveal the local gradients by
comparing the aggregated updates received at different training
rounds [30]. As such, here we ask the following question:

• How can we enable SA for clustered FL, for the server

to learn the aggregate of local gradients for each cluster,

but without learning any information about the local

gradients or cluster identities of individual users?
To address this challenge, in this work we propose the first

single-server SA frameworks for clustered FL. In all proposed
frameworks, the server can perfectly recover the aggregate
of local gradients for each cluster, but without learning
any further information about the cluster identities or local
gradients of the users. All proposed frameworks ensure strong
information-theoretic privacy guarantees, while providing
a trade-off between the communication and computation
overhead, round complexity, and resilience to user dropouts
(e.g., due to poor channel conditions). Our contributions can
be summarized as follows:

• We propose SA in the context of clustered FL, where
the server aggregates the local gradients from multiple
clusters of users simultaneously, without learning any
information about the cluster identities or local gradients.

• We propose the first single-server SA framework for
clustered FL. By introducing an offline-online trade-off,
our framework can achieve a linear online communi-
cation complexity, while offloading the communication-
intensive operations to a data-agnostic offline phase.

• For all proposed frameworks, we demonstrate the
formal information-theoretic privacy guarantees and
identify the key performance trade-offs between the
communication/computation overhead, privacy against
adversaries, round complexity, and resilience to user
dropouts.

II. RELATED WORKS

For group-level personalization, a hierarchical clustering
approach is proposed in [19] by partitioning the users into
clusters according to the similarity of their local model
updates, and a distinct model is trained for each cluster.
Reference [20] determines the clusters according to the cosine
similarity between different local updates. References [21],
[22], and [23] propose an alternating optimization approach,
which alternates between clustering users based on the
similarity of their local data distributions, and training a
distinct model for each cluster. Reference [24] considers the
setting where local datasets are from a mixture of distributions,
whereas [25] considers fairness across the clusters. In contrast,
[26], [27], [28], [29], [31] adopt a user-level personalization

approach. To this end, [32] adds a proximal term to the
local objectives to improve performance in the presence
of data heterogeneity. A multi-task learning approach is
proposed in [26] to simultaneously tackle data and system
heterogeneity. A meta-learning approach is proposed in [27],

[28], and [31] to provide user-specific models based on local
dataset distributions.

Secure aggregation (SA) was introduced in [5] and [6],
where the local gradients are obfuscated by pairwise additive
random masks. The masks cancel out upon aggregation,
allowing the server to recover the aggregate of the true
gradients. While these works focus on cryptographic security
(against adversaries with bounded computational capability),
more recent works consider information-theoretic SA, where
adversaries have unbounded computational power [7], [8],
[9], [10], [11], [12]. To this end, [7] proposes a circular
aggregation strategy, whereas [8] introduces a one-shot
aggregation technique. Reference [9] considers efficient
randomness generation with low storage cost, whereas [10]
provides a trade-off between communication load and active
communication links, and [11] introduces resource-aware SA
with quantization.

These works are agnostic to the data heterogeneity across
users, and focus on training a single model. Concurrent
work [33] considers a two-server secure multi-party computing
protocol to aggregate the local updates from different
clusters of users. However, unlike SA (which is based on a
single-server architecture), this work requires two honest (non-
colluding) servers who interact with the users and each other
to carry out a secure two-party protocol, but do not share any
sensitive information with each other in an attempt to breach
user privacy. In contrast, our goal is to develop a single-server
secure aggregation framework, to facilitate privacy-preserving
training architectures for clustered FL. Compared to the two-
server setting, the single server setting carry the additional
challenge where the aggregation is handled by a single server,
while still being able to keep the individual models and the
cluster identities of the users private.

A. Organization

The remainder of the paper is organized as follows.
Section III introduces the system model, Section IV presents
our frameworks. Sections V and VI provide the theoretical
analysis and experiments, respectively. Section VII discusses
extensions to different adversary models, and Section VIII
concludes the paper. Throughout the paper, x denotes a scalar,
x is a vector, X represents a matrix, and X denotes a set,
where [N ] is the set {1, . . . , N}.

III. PROBLEM FORMULATION

A. Clustered FL

We consider a distributed network of N users and a server.
The local dataset Di of user i ∈ [N ] is realized from one of
K distributions denoted by P1, . . . ,PK . The goal is to train
K models w1, . . . ,wK , where model wk ∈ R

d is trained to
minimize the loss function,

Fk(wk) ≜ Eξ∼Pk
[f(wk, ξ)] ∀k ∈ [K], (1)

where ξ is a data sample realized from distribution Pk and
f(wk, ξ) denotes the stochastic loss function computed on the
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data sample ξ and model wk. Then, the optimal model is given
by,

w∗
k = arg minwk

Fk(wk) ∀k ∈ [K]. (2)

To solve (1), clustered FL [21], [22], [23] takes an iterative
approach, that alternates between partitioning the users into
K clusters with respect to the similarity of the local datasets,
and training K global models (one for each cluster). At each
iteration t, the server broadcasts the current state of the K

global models {wk(t)}k∈[K] to all users. Then, user i ∈ [N ]
computes a local empirical loss,

fi(wk(t)) ≜
1

|Di|

∑

ξ∈Di

f(wk(t), ξ) (3)

for each model {wk(t)}k∈[K], and selects the cluster with the
minimum loss,

c
(t)
i ≜ arg min

k∈[K]
fi(wk(t)). (4)

Next, user i ∈ [N ] computes a local gradient for the model of
the selected cluster,

gi(t) ≜ ∇fi(wc
(t)
i

(t)) (5)

and sends the local gradient from (5), along with the cluster
index from (4), to the server. Then, the server updates
the global model for each cluster, by aggregating the local
gradients received from users assigned to that cluster,

wk(t+ 1) = wk(t)−
η

N

∑

i∈Sk(t)∩U(t)

gi(t) ∀k ∈ [K], (6)

where η is the learning rate, and Sk(t) ≜ {i : c
(t)
i = k, i ∈

[N ]} denotes the set of users assigned to cluster k at iteration t.
At each training iteration, up to D out of N users may drop out
from the protocol due to various reasons, such as poor channel
conditions or low battery. Accordingly, U(t) ⊆ [N ] denotes
the set of surviving users at iteration t, who successfully send
their local gradient gi(t) to the server, where |U(t)| ≥ N−D.

Remark 1. The key intuition behind the clustered learning

mechanism is that when user datasets are sampled from K

different distributions, the optimal model for each distribution

should minimize the local loss for the corresponding

users [23]. Accordingly, at each training round, the clustering

mechanism identifies the group of users for which a given

(global) model performs the best, and then further updates

the model using the local datasets of the corresponding users.

B. Threat Model

We consider an honest-but-curious (passive) adversary
model (as is the most common threat model in SA), where
adversaries follow the protocol, but try to reveal additional
information about the local datasets of honest users from
the messages exchanged during training [7], [9]. Out of N
users, any set of up to T users can be adversarial. Adversarial
users may collude with each other, and the adversaries from
one cluster may collude with the adversaries from different
clusters. The server is also honest-but-curious and may collude
with the adversarial users.

Fig. 1. Secure aggregation for clustered FL. The server learns the aggregate
of the local gradients

∑
i∈Sk∩U

gi(t) for each cluster k ∈ [K], without

learning which users belong to which cluster, or the local gradients gi(t) of
the individual users.

C. Information-Theoretic Secure Aggregation

Our goal is to enable the server to compute the sum of the
local gradients

∑
i∈Sk(t)∩U(t) gi(t) for each cluster k ∈ [K],

in order to update the model from (6) correctly, but without
learning any further information about the local gradients or
the cluster identities of the users. Formally, this condition can
be stated as follows:

I
(
{gi(t), c

(t)
i }[N ]\T ;MT

∣∣∣
{ ∑

i∈Sk(t)∩U(t)

gi(t)
}

k∈[K]
,

{gi(t), c
(t)
i }i∈T ,GT

)
= 0 (7)

for any set of adversarial users T such that |T | ≤ T , where
MT denotes the collection of all messages received by the
adversaries and the server, and GT is the set of randomness
generated by the adversaries during training. We then ask the
following question:

• How can the server compute the aggregate of local
gradients from (6) for all K clusters, under the
information-theoretic privacy guarantees from (7)?

To address this challenge, in this work we propose
three SA protocols, with different trade-offs in terms of
communication/computation overhead, round complexity, and
dropout resilience. Similar to [5], [7], and [9], our frameworks
are bound to finite field computations, where each user
converts their local gradient gi(t) ∈ R

d from the real
domain to a finite field Fq of integers modulo a large
prime q. The details of this conversion is provided in
Appendix A. In the sequel, gi(t) ∈ F

d
q denotes the finite

field representation of gi(t). All computations are then
performed in Fq. Our system model is illustrated in Fig. 1.
Similar to [7], [10], and [34], we assume that there exists
direct (peer-to-peer) communication links between the users,
in addition to the user-to-server links. In scenarios where peer-
to-peer links are not available, one can utilize cryptographic
encryption mechanisms to forward all messages through the
server [5], [6].

We next present the details of our frameworks.

IV. CLUSTERED SECURE AGGREGATION

We next present three approaches to SA for clustered FL.
For notational clarity, we omit the iteration index t in our
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exposition. In all frameworks, a new set of randomness is
generated at each training round. The randomness generation
in the offline phases can be carried out when the network load
is low, or can be overlapped with other components of training.

A. Clustered Secret Gradient Sharing (CSGS)

In our first framework, users encode their local gradients by
partitioning them into multiple shards, and combining them
with T random masks. Then, each user sends an encoded
gradient to every other user. The random masks hide the
true gradient and cluster identity against up to T adversaries,
while the encoding mechanism provides a trade-off between
communication complexity and resilience to user dropouts.
We next describe the details of this procedure.

Initially, the server generates N distinct public parameters
α1, . . . , αN independently and uniformly at random (without
replacement) from Fq, and sends them to the users prior to
training. Then, each user i ∈ [N ] partitions its local gradient
gi into L equal-sized shards,

gi =
[
gT

i1 · · · g
T
iL

]T
, (8)

and generates T independent (uniformly) random vectors

vi1, . . . ,viT ∈ F
d
L
q . Then, user i forms a degree KL + T −

1 polynomial,

fi(α) ≜

L∑

l=1

α(ci−1)L+l−1gil +
T∑

l=1

αKL+l−1vil, (9)

and sends to each user j ∈ [N ] a coded gradient,

g̃ij ≜ fi(αj). (10)

In doing so, some users may drop out from the protocol
and fail to send their coded gradients. We denote the set
of surviving users at the end of this stage (i.e., users who
successfully send their coded gradients from (10)) by U1 ⊆
[N ]. To recover the aggregate of the local gradients of these
surviving users, the server then requests the aggregate of the
coded gradients,

g̃i ≜
∑

j∈U1

g̃ji (11)

from each user i ∈ [N ]. Note that the computations from (11)
can be viewed as evaluations of a degree KL + T −
1 polynomial,

f(α) ≜
∑

j∈U1

fj(α) =
∑

k∈[K]

∑

l∈[L]

α(k−1)L+l−1
( ∑

j∈Sk∩U1

gjl

)

+

T∑

l=1

αKL+l−1
( ∑

j∈U1

vjl

)
(12)

at an interpolation point α = αi, where g̃i = f(αi). The set
of surviving users at the end of this stage (i.e., users who
successfully send the sum of the coded gradients in (11)) is
defined as U2, where U2 ⊆ U1 ⊆ [N ]. Since any polynomial
f of degree deg f can be uniquely reconstructed from at least
deg f+1 evaluation points, upon receiving the evaluations (11)

from the users in U2, where |U2| ≥ KL + T , the server can
reconstruct the aggregate of the local gradients,

∑

j∈Sk∩U1

gj =
[∑

j∈Sk∩U1
gT

j1 · · ·
∑

j∈Sk∩U1
gT

jL

]T
, (13)

for each cluster k ∈ [K], using polynomial interpolation.
Parameter L controls a trade-off between communication
complexity and resilience to user dropouts. Specially, as will
be detailed in Section V, the communication overhead is
O(dN

L
) per user, which is inversely proportional to L, whereas

the maximum number of user dropouts that can be tolerated
is given as D ≤ N − (KL+T ), which increases by selecting
a smaller L.

B. Clustered Masked Gradient Aggregation (CMGA)

Our second framework builds on an online-offline trade-off,
by dividing the communication into online (data-dependent)
and offline (data-agnostic) phases. The former depends on
the datasets, hence can only be carried out after training
starts. The latter is independent from data (such as randomness
generation), and can be carried out flexibly in advance when
the network load is low (accordingly, we assume that the user
dropouts occur in the online phase.). The key intuition is then
to transfer the intensive communication overhead incurred by
large N to the offline phase, by increasing the number of
communication rounds. As demonstrated next, one can achieve
an online communication overhead of O(dK) (independent
from the number of users) while keeping the offline overhead
as O(dN

L
). We next describe the details of the offline and

online phases, respectively.
1) Offline: In the offline phase, the server generates N

distinct public parameters α1, . . . , αN independently and
uniformly at random (without replacement) from Fq, and sends
them to the users. User i ∈ [N ] then generates K random
masks {rik}k∈[K] of size d uniformly at random from Fq,
and partitions each mask into L equal-sized shards,

rik =
[
rT

ik1 · · · r
T
ikL

]T
. (14)

Using the random masks generated, user i constructs a
polynomial of degree KL+ T − 1,

fi(α) ≜

K∑

k=1

L∑

l=1

α(k−1)L+l−1rikl +

T∑

l=1

αKL+l−1vil, (15)

where vil ∈ F
d
L
q are generated uniformly at random for all

l ∈ [T ], and sends an encoded mask,

r̃ij ≜ fi(αj) (16)

to each user j ∈ [N ]. The random masks {rik}k∈[K] will be
utilized to hide the true content of the local gradients in the
online phase, whereas the random vectors {vil}l∈[T ] will hide
the true value of the masks against up to T adversaries.

2) Online: In the online phase, each user i ∈ [N ] sends to
the server a masked gradient,

xik ≜

{
gi + rik if i ∈ Sk

rik otherwise ,
(17)
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for each cluster k ∈ [K]. We define U1 to represent the set of
users who successfully send their masked gradient from (17)
to the server. Then, the server aggregates the received masked
gradients {xik}i∈U1

from the surviving users U1, by evaluating
the sum

∑
i∈U1

xik for each cluster k ∈ [K]. On the
other hand, to recover the aggregate of the true gradients∑

i∈Sk∩U1
gi from the masked gradients

∑
i∈U xik, the server

has to remove the aggregate of the random masks
∑

i∈U1
rik

from the latter. To do so, the server requests the aggregate of
the coded masks,

r̃i ≜
∑

j∈U1

r̃ji (18)

from each user i ∈ U1. The computations from (18) can be
viewed as evaluations of a degree KL+ T − 1 polynomial,

f(α) ≜
∑

j∈U1

fj(α) =

K∑

k=1

L∑

l=1

α(k−1)L+l−1
( ∑

j∈U1

rjkl

)

+
T∑

l=1

αKL+l−1
( ∑

j∈U1

vjl

)
(19)

at an interpolation point α = αi, where r̃i = f(αi). We let
U2 denote the set of users who successfully send the aggregate
of the coded masks in (18) to the server, where U2 ⊆ U1 ⊆
[N ]. Then, upon receiving the evaluations in (18) from any
set of at least KL + T users, the server can reconstruct the
aggregate of the random masks,

∑

i∈U1

rik =
[∑

i∈U1
rT

ik1 · · ·
∑

i∈U1
rT

ikL

]T
for k ∈ [K] (20)

via polynomial interpolation. Then, the server can recover the
aggregate of the true gradients for each cluster, by removing
the random masks in (20) from the masked gradients∑

i∈U1
xik as,
∑

i∈Sk∩U1

gi =
∑

i∈U1

xik −
∑

i∈U1

rik for k ∈ [K]. (21)

CMGA achieves a per-user online communication overhead
of O(dK), by offloading the O(dN

L
) (online) overhead of

CSGS to the offline phase, while providing equal resilience
against user dropouts D ≤ N − (KL + T ). On the other
hand, when the number of clusters K is large, as is often the
case in highly heterogeneous networks, the O(dK) overhead is
still significant. Our next framework overcomes this challenge
by reducing the online overhead to O(d + K), achieving a
linear communication complexity in both the model size d and
the number of clusters K, by trading-off the communication
overhead with tolerance to user dropouts.

C. Secure Aggregation With Masked Clusters (SAMC)

Our last framework also builds on an online/offline trade-
off, where we offload the communication intensive operations
to the offline phase. On the other hand, instead of aggregating
the masked gradients for each cluster, each user now sends
a one-shot masked gradient along with a masked cluster

identity. The two are then combined with encoded random
masks generated in the offline phase, in a way that the server

can correctly recover the sum of the true gradients for each
cluster, without learning any information about their true
value. We next describe the details of the offline and online
phases.

1) Offline: In this phase, users generate three Lagrange
interpolation polynomials, where the first two will be
used to mask the local gradients and cluster identities
in the online phase, while the third one will be used
to ensure information theoretic privacy during the final
reconstruction of the sum of local gradients. Initially, the
server generates 2(N+KL+T )−1 distinct public parameters
{αi}i∈[N ], {βm}m∈[KL+T ], {θm}m∈{KL+1,...,2(KL+T−1)+1},
and {λm}m∈[N−T ] independently and uniformly at random
(without replacement) from Fq, and sends them to the users.
Next, each user i ∈ [N ] generates a random mask,

ri ≜
[
rT

i1 · · · r
T
iL

]T
, (22)

where ril ∈ F
d
L
q for all l ∈ [L] are generated uniformly at

random (and independently from other elements), and then
forms a Lagrange polynomial of degree KL+ T − 1,

fi(α) ≜
∑

l∈[L]

ril

∑

k∈[K]

∏

m∈[KL+T ]
\{(k−1)L+l}

α− βm

β(k−1)L+l − βm

+

KL+T∑

l=KL+1

vil

∏

m∈[KL+T ]\{l}

α− βm

βl − βm

, (23)

where vil ∈ F
d
L
q are uniformly random vectors for all l ∈

{KL + 1, . . . ,KL + T}, where each element is generated
independently from the other elements. Then, user i sends an
encoded mask,

r̃ij ≜ fi(αj) (24)

to each user j ∈ [N ]. In addition, user i generates K random
masks zi1, . . . , ziK ∈ Fq (uniformly at random), forms a
second Lagrange polynomial of degree KL+ T − 1,

hi(α) ≜
∑

k∈[K]

zik

∑

l∈[L]

∏

m∈[KL+T ]
\{(k−1)L+l}

α− βm

β(k−1)L+l − βm

+

KL+T∑

l=KL+1

uil

∏

m∈[KL+T ]\{l}

α− βm

βl − βm

, (25)

where uil ∈ Fq are generated uniformly at random for all
l ∈ {KL+1, . . . ,KL+T}, and sends an encoded mask,

z̃ij ≜ hi(αj) (26)

to user j ∈ [N ]. Finally, user i generates a third Lagrange
polynomial of degree 2(KL+ T − 1),

vi(α) ≜

2(KL+T−1)+1∑

l=KL+1

nil

∏

m∈[2(KL+T−1)+1]\{l}

α− θm

θl − θm

(27)

where θl ≜ βl for l ∈ [KL], and nil is a random vector of size
d

L(N−T ) for l∈{KL+1, . . . , 2(KL+T −1)+1}, where each

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:24:02 UTC from IEEE Xplore.  Restrictions apply. 



4122 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 7, JULY 2024

element is generated independently and uniformly at random
from Fq. User i then sends an encoded vector,

ñij ≜ vi(αj) (28)

to user j ∈ [N ]. After receiving {ñji}j∈[N ], user i computes,

ñi ≜

[∑
j∈[N ] λ

j−1
1 ñT

ji · · ·
∑

j∈[N ] λ
j−1
N−T ñT

ji

]T
(29)

which can be viewed as evaluations of a Lagrange polynomial
v(α) of degree 2(KL+ T − 1),

v(α) ≜

2(KL+T−1)+1∑

l=KL+1

nl

∏

m∈[2(KL+T−1)+1]\{l}

α− θm

θl − θm

(30)

such that the computation at user i ∈ [N ] is given by ñi =
v(αi), whereas v(θl) = 0 for all l ∈ [KL]. Hence, the first
KL coefficients are equal to 0, and

v(θl) = nl =
[∑

j∈[N ] λ
j−1
1 nT

jl · · ·
∑

j∈[N ] λ
j−1
N−T nT

jl

]T

(31)

for all l ∈ {KL+ 1, . . . , 2(KL+ T − 1) + 1}.
2) Online: In the online phase, each user i ∈ [N ] initially

broadcasts a masked local gradient,

xi ≜ gi − ri (32)

along with a masked cluster index for each cluster k ∈ [K],

yik ≜ bik − zik, (33)

where bik is a binary indicator variable,

bik ≜

{
1 if i ∈ Sk

0 otherwise
(34)

representing whether user i is assigned to cluster k ∈ [K].
Let U1 ⊆ [N ] denote the set of surviving users at the end of
this stage, i.e., users who successfully send their masked local
gradient and cluster index from (32) and (33). To reconstruct
the aggregate of local gradients, the server requests from the
surviving users i ∈ U1,

ãi

≜
∑

j∈U1

( ∑

k∈[K]

yjk

∑

l∈[L]

∏

m∈[KL+T ]
\{(k−1)L+l}

αi−βm

β(k−1)L+l−βm

+z̃ji

)

×
( ∑

l∈[L]

xjl

∑

k∈[K]

∏

m∈[KL+T ]
\{(k−1)L+l}

αi−βm

β(k−1)L+l−βm

+r̃ji

)
−ñi

(35)

where the masked gradient xj =
[
xT

j1 · · · x
T
jL

]T
is partitioned

into L equal-sized shards. The computations from (35) can be
viewed as evaluations of a degree 2(KL+T −1) polynomial,

f(α) ≜

( ∑

j∈U1

φj(α)ψj(α)
)
− v(α) (36)

TABLE I

COMPARISON OF COMMUNICATION COMPLEXITY (PER-USER) AND

DROPOUT RESILIENCE (MAXIMUM NUMBER OF USER DROPOUTS)
FOR THE THREE FRAMEWORKS

such that ãi = f(αi), and

φj(α) ≜
∑

k∈[K]

bjk

∑

l∈[L]

∏

m∈[KL+T ]
\{(k−1)L+l}

α− βm

β(k−1)L+l − βm

+

KL+T∑

l=KL+1

ujl

∏

m∈[KL+T ]\{l}

α− βm

βl − βm

, (37)

ψj(α) ≜
∑

l∈[L]

gjl

∑

k∈[K]

∏

m∈[KL+T ]
\{(k−1)L+l}

α− βm

β(k−1)L+l − βm

+

KL+T∑

l=KL+1

vjl

∏

m∈[KL+T ]\{l}

α− βm

βl − βm

, (38)

where gj =
[
gT

j1 · · · g
T
jL

]T
denotes the local gradient of user

j partitioned into L equal-sized shards. We denote the set of
surviving users who successfully send their local computation
from (35) to the server as U2, where U2 ⊆ U1 ⊆ [N ]. Since
f(β(k−1)L+l) =

∑
j∈U1

bjkgjl =
∑

j∈Sk∩U1
gjl correspond

to the true sum of the local gradients for each cluster k ∈ [K]
and shard l ∈ [L], after receiving the local computations (35)
from any set of at least 2(KL+ T − 1) + 1 users, the server
can reconstruct f(α) through polynomial interpolation, and
recover the sum,

∑

j∈Sk∩U1

gj =
[
f(β(k−1)L+1)

T · · · f(β(k−1)L+L)T
]T

(39)

of the local gradients for each cluster k ∈ [K].

Remark 2. SAMC reduces the per-user online communica-

tion overhead to O(d+K) (down from the O(Kd) overhead

of CMGA), while keeping the offline overhead the same. This is

achieved by a trade-off between communication overhead and

dropout resilience; SAMC slashes the online communication

complexity, while requiring a larger number of surviving users

for correct recovery of aggregated gradients. A comparison of

the communication complexity and dropout resilience of the

three frameworks is given in Table I, which will be further

detailed in Section V.

Remark 3. The key intuition behind the polynomial v(α)
in (36) is to ensure privacy during the reconstruction of the

final outcomes by the server. Since v(β(k−1)L+l) = 0 for

all k ∈ [K], l ∈ [L], in principle, the final outcomes

in (39) can be recovered by interpolating the polynomial∑
j∈U1

φj(α)ψj(α) directly, by collecting the evaluations
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∑
j∈U1

φj(αi)ψj(αi) from the users, however, additional

information may be leaked (beyond the desired outcomes)

from the intermediate polynomial coefficients. The masking

with ñi = v(αi) prevents such information leakage, as will

be demonstrated in Theorem 4.

V. THEORETICAL ANALYSIS

We first analyze the per-user communication/computation
complexity, privacy against adversaries, and resilience to user
dropouts. The dropout resilience of a given framework is
quantified by the recovery threshold, defined as the minimum
number of surviving users required for correct recovery of the
aggregate of local gradients.

Theorem 1. CSGS has a per-user communication complexity

O(dN
L

), per-user computation complexity O(dN
L

log2(KL +
T ) log log(KL+ T )), and a recovery threshold of N −D ≥
KL+ T .

Proof: (Communication) The per-user communication over-
head consists of: 1) O(dN

L
) for sending the encoded gradient

from (10) to N users, 2) O( d
L

) for sending (11) to the server.
(Computation) Interpolating a polynomial of degree κ, and

evaluating it at κ points has a computational complexity
of κ log2 κ log log κ [35]. Then, the per-user computation
overhead consists of: 1) O(dN

L
log2(KL+T ) log log(KL+T ))

for evaluating the polynomial of degree KL+T −1 from (10)
at N evaluation points, 2) O(|U1|

d
L

) for aggregating the coded
vectors received from the surviving users in (11).

(Recovery threshold) To recover the aggregate of the local
gradients from (13), the server has to reconstruct the degree
KL + T − 1 polynomial f(α) from (12), which requires the
evaluations from any set of at least KL+ T surviving users,
leading to a recovery threshold N −D ≥ KL+ T . □

Theorem 2. CMGA has a per-user communication complex-

ity of O(dK) online and O(dN
L

) offline, per-user computation

complexity of O(dN
L

) online and O(dN
L

log2(KL+T ) log log
(KL + T )) offline, and a recovery threshold of N − D ≥
KL+ T .

Proof: (Communication) The per-user communication over-
head consists of the following components. (Online): 1)
O(dK) for sending (17) to the server, 2) O( d

L
) for sending

(18) to the server. (Offline): O(dN
L

) for sending the coded
masks from (16) to N users.

(Computation) The per-user computation overhead consists
of the following components. (Online): 1) O(d) for computing
the masked gradient in (17), 2) O(|U1|

d
L

) for aggregating the
masks in (18). (Offline): O(dN

L
log2(KL + T ) log log(KL +

T )) to evaluate the degree KL+T − 1 polynomial from (15)
at N points.

(Recovery threshold) To recover the aggregated gradients,
the server interpolates the degree KL+T−1 polynomial f(α)
from (19), which requires evaluations from N−D ≥ KL+T

surviving users. □

Theorem 3. SAMC has a per-user communication complexity

of O(d + K) online and O(dN
L

) offline, along with a per-

user computational complexity O(N(K + d)) online and

O(dN
L

log2(KL+T ) log log(KL+T )) offline, and a recovery

threshold of N −D ≥ 2(KL+ T )− 1.

Proof: (Communication) The per-user communication
overhead consists of the following. (Online): 1) O(d)
for broadcasting the masked gradient (32), 2) O(K) for
broadcasting the masked cluster identity (33), 3) O( d

L
) for

sending (35) to the server. (Offline): 1) O(dN
L

) for sending
(24) to N users, 2) O(N) for sending (26) to N users,
3) O( dN

L(N−T ) ) for sending (28) to N users.
(Computation) The per-user computation overhead consists

of the following components. (Online): 1) O(d) for computing
the masked local gradient from (32), 2) O(K) for computing
the masked cluster assignments in (33), 3) O(|U1|(K +
d)) for computing (35). (Offline): 1) O(dN

L
log2(KL +

T ) log log(KL + T )) for evaluating the polynomial fi(α)
of degree KL + T − 1 from (23) at N evaluation points,
2) O(N log2(KL + T ) log log(KL + T )) for evaluating the
polynomial hi(α) of degree KL+T−1 from (25) at N points,
3) O( dN

L(N−T ) log2(KL+T ) log log(KL+T )) for evaluating
the polynomial vi(α) of degree 2(KL+ T − 1) from (27) at
N points, 4) O(dN

L
) for computing ñi from (29).

(Recovery threshold) To aggregate the local gradients, the
server interpolates the degree 2(KL + T − 1) polynomial
from (36), using the evaluations (35) of N − D ≥ 2(KL +
T − 1)+1 surviving users. □

Remark 4. The three frameworks provide a trade-off between

the online/offline communication complexity, computation

cost, and recovery threshold. CMGA reduces the online

communication overhead of CSGS by introducing an offline

phase. SAMC reduces the online communication by a factor

of K compared to CMGA, while increasing the recovery

threshold by a constant factor.

Remark 5. There is a fundamental trade-off between the

privacy against adversaries (T ) and dropout resilience (D)
in a given network of size N , characterized by the recovery

threshold, where one has to decrease T in order to increase

D (and vice versa). For both CSGS and CMGA, the maximum

number of user dropouts that can be tolerated is given by

D ≤ N−KL − T from the recovery threshold. As a result,

increasing the adversary tolerance T by 1 comes at a cost

of reduced dropout resilience D by 1. On the other hand, for

SAMC, the maximum number of user dropouts that can be

tolerated is D ≤ N + 1 − 2KL − 2T , hence increasing the

adversary tolerance T by 1 comes at a cost of reducing the

dropout resilience D by 2.

We next demonstrate the information-theoretic privacy
guarantees from (7) for all the three frameworks.

Theorem 4. (Information-theoretic privacy) All three frame-

works CSGS, CMGA, and SAMC provide information-theoretic

privacy guarantees from (7) against any set T of up to

|T | ≤ T adversarial users,

I

(
{gi, ci}[N ]\T ;MT

∣∣∣
{ ∑

i∈Sk∩U1

gi

}

k∈[K]
,{gi, ci}i∈T ,GT

)
=0

(40)
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Fig. 2. Test accuracy vs number of iterations (MNIST dataset).

Fig. 3. Test accuracy vs number of iterations (CIFAR-10 dataset).

whereMT denotes the collection of all messages received by

the server and adversarial users during the protocol, and GT
is the set of randomness generated by the adversarial users.

Proof: The proof is provided in Appendix B. □

Remark 6. An upper bound on the mutual information

between the local dataset of user i ∈ Sk(t) and the gradient

aggregate for cluster k ∈ [K] can be obtained from [36,

Theorem 1] as,

I

(
Di;

∑

i∈Sk(t)∩U1(t)

gi(t)

∣∣∣∣
{ ∑

i∈Sk(j)∩U1(j)

gi(j)
}

j∈[t−1]

)

≤ O

(
1

Nk(t)B

)

where Nk(t) ≜ |Sk(t) ∩ U1(t)|, and B is the batch size for

local training at the users. Accordingly, a larger cluster size

(i.e., larger number of users within a cluster) reduces the

information leakage from the aggregated gradients.

VI. EXPERIMENTS

In this section, we evaluate the performance of our
frameworks with respect to key performance measures;
communication overhead, dropout tolerance, and model
accuracy.

A. Setup

We consider clustered FL for image classification on the
MNIST [37] and CIFAR-10 [38] datasets. Each user holds
a local dataset sampled from one of K source distributions,
where the data samples for each source distribution are
realized from two distinct classes. Specifically, for both
MNIST and CIFAR-10 datasets, which contain 10 classes,
the data samples with labels {2j, 2j + 1} are distributed
uniformly at random across the users {10j+1, . . . , 10j+10}

for j = 0, . . . , 4. Training is then performed using the CNN
architectures from [1], where the number of model parameters
is d = 21840 for MNIST and d = 62006 for CIFAR-10.
The maximum number of adversarial and dropout users are
T = D = ⌊N−3

6 ⌋. For user dropouts, we consider the
worst-case scenario for training, where maximum number of
dropouts occur in the first round of online communication,
i.e., |U1| = |U2| = N − D, as a result, the local gradients
of the dropped users do not contribute to the global model at
that iteration. At each iteration, D users drop out uniformly
at random. The remaining hyperparameters are L = 3,
η = 0.001, and q = 232 − 5.

B. Model Accuracy

We first evaluate the performance of our frameworks in
terms of the test accuracy, with respect to the clustered
FL benchmark (clustered FL without SA) from [23], which
serves as our target accuracy, and the conventional (non-
clustered) FL benchmark (FedAvg) from [1]. The accuracy
of our frameworks is depicted as clustered FL with SA,
as all our frameworks preserve the correctness of the secure
computations, leading to the same final result. In Figs. 2 and 3,
we report the average test accuracy of the users within each
cluster for the MNIST and CIFAR-10 datasets, respectively.
Our frameworks (clustered FL with SA), where the local
gradients are aggregated in the finite field, achieve comparable
test accuracy to the target benchmark (clustered FL without
SA). In Fig. 2, we observe that clustered FL (with or
without SA) achieves an average accuracy of 99% across
all clusters, whereas FedAvg achieves 81.7% accuracy on
average with a worst case accuracy of 48.1% (cluster 5). The
performance improvement is even more significant for CIFAR-
10 as observed in Fig. 3, where clustered FL (with or without
SA) achieves an average accuracy of 87.8%, compared to the
46.91% accuracy of FedAvg.
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Fig. 4. Performance comparisons for the three frameworks in terms of the communication overhead (with respect to the number of users and clusters) and
dropout resilience (with respect to the number of users) on the MNIST dataset.

Fig. 5. Membership inference attack on the gradient aggregate of the clusters.

C. Communication Overhead

In Fig. 4(a), we compare the total online communication
overhead (across all users) for the proposed frameworks with
varying N while letting K = 5, and L = 3. We observe
that CMGA significantly reduces the online communication
overhead compared to CSGS, by up to 15.8× since the
intensive point-to-point communication overhead is transferred
to the offline phase. The communication overhead is further
reduced by SAMC by 4.12× since the overhead of SAMC is
O(N(K+d)), compared to the O(NKd) overhead of CMGA .
In Fig. 4(b), we further observe the impact of the multiplicative
factor K on the per-user online communication overhead of
CMGA, by letting N = 200, and varying K. We then set L
accordingly to satisfy the recovery threshold L = N−D−T

K
for

CSGS and CMGA, and L =
N−D−1

2 −T+1

K
for SAMC. As K

increases, the communication overhead of CMGA increases
linearly (as d is fixed), while having negligible impact on the
communication overhead of SAMC (since d≫ K). As such,
SAMC reduces the per-user online communication overhead
by up to 15.1× compared to CMGA.

D. Dropout Tolerance

In Fig. 4(c), we illustrate the maximum number of user
dropouts that can be tolerated by each framework with varying
number of users N , while keeping K and L fixed (K = 5,
L = 3). We observe that CSGS and CMGA achieve a
higher dropout tolerance compared to SAMC, which again
reflects the trade-off between the dropout resilience and online
communication overhead for the three frameworks.

E. Membership Inference Attacks

In Fig. 5, we demonstrate the impact of membership
inference attacks [39] on the global model trained for each

cluster (on CIFAR-10). Similar to [39], [40], and [41],
we consider a worst case scenario and perform the attack on
the final model obtained for each cluster, as the attack performs
better in the latter rounds of training (when models start to
overfit to training data). Following [39], we report the attack
performance in terms of precision, by measuring the fraction
of samples interpreted as members that are actually members
of the training dataset. In Fig. 5 we demonstrate the attack
performance with varying number of users per cluster, with
500 data points per user, sampled from two distinct classes for
each cluster. We observe that the attack performance degrades
as the cluster size increases.

VII. DISCUSSION

In this work, we focus on the honest-but-curious (passive)
adversary model, as a first step for understanding more
capable active (malicious) adversaries [42]. An interesting
future direction is to extend our frameworks to the latter, who
can modify the messages exchanged during protocol execution.
One approach to achieve this is by leveraging Byzantine-
resilient and verifiable secure multi-party computing mech-
anisms [42]. Verifiable secret sharing frameworks can ensure
the correctness of the encoded messages sent from each user
to the other parties [43]. The correctness of the polynomial
computations sent from the users to the server, on the other
hand, can be ensured by Reed-Solomon decoding, which can
correctly identify the errors in the polynomial evaluations sent
from the users to the server [44]. To ensure correct decoding
in a network with up to A active adversaries, Reed-Solomon
decoding requires two messages per error, hence the server
needs 2A additional evaluations from the surviving users.

In addition to the encoding/decoding protocol, adversaries
can also target the machine learning/training mechanism,
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by modifying their local datasets to inject unwanted behaviour
into the global model [45]. Defending against such attacks
requires secure outlier detection mechanisms as the local
gradients are hidden during training (to preserve privacy),
where local gradients from different users are compared with-
out revealing their true value, and then outliers are removed
during the aggregation of the local gradients at the server [42].
For clustered FL, doing so requires effective mechanisms for
distinguishing the outliers that emerge from adversarial attacks
from those that emerge from data heterogeneity.

VIII. CONCLUSION

In this work, we propose SA for clustered FL, to aggregate
the local gradients for any cluster of users, without learning
any information about the local gradients or cluster identities
of the users. Our framework can achieve linear communica-
tion complexity, while ensuring formal information-theoretic
privacy guarantees. Future directions include extending our
mechanisms to active (malicious) adversaries who can modify
the messages or datasets adversarially [42], and integrating
our frameworks with authenticated key agreement mechanisms
to ensure the integrity and authenticity of the messages
exchanged against malicious adversaries. Another interesting
direction is to further enhance the computational efficiency
by offloading the computational overhead of polynomial
interpolations to the offline phase, by leveraging trusted
execution environments or crypto-service providers [46].

APPENDIX A
FINITE FIELD REPRESENTATIONS

The local gradient gi of user i is represented in the finite
field Fq as gi ≜ ρ(gi) mod q, using a stochastic quantization
function [42], [47],

ρ(x) ≜

{
⌊lx⌋ with probability 1− (lx− ⌊lx⌋)

⌊lx⌋+ 1 with probability lx− ⌊lx⌋

(41)

operating element-wise, where l controls the quantization loss
(set to 220 in the experiments), and the modulo operation maps
the negative integers in the second half of the finite field. Prime
q is selected large enough to avoid a wrap-around which may
cause overflow errors. After recovering the aggregate of the
gradients for each cluster, the server updates the models,

wk ← wk −
η

Nl
ρ−1

( ∑

i∈Sk∩U

gi

)
∀k ∈ [K] (42)

where ρ−1 : Fq → R is a demapping function that converts
the gradients back to the real domain,

ρ−1(x̄) =





x̄ if 0 ≤ x̄ <
q − 1

2

x̄−q if
q − 1

2
≤ x̄ ≤ q

(43)

APPENDIX B
INFORMATION-THEORETIC PRIVACY

We now demonstrate the information-theoretic privacy of
each framework against any set T of |T | = T adversarial

users (the proof for any |T | < T follows the same steps). The
set of honest users is denoted by H = [N ]\T . Without loss of
generality, we let T = [T ], as the same analysis holds for any
set T ⊂ [N ] of size T . For the analysis, we consider the worst-
case scenario where all messages are communicated across the
users, i.e., users declared as dropped are only delayed, and
their messages are eventually received by the adversaries [9].
The number of surviving users at the final communication
round, denoted by |U2|, is assumed to be equal to the recovery
threshold of the corresponding framework (the same analysis
also holds for a larger number of surviving users). We next
demonstrate the privacy analysis for each framework.

A. CSGS

For this framework, the mutual information condition
in (40) can be written as,

I({gi, ci}i∈H; {g̃i}i∈U2 , {g̃ij}i∈[N ]
j∈T

, {αi}i∈[N ]|

× {
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {vil}i∈T ,l∈[T ])

= I({gi, ci}i∈H; {g̃i}i∈U2 , {g̃ij}i∈[N ]
j∈T

|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {vil}i∈T ,l∈[T ], {αi}i∈[N ]) + I({gi, ci}i∈H;

{αi}i∈[N ]|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {vil}i∈T ,l∈[T ])

(44)

= I({gi, ci}i∈H; {g̃i}i∈U2
, {g̃ij}i∈[N ]

j∈T

|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {vil}i∈T ,l∈[T ], {αi}i∈[N ]) + 0 (45)

= H({g̃i}i∈U2
, {g̃ij}i∈H

j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T ,

{vil} i∈T
l∈[T ]

, {αi}i∈[N ])−H({g̃i}i∈U2
, {g̃ij}i∈H

j∈T
|

× {
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ], {vil} i∈T
l∈[T ]

, {αi}i∈[N ])

(46)

where (44) follows from the chain rule of mutual information,
and (45) holds since the public parameters {αi}i∈[N ] are
generated independently from the locally generated gradients
and random masks, (46) follows from the chain rule of entropy
and the fact that there is no uncertainty in {g̃ij}i∈T

j∈T
given

{vil} i∈T
l∈[T ]

, {gi, ci}i∈T . For the second term in (46), we have,

H({g̃i}i∈U2
, {g̃ij}i∈H

j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ],

{vil} i∈T
l∈[T ]

, {αi}i∈[N ])

= H({g̃i}i∈U2 |{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ], {vil} i∈T
l∈[T ]

,

{g̃ij}i∈H
j∈T

, {αi}i∈[N ]) +H({g̃ij}i∈H
j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈[N ], {vil} i∈T
l∈[T ]

, {αi}i∈[N ]) (47)
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= H({
∑

i∈Sk∩U1

gi}k∈[K], {
∑

i∈U1

vil}l∈[T ]|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈[N ], {vil} i∈T
l∈[T ]

, {g̃ij}i∈H
j∈T

, {αi}i∈[N ])

+H({vil} i∈H
l∈[T ]
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ],

{vil} i∈T
l∈[T ]

, {αi}i∈[N ]) (48)

= H({
∑

i∈U1

vil}l∈[T ]|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ],

{vil} i∈T
l∈[T ]

, {g̃ij}i∈H
j∈T

, {αi}i∈[N ]) +H({vil} i∈H
l∈[T ]

) (49)

= 0 +H({vil}i∈H,l∈[T ]) (50)

= (N − T )T
d

L
log q (51)

where (47) is from the chain rule. By denoting
U2 = {U1, . . . , UKL+T },

[
g̃U1

· · · g̃UKL+T

]

=
[ ∑

i∈S1∩U1

gi1

∑

i∈S1∩U1

gi2

· · ·
∑

i∈SK∩U1

giL

∑

i∈U1

vi1 · · ·
∑

i∈U1

viT

]
Q (52)

where Q is a (KL+T )×(KL+T ) MDS (maximum distance
separable) matrix,

Q ≜




1 αU1
· · · αKL−1

U1
αKL

U1
· · · αKL+T−1

U1

...
...

. . .
...

...
. . .

...
1 αUKL+T

· · · αKL−1
UKL+T

αKL
UKL+T

· · · αKL+T−1
UKL+T




T

hence {g̃i}i∈U2 is invertible to {
∑

i∈Sk∩U1
gil}k∈[K],l∈[L],

{
∑

i∈U1
vil}l∈[T ], from which (48) follows. Equation (49)

holds since {vil}i∈H,l∈[T ] is generated uniformly at random
from Fq (and independently from other elements). Note
that given {gi, ci}i∈T and {vil}i∈T ,l∈[T ], one can compute
{g̃ij}i∈T ,j∈T from (10). Since T = [T ], one can find
from (11) and (12) that,




∑
i∈U1

g̃T
i1 −

∑
k∈[K]

∑
l∈[L] α

(k−1)L+l−1
1

(∑
i∈Sk∩U1

gT
il

)

...
∑

i∈U1
g̃T

iT −
∑

k∈[K]

∑
l∈[L] α

(k−1)L+l−1
T

(∑
i∈Sk∩U1

gT
il

)




T

=
[ ∑

i∈U1

vi1 · · ·
∑

i∈U1

viT

]
A, (53)

where

A ≜




αKL
1 · · · αKL

T
...

. . .
...

αKL+T−1
1 · · · αKL+T−1

T


 (54)

is a T × T MDS matrix (hence invertible). Therefore,
there is no uncertainty in {

∑
i∈U1

vil}l∈[T ] given
{
∑

i∈Sk∩U1
gi}k∈[K], {gi, ci}i∈T , {vil}i∈T ,l∈[T ],

{g̃ij}i∈H,j∈T , {αi}i∈[N ] from which (50) holds.
Equation (51) holds as the entropy of a uniform random

variable over the alphabet B is log |B| [48]. Next, the first
term in (46) can be bounded as:

H({g̃i}i∈U2
, {g̃ij}i∈H

j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T ,

{vil} i∈T
l∈[T ]

, {αi}i∈[N ])

= H({g̃ij}i∈H
j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {vil} i∈T
l∈[T ]

,

{αi}i∈[N ]) +H({g̃i}i∈U2 |{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T ,

{vil} i∈T
l∈[T ]

, {g̃ij}i∈H
j∈T

, {αi}i∈[N ]) (55)

= H({g̃ij}i∈H
j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {vil} i∈T
l∈[T ]

,

{αi}i∈[N ]) +H({
∑

i∈Sk∩U1

gi}k∈[K], {
∑

i∈U1

vil}l∈[T ]|

× {
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {vil} i∈T
l∈[T ]

, {g̃ij}i∈H
j∈T

,

{αi}i∈[N ]) (56)

≤ H({g̃ij}i∈H
j∈T

) (57)

≤ (N − T )T
d

L
log q (58)

where (55) is from the chain rule of entropy; (56) follows
from (52) as {g̃i}i∈U2

is invertible to {
∑

i∈Sk∩U1
gi}k∈[K],

{
∑

i∈U1
vil}l∈[T ]; (57) holds since there is no uncertainty

in {
∑

i∈U1
vil}l∈[T ] given {

∑
i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T ,
{vil}i∈T ,l∈[T ], {g̃ij}i∈H,j∈T , {αi}i∈[N ] from (53), and that
conditioning cannot increase entropy; (58) holds since uniform
distribution maximizes entropy. By combining (46), (51), (58)
with the non-negativity of mutual information,

0 ≤ I({gi, ci}i∈H; {g̃i}i∈U2
, {g̃ij}i∈[N ]

j∈T

, {αi}i∈[N ]|

× {
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {vil}i∈T ,l∈[T ]) (59)

≤ (N − T )T
d

L
log q − (N − T )T

d

L
log q (60)

= 0 (61)

which completes the proof.

B. CMGA

For this framework, the mutual information from (40) can
be written as,

I({gi, ci}i∈H;{xik} i∈[N ]
k∈[K]

,{r̃i}i∈U2 , {r̃ij}i∈[N ]
j∈T

, {αi}i∈[N ]|

{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

)

= I({gi, ci}i∈H;{xik} i∈[N ]
k∈[K]

,{r̃i}i∈U2
, {r̃ij}i∈[N ]

j∈T

|

× {
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

,

{αi}i∈[N ]) + I({gi, ci}i∈H; {αi}i∈[N ]|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

) (62)
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= H({xik} i∈[N ]
k∈[K]

,{r̃i}i∈U2
, {r̃ij}i∈H

j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ])

−H({xik} i∈[N ]
k∈[K]

, {r̃i}i∈U2
, {r̃ij}i∈H

j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈[N ], {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ]) (63)

where (63) follows from the chain rule, along with the fact
that there is no uncertainty in {r̃ij}i∈T

j∈T
given {vil} i∈T

l∈[T ]
,

{rik} i∈T
k∈[k]

, and that the public parameters {αi}i∈[N ] are

generated independently from the locally generated gradients
and random masks. For the second term in (63), we have,

H({xik} i∈[N ]
k∈[K]

,{r̃i}i∈U2
, {r̃ij}i∈H

j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈[N ], {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ])

= H({rik} i∈H
k∈[K]

,{r̃i}i∈U2
, {r̃ij}i∈H

j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈[N ], {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ]) (64)

= H({r̃i}i∈U2
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ], {rik}i∈[N ]
k∈[k]

,

{vil} i∈T
l∈[T ]

, {r̃ij}i∈H
j∈T

, {αi}i∈[N ]) +H({r̃ij}i∈H
j∈T
|

× {
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ], {rik}i∈[N ]
k∈[k]

, {vil} i∈T
l∈[T ]

,

{αi}i∈[N ]) +H({rik} i∈H
k∈[K]

) (65)

= H({
∑

i∈U1

rik}k∈[K], {
∑

i∈U1

vil}l∈[T ]|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈[N ], {rik}i∈[N ]
k∈[k]

, {vil} i∈T
l∈[T ]

, {r̃ij}i∈H
j∈T

, {αi}i∈[N ])

+H({vil} i∈H
l∈[T ]
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ],

{rik}i∈[N ]
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ]) +H({rik} i∈H
k∈[K]

) (66)

= 0 +H({vil} i∈H
l∈[T ]
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ],

{rik}i∈[N ]
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ]) +H({rik} i∈H
k∈[K]

) (67)

= H({vil} i∈H
l∈[T ]

) +H({rik} i∈H
k∈[K]

) (68)

= (N − T )T
d

L
log q + (N − T )Kd log q (69)

where (64) holds since given gi, ci, the uncertainty in xik

is due to rik for all k ∈ [K]; (65) is from the chain rule
of entropy and that the random vectors {rik}i∈H,k∈[K] are
generated independently; (66) holds since similar to (52),
{r̃i}i∈U2

is invertible to {
∑

i∈U1
rik}k∈[K], {

∑
i∈U1

vil}l∈[T ]

and given {rik}i∈[N ],k∈[K], {r̃ij}i∈H,j∈T is invertible
to {vil}i∈H,l∈[T ]. Note that given {rik}i∈T ,k∈[K] and
{vil}i∈T ,l∈[T ], one can compute {r̃ij}i∈T ,j∈T from (16), and
given {rik}i∈[N ],k∈[K], one can compute {

∑
i∈U1

rik}k∈[K].

Then, by using (18) and (19), one can find that,




∑
i∈U1

r̃T
i1 −

∑
k∈[K]

∑
l∈[L] α

(k−1)L+l−1
1

( ∑
i∈U1

rT
ikl

)

...
∑

i∈U1
r̃T

iT −
∑

k∈[K]

∑
l∈[L] α

(k−1)L+l−1
T

( ∑
i∈U1

rT
ikl

)




T

=
[ ∑

i∈U1

vi1 · · ·
∑

i∈U1

viT

]
A, (70)

where A is the T × T MDS matrix (invertible) from (54),
hence there is no uncertainty in {

∑
i∈U1

vil}l∈[T ] given
{rik}i∈[N ],k∈[k], {vil}i∈T ,l∈[T ], {r̃ij}i∈H,j∈T , {αi}i∈[N ],
from which (67) holds. Equation (68) is from the indepen-
dence of generated randomness, (69) is from the entropy
of uniform randomness. The first term in (63) can be
bounded as,

H({xik} i∈[N ]
k∈[K]

,{r̃i}i∈U2
, {r̃ij}i∈H

j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ])

= H({xik} i∈H
k∈[K]

,{r̃i}i∈U2
, {r̃ij}i∈H

j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ]) (71)

= H({xik} i∈H
k∈[K]

|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

,

{vil} i∈T
l∈[T ]

, {αi}i∈[N ]) +H({r̃ij}i∈H
j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {xik} i∈H
k∈[K]

, {αi}i∈[N ])

+H({r̃i}i∈U2 |{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

,

{vil} i∈T
l∈[T ]

, {xik} i∈H
k∈[K]

, {r̃ij}i∈H
j∈T

, {αi}i∈[N ]) (72)

= H({xik} i∈H
k∈[K]

|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

,

{vil} i∈T
l∈[T ]

, {αi}i∈[N ]) +H({r̃ij}i∈H
j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {xik} i∈H
k∈[K]

, {αi}i∈[N ])

+H({
∑

i∈U1

rik}k∈[K], {
∑

i∈U1

vil}l∈[T ]|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {xik} i∈H
k∈[K]

, {r̃ij}i∈H
j∈T

,

{αi}i∈[N ]) (73)

= H({xik} i∈H
k∈[K]

|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

,

{vil} i∈T
l∈[T ]

, {αi}i∈[N ]) +H({r̃ij}i∈H
j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {xik} i∈H
k∈[K]

, {αi}i∈[N ])

+H({
∑

i∈U1

vil}l∈[T ]|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k

!in[k]

,

{vil} i∈T
l∈[T ]

, {xik} i∈H
k∈[K]

, {r̃ij}i∈H
j∈T

, {αi}i∈[N ]) (74)
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= H({xik} i∈H
k∈[K]

|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

,

{vil} i∈T
l∈[T ]

, {αi}i∈[N ]) +H({r̃ij}i∈H
j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {xik} i∈H
k∈[K]

, {αi}i∈[N ])

+ 0 (75)

≤ H({xik} i∈H
k∈[K]

) +H({r̃ij}i∈H
j∈T

) (76)

≤ (N − T )Kd log q + (N − T )T
d

L
log q (77)

where (71) holds since given {gi, ci}i∈T , {rik}i∈T ,k∈[k],
there is no uncertainty in {xik}i∈T ,k∈[K]; (72) is from
the chain rule; and (73) holds as {r̃i}i∈U2

is invertible to
{
∑

i∈U1
rik}k∈[K], and {

∑
i∈U1

vil}l∈[T ]. Note that given
{gi, ci}i∈T , {rik}i∈T ,k∈[k], one can compute {xik}i∈T ,k∈[K]

from (17), and given {xik}i∈[N ],k∈[K], one can compute
{
∑

i∈U1
xik}k∈[K]. Finally, {

∑
i∈U1

rik}k∈[K] can be com-
puted from {

∑
i∈U1

xik}k∈[K] and {
∑

i∈Sk∩U1
gi}k∈[K]

by using (21). Therefore, there is no uncertainty in
{
∑

i∈U1
rik}k∈[K] given {

∑
i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T ,
{rik}i∈T ,k∈[k], {xik}i∈H,k∈[K], from which (74) holds.
Similarly, as can be observed from (70), there is no uncertainty
in {

∑
i∈U1

vil}l∈[T ] given {
∑

i∈Sk∩U1
gi}k∈[K], {gi, ci}i∈T ,

{rik}i∈T ,k∈[k], {vil}i∈T ,l∈[T ], {xik}i∈H,k∈[K], {r̃ij}i∈H,j∈T ,
{αi}i∈[N ], from which (75) holds; (76) holds as conditioning
cannot increase entropy; (77) holds as uniform distribution
maximizes entropy. By combining (63), (69), and (77) with
the non-negativity of mutual information, we have that,

0≤I({gi, ci}i∈H;{xik} i∈[N ]
k∈[K]

,{r̃i}i∈U2 ,{r̃ij}i∈[N ]
j∈T

,{αi}i∈[N ]|

× {
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

,{vil} i∈T
l∈[T ]

)

≤(N − T )Kd log q + (N−T )T
d

L
log q

− (N−T )Kd log q − (N − T )T
d

L
log q (78)

=0 (79)

which completes the proof.

C. SAMC

In the following, we let C ≜ 2(KL+ T − 1) + 1 and,

A ≜
{
{αi}i∈[N ], {βm}m∈[KL+T ],

{θm}m∈{KL+1,...,2(KL+T−1)+1}, {λm}m∈{N−T}

}
(80)

Then, the mutual information from (40) can be written as:

I({gi, bik}i∈H
k∈[K]

;{xi}i∈[N ], {yik} i∈[N ]
k∈[K]

,{z̃ij}i∈[N ]
j∈T

,{ãi}i∈U2 ,

{r̃ij}i∈[N ]
j∈T

, {ñij}i∈[N ]
j∈T

,A|
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈T
k∈[K]

,

{ri, zik} i∈T
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

)

= H({xi}i∈[N ], {yik} i∈[N ]
k∈[K]

,{z̃ij}i∈H
j∈T

,{ãi}i∈U2
, {r̃ij}i∈H

j∈T
,

{ñij}i∈H
j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈T
k∈[K]

, {ri, zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

,{nil} i∈T
l∈{KL+1,...,C}

,A)

−H({xi}i∈[N ], {yik} i∈[N ]
k∈[K]

,{z̃ij}i∈H
j∈T

, {ãi}i∈U2 , {r̃ij}i∈H
j∈T

,

{ñij}i∈H
j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

, {ri, zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

,{nil} i∈T
l∈{KL+1,...,C}

,A) (81)

For the second term in (81), we find that:

H({xi}i∈[N ], {yik} i∈[N ]
k∈[K]

,{z̃ij}i∈H
j∈T

,{ãi}i∈U2
, {r̃ij}i∈H

j∈T
,

{ñij}i∈H
j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

, {ri, zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

,A)

= H({ri}i∈H, {zik} i∈H
k∈[K]

, {z̃ij}i∈H
j∈T

,{ãi}i∈U2
, {r̃ij}i∈H

j∈T
,

{ñij}i∈H
j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

, {ri, zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

,A) (82)

= H({z̃ij}i∈H
j∈T

,{ãi}i∈U2 , {r̃ij}i∈H
j∈T

, {ñij}i∈H
j∈T
|

× {
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ], {zik} i∈[N ]
k∈[K]

,A)

+H({zik} i∈H
k∈[K]
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ],

{zik} i∈T
k∈[K]

,A) +H({ri}i∈H|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, bik} i∈[N ]
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈T , {zik} i∈T
k∈[K]

,A) (83)

= H({z̃ij}i∈H
j∈T

,{ãi}i∈U2 , {r̃ij}i∈H
j∈T

, {ñij}i∈H
j∈T
|

×
∑

i∈Sk∩U1

gi}k∈[K],{gi, bik}i∈[N ]
k∈[K]

,{vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ], {zik}i∈[N ]
k∈[K]

,A)

+H({zik} i∈H
k∈[K]

) +H({ri}i∈H) (84)

= H({z̃ij}i∈H
j∈T

,{ãi}i∈U2
, {ñij}i∈H

j∈T
, {mij}i∈H

j∈T
|

× {
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ], {zik} i∈[N ]
k∈[K]

,A)

+H({zik} i∈H
k∈[K]

) +H({ri}i∈H)

(85)
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= H({z̃ij}i∈H
j∈T

,{ãi}i∈U2
, {ñij}i∈H

j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K],

{gi, bik} i∈[N ]
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ], {zik} i∈[N ]
k∈[K]

, {mij}i∈H
j∈T

,A)

+H({mij}i∈H
j∈T
|A) +H({zik} i∈H

k∈[K]
) +H({ri}i∈H)

(86)

= H({eij}i∈H
j∈T

,{ãi}i∈U2
, {ñij}i∈H

j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K],

{gi, bik} i∈[N ]
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ], {zik} i∈[N ]
k∈[K]

, {mij}i∈H
j∈T

,A)

+H({mij}i∈H
j∈T
|A) +H({zik} i∈H

k∈[K]
) +H({ri}i∈H)

(87)

= H({ãi}i∈U2
, {ñij}i∈H

j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ],

×{zik}i∈[N ]
k∈[K]

, {mij}i∈H
j∈T

, {eij}i∈H
j∈T

,A)+H({eij}i∈H
j∈T
|A)

+H({mij}i∈H
j∈T
|A) +H({zik} i∈H

k∈[K]
) +H({ri}i∈H)

(88)

= H({
∑

j∈U1

φj(αi)ψj(αi)− ñi}i∈U2
, {ñij}i∈H

j∈T
|

× {
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

, {vil, uil} i∈T
lßn{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

,{ri}i∈[N ], {zik} i∈[N ]
k∈[K]

, {mij}i∈H
j∈T

,

{eij}i∈H
j∈T

,A) +H({eij}i∈H
j∈T
|A) +H({mij}i∈H

j∈T
|A)

+H({zik} i∈H
k∈[K]

) +H({ri}i∈H)

(89)

= H({ñi}i∈U2 , {ñij}i∈H
j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ],

{zik} i∈[N ]
k∈[K]

, {mij}i∈H
j∈T

, {eij}i∈H
j∈T

,A) +H({eij}i∈H
j∈T
|A)

+H({mij}i∈H
j∈T
|A) +H({zik} i∈H

k∈[K]
) +H({ri}i∈H)

(90)

= H({ñij}i∈H
j∈T
|{ñi}i∈U2 , {nil} i∈T

l∈{KL+1,...,C}
,A)

+H(ñi}i∈U2 |{nil} i∈T
l∈{KL+1,...,C}

,A) +H({eij}i∈H
j∈T
|A)

+H({mij}i∈H
j∈T
|A) +H({zik} i∈H

k∈[K]
) +H({ri}i∈H)

(91)

= 0 +H({ñi}i∈U2
|{nil} i∈T

l∈{KL+1,...,C}
,A)

+H({eij}i∈H
j∈T
|A) +H({mij}i∈H

j∈T
|A) +H({zik} i∈H

k∈[K]
)

+H({ri}i∈H) (92)

= H({nl}l∈{KL+1,...,C}|{nil} i∈T
l∈{KL+1,...,C}

,A)

+H({eij}i∈H
j∈T
|A) +H({mij}i∈H

j∈T
|A) +H({zik} i∈H

k∈[K]
)

+H({ri}i∈H) (93)

= H
({[ ∑

j∈[N ]

λ
j−1
1 nT

jl · · ·
∑

j∈[N ]

λ
j−1
N−T nT

jl

]T}
l∈{KL+1,...,C}

|

× {nil} i∈T
l∈{KL+1,...,C}

,A
)

+H({eij}i∈H
j∈T
|A)

+H({mij}i∈H
j∈T
|A) +H({zik} i∈H

k∈[K]
) +H({ri}i∈H)

(94)

= H
({[ ∑

j∈H

λ
j−1
1 nT

jl · · ·
∑

j∈H

λ
j−1
N−T nT

jl

]T}
l∈{KL+1,...,C}

|

× A
)

+H({eij}i∈H
j∈T
|A) +H({mij}i∈H

j∈T
|A)

+H({zik} i∈H
k∈[K]

) +H({ri}i∈H) (95)

= H
({[

n(T+1)l · · · nNl

]
B

}
l∈{KL+1,...,C}

|A
)

+H({eij}i∈H
j∈T
|A) +H({mij}i∈H

j∈T
|A) +H({zik} i∈H

k∈[K]
)

+H({ri}i∈H) (96)

= H({nil} i∈H
l∈{KL+1,...,C}

) +H({uil} i∈H
l∈{KL+1,...,KL+T}

)

+H({vil} i∈H
l∈{KL+1,...,KL+T}

) +H({zik} i∈H
k∈[K]

)

+H({ri}i∈H) (97)

= (C −KL)(N − T )
d

L(N − T )
log q + (N − T )T log q

+ (N − T )T
d

L
log q+(N − T )K log q+(N − T )d log q

(98)

where (82) holds since given gi and {bik}k∈[K], the
uncertainty in xi and {yik}k∈[K] is due to the uncertainty in
ri and {zik}k∈[K]; (83) follows from chain rule of entropy;
(84) holds since {zik}i∈H,k∈[K] and {ri}i∈H are independent
uniformly random vectors in Fq. In (85), we define:

mij ≜

KL+T∑

l=KL+1

vil

∏

m∈[KL+T ]\{l}

αj − βm

βl − βm

∀i ∈ H, j ∈ T

(99)

and (86) is from the chain rule and independence of generated
randomness. In (87), we define:

eij ≜

KL+T∑

l=KL+1

uil

∏

m∈[KL+T ]\{l}

αj − βm

βl − βm

(100)

whereas (88) follows from the chain rule and indepen-
dence of generated randomness. We next let γjl :=∏

m∈[KL+T ]\{l}
αj−βm

βl−βm
denote the Lagrange coefficients

in (100)-(99). Then,
[
mi1 · · · miT

]
=

[
vi,KL+1 · · · vi,KL+T

]
M,

(101)[
ei1 · · · eiT

]
=

[
ui,KL+1 · · · ui,KL+T

]
M,

(102)
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where

M ≜



γ1,KL+1 · · · γT,KL+1

...
. . .

...
γ1,KL+T · · · γT,KL+T


 , (103)

is a T × T MDS matrix (hence invertible) from the
MDS property of Lagrange coefficients [49]. Hence,
one can recover {vil, uil}i∈H,l∈{KL+1,...,KL+T} given
{mij}i∈H,j∈T , {eij}i∈H,j∈T , and A. Then, (90) holds as
there is no uncertainty in {

∑
j∈U1

φj(αi)ψj(αi)}i∈U2 given
{gi, bik} i∈[N ]

k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {mij}i∈H
j∈T

,

{eij}i∈H
j∈T

, and A since φj(αi), ψj(αi) can be computed

from (37) and (38) given gj , {vjl}l∈{KL+1,...,KL+T} and
bjk,{ujl}l∈{KL+1,...,KL+T}, respectively. Equation (92)
holds since {ñi}i∈U2 correspond to evaluation points of
the degree of C − 1 polynomial v(α) from (30). As any
polynomial of degree C−1 can be uniquely interpolated from
any set of C evaluation points, v(α) can be reconstructed
from |U2| = C evaluations {ñi}i∈U2

, from which one can
recover nl = v(θl) for all l ∈ {KL+ 1, . . . , C}. Then, given
{nl}l∈{KL+1,...,C}, {njl}j∈T ,l∈{KL+1,...,C}, and A, one can
reconstruct {njl}j∈H,l∈{KL+1,...,C} as,

[
n(T+1)l · · · nNl

]
B

= nl −
[∑

j∈[T ] λ
j−1
1 njl · · ·

∑
j∈[T ] λ

j−1
N−T njl

]

=
[∑

j∈[N ] λ
j−1
1 njl · · ·

∑
j∈[N ] λ

j−1
N−T njl

]

−
[∑

j∈[T ] λ
j−1
1 njl · · ·

∑
j∈[T ] λ

j−1
N−T njl

]

=
[∑N

j=T+1 λ
j−1
1 njl · · ·

∑N

j=T+1 λ
j−1
N−T njl

]

for all l ∈ {KL+ 1, . . . , C}, where

B ≜



λT

1 · · · λT
N−T

...
. . .

...
λN−1

1 · · · λN−1
N−T


 (104)

is an (N−T )×(N−T ) MDS matrix (invertible). Equation (93)
holds since polynomial v(α) has degree C − 1, which
can be uniquely constructed from any set of C evaluation
points. Hence, there is a bijective mapping between any C

interpolation points, {v(θl)}l∈[C], where v(θl) = 0 for l ∈
[KL], and v(θl) = nl for l ∈ {KL+1, . . . , C}, and the set of
local computations {ñi}i∈U2

where |U2| = C. Equation (97)
holds from (101) and (102). Finally, (98) is from the entropy
of uniform random variables. Next, the first term in (81) can
be bounded as follows:

H({xi}i∈[N ], {yik} i∈[N ]
k∈[K]

,{z̃ij}i∈H
j∈T

,{ãi}i∈U2
, {r̃ij}i∈H

j∈T
,

{ñij}i∈H
j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈T
k∈[K]

, {ri, zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

,A)

= H({xi}i∈H, {yik} i∈H
k∈[K]

,{z̃ij}i∈H
j∈T

,{ãi}i∈U2 , {r̃ij}i∈H
j∈T

,

{ñij}i∈H
j∈T
|{

∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈T
k∈[K]

, {ri, zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

,A)

(105)

≤ H({xi}i∈H) +H({yik} i∈H
k∈[K]

) +H({z̃ij}i∈H
j∈T

)

+H({r̃ij}i∈H
j∈T

) +H({ñij}i∈H
j∈T

) +H({ãi}i∈U2
|

× {
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈T
k∈[K]

, {ri, zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

, {xi}i∈H,

{yik} i∈H
k∈[K]

, {z̃ij}i∈H
j∈T

, {r̃ij}i∈H
j∈T

, {ñij}i∈H
j∈T

,A) (106)

= H({xi}i∈H) +H({yik} i∈H
k∈[K]

) +H({z̃ij}i∈H
j∈T

)

+H({r̃ij}i∈H
j∈T

) +H({ñij}i∈H
j∈T

) +H({f(θl)}l∈[C−T ],

{f(αi)}i∈[T ]|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈T
k∈[K]

, {ri}i∈T ,

{zik} i∈T
k∈[K]

,{vil, uil} i∈T
l∈{KL+1,...,KL+T}

,{nil} i∈T
l∈{KL+1,...,C}

,

{xi}i∈H, {yik} i∈H
k∈[K]

, {z̃ij}i∈H
j∈T

, {r̃ij}i∈H
j∈T

, {ñij}i∈H
j∈T

,A)

(107)

= H({xi}i∈H) +H({yik} i∈H
k∈[K]

) +H({z̃ij}i∈H
j∈T

)

+H({r̃ij}i∈H
j∈T

) +H({ñij}i∈H
j∈T

)

+H({f(θl)}l∈{KL+1,...,C−T}|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, bik} i∈T
k∈[K]

, {ri}i∈T , {zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

, {xi}i∈H,

{yik} i∈H
k∈[K]

, {z̃ij}i∈H
j∈T

, {r̃ij}i∈H
j∈T

, {ñij}i∈H
j∈T

,A) (108)

≤ H({xi}i∈H) +H({yik} i∈H
k∈[K]

) +H({z̃ij}i∈H
j∈T

)

+H({r̃ij}i∈H
j∈T

) +H({ñij}i∈H
j∈T

)

+H({f(θl)}l∈{KL+1,...,C−T}) (109)

≤ (N − T )d log q + (N − T )K log q + (N − T )T log q

+ (N − T )T
d

L
log q + T (N − T )

d

L(N − T )
log q

+ (C − T −KL)
d

L
log q (110)

where (106) is from the chain rule and that condition-
ing cannot increase entropy. Equation (107) holds since
{ãi}i∈U2 correspond to C evaluations of a degree C −
1 polynomial, f(α) from (36) for α ∈ {αi}i∈U2 .
Since a polynomial of degree C − 1 can be uniquely
reconstructed from any set of C evaluation points, there
is a bijective mapping between the C interpolation points
{f(θl)}l∈[C−T ], {f(αi)}i∈[T ] and the C local computations
{ãi}i∈U2 . Note that there is no uncertainty in {f(θl)}l∈[KL]

given {
∑

i∈Sk∩U1
gi}k∈[K], and A, which follows from (39)

and that θl = βl for l ∈ [KL]. Next, note that one can
compute {r̃ij}i∈T

j∈T
, {z̃ij}i∈T

j∈T
, and {ñij}i∈T

j∈T
given {ri}i∈T ,

{zik} i∈T
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

,
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and A from (24), (26), and (28). Moreover, given
{ñij}i∈[N ]

j∈T

, one can compute {ñi}i∈T from (29), and

given {gi, bik} i∈T
k∈[K]

, {ri}i∈T , {zik} i∈T
k∈[K]

, one can compute

{xi}i∈T , {yik} i∈T
k∈[K]

from (32) and (33). Therefore, there

is no uncertainty in {f(αi)}i∈[T ] = {ãi}i∈[T ] given
{gi, bik} i∈T

k∈[K]
, {ri}i∈T , {zik} i∈T

k∈[K]
, {xi}i∈H, {yik} i∈H

k∈[K]
,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

, {z̃ij}i∈H
j∈T

,

{r̃ij}i∈H
j∈T

, {ñij}i∈H
j∈T

, and A according to (35), from

which (108) holds. Finally, (110) holds since uniform
distribution maximizes entropy. By combining (98), (110),
and (81) with the non-negativity of mutual information,

0 ≤ I({gi, bik}i∈H
k∈[K]

;{xi}i∈[N ],{yik} i∈[N ]
k∈[K]

,{z̃ij}i∈[N ]
j∈T

,

{ãi}i∈U2
, {r̃ij}i∈[N ]

j∈T

, {ñij}i∈[N ]
j∈T

,A|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, bik} i∈T
k∈[K]

, {ri, zik} i∈T
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

)

≤ (C −KL)
d

L
log q + (N − T )T log q + (N − T )T

d

L
log q

+K(N − T ) log q + (N − T )d log q − (N − T )d log q

− (N − T )K log q − (N − T )T log q − (N − T )T
d

L
log q

− (C −KL)
d

L
log q (111)

= 0 (112)

which completes the proof.
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