

Optimal control for the conformal CR sub-Laplacian obstacle problem

Pak Tung Ho and Cheikh Birahim Ndiaye

Abstract. In this paper, we study an optimal control problem associated to the conformal CR sub-Laplacian obstacle problem on a compact pseudo-hermitian manifold. When the CR Yamabe constant is positive, we show that the optimal controls are equal to their associated optimal states and show the existence of a smooth optimal control which induces a conformal contact form with constant Webster scalar curvature.

Mathematics Subject Classification. Primary 32V20; Secondary 32V05, 35R01.

1. Introduction

Suppose (M, g) is a closed (i.e. compact without boundary) n -dimensional Riemannian manifold, where $n \geq 3$. As a generalization of the Uniformization Theorem of surfaces, the Yamabe problem is to find a metric conformal to g such that its scalar curvature is constant. This is equivalent to finding a smooth positive solution to

$$L_g u = c u^{\frac{n+2}{n-2}} \quad \text{in } M \tag{1.1}$$

for some constant c , where

$$L_g := -\frac{4(n-1)}{n-2} \Delta_g + R_g$$

is the conformal Laplacian of g with R_g the scalar curvature of g and Δ_g the Laplacian of g . The Yamabe problem was solved in the works of Yamabe [24], Trudinger [22], Aubin [1], and Schoen [21] by finding a smooth minimizer of the Yamabe functional J^g defined by

$$J^g(u) = \frac{\langle u, u \rangle}{\|u\|_{L^{\frac{2n}{n-2}}(M,g)}^2}, \quad u \in H_+^1(M, g) = \{u \in H^1(M, g), u > 0\},$$

where

$$\langle u, v \rangle_g = \int_M \left(\frac{4(n-1)}{n-2} \nabla_g u \cdot \nabla_g v + R_g u v \right) dV_g, \quad u, v \in H_+^1(M, g).$$

Here, dV_g is the volume form with respect to g , $\nabla_g u$ is the gradient of u with respect to g , $L^p(M, g)$ is the standard Lebesgue space of functions which are p -integrable over M with respect to g , $\|\cdot\|_{L^p(M, g)}$ is the standard L^p -norm on $L^p(M, g)$, and $H^1(M, g)$ is the Sobolev space containing functions which are of class L^2 together with their first derivatives with respect to g . See also [2, 3, 12] and references therein for results related to the Yamabe flow, which is a geometric flow introduced to study the Yamabe problem.

In [19], the second author studied equation (1.1) in the context of Optimal Control Theory. To state the results, recall that the Yamabe constant of (M, g) is defined as

$$\mathcal{Y}(M, [g]) = \inf_{u \in H_+^1(M, g)} J^g(u).$$

Under the assumption $\mathcal{Y}(M, [g]) > 0$, the following optimal control problem for the conformal Laplacian obstacle problem was studied:

$$\text{Find } u_{\min} \in H_+^1(M, g) \text{ such that } I^g(u_{\min}) = \min_{w \in H_+^1(M, g)} I^g(w),$$

where

$$I^g(u) = \frac{\langle u, u \rangle_g}{\|T_g(u)\|_{L^{\frac{2n}{n-2}}(M, g)}^2}, \quad u \in H_+^1(M, g)$$

with

$$T_g(u) = \arg \min_{v \in H_+^1(M, g), v \geq u} \langle v, v \rangle_g$$

where the symbol $\arg \min_{v \in H_+^1(M, g), v \geq u} \langle v, v \rangle_g$ denotes the unique solution to the minimization problem

$$\min_{v \in H_+^1(M, g), v \geq u} \langle v, v \rangle_g.$$

Note that T_g is a map from $H_+^1(M, g)$ to $H_+^1(M, g)$, i.e. $T_g : H_+^1(M, g) \rightarrow H_+^1(M, g)$ (c.f. [19, Lemma 3.1]). Note also that it was shown in [19, Lemma 3.1] that unique solution to this minimization problem exists. Let $C_+^\infty(M)$ be the space of all positive smooth functions on M . In [19], the second author proved the following theorem.

Theorem 1.1. (Theorem 1.1 in [19]) Suppose that $\mathcal{Y}(M, [g]) > 0$. Then

(i) For any $u \in H_+^1(M, g)$,

$$I^g(u) = \min_{v \in H_+^1(M, g)} I^g(v) \implies T_g(u) = u, u \in C_+^\infty(M) \text{ and } R_{g_u} \equiv c$$

for some constant $c > 0$, where $g_u = u^{\frac{4}{n-2}} g$.

(ii) There exists $u_{\min} \in C_+^\infty(M)$ such that

$$I^g(u_{\min}) = \min_{v \in H_+^1(M, g)} I^g(v) \text{ and } R_{g_{u_{\min}}} = \mathcal{Y}(M, [g])$$

where $g_{u_{\min}} = u_{\min}^{\frac{4}{n-2}} g$.

On the other hand, the converse of Theorem 1.1(i) is also true on the n -dimensional unit sphere equipped with the standard metric g_{S^n} :

Theorem 1.2. (Theorem 1.2 in [19]) *Suppose that $(M, g) = (S^n, g_{S^n})$, the n -dimensional unit sphere equipped with the standard metric g_{S^n} . For $u \in H_+^1(S^n, g_{S^n})$,*

$$I^{g_{S^n}}(u) = \min_{v \in H_+^1(S^n, g_{S^n})} I^{g_{S^n}}(v) \text{ is equivalent to } u \in C_+^\infty(S^{2n+1}) \text{ and } R_{\tilde{g}} = c$$

for some constant c , where $\tilde{g} = u^{\frac{4}{n-2}} g_{S^n}$.

It was also pointed out by the referee that Theorem 1.2 is actually true, provided that (M, g) is a conformally Einstein manifold with positive Yamabe constant, by using the Obata's theorem for conformally Einstein metrics of constant scalar curvature. This has not been mentioned in [19] and we would like to thank the referee for pointing this out.

Now suppose (M, θ) is a compact pseudohermitian manifold of real dimension $2n+1$ equipped with the contact form θ . The conformal class of θ is denoted by $[\theta]$, i.e.

$$[\theta] = \left\{ u^{\frac{2}{n}} \theta : u \in C_+^\infty(M) \right\}.$$

Hereafter, we set $\theta_u = u^{\frac{2}{n}} \theta$ where $u \in C_+^\infty(M)$. The CR Yamabe problem is to find a contact form $\theta_u \in [\theta]$ such that its Webster scalar curvature R_{θ_u} is constant. Let $2^* = 2 + \frac{2}{n}$. Note that if $\theta_u = u^{\frac{2}{n}} \theta$ where $u \in C_+^\infty(M)$, there holds

$$-\left(2 + \frac{2}{n}\right) \Delta_\theta u + R_\theta u = R_{\theta_u} u^{2^*-1}, \quad (1.2)$$

where Δ_θ is the sub-Laplacian of θ . Let

$$L_\theta u = -\left(2 + \frac{2}{n}\right) \Delta_\theta + R_\theta \quad (1.3)$$

be the conformal CR sub-Laplacian of θ . In view of (1.2), the CR Yamabe problem is equivalent to finding $u \in C_+^\infty(M)$ such that

$$L_\theta u = c u^{2^*-1}$$

for some constant c . The CR Yamabe problem was studied in [5, 7, 10, 11, 16–18]. Let $S_1^2(M, \theta)$ be the Folland-Stein space (c.f. [9]). As in the Yamabe problem on Riemannian manifolds, one tries to solve the CR Yamabe problem by finding a minimizer of the CR Yamabe functional J^θ defined by

$$J^\theta(u) := \frac{\langle u, u \rangle_\theta}{\|u\|_{L^{2^*}(M, \theta)}}, \quad u \in S_1^2(M, \theta)_+ := \{u \in S_1^2(M, \theta) : u > 0\},$$

where

$$\langle u, v \rangle_\theta = \int_M \left(\left(2 + \frac{2}{n} \right) \nabla_\theta u \cdot \nabla_\theta v + R_\theta u v \right) dV_\theta, \quad u, v \in S_1^2(M, \theta)_+, \quad (1.4)$$

dV_θ is the volume form with respect to θ , $\nabla_\theta u$ is the sub-gradient of u with respect to θ , $L^p(M, \theta)$ is the standard Lebesgue space of functions which are p -integrable over M with respect to θ , and $\|\cdot\|_{L^p(M, \theta)}$ is the standard L^p -norm on $L^p(M, \theta)$, i.e.

$$\|u\|_{L^p(M, \theta)} = \left(\int_M |u|^p dV_\theta \right)^{\frac{1}{p}}.$$

We remark that, unlike the Yamabe problem on Riemannian manifolds, a minimizer may not exist (see [8], in which Cheng-Malchiodi-Yang proved the nonexistence of minimizers on Rossi spheres sufficiently close to the standard CR three-sphere). See also [13–15, 20] for the results related to the CR Yamabe flow, which is a geometric flow introduced to study the CR Yamabe problem.

Recall that the CR Yamabe constant of (M, θ) is defined as

$$\mathcal{Y}(M, [\theta]) = \inf_{u \in S_1^2(M, \theta)_+} J^\theta(u).$$

Inspired by the results in [19], under the assumption that $\mathcal{Y}(M, [\theta]) > 0$, we study in this paper the following optimal control problem for the conformal CR sub-Laplacian obstacle problem:

$$\text{Find } u_{\min} \in S_1^2(M, \theta)_+ \text{ such that } I^\theta(u_{\min}) = \min_{u \in S_1^2(M, \theta)_+} I^\theta(u),$$

where

$$I^\theta(u) = \frac{\langle u, u \rangle_\theta}{\|T_\theta(u)\|_{L^{2^*}(M, \theta)}^2}, \quad u \in S_1^2(M, \theta)_+$$

with

$$T_\theta(u) = \arg \min_{v \in S_1^2(M, \theta)_+, v \geq u} \langle v, v \rangle_\theta.$$

Here the symbol

$$\arg \min_{v \in S_1^2(M, \theta)_+, v \geq u} \langle v, v \rangle_\theta$$

denotes the unique solution to the minimization problem (see Lemma 3.1)

$$\min_{v \in S_1^2(M, \theta)_+, v \geq u} \langle v, v \rangle_\theta.$$

Theorem 1.3. *Suppose (M, θ) is a compact pseudohermitian manifold of real dimension $2n + 1$ equipped with the contact form θ such that $\mathcal{Y}(M, [\theta]) > 0$.*

(i) *For any $u \in S_1^2(M, \theta)_+$,*

$$I^\theta(u) = \min_{v \in S_1^2(M, \theta)_+} I^\theta(v) \implies T_\theta(u) = u, \quad u \in C_+^\infty(M) \text{ and } R_{\theta_u} \equiv c$$

for some constant $c > 0$, where $\theta_u = u^{\frac{2}{n}} \theta$.

(ii) If a minimizer for the CR Yamabe problem exists on (M, θ) , there exists $u_{\min} \in C_+^\infty(M)$ such that

$$I^\theta(u_{\min}) = \min_{v \in S_1^2(M, \theta)_+} I^\theta(v), \quad (1.5)$$

$$\text{where } \theta_{u_{\min}} = u_{\min}^{\frac{2}{n}} \theta.$$

In particular, we have the following:

Corollary 1.4. Suppose (M, θ) is a compact pseudohermitian manifold of real dimension $2n + 1$ equipped with the contact form θ such that $\mathcal{Y}(M, [\theta]) > 0$. Then (1.5) holds if one of the following is true:

- (i) if $n \geq 2$ and (M, θ) is not spherical,
- (ii) if $n = 1$ and the CR Paneitz operator of (M, θ) is nonnegative,
- (iii) if $n \geq 2$ and (M, θ) is spherical; and when $n = 2$, we further assume that the minimum exponent of the integrability of the Green function satisfies $s(M) < 1$.

Similar to Theorem 1.2, we have the following:

Theorem 1.5. Suppose that (M, θ) has positive CR Yamabe constant and θ is a torsion-free pseudo-Einstein contact form. For $u \in S_1^2(M, \theta)_+$,

$$I^\theta(u) = \min_{v \in S_1^2(M, \theta)_+} I^\theta(v) \iff u \in C_+^\infty(M) \text{ and } R_{\tilde{\theta}} = c$$

for some constant c , where $\tilde{\theta} = u^{\frac{2}{n}} \theta$.

2. Notations and preliminaries

In this section, we fix our notations and collect some well-known facts about CR manifolds, which can be found in [18] for example.

From now on, (M, θ) is the background compact pseudohermitian manifold of real dimension $2n + 1$ equipped with the contact form θ . As before, $2^* = 2 + \frac{2}{n}$. Recall the CR Yamabe functional J^θ and its subcritical approximation J_p^θ , $1 \leq p < 2^* - 1$ are given by

$$J^\theta(u) = \frac{\langle u, u \rangle_\theta}{\|u\|_{L^{2^*}(M, \theta)}^2} \quad (2.1)$$

and

$$J_p^\theta(u) = \frac{\langle u, u \rangle_\theta}{\|u\|_{L^{p+1}(M, \theta)}^2}, \quad (2.2)$$

where $\langle \cdot, \cdot \rangle_\theta$ is defined as in (1.4). Therefore, we can see that

$$J_{2^*-1}^\theta = J^\theta. \quad (2.3)$$

It follows from the definition in (2.2) that

$$J_p^\theta(\lambda u) = J_p^\theta(u) \text{ for any } \lambda > 0, u \in S_1^2(M, \theta)_+. \quad (2.4)$$

If $\theta_w = w^{\frac{2}{n}}\theta$ where $w \in C_+^\infty(M)$, we have the following transformation rules:

$$wS_1^2(M, \theta_w)_+ = S_1^2(M, \theta)_+, \quad (2.5)$$

$$dV_{\theta_w} = w^{2^*} dV_\theta, \quad (2.6)$$

$$\langle u, u \rangle_{\theta_w} = \langle wu, wu \rangle_\theta \text{ for } u \in S_1^2(M, \theta_w), \quad (2.7)$$

$$J^{\theta_w}(u) = J^\theta(wu), \quad u \in S_1^2(M, \theta_w). \quad (2.8)$$

When the CR Yamabe constant $\mathcal{Y}(M, [\theta])$ is positive, we define the CR Yamabe optimal obstacle functional I^θ and its subcritical approximation I_p^θ ($1 \leq p < 2^* - 1$):

$$I^\theta(u) = \frac{\langle u, u \rangle_\theta}{\|T_\theta(u)\|_{L^{2^*}(M, \theta)}^2} \quad (2.9)$$

and

$$I_p^\theta(u) = \frac{\langle u, u \rangle_\theta}{\|T_\theta(u)\|_{L^{p+1}(M, \theta)}^2} \quad (2.10)$$

In particular, we have

$$I_{2^*-1}^\theta = I^\theta. \quad (2.11)$$

3. Obstacle problem for the conformal CR sub-Laplacian

In this section, we study the obstacle problem for the conformal CR sub-Laplacian $L_{\tilde{\theta}}$ (recall its definition in (1.3)) with $\tilde{\theta} \in [\theta]$ under the assumption $\mathcal{Y}(M, [\theta]) > 0$. More precisely, we consider the minimization problem

$$\min_{v \in S_1^2(M, \tilde{\theta})_+, v \geq u} \langle v, v \rangle_{\tilde{\theta}}. \quad (3.1)$$

We have the following:

Lemma 3.1. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$ and $\tilde{\theta} \in [\theta]$. For $u \in S_1^2(M, \tilde{\theta})_+$, there exists a unique $T_{\tilde{\theta}}(u) \in S_1^2(M, \tilde{\theta})_+$ such that*

$$\|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}^2 = \min_{v \in S_1^2(M, \tilde{\theta})_+, v \geq u} \|v\|_{\tilde{\theta}}^2.$$

Hereafter, $\|v\|_{\tilde{\theta}}^2 = \langle v, v \rangle_{\tilde{\theta}}$.

Proof. Since $\mathcal{Y}(M, [\theta]) > 0$ by assumption, $L_{\tilde{\theta}} \geq 0$ and $\ker L_{\tilde{\theta}} = \{0\}$. Thus $\langle \cdot, \cdot \rangle_{\tilde{\theta}}$ defines a inner product on $S_1^2(M, \tilde{\theta})$, which induces a norm $\|\cdot\|_{\tilde{\theta}}$, equivalent to the standard $S_1^2(M, \tilde{\theta})$ -norm on $S_1^2(M, \tilde{\theta})_+$. Hence, as in the classical obstacle problem for the sub-Laplacian $\Delta_{\tilde{\theta}}$, the lemma now follows from standard argument in the Calculus of Variations (see [4] for example). \square

We now study some properties of the state map $T_{\tilde{\theta}} : S_1^2(M, \tilde{\theta})_+ \rightarrow S_1^2(M, \tilde{\theta})_+$. First, we have the following:

Proposition 3.2. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$ and $\tilde{\theta} \in [\theta]$. Then the state map $T_{\tilde{\theta}} : S_1^2(M, \tilde{\theta})_+ \rightarrow S_1^2(M, \tilde{\theta})_+$ is idempotent, i.e.*

$$T_{\tilde{\theta}}^2 = T_{\tilde{\theta}}.$$

Proof. Let $v \in S_1^2(M, \tilde{\theta})_+$ be such that $v \geq T_{\tilde{\theta}}(u)$. Since $T_{\tilde{\theta}}(u) \geq u$, we have $v \geq u$. Therefore, by definition of $T_{\tilde{\theta}}$, we have

$$\|v\|_{\tilde{\theta}} \geq \|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}.$$

Hence, since $T_{\tilde{\theta}}(u) \in S_1^2(M, \tilde{\theta})_+$ with $T_{\tilde{\theta}}(u) \geq T_{\tilde{\theta}}(u)$, we have

$$\|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}} \geq \|T_{\tilde{\theta}}(T_{\tilde{\theta}}(u))\|_{\tilde{\theta}}.$$

By uniqueness, we have

$$T_{\tilde{\theta}}(T_{\tilde{\theta}}(u)) = T_{\tilde{\theta}}(u),$$

as required. \square

The following lemma shows that $T_{\tilde{\theta}}$ is positively homogeneous.

Lemma 3.3. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$ and $\tilde{\theta} \in [\theta]$. Then for any $\lambda > 0$, there holds*

$$T_{\tilde{\theta}}(\lambda u) = \lambda T_{\tilde{\theta}}(u)$$

for all $u \in S_1^2(M, \tilde{\theta})_+$.

Proof. Let $v \in S_1^2(M, \tilde{\theta})_+$ satisfy $v \geq \lambda u$. Since $\lambda > 0$, we have $\lambda^{-1}v \geq u$. Since $\lambda^{-1}v \in S_1^2(M, \tilde{\theta})_+$, it follows from the definition of $T_{\tilde{\theta}}$ that

$$\|\lambda^{-1}v\|_{\tilde{\theta}} \geq \|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}.$$

By the positive homogeneity of $\|\cdot\|_{\tilde{\theta}}$, i.e.

$$\|\lambda v\|_{\tilde{\theta}} = \lambda \|v\|_{\tilde{\theta}} \quad \text{for any } \lambda > 0, \quad (3.2)$$

we obtain

$$\|v\|_{\tilde{\theta}} \geq \|\lambda T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}.$$

Since $\lambda T_{\tilde{\theta}}(u) \in S_1^2(M, \tilde{\theta})_+$ satisfies $\lambda T_{\tilde{\theta}}(u) \geq \lambda u$, by uniqueness we get

$$\lambda T_{\tilde{\theta}}(u) = T_{\tilde{\theta}}(\lambda u),$$

as required. \square

Lemma 3.3 implies the following analogue of formula (2.4) for $I_p^{\tilde{\theta}}$.

Corollary 3.4. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$, $\tilde{\theta} \in [\theta]$, and $1 \leq p \leq 2^* - 1$. Then for any $\lambda > 0$, there holds*

$$I_p^{\tilde{\theta}}(\lambda u) = I_p^{\tilde{\theta}}(u)$$

for all $u \in S_1^2(M, \tilde{\theta})_+$.

Proof. By (3.2) and Lemma 3.3, we find

$$I_p^{\tilde{\theta}}(\lambda u) = \frac{\|\lambda u\|_{\tilde{\theta}}^2}{\|T_{\tilde{\theta}}(\lambda u)\|_{\tilde{\theta}}^2} = \frac{\|\lambda u\|_{\tilde{\theta}}^2}{\|\lambda T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}^2} = \frac{\|u\|_{\tilde{\theta}}^2}{\|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}^2} = I_p^{\tilde{\theta}}(u),$$

which proves the assertion. \square

4. Transformation rules of $T_{\tilde{\theta}}$ and $I^{\tilde{\theta}}$ for $\tilde{\theta} \in [\theta]$

In this section, we study the transformation rules of $T_{\tilde{\theta}}$ when $\tilde{\theta}$ varies in $[\theta]$. As before, we adopt the notation $\theta_w = w^{\frac{2}{n}}\theta$ whenever $w \in C_+^\infty(M)$.

Lemma 4.1. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$ and $w \in C_+^\infty(M)$. Then holds*

$$T_{\theta_w}(u) = w^{-1}T_\theta(wu)$$

for any $u \in S_1^2(M, \theta_w)$.

Proof. Let $v \in S_1^2(M, \theta_w)_+$ with $v \geq u$. It follows from (2.7) that

$$\|v\|_{\theta_w} = \|wv\|_\theta.$$

Since $v \geq u$ and $w > 0$, we have $wv \geq wu$ and $wv, wu \in S_1^2(M, \theta)_+$. Hence, it follows from the definition of T_θ that

$$\|wv\|_\theta \geq \|T_\theta(wu)\|_\theta.$$

Using (2.7) again, we obtain

$$\|T_\theta(wu)\|_\theta = \|w^{-1}T_\theta(wu)\|_{\theta_w}.$$

Combining all these, we obtain

$$\|v\|_{\theta_w} \geq \|w^{-1}T_\theta(wu)\|_{\theta_w}.$$

Now, since $w^{-1}T_\theta(wu) \geq w^{-1}wu = u$ and $w^{-1}T_\theta(wu) \in S_1^2(M, \theta_w)$, by uniqueness, we have

$$T_{\theta_w}(u) = w^{-1}T_\theta(wu)$$

as required. □

The following is an immediate consequence of Lemma 4.1.

Corollary 4.2. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$ and $w \in C_+^\infty(M)$. Then*

$$Fix(T_{\theta_w}) = w^{-1}Fix(T_\theta),$$

where

$$Fix(T_\theta) = \{u \in S_1^2(M, \theta) : T_\theta(u) = u\}.$$

Proof. It follows from Lemma 4.1 and the definition of fixed point set that

$$u \in Fix(T_{\theta_w}) \iff T_{\theta_w}(u) = u \iff w^{-1}T_\theta(wu) = u \iff wu \in Fix(T_\theta),$$

which proves the assertion. □

Lemma 4.1 also implies the following:

Corollary 4.3. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$ and $w \in C_+^\infty(M)$. Then*

$$\|T_{\theta_w}(u)\|_{L^{2^*}(M, \theta_w)} = \|T_\theta(wu)\|_{L^{2^*}(M, \theta)}$$

for any $u \in S_1^2(M, \theta_w)_+$.

Proof. By (2.6) and Lemma 4.1, we find

$$\begin{aligned}\|T_{\theta_w}(u)\|_{L^{2^*}(M, \theta_w)}^{2^*} &= \int_M |T_{\theta_w}(u)|^{2^*} dV_{\theta_w} = \int_M |w^{-1}T_\theta(wu)|^{2^*} w^{2^*} dV_\theta \\ &= \int_M |T_\theta(wu)|^{2^*} dV_\theta = \|T_\theta(wu)\|_{L^{2^*}(M, \theta)}^{2^*},\end{aligned}$$

which proves the assertion. \square

As a consequence of Corollary 4.3, we have the following analogue of formula (2.9) for the CR Yamabe optimal obstacle functional.

Corollary 4.4. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$ and $w \in C_+^\infty(M)$. Then*

$$I^{\theta_w}(u) = I^\theta(wu).$$

Proof. It follows from (2.7) and Corollary 4.3 that

$$I^{\theta_w}(u) = \frac{\|u\|_{\theta_w}^2}{\|T_{\theta_w}(u)\|_{L^{2^*}(M, \theta_w)}^2} = \frac{\|wu\|_\theta^2}{\|T_\theta(wu)\|_{L^{2^*}(M, \theta)}^2} = I^\theta(wu),$$

as required. \square

Corollary 4.4 implies the following:

Corollary 4.5. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$ and $w \in C_+^\infty(M)$. Then we have*

$$\inf_{u \in S_1^2(M, \theta_w)_+} I^{\theta_w}(u) = \inf_{u \in S_1^2(M, \theta)_+} I^\theta(u).$$

Proof. By (2.5) and Corollary 4.4, we find

$$\begin{aligned}\inf_{u \in S_1^2(M, \theta)_+} I^\theta(u) &= \inf_{u \in wS_1^2(M, \theta_w)_+} I^\theta(u) \\ &= \inf_{\bar{u} \in S_1^2(M, \theta_w)_+} I^\theta(w\bar{u}) = \inf_{\bar{u} \in S_1^2(M, \theta_w)_+} I^{\theta_w}(\bar{u})\end{aligned}$$

where the second equality follows from letting $u = w\bar{u}$. This proves the assertion. \square

Similar to the CR Yamabe constant $\mathcal{Y}(M, [\theta])$, we have the following:

Definition 4.6. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$. Define*

$$\mathcal{Y}_{oc}(M, \theta) = \inf_{u \in S_1^2(M, \theta)_+} I^\theta(u).$$

Remark 4.7. If $\tilde{\theta} \in [\theta]$, it follows from Corollary 4.5 that

$$\mathcal{Y}_{oc}(M, \tilde{\theta}) = \mathcal{Y}_{oc}(M, \theta).$$

That is to say, it depends only on the conformal class. As a result, we will write $\mathcal{Y}_{oc}(M, [\theta])$.

In the paper of Jerison and Lee [16] the following family of real numbers was introduced (see (6.1) in [16])

$$\mathcal{Y}^p(M, \tilde{\theta}) := \inf_{u \in S_1^2(M, \tilde{\theta})_+} J_p^{\tilde{\theta}}(u), \quad \text{for } \tilde{\theta} \in [\theta], 1 \leq p \leq 2^* - 1.$$

Note that $\mathcal{Y}^p(M, \tilde{\theta})$ is a pseudohermitian invariant, but is not a CR invariant. Clearly, $\mathcal{Y}^{2^*-1}(M, \tilde{\theta}) = \mathcal{Y}(M, [\tilde{\theta}])$. Similarly, whenever $\mathcal{Y}(M, [\theta]) > 0$, we define

$$\mathcal{Y}_{oc}^p(M, \tilde{\theta}) := \inf_{u \in S_1^2(M, \tilde{\theta})_+} I_p^{\tilde{\theta}}(u), \quad \text{for } \tilde{\theta} \in [\theta], 1 \leq p \leq 2^* - 1$$

and

$$\mathcal{Y}_{oc}^{2^*-1}(M, \tilde{\theta}) = \mathcal{Y}_{oc}(M, [\tilde{\theta}]).$$

5. Monotonicity formula for $J_p^{\tilde{\theta}}$, $\tilde{\theta} \in [\theta]$ and $1 \leq p \leq 2^* - 1$

In this section, we present a monotonicity formula for $J_p^{\tilde{\theta}}$ when passing from u to $T_{\tilde{\theta}}(u)$. We then give some applications on the relation between the ground state of $J_p^{\tilde{\theta}}$ and the fixed point of $T_{\tilde{\theta}}$. The monotonicity formula reads as follows.

Lemma 5.1. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$, $\tilde{\theta} \in [\theta]$ and $1 \leq p \leq 2^* - 1$. For $u \in S_1^2(M, \tilde{\theta})$, there holds*

$$J_p^{\tilde{\theta}}(u) - J_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u)) \geq \frac{1}{\|T_{\tilde{\theta}}(u)\|_{L^{p+1}(M, \tilde{\theta})}^2} [\|u\|_{\tilde{\theta}}^2 - \|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}^2] \geq 0.$$

Proof. By the definition of $J_p^{\tilde{\theta}}$ in (2.1)-(2.3), we compute

$$\begin{aligned} J_p^{\tilde{\theta}}(u) - J_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u)) &= \frac{\|u\|_{\tilde{\theta}}^2}{\|u\|_{L^{p+1}(M, \tilde{\theta})}^2} - \frac{\|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}^2}{\|T_{\tilde{\theta}}(u)\|_{L^{p+1}(M, \tilde{\theta})}^2} \\ &\geq \frac{\|u\|_{\tilde{\theta}}^2}{\|T_{\tilde{\theta}}(u)\|_{L^{p+1}(M, \tilde{\theta})}^2} - \frac{\|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}^2}{\|T_{\tilde{\theta}}(u)\|_{L^{p+1}(M, \tilde{\theta})}^2}, \end{aligned}$$

where we have used $T_{\tilde{\theta}}(u) \geq u > 0$. It follows from the definition of $T_{\tilde{\theta}}$ that the last expression is nonnegative, which proves the assertion. \square

Lemma 5.1 implies the following:

Corollary 5.2. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$, $\tilde{\theta} \in [\theta]$ and $1 \leq p \leq 2^* - 1$. Then for $u \in S_1^2(M, \tilde{\theta})_+$,*

$$J_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u)) \leq J_p^{\tilde{\theta}}(u),$$

and equality holds if and only if $u \in \text{Fix}(T_{\tilde{\theta}})$.

Proof. The inequality part follows immediately from Lemma 5.1. Now if $J_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u)) = J_p^{\tilde{\theta}}(u)$, it follows from Lemma 5.1 that

$$\|u\|_{\tilde{\theta}}^2 = \|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}^2.$$

Hence, since $u \geq u \in S_1^2(M, \tilde{\theta})_+$, the uniqueness part in Lemma 3.1 implies that

$$u = T_{\tilde{\theta}}(u),$$

which finishes the proof. \square

Corollary 5.2 implies that minimizers of $J_p^{\tilde{\theta}}$ on $S_1^2(M, \tilde{\theta})_+$ belong to $\text{Fix}(T_{\tilde{\theta}})$:

Corollary 5.3. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$, $\tilde{\theta} \in [\theta]$ and $1 \leq p \leq 2^* - 1$. For $u \in S_1^2(M, \tilde{\theta})_+$,*

$$J_p^{\tilde{\theta}}(u) = \mathcal{Y}^p(M, \tilde{\theta}) \implies u \in \text{Fix}(T_{\tilde{\theta}}).$$

Proof. The assumption $J_p^{\tilde{\theta}}(u) = \mathcal{Y}^p(M, \tilde{\theta})$ implies that

$$J_p^{\tilde{\theta}}(u) = \mathcal{Y}^p(M, \tilde{\theta}) \leq J_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u)).$$

This together with Corollary 5.2 gives $J_p^{\tilde{\theta}}(u) = J_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u))$. By Corollary 5.2 again, we can conclude that $u \in \text{Fix}(T_{\tilde{\theta}})$. \square

Remark 5.4. In view of Proposition 3.2 and Corollary 5.2, we can assume without loss of generality that any minimizing sequence $(u_l)_{l \geq 1}$ of $J_p^{\tilde{\theta}}$ on $S_1^2(M, \tilde{\theta})_+$ satisfies

$$u_l \in \text{Fix}(T_{\tilde{\theta}}) \text{ for all } l \geq 1.$$

Indeed, suppose $(u_l)_{l \geq 1}$ is a minimizing sequence of $J_p^{\tilde{\theta}}$ on $S_1^2(M, \tilde{\theta})_+$. Then $u_l \in S_1^2(M, \tilde{\theta})_+$ and

$$J_p^{\tilde{\theta}}(u_l) \rightarrow \inf_{u \in S_1^2(M, \tilde{\theta})_+} J_p^{\tilde{\theta}}(u) \text{ as } l \rightarrow \infty.$$

By Corollary 5.2 and the fact that $T_{\tilde{\theta}}(u_l) \in S_1^2(M, \tilde{\theta})_+$, we have

$$\inf_{u \in S_1^2(M, \tilde{\theta})_+} J_p^{\tilde{\theta}}(u) \leq J_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u_l)) \leq J_p^{\tilde{\theta}}(u_l).$$

These imply

$$J_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u_l)) \rightarrow \inf_{u \in S_1^2(M, \tilde{\theta})_+} J_p^{\tilde{\theta}}(u) \text{ as } l \rightarrow \infty.$$

Hence, if we set $\hat{u}_l = T_{\tilde{\theta}}(u_l)$ and use Proposition 3.2, we obtain

$$J_p^{\tilde{\theta}}(\hat{u}_l) \rightarrow \inf_{u \in S_1^2(M, \tilde{\theta})_+} J_p^{\tilde{\theta}}(u) \text{ as } l \rightarrow \infty \text{ and } \hat{u}_l = T_{\tilde{\theta}}(\hat{u}_l),$$

as desired.

6. Monotonicity formula for $I_p^{\tilde{\theta}}$, $\tilde{\theta} \in [\theta]$ and $1 \leq p \leq 2^* - 1$

In this section, we derive a monotonicity formula for $I_p^{\tilde{\theta}}$, similar to the one for $J_p^{\tilde{\theta}}$ derived in the previous section. Moreover, we present some applications for $I_p^{\tilde{\theta}}$, similar to the ones obtained for $J_p^{\tilde{\theta}}$ in the previous section. First, we have the following:

Lemma 6.1. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$, $\tilde{\theta} \in [\theta]$ and $1 \leq p \leq 2^* - 1$. For $u \in S_1^2(M, \tilde{\theta})$, there holds*

$$I_p^{\tilde{\theta}}(u) - I_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u)) = \frac{1}{\|T_{\tilde{\theta}}(u)\|_{L^{p+1}(M, \tilde{\theta})}^2} [\|u\|_{\tilde{\theta}}^2 - \|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}^2] \geq 0.$$

Proof. By the definition of $I^{\tilde{\theta}}$ in (2.9)-(2.11), we compute

$$\begin{aligned} I_p^{\tilde{\theta}}(u) - I_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u)) &= \frac{\|u\|_{\tilde{\theta}}^2}{\|T_{\tilde{\theta}}(u)\|_{L^{p+1}(M, \tilde{\theta})}^2} - \frac{\|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}^2}{\|T_{\tilde{\theta}}^2(u)\|_{L^{2^*}(M, \tilde{\theta})}^2} \\ &= \frac{1}{\|T_{\tilde{\theta}}(u)\|_{L^{p+1}(M, \tilde{\theta})}^2} [\|u\|_{\tilde{\theta}}^2 - \|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}^2] \end{aligned}$$

where we have used Proposition 3.2 in the last equality. Note that the last expression is nonnegative by the definition of $T_{\tilde{\theta}}$. This proves the assertion. \square

We have the following corollary, similar to Corollary 5.2.

Corollary 6.2. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$, $\tilde{\theta} \in [\theta]$ and $1 \leq p \leq 2^* - 1$. For $u \in S_1^2(M, \tilde{\theta})_+$, we have*

$$I_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u)) \leq I_p^{\tilde{\theta}}(u), \quad (6.1)$$

and equality holds if and only if $u \in \text{Fix}(T_{\tilde{\theta}})$.

Proof. The inequality (6.1) follows immediately from Lemma 6.1. By Lemma 6.1 again, equality holds in (6.1) if

$$\|u\|_{\tilde{\theta}}^2 = \|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}^2.$$

Hence, since $u \geq u \in S_1^2(M, \tilde{\theta})_+$, the uniqueness part of Lemma 3.1 implies that

$$u = T_{\tilde{\theta}}(u),$$

which finishes the proof. \square

As in the previous section, Corollary 6.2 implies that minimizers of $I_p^{\tilde{\theta}}$ belong to $\text{Fix}(T_{\tilde{\theta}})$:

Corollary 6.3. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$, $\tilde{\theta} \in [\theta]$ and $1 \leq p \leq 2^* - 1$. For $u \in S_1^2(M, \tilde{\theta})_+$,*

$$I_p^{\tilde{\theta}}(u) = \mathcal{Y}_{oc}^p(M, \tilde{\theta}) \implies u \in \text{Fix}(T_{\tilde{\theta}}).$$

Proof. If $I_p^{\tilde{\theta}}(u) = \mathcal{Y}_{oc}^p(M, \tilde{\theta})$, then

$$I_p^{\tilde{\theta}}(u) = \mathcal{Y}_{oc}^p(M, \tilde{\theta}) \leq I_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u)).$$

Combining this with Corollary 6.2, we gives the equality in (6.1). Therefore, by Corollary 6.2 again, $u \in Fix(T_{\tilde{\theta}})$. \square

Remark 6.4. In view of Proposition 3.2 and Corollary 6.2, we can, by using the same argument as in Remark 5.4, assume that any minimizing sequence $(u_l)_{l \geq 1}$ of $I_p^{\tilde{\theta}}$ on $S_1^2(M, \tilde{\theta})_+$ satisfies

$$u_l \in Fix(T_{\tilde{\theta}}) \text{ for all } l \geq 1.$$

7. Comparing $\mathcal{Y}^p(M, \tilde{\theta})$ and $\mathcal{Y}_{oc}^p(M, \tilde{\theta})$ where $\tilde{\theta} \in [\theta]$ and $1 \leq p \leq 2^* - 1$

In this section, under the assumption that $\mathcal{Y}(M, [\theta]) > 0$, we show that, for $\tilde{\theta} \in [\theta]$ and $1 \leq p \leq 2^* - 1$, $\mathcal{Y}^p(M, \tilde{\theta}) = \mathcal{Y}_{oc}^p(M, \tilde{\theta})$ and $J_p^{\tilde{\theta}}(u) = \mathcal{Y}^p(M, \tilde{\theta}) \iff I_p^{\tilde{\theta}}(u) = \mathcal{Y}_{oc}^p(M, \tilde{\theta})$. As a result, we prove Theorem 1.3.

We start with the following comparison result by showing that $I_p^{\tilde{\theta}} \leq J_p^{\tilde{\theta}}$ and that $I_p^{\tilde{\theta}} = J_p^{\tilde{\theta}}$ on the range of $T_{\tilde{\theta}}$.

Lemma 7.1. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$ and $\tilde{\theta} \in [\theta]$. For $u \in S_1^2(M, \tilde{\theta})_+$, we have*

$$I_p^{\tilde{\theta}}(u) \leq J_p^{\tilde{\theta}}(u) \quad (7.1)$$

and

$$I_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u)) = J_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u)). \quad (7.2)$$

Proof. By definition of $J_p^{\tilde{\theta}}$ and $I_p^{\tilde{\theta}}$ (see (2.1)-(2.3) and (2.9)-(2.11)), we have

$$J_p^{\tilde{\theta}}(u) - I_p^{\tilde{\theta}}(u) = \frac{\|u\|_{\tilde{\theta}}^2}{\|u\|_{L^{p+1}(M, \tilde{\theta})}^2} - \frac{\|u\|_{\tilde{\theta}}^2}{\|T_{\tilde{\theta}}(u)\|_{L^{p+1}(M, \tilde{\theta})}^2}. \quad (7.3)$$

Now (7.1) follows from this and the fact that $T_{\tilde{\theta}}(u) \geq u > 0$. Moreover, we have

$$J_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u)) - I_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u)) = \frac{\|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}^2}{\|T_{\tilde{\theta}}(u)\|_{L^{p+1}(M, \tilde{\theta})}^2} - \frac{\|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}^2}{\|T_{\tilde{\theta}}^2(u)\|_{L^{p+1}(M, \tilde{\theta})}^2}.$$

This together with $T_{\tilde{\theta}}^2(u) = T_{\tilde{\theta}}(u)$ (see Proposition 3.2) implies (7.2). \square

Remark 7.2. Clearly, $T_{\tilde{\theta}}(u) \geq u > 0$ and (7.3) imply that

$$I_p^{\tilde{\theta}}(u) = J_p^{\tilde{\theta}}(u) \iff u = T_{\tilde{\theta}}(u).$$

Proposition 7.3. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$, $\tilde{\theta} \in [\theta]$ and $1 \leq p \leq 2^* - 1$. There holds*

$$\mathcal{Y}^p(M, \tilde{\theta}) = \mathcal{Y}_{oc}^p(M, \tilde{\theta}).$$

Proof. By Corollary 5.2, we have

$$\mathcal{Y}^p(M, \tilde{\theta}) = \inf_{u \in S_1^2(M, \tilde{\theta})_+} J_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u)).$$

Similarly, by Corollary 6.2, we have

$$\mathcal{Y}_{oc}^p(M, \tilde{\theta}) = \inf_{u \in S_1^2(M, \tilde{\theta})_+} I_p^{\tilde{\theta}}(T_{\tilde{\theta}}(u)).$$

Now the assertion follows from these and (7.2). \square

From Proposition 7.3, we have the following:

Proposition 7.4. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$, $\tilde{\theta} \in [\theta]$ and $1 \leq p \leq 2^* - 1$. For $u \in S_1^2(M, \tilde{\theta})_+$,*

$$J_p^{\tilde{\theta}}(u) = \mathcal{Y}^p(M, \tilde{\theta}) \iff I_p^{\tilde{\theta}}(u) = \mathcal{Y}_{oc}^p(M, \tilde{\theta}).$$

Proof. If

$$J_p^{\tilde{\theta}}(u) = \mathcal{Y}^p(M, \tilde{\theta}), \quad (7.4)$$

then $u \in Fix(T_{\tilde{\theta}})$ by Corollary 5.3, i.e. $u = T_{\tilde{\theta}}(u)$. Therefore, (7.2) gives $I_p^{\tilde{\theta}}(u) = J_p^{\tilde{\theta}}(u)$. This together with (7.4) and Proposition 7.3 gives $I_p^{\tilde{\theta}}(u) = \mathcal{Y}_{oc}^p(M, \tilde{\theta})$.

On the other hand, if

$$I_p^{\tilde{\theta}}(u) = \mathcal{Y}_{oc}^p(M, \tilde{\theta}), \quad (7.5)$$

then $u \in Fix(T_{\tilde{\theta}})$ by Corollary 6.3, i.e. $u = T_{\tilde{\theta}}(u)$. Thus, (7.2) implies $J_p^{\tilde{\theta}}(u) = I_p^{\tilde{\theta}}(u)$. Combining this with (7.5) and Proposition 7.3 yields $J_p^{\tilde{\theta}}(u) = \mathcal{Y}^p(M, \tilde{\theta})$. \square

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. To prove (i), we assume $u \in S_1^2(M, \theta)_+$ satisfies $I^{\theta}(u) = \mathcal{Y}_{oc}(M, [\theta])$. By Proposition 7.4, $J^{\theta}(u) = \mathcal{Y}(M, [\theta])$. Thus, as a critical point of J^{θ} , u satisfies the CR Yamabe equation (1.2) with $R_{\theta_u} \equiv c$ for some constant $c > 0$. The smooth regularity of positive solutions of the CR Yamabe equation (1.2) implies that $u \in C_+^{\infty}(M)$ (see Theorem 5.15 in [18]). Finally, Corollary 5.3 implies that $u \in Fix_{\theta}(T_{\theta})$. This proves (i).

To prove (ii), let $u_{\min} \in C_+^{\infty}(M)$ be a minimizer for the CR Yamabe problem on (M, θ) , i.e.

$$J^{\theta}(u_{\min}) = \mathcal{Y}(M, [\theta]). \quad (7.6)$$

Therefore, (7.6) and Proposition 7.4 implies that $I^{\theta}(u_{\min}) = \mathcal{Y}_{oc}(M, [\theta])$. This proves (ii). \square

Proof of Corollary 1.4. In view of Theorem 1.3(ii), it suffices to proves that a minimizer for the CR Yamabe problem exists on (M, θ) under the assumptions in Corollary 1.4.

Note that if (M, θ) is CR equivalent to $(S^{2n+1}, \theta_{S^{2n+1}})$, then a minimizer for the CR Yamabe problem exists (c.f. [18]). Therefore, we assume that (M, θ)

is not CR equivalent to $(S^{2n+1}, \theta_{S^{2n+1}})$. It was shown in [18, Theorem 3.4] that if

$$\mathcal{Y}(M, \theta) < \mathcal{Y}(S^{2n+1}, \theta_{S^{2n+1}}), \quad (7.7)$$

then a minimizer for the CR Yamabe problem exists on (M, θ) . Therefore, it suffices to show that (7.7) holds. Now, if assumption (i) in Corollary 1.4 holds, i.e. if $n \geq 2$ and (M, θ) is not spherical, it follows from [16, 17] that (7.7) holds. Also, if assumption (ii) in Corollary 1.4 holds, i.e. if $n = 1$ and the CR Panetiz operator of (M, θ) is nonnegative, then it follows from [7, Theorem 1.2] that (7.7) holds. Finally, if assumption (iii) in Corollary 1.4 holds, it follows from [5] that the CR mass of (M, θ) is positive, since (M, θ) is not CR equivalent to $(S^{2n+1}, \theta_{S^{2n+1}})$ by assumption. From this, one can construct a test function to show that (7.7) holds, as shown in the proof of [7, Theorem 1.2]. This finishes the proof. \square

8. Obstacle problem and Folland-Stein type inequality

In this section, we discuss some Folland-Stein type inequalities related to the obstacle problem for the conformal CR sub-Laplacian. We then specialize to the case of the CR sphere.

Lemma 8.1. *Suppose that $\mathcal{Y}(M, [\theta]) > 0$, $\tilde{\theta} \in [\theta]$. Then for $u \in S_1^2(M, \tilde{\theta})_+$*

$$\|T_{\tilde{\theta}}(u)\|_{L^{2^*}(M, \tilde{\theta})} \leq \frac{1}{\sqrt{\mathcal{Y}(M, [\theta])}} \|u\|_{\tilde{\theta}}.$$

Proof. Since $\mathcal{Y}(M, [\theta]) > 0$ by assumption, it follows from the definition of $\mathcal{Y}(M, [\theta])$ that

$$\|v\|_{L^{2^*}(M, \tilde{\theta})} \leq \frac{1}{\sqrt{\mathcal{Y}(M, [\theta])}} \|v\|_{\tilde{\theta}} \quad (8.1)$$

for any $v \in S_1^2(M, \tilde{\theta})_+$. For $u \in S_1^2(M, \tilde{\theta})_+$, $T_{\tilde{\theta}}(u) \in S_1^2(M, \tilde{\theta})_+$. Taking $v = T_{\tilde{\theta}}(u)$ in (8.1) yields

$$\|T_{\tilde{\theta}}(u)\|_{L^{2^*}(M, \tilde{\theta})} \leq \frac{1}{\sqrt{\mathcal{Y}(M, [\theta])}} \|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}}. \quad (8.2)$$

By the definition of $T_{\tilde{\theta}}$, we have $\|T_{\tilde{\theta}}(u)\|_{\tilde{\theta}} \leq \|u\|_{\tilde{\theta}}$. The assertion follows from (8.2). \square

Proposition 8.2. *Suppose that (M, θ) has positive CR Yamabe constant and θ is a torsion-free pseudo-Einstein contact form. Then for $u \in S_1^2(S^{2n+1}, \theta)_+$*

$$\|T_{\theta}(u)\|_{L^{2^*}(S^{2n+1}, \theta)} \leq \frac{1}{\sqrt{\mathcal{Y}(M, [\theta])}} \|u\|_{\theta}, \quad (8.3)$$

and equality holds in (8.3) if and only if

$$u \in C_+^\infty(M) \quad \text{and} \quad R_{\theta_u} = c$$

for some constant c , where $\theta_u = u^{\frac{2}{n}} \theta$.

Proof. The inequality (8.3) in Proposition 8.2 follows from Lemma 8.1.

To prove the remaining part, we first suppose that u satisfies

$$\|T_\theta(u)\|_{L^{2^*}(M,\theta)} = \frac{1}{\sqrt{\mathcal{Y}(M,[\theta])}} \|u\|_\theta. \quad (8.4)$$

By Proposition 7.3, (8.4) is equivalent to

$$\|T_\theta(u)\|_{L^{2^*}(M,\theta)} = \frac{1}{\sqrt{\mathcal{Y}_{oc}(M,[\theta])}} \|u\|_\theta. \quad (8.5)$$

Hence, it follows from the definition of I^θ in (2.9) that (8.5) is equivalent to

$$I^\theta(u) = \mathcal{Y}_{oc}(M,[\theta]) \quad (8.6)$$

By Proposition 7.4, we see that (8.6) is equivalent to

$$J^\theta(u) = \mathcal{Y}(M,[\theta]). \quad (8.7)$$

It follows from [18, Theorem 5.15] that we must have $u \in C_+^\infty(M)$, and the Webster scalar curvature of $u^{\frac{2}{n}}\theta = \theta_u$ is constant, i.e. $R_{\theta_u} = c$ for some constant c .

To prove the converse, we first note that a minimizer for the CR Yamabe problem exists on (M,θ) under the assumptions in Proposition 8.2. This follows from [18], when (M,θ) is the CR equivalent to $(S^{2n+1}, \theta_{S^{2n+1}})$. Suppose now that (M,θ) is not CR equivalent to $(S^{2n+1}, \theta_{S^{2n+1}})$. When $n = 1$, any torsion-free pseudo-Einstein contact form has vanishing Cartan tensor (this can be seen, for example, by [6, Lemma 2.2]), and hence, combined with the assumption that $\mathcal{Y}(M,[\theta]) > 0$, (M,θ) is a nontrivial quotient of the sphere. Thus $\mathcal{Y}(M,[\theta]) < \mathcal{Y}(S^3, \theta_{S^3})$. When $n > 1$, either (M,θ) a nontrivial quotient of the sphere or the Chern-Moser tensor does not vanish. In either case, [17] implies existence of a minimizer.

Now let $\theta_u \in [\theta]$ have constant Webster scalar curvature. The CR Obata Theorem [23] implies that there is a CR diffeomorphism $\Phi : M \rightarrow M$ such that $\theta_u = \Phi^*\theta$. Since a minimizer $\widehat{\theta} \in [\theta]$ of the CR Yamabe problem has constant Webster scalar curvature, there is a CR diffeomorphism $\Psi : M \rightarrow M$ such that $\widehat{\theta} = \Psi^*\theta$. Therefore $\theta_u = (\Psi^{-1} \circ \Phi)^*\widehat{\theta}$, and so θ_u minimizes $\mathcal{Y}(M,[\theta])$, i.e. (8.7) holds. As we have argued above, (8.7) is equivalent to (8.4). This completes the proof of Proposition 8.2. \square

Proof of Theorem 1.5. This is a direct consequence of Proposition 7.3 and Proposition 8.2. \square

Acknowledgements

We would like to thank the referee for suggestions and very careful reading of the paper, and for pointing out a more general form of Theorem 1.5. The first author was supported by the National Science and Technology Council

(NSTC), Taiwan, with grant Number: 112-2115-M-032 -006 -MY2, and the second author was partially supported by NSF grant DMS-2000164.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

- [1] Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. *J. Math. Pures Appl.* (9) **55**(3), 269–296 (1976)
- [2] Brendle, S.: Convergence of the Yamabe flow for arbitrary initial energy. *J. Differ. Geom.* **69**(2), 217–278 (2005)
- [3] Brendle, S.: Convergence of the Yamabe flow in dimension 6 and higher. *Invent. Math.* **170**(3), 541–576 (2007)
- [4] Caffarelli, L.A.: The obstacle problem revisited. *J. Fourier Anal. Appl.* **4**(4–5), 383–402 (1998)
- [5] Cheng, J.H., Chiu, H.L., Yang, P.: Uniformization of spherical CR manifolds. *Adv. Math.* **255**, 182–216 (2014)
- [6] Cheng, J.H., Lee, J.M.: The Burns-Epstein invariant and deformation of CR structures. *Duke Math. J.* **60**(1), 221–254 (1990)
- [7] Cheng, J.H., Malchiodi, A., Yang, P.: A positive mass theorem in three dimensional Cauchy-Riemann geometry. *Adv. Math.* **308**, 276–347 (2017)
- [8] Cheng, J.H., Malchiodi, A., Yang, P.: On the Sobolev quotient of three-dimensional CR manifolds. *Rev. Mat. Iberoam.* **39**(6), 2017–2066 (2023)
- [9] Folland, G., Stein, E.: Estimates for the $\bar{\partial}_b$ complex and analysis on the Heisenberg group. *Comm. Pure Appl. Math.* **27**, 429–522 (1974)
- [10] Gamara, N.: The CR Yamabe conjecture—the case $n = 1$. *J. Eur. Math. Soc. (JEMS)* **3**(2), 105–137 (2001)
- [11] Gamara, N., Yacoub, R.: CR Yamabe conjecture—the conformally flat case. *Pac. J. Math.* **201**(1), 121–175 (2001)
- [12] Ho, P.T.: Backwards uniqueness of the Yamabe flow. *Differ. Geom. Appl.* **62**, 184–189 (2019)
- [13] Ho, P.T.: The long-time existence and convergence of the CR Yamabe flow. *Commun. Contemp. Math.* **14**(2), 1250014, 50 (2012)

- [14] Ho, P.T.: The Webster scalar curvature flow on CR sphere. Part I. *Adv. Math.* **268**, 758–835 (2015)
- [15] Ho, P.T., Sheng, W., Wang, K.: Convergence of the CR Yamabe flow. *Math. Ann.* **373**(1–2), 743–830 (2019)
- [16] Jerison, D., Lee, J.M.: Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. *J. Am. Math. Soc.* **1**(1), 1–13 (1988)
- [17] Jerison, D., Lee, J.M.: Intrinsic CR normal coordinates and the CR Yamabe problem. *J. Differ. Geom.* **29**(2), 303–343 (1989)
- [18] Jerison, D., Lee, J.M.: The Yamabe problem on CR manifolds. *J. Differ. Geom.* **25**(2), 167–197 (1987)
- [19] Ndiaye, C.B.: Optimal control for the conformal Laplacian obstacle problem. *J. Math. Anal. Appl.* **535**(2), 128136 (2024)
- [20] Sheng, W., Wang, K.: The exponential convergence of the CR Yamabe flow. *Sci. China Math.* **63**(5), 979–992 (2020)
- [21] Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. *J. Differ. Geom.* **20**(2), 479–495 (1984)
- [22] Trudinger, N.S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. *Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)* **22**, 265–274 (1968)
- [23] Wang, X.: On a remarkable formula of Jerison and Lee in CR geometry. *Math. Res. Lett.* **22**(1), 279–299 (2015)
- [24] Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. *Osaka Math. J.* **12**, 21–37 (1960)

Pak Tung Ho
Department of Mathematics
Tamkang University
Tamsui, New Taipei City 251301
Taiwan
e-mail: paktungho@yahoo.com.hk

Cheikh Birahim Ndiaye
Department of Mathematics, Annex 3 Graduate School of Arts and Sciences
Howard University
217
Washington DC20059
USA
e-mail: cheikh.ndiaye@howard.edu

Received: 6 May 2023.

Revised: 15 December 2023.

Accepted: 13 January 2024.