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Abstract. In this paper, we study an optimal control problem associated to
the conformal CR sub-Laplacian obstacle problem on a compact pseudo-
hermitian manifold. When the CR Yamabe constant is positive, we show
that the optimal controls are equal to their associated optimal states and
show the existence of a smooth optimal control which induces a conformal
contact form with constant Webster scalar curvature.
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1. Introduction

Suppose (M, g) is a closed (i.e. compact without boundary) n-dimensional
Riemannian manifold, where n ≥ 3. As a generalization of the Uniformization
Theorem of surfaces, the Yamabe problem is to find a metric conformal to
g such that its scalar curvature is constant. This is equivalent to finding a
smooth positive solution to

Lgu = cu
n+2
n−2 in M (1.1)

for some constant c, where

Lg := −4(n − 1)
n − 2

Δg + Rg

is the conformal Laplacian of g with Rg the scalar curvature of g and Δg the
Laplacian of g. The Yamabe problem was solved in the works of Yamabe [24],
Trudinger [22], Aubin [1], and Schoen [21] by finding a smooth minimizer of
the Yamabe functional Jg defined by

Jg(u) =
〈u, u〉

‖u‖2
L

2n
n−2 (M,g)

, u ∈ H1
+(M, g) =

{
u ∈ H1(M, g), u > 0

}
,
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where

〈u, v〉g =
∫

M

(
4(n − 1)
n − 2

∇gu · ∇gv + Rguv

)
dVg, u, v ∈ H1

+(M, g).

Here, dVg is the volume form with respect to g, ∇gu is the gradient of u with
respect to g, Lp(M, g) is the standard Lebesque space of functions which are
p-integrable over M with respect to g, ‖ · ‖Lp(M,g) is the standard Lp-norm
on Lp(M, g), and H1(M, g) is the Sobolev space containing functions which
are of class L2 together with their first derivatives with respect to g. See also
[2,3,12] and references therein for results related to the Yamabe flow, which
is a geometric flow introduced to study the Yamabe problem.

In [19], the second author studied equation (1.1) in the context of Optimal
Control Theory. To state the results, recall that the Yamabe constant of (M, g)
is defined as

Y(M, [g]) = inf
u∈H1

+(M,g)
Jg(u).

Under the assumption Y(M, [g]) > 0, the following optimal control problem
for the conformal Laplacian obstacle problem was studied:

Find umin ∈ H1
+(M, g) such that Ig(umin) = min

w∈H1
+(M,g)

Ig(w),

where

Ig(u) =
〈u, u〉g

‖Tg(u)‖2
L

2n
n−2 (M,g)

, u ∈ H1
+(M, g)

with

Tg(u) = arg min
v∈H1

+(M,g),v≥u
〈v, v〉g

where the symbol arg min
v∈H1

+(M,g),v≥u
〈v, v〉g denotes the unique solution to the

minimization problem

min
v∈H1

+(M,g),v≥u
〈v, v〉g.

Note that Tg is a map from H1
+(M, g) to H1

+(M, g), i.e. Tg : H1
+(M, g) →

H1
+(M, g) (c.f. [19, Lemma 3.1]). Note also that it was shown in [19, Lemma

3.1] that unique solution to this minimization problem exists. Let C∞
+ (M) be

the space of all positive smooth functions on M . In [19], the second author
proved the following theorem.

Theorem 1.1. (Theorem 1.1 in [19]) Suppose that Y(M, [g]) > 0. Then
(i) For any u ∈ H1

+(M, g),

Ig(u) = min
v∈H1

+(M,g)
Ig(v) =⇒ Tg(u) = u, u ∈ C∞

+ (M) and Rgu
≡ c

for some constant c > 0, where gu = u
4

n−2 g.
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(ii) There exists umin ∈ C∞
+ (M) such that

Ig(umin) = min
v∈H1

+(M,g)
Ig(v) and Rgumin

= Y(M, [g])

where gumin = u
4

n−2
min g.

On the other hand, the converse of Theorem 1.1(i) is also true on the
n-dimensional unit sphere equipped with the standard metric gSn :

Theorem 1.2. (Theorem 1.2 in [19]) Suppose that (M, g) = (Sn, gSn), the
n-dimensional unit sphere equipped with the standard metric gSn . For u ∈
H1

+(Sn, gSn),

IgSn
(u) = min

v∈H1
+(Sn,gSn )

IgSn
(v) is equivalent to u ∈ C∞

+ (S2n+1) and Rg̃ = c

for some constant c, where g̃ = u
4

n−2 gSn .

It was also pointed out by the referee that Theorem 1.2 is actually true,
provided that (M, g) is a conformally Einstein manifold with positive Yamabe
constant, by using the Obata’s theorem for conformally Einstein metrics of
constant scalar curvature. This has not been mentioned in [19] and we would
like to thank the referee for pointing this out.

Now suppose (M, θ) is a compact pseudohermitian manifold of real di-
mension 2n + 1 equipped with the contact form θ. The conformal class of θ is
denoted by [θ], i.e.

[θ] =
{

u
2
n θ : u ∈ C∞

+ (M)
}

.

Hereafter, we set θu = u
2
n θ where u ∈ C∞

+ (M). The CR Yamabe problem is
to find a contact form θu ∈ [θ] such that its Webster scalar curvature Rθu

is

constant. Let 2∗ = 2 +
2
n

. Note that if θu = u
2
n θ where u ∈ C∞

+ (M), there
holds

−
(

2 +
2
n

)
Δθu + Rθu = Rθu

u2∗−1, (1.2)

where Δθ is the sub-Laplacian of θ. Let

Lθu = −
(

2 +
2
n

)
Δθ + Rθ (1.3)

be the conformal CR sub-Laplacian of θ. In view of (1.2), the CR Yamabe
problem is equivalent to finding u ∈ C∞

+ (M) such that

Lθu = cu2∗−1

for some constant c. The CR Yamabe problem was studied in [5,7,10,11,16–
18]. Let S2

1(M, θ) be the Folland-Stein space (c.f. [9]). As in the Yamabe prob-
lem on Riemannian manifolds, one tries to solve the CR Yamabe problem by
finding a minimizer of the CR Yamabe functional Jθ defined by

Jθ(u) :=
〈u, u〉θ

‖u‖L2∗ (M,θ)

, u ∈ S2
1(M, θ)+ :=

{
u ∈ S2

1(M, θ) : u > 0
}
,
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where

〈u, v〉θ =
∫

M

((
2 +

2
n

)
∇θu · ∇θv + Rθuv

)
dVθ, u, v ∈ S2

1(M, θ)+, (1.4)

dVθ is the volume form with respect to θ, ∇θu is the sub-gradient of u with
respect to θ, Lp(M, θ) is the standard Lebesque space of functions which are
p-integrable over M with respect to θ, and ‖·‖Lp(M,θ) is the standard Lp-norm
on Lp(M, θ), i.e.

‖u‖Lp(M,θ) =
(∫

M

|u|pdVθ

) 1
p

.

We remark that, unlike the Yamabe problem on Riemannian manifolds, a
minimizer may not exist (see [8], in which Cheng-Malchiodi-Yang proved the
nonexistence of minimizers on Rossi spheres sufficiently close to the standard
CR three-sphere). See also [13–15,20] for the results related to the CR Yamabe
flow, which is a geometric flow introduced to study the CR Yamabe problem.

Recall that the CR Yamabe constant of (M, θ) is defined as

Y(M, [θ]) = inf
u∈S2

1(M,θ)+
Jθ(u).

Inspired by the results in [19], under the assumption that Y(M, [θ]) > 0, we
study in this paper the following optimal control problem for the conformal
CR sub-Laplacian obstacle problem:

Find umin ∈ S2
1(M, θ)+ such that Iθ(umin) = min

u∈S2
1(M,θ)+

Iθ(u),

where

Iθ(u) =
〈u, u〉θ

‖Tθ(u)‖2
L2∗ (M,θ)

, u ∈ S2
1(M, θ)+

with

Tθ(u) = arg min
v∈S2

1(M,θ)+,v≥u
〈v, v〉θ.

Here the symbol

arg min
v∈S2

1(M,θ)+,v≥u
〈v, v〉θ

denotes the unique solution to the minimization problem (see Lemma 3.1)

min
v∈S2

1(M,θ)+,v≥u
〈v, v〉θ.

Theorem 1.3. Suppose (M, θ) is a compact pseudohermitian manifold of real
dimension 2n + 1 equipped with the contact form θ such that Y(M, [θ]) > 0.
(i) For any u ∈ S2

1(M, θ)+,

Iθ(u) = min
v∈S2

1(M,θ)+
Iθ(v) =⇒ Tθ(u) = u, u ∈ C∞

+ (M) and Rθu
≡ c

for some constant c > 0, where θu = u
2
n θ.
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(ii) If a minimizer for the CR Yamabe problem exists on (M, θ), there exists
umin ∈ C∞

+ (M) such that

Iθ(umin) = min
v∈S2

1(M,θ)+
Iθ(v), (1.5)

where θumin = u
2
n

minθ.

In particular, we have the following:

Corollary 1.4. Suppose (M, θ) is a compact pseudohermitian manifold of real
dimension 2n + 1 equipped with the contact form θ such that Y(M, [θ]) > 0.
Then (1.5) holds if one of the following is true:

(i) if n ≥ 2 and (M, θ) is not spherical,
(ii) if n = 1 and the CR Paneitz operator of (M, θ) is nonnegative,
(iii) if n ≥ 2 and (M, θ) is spherical; and when n = 2, we further assume

that the minimum exponent of the integrability of the Green function
satisfies s(M) < 1.

Similar to Theorem 1.2, we have the following:

Theorem 1.5. Suppose that (M, θ) has positive CR Yamabe constant and θ is
a torsion-free pseudo-Einstein contact form. For u ∈ S2

1(M, θ)+,

Iθ(u) = min
v∈S2

1(M,θ)+
Iθ(v) ⇐⇒ u ∈ C∞

+ (M) and Rθ̃ = c

for some constant c, where θ̃ = u
2
n θ.

2. Notations and preliminaries

In this section, we fix our notations and collect some well-known facts about
CR manifolds, which can be found in [18] for example.

From now on, (M, θ) is the background compact pseudohermitian man-
ifold of real dimension 2n + 1 equipped with the contact form θ. As before,

2∗ = 2 +
2
n

. Recall the CR Yamabe functional Jθ and its subcritical approxi-

mation Jθ
p , 1 ≤ p < 2∗ − 1 are given by

Jθ(u) =
〈u, u〉θ

‖u‖2
L2∗ (M,θ)

(2.1)

and

Jθ
p (u) =

〈u, u〉θ

‖u‖2Lp+1(M,θ)

, (2.2)

where 〈·, ·〉θ is defined as in (1.4). Therefore, we can see that

Jθ
2∗−1 = Jθ. (2.3)

It follows from the definition in (2.2) that

Jθ
p (λu) = Jθ

p (u) for any λ > 0, u ∈ S2
1(M, θ)+. (2.4)
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If θw = w
2
n θ where w ∈ C∞

+ (M), we have the following transformation rules:

wS2
1(M, θw)+ = S2

1(M, θ)+, (2.5)

dVθw
= w2∗

dVθ, (2.6)
〈u, u〉θw

= 〈wu,wu〉θ for u ∈ S2
1(M, θw), (2.7)

Jθw(u) = Jθ(wu), u ∈ S2
1(M, θw). (2.8)

When the CR Yamabe constant Y(M, [θ]) is positive, we define the CR
Yamabe optimal obstacle functional Iθ and its subcritical approximation Iθ

p

(1 ≤ p < 2∗ − 1):

Iθ(u) =
〈u, u〉θ

‖Tθ(u)‖2
L2∗ (M,θ)

(2.9)

and

Iθ
p (u) =

〈u, u〉θ

‖Tθ(u)‖2Lp+1(M,θ)

(2.10)

In particular, we have
Iθ
2∗−1 = Iθ. (2.11)

3. Obstacle problem for the conformal CR sub-Laplacian

In this section, we study the obstacle problem for the conformal CR sub-
Laplacian Lθ̃ (recall its definition in (1.3)) with θ̃ ∈ [θ] under the assumption
Y(M, [θ]) > 0. More precisely, we consider the minimization problem

min
v∈S2

1(M,θ̃)+,v≥u
〈v, v〉θ̃. (3.1)

We have the following:

Lemma 3.1. Suppose that Y(M, [θ]) > 0 and θ̃ ∈ [θ]. For u ∈ S2
1(M, θ̃)+, there

exists a unique Tθ̃(u) ∈ S2
1(M, θ̃)+ such that

‖Tθ̃(u)‖2
θ̃

= min
v∈S2

1(M,θ̃)+,v≥u
‖v‖2

θ̃
.

Hereafter, ‖v‖2
θ̃

= 〈v, v〉θ̃.

Proof. Since Y(M, [θ]) > 0 by assumption, Lθ̃ ≥ 0 and ker Lθ̃ = {0}. Thus
〈·, ·〉θ̃ defines a inner product on S2

1(M, θ̃), which induces a norm ‖ · ‖θ̃, equiv-
alent to the standard S2

1(M, θ̃)-norm on S2
1(M, θ̃)+. Hence, as in the classical

obstacle problem for the sub-Laplacian Δθ̃, the lemma now follows from stan-
dard argument in the Calculus of Variations (see [4] for example). �

We now study some properties of the state map Tθ̃ : S2
1(M, θ̃)+ →

S2
1(M, θ̃)+. First, we have the following:

Proposition 3.2. Suppose that Y(M, [θ]) > 0 and θ̃ ∈ [θ]. Then the state map
Tθ̃ : S2

1(M, θ̃)+ → S2
1(M, θ̃)+ is idempotent, i.e.

T 2
θ̃

= Tθ̃.
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Proof. Let v ∈ S2
1(M, θ̃)+ be such that v ≥ Tθ̃(u). Since Tθ̃(u) ≥ u, we have

v ≥ u. Therefore, by definition of Tθ̃, we have

‖v‖θ̃ ≥ ‖Tθ̃(u)‖θ̃.

Hence, since Tθ̃(u) ∈ S2
1(M, θ̃)+ with Tθ̃(u) ≥ Tθ̃(u), we have

‖Tθ̃(u)‖θ̃ ≥ ‖Tθ̃(Tθ̃(u))‖θ̃.

By uniqueness, we have

Tθ̃(Tθ̃(u)) = Tθ̃(u),

as required. �

The following lemma shows that Tθ̃ is positively homogeneous.

Lemma 3.3. Suppose that Y(M, [θ]) > 0 and θ̃ ∈ [θ]. Then for any λ > 0, there
holds

Tθ̃(λu) = λTθ̃(u)

for all u ∈ S2
1(M, θ̃)+.

Proof. Let v ∈ S2
1(M, θ̃)+ satisfy v ≥ λu. Since λ > 0, we have λ−1v ≥ u.

Since λ−1v ∈ S2
1(M, θ̃)+, it follows from the definition of Tθ̃ that

‖λ−1v‖θ̃ ≥ ‖Tθ̃(u)‖θ̃.

By the positive homogeneity of ‖ · ‖θ̃, i.e.

‖λv‖θ̃ = λ‖v‖θ̃ for any λ > 0, (3.2)

we obtain

‖v‖θ̃ ≥ ‖λTθ̃(u)‖θ̃.

Since λTθ̃(u) ∈ S2
1(M, θ̃)+ satisfies λTθ̃(u) ≥ λu, by uniqueness we get

λTθ̃(u) = Tθ̃(λu),

as required. �

Lemma 3.3 implies the following analogue of formula (2.4) for I θ̃
p .

Corollary 3.4. Suppose that Y(M, [θ]) > 0, θ̃ ∈ [θ], and 1 ≤ p ≤ 2∗ − 1. Then
for any λ > 0, there holds

I θ̃
p (λu) = I θ̃

p (u)

for all u ∈ S2
1(M, θ̃)+.

Proof. By (3.2) and Lemma 3.3, we find

I θ̃
p (λu) =

‖λu‖2
θ̃

‖Tθ̃(λu)‖2
θ̃

=
‖λu‖2

θ̃

‖λTθ̃(u)‖2
θ̃

=
‖u‖2

θ̃

‖Tθ̃(u)‖2
θ̃

= I θ̃
p (u),

which proves the assertion. �
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4. Transformation rules of Tθ̃ and Iθ̃ for θ̃ ∈ [θ]

In this section, we study the transformation rules of Tθ̃ when θ̃ varies in [θ].
As before, we adopt the notation θw = w

2
n θ whenever w ∈ C∞

+ (M).

Lemma 4.1. Suppose that Y(M, [θ]) > 0 and w ∈ C∞
+ (M). There holds

Tθw
(u) = w−1Tθ(wu)

for any u ∈ S2
1(M, θw).

Proof. Let v ∈ S2
1(M, θw)+ with v ≥ u. It follows from (2.7) that

‖v‖θw
= ‖wv‖θ.

Since v ≥ u and w > 0, we have wv ≥ wu and wv,wu ∈ S2
1(M, θ)+. Hence, it

follows from the definition of Tθ that

‖wv‖θ ≥ ‖Tθ(wu)‖θ.

Using (2.7) again, we obtain

‖Tθ(wu)‖θ = ‖w−1Tθ(wu)‖θw
.

Combining all these, we obtain

‖v‖θw
≥ ‖w−1Tθ(wu)‖θw

.

Now, since w−1Tθ(wu) ≥ w−1wu = u and w−1Tθ(wu) ∈ S2
1(M, θw), by unique-

ness, we have

Tθw
(u) = w−1Tθ(wu)

as required. �

The following is an immediate consequence of Lemma 4.1.

Corollary 4.2. Suppose that Y(M, [θ]) > 0 and w ∈ C∞
+ (M). Then

Fix(Tθw
) = w−1Fix(Tθ),

where

Fix(Tθ) =
{
u ∈ S2

1(M, θ) : Tθ(u) = u
}

.

Proof. It follows from Lemma 4.1 and the definition of fixed point set that

u ∈ Fix(Tθw
) ⇐⇒ Tθw

(u) = u ⇐⇒ w−1Tθ(wu) = u ⇐⇒ wu ∈ Fix(Tθ),

which proves the assertion. �

Lemma 4.1 also implies the following:

Corollary 4.3. Suppose that Y(M, [θ]) > 0 and w ∈ C∞
+ (M). Then

‖Tθw
(u)‖L2∗ (M,θw) = ‖Tθ(wu)‖L2∗ (M,θ)

for any u ∈ S2
1(M, θw)+.
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Proof. By (2.6) and Lemma 4.1, we find

‖Tθw
(u)‖2∗

L2∗ (M,θw) =
∫

M

|Tθw
(u)|2∗

dVθw
=

∫

M

|w−1Tθ(wu)|2∗
w2∗

dVθ

=
∫

M

|Tθ(wu)|2∗
dVθ = ‖Tθ(wu)‖2∗

L2∗ (M,θ),

which proves the assertion. �

As a consequence of Corollary 4.3, we have the following analogue of
formula (2.9) for the CR Yamabe optimal obstacle functional.

Corollary 4.4. Suppose that Y(M, [θ]) > 0 and w ∈ C∞
+ (M). Then

Iθw(u) = Iθ(wu).

Proof. It follows from (2.7) and Corollary 4.3 that

Iθw(u) =
‖u‖2θw

‖Tθw
(u)‖2

L2∗ (M,θw)

=
‖wu‖2θ

‖Tθ(wu)‖2
L2∗ (M,θ)

= Iθ(wu),

as required. �

Corollary 4.4 implies the following:

Corollary 4.5. Suppose that Y(M, [θ]) > 0 and w ∈ C∞
+ (M). Then we have

inf
u∈S2

1(M,θw)+
Iθw(u) = inf

u∈S2
1(M,θ)+

Iθ(u).

Proof. By (2.5) and Corollary 4.4, we find

inf
u∈S2

1(M,θ)+
Iθ(u) = inf

u∈wS2
1(M,θw)+

Iθ(u)

= inf
u∈S2

1(M,θw)+
Iθ(wu) = inf

u∈S2
1(M,θw)+

Iθw(u)

where the second equality follows from letting u = wu. This proves the asser-
tion. �

Similar to the CR Yamabe constant Y(M, [θ]), we have the following:

Definition 4.6. Suppose that Y(M, [θ]) > 0. Define

Yoc(M, θ) = inf
u∈S2

1(M,θ)+
Iθ(u).

Remark 4.7. If θ̃ ∈ [θ], it follows from Corollary 4.5 that

Yoc(M, θ̃) = Yoc(M, θ).

That is to say, it depends only on the conformal class. As a result, we will
write Yoc(M, [θ]).
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In the paper of Jerison and Lee [16] the following family of real numbers
was introduced (see (6.1) in [16])

Yp(M, θ̃) := inf
u∈S2

1(M,θ̃)+

J θ̃
p (u), for θ̃ ∈ [θ], 1 ≤ p ≤ 2∗ − 1.

Note that Yp(M, θ̃) is a pseudohermitian invariant, but is not a CR invari-
ant. Clearly, Y2∗−1(M, θ̃) = Y(M, [θ̃]). Similarly, whenever Y(M, [θ]) > 0, we
define

Yp
oc(M, θ̃) := inf

u∈S2
1(M,θ̃)+

I θ̃
p (u), for θ̃ ∈ [θ], 1 ≤ p ≤ 2∗ − 1

and

Y2∗−1
oc (M, θ̃) = Yoc(M, [θ̃]).

5. Monotonicity formula for Jθ̃
p , θ̃ ∈ [θ] and 1 ≤ p ≤ 2∗ − 1

In this section, we present a monotonicity formula for J θ̃
p when passing from u

to Tθ̃(u). We then give some applications on the relation between the ground
state of J θ̃

p and the fixed point of Tθ̃. The monotonicity formula reads as
follows.

Lemma 5.1. Suppose that Y(M, [θ]) > 0, θ̃ ∈ [θ] and 1 ≤ p ≤ 2∗ − 1. For
u ∈ S2

1(M, θ̃), there holds

J θ̃
p (u) − J θ̃

p (Tθ̃(u)) ≥ 1
‖Tθ̃(u)‖2

Lp+1(M,θ̃)

[‖u‖2
θ̃

− ‖Tθ̃(u)‖2
θ̃

] ≥ 0.

Proof. By the definition of J θ̃
p in (2.1)-(2.3), we compute

J θ̃
p (u) − J θ̃

p (Tθ̃(u)) =
‖u‖2

θ̃

‖u‖2
Lp+1(M,θ̃)

− ‖Tθ̃(u)‖2
θ̃

‖Tθ̃(u)‖2
Lp+1(M,θ̃)

≥ ‖u‖2
θ̃

‖Tθ̃(u)‖2
Lp+1(M,θ̃)

− ‖Tθ̃(u)‖2
θ̃

‖Tθ̃(u)‖2
Lp+1(M,θ̃)

,

where we have used Tθ̃(u) ≥ u > 0. It follows from the definition of Tθ̃ that
the last expression is nonnegative, which proves the assertion. �

Lemma 5.1 implies the following:

Corollary 5.2. Suppose that Y(M, [θ]) > 0, θ̃ ∈ [θ] and 1 ≤ p ≤ 2∗ − 1. Then
for u ∈ S2

1(M, θ̃)+,

J θ̃
p (Tθ̃(u)) ≤ J θ̃

p (u),

and equality holds if and only if u ∈ Fix(Tθ̃).
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Proof. The inequality part follows immediately from Lemma 5.1. Now if
J θ̃

p (Tθ̃(u)) = J θ̃
p (u), it follows from Lemma 5.1 that

‖u‖2
θ̃

= ‖Tθ̃(u)‖2
θ̃
.

Hence, since u ≥ u ∈ S2
1(M, θ̃)+, the uniqueness part in Lemma 3.1 implies

that

u = Tθ̃(u),

which finishes the proof. �

Corollary 5.2 implies that minimizers of J θ̃
p on S2

1(M, θ̃)+ belong to
Fix(Tθ̃):

Corollary 5.3. Suppose that Y(M, [θ]) > 0, θ̃ ∈ [θ] and 1 ≤ p ≤ 2∗ − 1. For
u ∈ S2

1(M, θ̃)+,

J θ̃
p (u) = Yp(M, θ̃) =⇒ u ∈ Fix(Tθ̃).

Proof. The assumption J θ̃
p (u) = Yp(M, θ̃) implies that

J θ̃
p (u) = Yp(M, θ̃) ≤ J θ̃

p (Tθ̃(u)).

This together with Corollary 5.2 gives J θ̃
p (u) = J θ̃

p (Tθ̃(u)). By Corollary 5.2
again, we can conclude that u ∈ Fix(Tθ̃). �

Remark 5.4. In view of Proposition 3.2 and Corollary 5.2, we can assume with-
out loss of generality that any minimizing sequence (ul)l≥1 of J θ̃

p on S2
1(M, θ̃)+

satisfies

ul ∈ Fix(Tθ̃) for all l ≥ 1.

Indeed, suppose (ul)l≥1 is a minimizing sequence of J θ̃
p on S2

1(M, θ̃)+. Then
ul ∈ S2

1(M, θ̃)+ and

J θ̃
p (ul) → inf

u∈S2
1(M,θ̃)+

J θ̃
p (u) as l → ∞.

By Corollary 5.2 and the fact that Tθ̃(ul) ∈ S2
1(M, θ̃)+, we have

inf
u∈S2

1(M,θ̃)+

J θ̃
p (u) ≤ J θ̃

p (Tθ̃(ul)) ≤ J θ̃
p (ul).

These imply

J θ̃
p (Tθ̃(ul)) → inf

u∈S2
1(M,θ̃)+

J θ̃
p (u) as l → ∞.

Hence, if we set ûl = Tθ̃(ul) and use Proposition 3.2, we obtain

J θ̃
p (ûl) → inf

u∈S2
1(M,θ̃)+

J θ̃
p (u) as l → ∞ and ûl = Tθ̃(ûl),

as desired.
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6. Monotonicity formula for Iθ̃
p , θ̃ ∈ [θ] and 1 ≤ p ≤ 2∗ − 1

In this section, we derive a monotonicity formula for I θ̃
p , similar to the one for

J θ̃
p derived in the previous section. Moreover, we present some applications for

I θ̃
p , similar to the ones obtained for J θ̃

p in the previous section. First, we have
the following:

Lemma 6.1. Suppose that Y(M, [θ]) > 0, θ̃ ∈ [θ] and 1 ≤ p ≤ 2∗ − 1. For
u ∈ S2

1(M, θ̃), there holds

I θ̃
p (u) − I θ̃

p (Tθ̃(u)) =
1

‖Tθ̃(u)‖2
Lp+1(M,θ̃)

[‖u‖2
θ̃

− ‖Tθ̃(u)‖2
θ̃

] ≥ 0.

Proof. By the definition of I θ̃ in (2.9)-(2.11), we compute

I θ̃
p (u) − I θ̃

p (Tθ̃(u)) =
‖u‖2

θ̃

‖Tθ̃(u)‖2
Lp+1(M,θ̃)

− ‖Tθ̃(u)‖2
θ̃

‖T 2
θ̃
(u)‖2

L2∗ (M,θ̃)

=
1

‖Tθ̃(u)‖2
Lp+1(M,θ̃)

[‖u‖2
θ̃

− ‖Tθ̃(u)‖2
θ̃

]

where we have used Proposition 3.2 in the last equality. Note that the last
expression is nonnegative by the definition of Tθ̃. This proves the assertion.

�

We have the following corollary, similar to Corollary 5.2.

Corollary 6.2. Suppose that Y(M, [θ]) > 0, θ̃ ∈ [θ] and 1 ≤ p ≤ 2∗ − 1. For
u ∈ S2

1(M, θ̃)+, we have
I θ̃
p (Tθ̃(u)) ≤ I θ̃

p (u), (6.1)
and equality holds if and only if u ∈ Fix(Tθ̃).

Proof. The inequality (6.1) follows immediately from Lemma 6.1. By Lemma
6.1 again, equality holds in (6.1) if

‖u‖2
θ̃

= ‖Tθ̃(u)‖2
θ̃
.

Hence, since u ≥ u ∈ S2
1(M, θ̃)+, the uniqueness part of Lemma 3.1 implies

that

u = Tθ̃(u),

which finishes the proof. �

As in the previous section, Corollary 6.2 implies that minimizers of I θ̃
p

belong to Fix(Tθ̃):

Corollary 6.3. Suppose that Y(M, [θ]) > 0, θ̃ ∈ [θ] and 1 ≤ p ≤ 2∗ − 1. For
u ∈ S2

1(M, θ̃)+,

I θ̃
p (u) = Yp

oc(M, θ̃) =⇒ u ∈ Fix(Tθ̃).
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Proof. If I θ̃
p (u) = Yp

oc(M, θ̃), then

I θ̃
p (u) = Yp

oc(M, θ̃) ≤ I θ̃
p (Tθ̃(u)).

Combining this with Corollary 6.2, we gives the equality in (6.1). Therefore,
by Corollary 6.2 again, u ∈ Fix(Tθ̃). �

Remark 6.4. In view of Proposition 3.2 and Corollary 6.2, we can, by using
the same argument as in Remark 5.4, assume that any minimizing sequence
(ul)l≥1 of I θ̃

p on S2
1(M, θ̃)+ satisfies

ul ∈ Fix(Tθ̃) for all l ≥ 1.

7. Comparing Yp(M, θ̃) and Yp
oc(M, θ̃) where θ̃ ∈ [θ] and

1 ≤ p ≤ 2∗ − 1

In this section, under the assumption that Y(M, [θ]) > 0, we show that, for
θ̃ ∈ [θ] and 1 ≤ p ≤ 2∗ − 1, Yp(M, θ̃) = Yp

oc(M, θ̃) and J θ̃
p (u) = Yp(M, θ̃) ⇐⇒

I θ̃
p (u) = Yp

oc(M, θ̃). As a result, we prove Theorem 1.3.
We start with the following comparison result by showing that I θ̃

p ≤ J θ̃
p

and that I θ̃
p = J θ̃

p on the range of Tθ̃.

Lemma 7.1. Suppose that Y(M, [θ]) > 0 and θ̃ ∈ [θ]. For u ∈ S2
1(M, θ̃)+, we

have
I θ̃
p (u) ≤ J θ̃

p (u) (7.1)
and

I θ̃
p (Tθ̃(u)) = J θ̃

p (Tθ̃(u)). (7.2)

Proof. By definition of J θ̃
p and I θ̃

p (see (2.1)-(2.3) and (2.9)-(2.11)), we have

J θ̃
p (u) − I θ̃

p (u) =
‖u‖2

θ̃

‖u‖2
Lp+1(M,θ̃)

− ‖u‖2
θ̃

‖Tθ̃(u)‖2
Lp+1(M,θ̃)

. (7.3)

Now (7.1) follows from this and the fact that Tθ̃(u) ≥ u > 0. Moreover, we
have

J θ̃
p (Tθ̃(u)) − I θ̃

p (Tθ̃(u)) =
‖Tθ̃(u)‖2

θ̃

‖Tθ̃(u)‖2
Lp+1(M,θ̃)

− ‖Tθ̃(u)‖2
θ̃

‖T 2
θ̃
(u)‖2

Lp+1(M,θ̃)

.

This together with T 2
θ̃
(u) = Tθ̃(u) (see Proposition 3.2) implies (7.2). �

Remark 7.2. Clearly, Tθ̃(u) ≥ u > 0 and (7.3) imply that

I θ̃
p (u) = J θ̃

p (u) ⇐⇒ u = Tθ̃(u).

Proposition 7.3. Suppose that Y(M, [θ]) > 0, θ̃ ∈ [θ] and 1 ≤ p ≤ 2∗ −1. There
holds

Yp(M, θ̃) = Yp
oc(M, θ̃).
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Proof. By Corollary 5.2, we have

Yp(M, θ̃) = inf
u∈S2

1(M,θ̃)+

J θ̃
p (Tθ̃(u)).

Similarly, by Corollary 6.2, we have

Yp
oc(M, θ̃) = inf

u∈S2
1(M,θ̃)+

I θ̃
p (Tθ̃(u)).

Now the assertion follows from these and (7.2). �

From Proposition 7.3, we have the following:

Proposition 7.4. Suppose that Y(M, [θ]) > 0, θ̃ ∈ [θ] and 1 ≤ p ≤ 2∗ − 1. For
u ∈ S2

1(M, θ̃)+,

J θ̃
p (u) = Yp(M, θ̃) ⇐⇒ I θ̃

p (u) = Yp
oc(M, θ̃).

Proof. If
J θ̃

p (u) = Yp(M, θ̃), (7.4)
then u ∈ Fix(Tθ̃) by Corollary 5.3, i.e. u = Tθ̃(u). Therefore, (7.2) gives
I θ̃
p (u) = J θ̃

p (u). This together with (7.4) and Proposition 7.3 gives I θ̃
p (u) =

Yp
oc(M, θ̃).

On the other hand, if

I θ̃
p (u) = Yp

oc(M, θ̃), (7.5)

then u ∈ Fix(Tθ̃) by Corollary 6.3, i.e. u = Tθ̃(u). Thus, (7.2) implies J θ̃
p (u) =

I θ̃
p (u). Combining this with (7.5) and Proposition 7.3 yields J θ̃

p (u) = Yp(M, θ̃).
�

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. To prove (i), we assume u ∈ S2
1(M, θ)+ satisfies Iθ(u) =

Yoc(M, [θ]). By Proposition 7.4, Jθ(u) = Y(M, [θ]). Thus, as a critical point of
Jθ, u satisfies the CR Yamabe equation (1.2) with Rθu

≡ c for some constant
c > 0. The smooth regularity of positive solutions of the CR Yamabe equation
(1.2) implies that u ∈ C∞

+ (M) (see Theorem 5.15 in [18]). Finally, Corollary
5.3 implies that u ∈ Fixθ(Tθ). This proves (i).

To prove (ii), let umin ∈ C∞
+ (M) be a minimizer for the CR Yamabe

problem on (M, θ), i.e.
Jθ(umin) = Y(M, [θ]). (7.6)

Therefore, (7.6) and Proposition 7.4 implies that Iθ(umin) = Yoc(M, [θ]). This
proves (ii). �

Proof of Corollary 1.4. In view of Theorem 1.3(ii), it suffices to proves that a
minimizer for the CR Yamabe problem exists on (M, θ) under the assumptions
in Corollary 1.4.

Note that if (M, θ) is CR equivalent to (S2n+1, θS2n+1), then a minimizer
for the CR Yamabe problem exists (c.f. [18]). Therefore, we assume that (M, θ)
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is not CR equivalent to (S2n+1, θS2n+1). It was shown in [18, Theorem 3.4] that
if

Y(M, θ) < Y(S2n+1, θS2n+1), (7.7)

then a minimizer for the CR Yamabe problem exists on (M, θ). Therefore, it
suffices to show that (7.7) holds. Now, if assumption (i) in Corollary 1.4 holds,
i.e. if n ≥ 2 and (M, θ) is not spherical, it follows from [16,17] that (7.7) holds.
Also, if assumption (ii) in Corollary 1.4 holds, i.e. if n = 1 and the CR Panetiz
operator of (M, θ) is nonnegative, then it follows from [7, Theorem 1.2] that
(7.7) holds. Finally, if assumption (iii) in Corollary 1.4 holds, it follows from
[5] that the CR mass of (M, θ) is positive, since (M, θ) is not CR equivalent to
(S2n+1, θS2n+1) by assumption. From this, one can construct a test function to
show that (7.7) holds, as shown in the proof of [7, Theorem 1.2]. This finishes
the proof. �

8. Obstacle problem and Folland-Stein type inequality

In this section, we discuss some Folland-Stein type inequalities related to the
obstacle problem for the conformal CR sub-Laplacian. We then specialize to
the case of the CR sphere.

Lemma 8.1. Suppose that Y(M, [θ]) > 0, θ̃ ∈ [θ]. Then for u ∈ S2
1(M, θ̃)+

‖Tθ̃(u)‖L2∗ (M,θ̃) ≤ 1
√Y(M, [θ])

‖u‖θ̃.

Proof. Since Y(M, [θ]) > 0 by assumption, it follows from the definition of
Y(M, [θ]) that

‖v‖L2∗ (M,θ̃) ≤ 1
√Y(M, [θ])

‖v‖θ̃ (8.1)

for any v ∈ S2
1(M, θ̃)+. For u ∈ S2

1(M, θ̃)+, Tθ̃(u) ∈ S2
1(M, θ̃)+. Taking v =

Tθ̃(u) in (8.1) yields

‖Tθ̃(u)‖L2∗ (M,θ̃) ≤ 1
√Y(M, [θ])

‖Tθ̃(u)‖θ̃. (8.2)

By the definition of Tθ̃, we have ‖Tθ̃(u)‖θ̃ ≤ ‖u‖θ̃. The assertion follows from
(8.2). �

Proposition 8.2. Suppose that (M, θ) has positive CR Yamabe constant and θ
is a torsion-free pseudo-Einstein contact form. Then for u ∈ S2

1(S2n+1, θ)+

‖Tθ(u)‖L2∗ (S2n+1,θ) ≤ 1
√Y(M, [θ])

‖u‖θ, (8.3)

and equality holds in (8.3) if and only if

u ∈ C∞
+ (M) and Rθu

= c

for some constant c, where θu = u
2
n θ.
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Proof. The inequality (8.3) in Proposition 8.2 follows from Lemma 8.1.
To prove the remaining part, we first suppose that u satisfies

‖Tθ(u)‖L2∗ (M,θ) =
1

√Y(M, [θ])
‖u‖θ. (8.4)

By Proposition 7.3, (8.4) is equivalent to

‖Tθ(u)‖L2∗ (M,θ) =
1

√Yoc(M, [θ])
‖u‖θ. (8.5)

Hence, it follows from the definition of Iθ in (2.9) that (8.5) is equivalent to

Iθ(u) = Yoc(M, [θ]) (8.6)

By Proposition 7.4, we see that (8.6) is equivalent to

Jθ(u) = Y(M, [θ]). (8.7)

It follows from [18, Theorem 5.15] that we must have u ∈ C∞
+ (M), and the

Webster scalar curvature of u
2
n θ = θu is constant, i.e. Rθu

= c for some
constant c.

To prove the converse, we first note that a minimizer for the CR Yamabe
problem exists on (M, θ) under the assumptions in Proposition 8.2. This fol-
lows from [18], when (M, θ) is the CR equivalent to (S2n+1, θS2n+1). Suppose
now that (M, θ) is not CR equivalent to (S2n+1, θS2n+1). When n = 1, any
torsion-free pseudo-Einstein contact form has vanishing Cartan tensor (this
can be seen, for example, by [6, Lemma 2.2]), and hence, combined with the
assumption that Y(M, [θ]) > 0, (M, θ) is a nontrivial quotient of the sphere.
Thus Y(M, [θ]) < Y(S3, θS3). When n > 1, either (M, θ) a nontrivial quotient
of the sphere or the Chern-Moser tensor does not vanish. In either case, [17]
implies existence of a minimizer.

Now let θu ∈ [θ] have constant Webster scalar curvature. The CR Obata
Theorem [23] implies that there is a CR diffeomorphism Φ : M → M such that
θu = Φ∗θ. Since a minimizer θ̂ ∈ [θ] of the CR Yamabe problem has constant
Webster scalar curvature, there is a CR diffeomorphism Ψ : M → M such that
θ̂ = Ψ∗θ. Therefore θu = (Ψ−1 ◦Φ)∗θ̂, and so θu minimizes Y(M, [θ]), i.e. (8.7)
holds. As we have argued above, (8.7) is equivalent to (8.4). This completes
the proof of Proposition 8.2. �

Proof of Theorem 1.5. This is a direct consequence of Proposition 7.3 and
Proposition 8.2. �
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