A SECOND ORDER ENSEMBLE ALGORITHM FOR COMPUTING THE
NAVIER-STOKES EQUATIONS
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Abstract. We present an efficient, second order ensemble algorithm for computing the Navier-Stokes equations
multiple times with different model parameters. The algorithm is based on the Crank-Nicolson Leap-frog (CNLF)
scheme and the ensemble timestepping incorporating the artificial compressibility method and the recent scalar auxiliary
variable (SAV) idea for developing unconditionally stable schemes for nonlinear flows. The computation of the velocity
and pressure is decoupled in the algorithm resulting in smaller linear systems to be solved at each time step. All
realizations of the flow corresponding to different model parameters share the same coefficient matrix so that efficient
block solvers can be used to reduce the computational cost. The proposed algorithm is efficient in terms of both computer
storage and CPU time. We prove the algorithm is long time stable without any timestep conditions. Ample numerical
experiments are performed for various flow problems to validate the efficiency and effectiveness of the algorithm.
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1. Introduction. Computing a flow equation multiple times with different input data is a com-
mon procedure used in many engineering applications for uncertainty quantification (UQ), sensitivity
analysis and data assimilation [10,42,53]. For complex flow problems this procedure could be pro-
hibitively expensive if a large ensemble of realizations are required to produce useful statistical data.
To address this issue, an efficient ensemble timestepping approach was developed in [27] for fast com-
putation of nonlinear flow ensembles. The main idea is to decompose the nonlinear term into two
parts: the ensemble mean and the fluctuation, with the mean independent of the ensemble index j
and the fluctuation being lagged to the previous time levels so that it does not contribute to the
coefficient matrix. The resulting linear systems for all ensemble members have the same coefficient
matrix for which there exist efficient block solvers, such as block CG [23,43,46], block GMRES [6,13],
to compute all linear systems quickly at one pass, as opposed to solving them separately for each
ensemble member.

The ensemble timestepping approach has been adapted to compute various nonlinear flow prob-
lems including the Navier-Stokes equations [15-19,25,28,31,33-35,50,51], MHD flows [4,5,30,44,45],
Boussinesq equations [11,12,24], fluid-fluid interactions [8], and shown to be highly efficient and have
comparable accuracy to that of traditional methods that compute each ensemble member individu-
ally. Although the fact that all realizations share a common coefficient matrix could lead to significant
savings in the computational cost, especially for a large ensemble, it is worth mentioning that this
common coefficient matrix changes from one time step to another and needs to be assembled at
each time step. A recent development on the ensemble methods is to incorporate the scalar auxil-
iary variable (SAV) approach to further reduce the computational cost [33], in which the nonlinear
term is treated fully explicitly and the corresponding linear systems after spatial discretization have
a common constant coefficient matrix that is time independent. In this paper we follow the same
idea and propose a highly efficient, second order ensemble algorithm incorporating the SAV approach,
the Crank-Nicolson-Leap-Frog (CNLF) time stepping and the artificial compression method for fast
computation of the Navier-Stokes flow ensembles.

The SAV approach was first studied for the gradient flows [48,49] and then extended for solving
the Navier-Stokes equations in [41]. The main idea is to introduce a new scalar variable and the
associated differential equation to form a new governing system for the model problem, for which an
unconditionally stable discrete scheme with fully explicit nonlinear terms can then be developed. For
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the Navier-Stokes equations, making the nonlinear term fully explicit in standard discrete schemes
will lead to a restrictive CFL condition to ensure stable simulations. The SAV approach puts forth a
new way to redesign these standard schemes and develop a new family of methods with a fully explicit
nonlinear term as well as provable unconditional stability. However, it has been noted that the low
accuracy of the SAV schemes has compromised its claimed unconditional stability. For many flow
problems, a very small time step is needed for accurate and stable simulations. In [33], a stabilization
method was proposed and shown to be able to greatly increase the accuracy of the SAV schemes and
therefore the stability. In this report we incorporate this stabilization with our SAV ensemble scheme
to improve accuracy and stability.

The CNLF scheme is widely used in atmospheric and oceanic simulations for its high accuracy
but was less studied and analyzed in the literature until recently [21,26,29,32,37-39]. We adopt the
CNLF timestepping scheme combined with artificial compressibility(AC) studied in [9] and a special
extrapolation from [22] to develop an efficient ensemble timestepping scheme with provable long time
stability. The combined approach of the SAV method, ensemble timestepping and CNLFAC scheme is
extremely efficient : (1) The coeflicient matrix only needs to be assemble once for all realizations and
all time steps; (2) Utilizing the GMRES iterative solver paired with an appropriate preconditioner,
an significant amount of computational cost as well as CPU time can be saved, see Section 5.3.

The rest of the paper is outlined here. Section 2 presents the proposed AC-SAV-CNLF ensemble
algorithm. We prove the algorithm is nonlinearly, long time stable under one parameter condition,
without any timestep constraints in Section 3. An efficient, fully decoupled implementation algorithm
as well as details about algebraic systems and linear solvers are presented in Section 4. We perform
extensive numerical testing for the algorithm to demonstrate its efficiency and effectiveness for various
flow problems including a 3D tess. Numerical results are summarized and discussed in Section 5.

2. The AC-SAV-CNLF Ensemble Algorithm. Consider the case that the solution of Navier-
Stokes equations depends on a set of input parameters coming from uncertainties in the kinematic
viscosity, body forces, initial conditions, and boundary conditions. To obtain solution data we assume
J samples of the random parameters have been generated by an efficient UQ method, e.g., [20,53],
and next we need to find J solutions to the Navier-Stokes equations corresponding to the J different
parameter sets.

Consider J Navier-Stokes equations on a bounded domain §2:

O + (uj - Vu; — V- (v;Vu,) + Vp; = fi(z,t), in Q, (2.1)
V-u; =0,in Q,
uj = gj, on 052,

uj(x,0) = uf(z), in Q.

where the initial conditions ug(aj), boundary conditions g;(z,t), body forces f;(z,t) and viscosity
vi(z), j =1,...,J, have mild difference among different samples. To construct the ensemble algorithms
we need to define the ensemble mean # of the viscosities v;(z) and their ensemble fluctuations 1/3».
Assumed v (%) > Vjmin > 0, the minimum average 7, and maximum fluctuation of the kinematic

viscosity v},,, Will be used in the proof of the long time stability.

J J
_ 1 _ _ 1
Pw) = 33 wi(@), Vi) = () = P@), P =5 D Vi, Vinas = maxsup V(@)
j=1 j=1 ®

Next we introduce a scalar auxiliary variable g; for each realization and a differential equation
for it, which will be added to the original Navier-Stokes equations to form a new governing system,
following the SAV idea in [33,40,41]. The introduced scalar ¢;(t) is defined by

qj(t) =/ E(u;) + 9, (2.2)
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where E(u;) = [, 2|u;|? dz is the total kinetic energy and § > 0 is a user-defined parameter introduced
to ensure positivity of E(u;). Taking derivative of ¢;(t) gives

1
2(]j

de 1 (’9uj /
—_— = — . u‘
d ~ 2q; Jo Ot 7 2,/ E(uj)

Note that the last extral two terms in the above equation are equal to zero since V-u; = 0. Combining

this equation with the original Navier-Stokes equations we have a new governing system that is
equivalent to (2.1):

“u; de — (71 uj)iu;Pdo. (2.3)
Q

q;(t)
Oy + —— (- V)u; — V- (V) + Vp; = fi(z,t),
tUj E(uj)—i—é(uj Ju; (v;Vuy) p; = fi(x,t)
%7 1 an

2
i~ 2 Jo ot -u; de + 2\/?/ V)u; - u; de — / )3lg;|? do.

Herein we present a second order, artificial compression SAV ensemble algorithm based on the
Crank-Nicolson Leap-frog timestepping (AC-SAV-CNLF).

To make the algorithm efficient, we desire to let all the realizations share a common coefficient
matrix. The way to do this is to decompose the viscosity term into two parts: the mean v and the
fluctuation V;», ie. vy =0+ 1/}. The mean viscosity does not depend on the ensemble index j but the
fluctuation term does. Hence we need to make the fluctuation term explicit in time discretization so
that it does not affect the common operator in the left hand side. We usually need to decompose the
nonlinear terms as well if a standard semi-implicit method is used. But thanks to the SAV approach,
the nonlinear term can be treated fully explicitly and thus goes directly to the right hand side not
contributing to the coefficient matrix in full discretization.

For the AC-SAV-CNLF ensemble algorithm, we adopt a special second order linear extrapolation
ﬁ? [22], defined below to approximate the fluctuation term.

Let t,, = nAt, n = 0,1,2,--- | N, where N = T'/At, denote a uniform partition of the interval
[0,T]. Denote

n+1 n—1 n n—2 n—1 n—3
an W Y Fn ol U T Y U T oen1 an2
J 2 ’ J 2 2 J J 7
n+1 n—1 n+1 n—1
P P 4 T
p] 2 I 7 - 2 .

Note that ﬁ;‘ is a known quantity while @} contains the unknown function u}”l. We now propose our
second order, stabilized SAV ensemble algorithm based on the Crank-Nicolson Leapfrog timestepping
as follows.
ALGORITHM 2.1 (AC-SAV-CNLF). For j =1,2,---,J, given ug,ujl,u?,uj,pj,pj,qj, formn =3,
N —1, find u?+1,p?+1,q?+1 satisfying

Un+1 — UY-L_l q"n
T T AATIV(V - (T =)+ ————=(u} - V)u + V] (2.5)
B +9
-V (ﬂVﬂ?) \% (UJIV’&;L) — ahA( u;_lfl) _ ;L7
7 1 n—1 n __
eAt(p] + —p; )+ V- ui =0, (2.6)
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where b7 = [,o(7 - g7)3197 1> do,a > 0,8 > 0,€ > 0.

A stablhzatlon term —ahA(u] ntl u?fl) for AC-SAV-CNLF, is added in the algorithm to in-
crease the accuracy of the SAV scheme [33], in which h is the mesh size associated with the spatial
discretization of choice. This algorithm is second order convergent. The efficiency lies in the fact
that all realizations share the same constant coefficient matrix, which makes it possible to use a
block GMRES solver for fast computation of all realizations simultaneously. We will present an effi-
cient implementation algorithm in Section 4 and ample numerical tests in Section 5 to demonstrate
its high efficiency and superior performance over traditional methods that compute each realization
individually.

3. Stability of the AC-SAV-CNLF Ensemble Algorithm. In this section we prove the AC-
SAV-CNLF ensemble algorithm is long time stable under a parameter fluctuation condition, without
any timestep constraints.

THEOREM 3.1 (Stability of AC-SAV-CNLF). Let €8 > 1. Assume the boundary condition is

homogeneous, ¢ is real, and the following parameter fluctuation condition holds

/
1%
mazx
<

(3.1)

Wl =

Umin

Algorithm 2.1 is long time stable in the sense that
14312+ 1a) = 112 4 30300 AL VA T2 4 170 ALIVE] 722 + ah A V' ||* + ah At Vg~

< 1@ + 16517 + 28]V - 3|1 + 28IV - wF|* + 3050 AIVE [ + 17,00 AL VG || + @l At] V]|

N-1
At
+ ahAt|| Va3 | + —( 3 S AP A+ 2eA8 (P31 + 2eA82||p3 || (3.2)
Vmaz n=3

Proof. Assuming homogeneous Dirichlet boundary condition, testing equation (2.5) with @} gives

(“?H T >+5 (17 -2 = |9 - P) + ——T gt ul @) + [ V)P
T — - U ull ul? ,u V2Vu;
2At 2At J J E(u?)—i—(s 3073 J
1 n n n— o n n—
+ (V] Vu , Vi) — §(pj’,V- (ujJrl + uj M)+ §h (||Vuj+1||2 — [|Vu} 12 (3.3)
= (f}"af).

Testing equation (2.6) with p} gives

A
— U P =l =H1%) + 5 ( FR LV ) =0, (3-4)

Multiplying (2.7) with 24} gives
2At (|q —"_1|2 |q 1‘2) (]2mﬂ,u]> + Mijb(ujaujvu]) bj (35)

Adding (3.3), (3.4) and (3.5) gives

B - I
(a7 =1 ) + 5 g IV uf P2 = IV - af 7H2) + o2 vag |2

2At 2At
n n— A n -
+ gh (Ve 12 = 193 =H12) + == (g 12 = ey 1)
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1 T n— n 1 s n n— n ~n
+5 T TV ) = S, Ve (u T e TY) = () a5) - (4 Vag, V). (3.6)

We then bound the right hand side of equation (3.6). By the Cauchy-Schwarz inequality, the
Young’s inequality, and (2a — b)? < 6a? + 3b%, we derive, for any 51 > 0,€; > 0,

(fiay) — (v Vu ,Vay)

< FN=lIVEH | + vas [VE VT (3.7)

V/ /

_ N 1 €1 - v, ~
< BiUminl|VEF|? + 4BITIIJZ“I\Q_l + %IIVU?H2 + %HW?II2
min

_ . 1 €1v) . . o
< ﬁlemHVu?HQ + wT”fJnH%l + %HVU?HQ Vmaz HV (2 n—1 u;t 2) ”2
main
< B VP + o £ 12 + e 2 4 b Vg2 + o g
= Somin TS AB1 Vim0 2 / €1 / 2¢1 '

Notice that the term Hf/%Vﬂ?HQ in the left hand side of (3.6) is bounded from below by Ty ||V} ||?,
so we need all the last three terms in (3.7) to be bounded by 7 ||Va?||?. To this end, we minimize
943 4+ 22 by taking €; = 3. Inequality (3.6) then reduces to

o (0 = 1) + o (1952 = 19 2) (0 = 8100 — ) |V
3 - 1

n ~n— ~N— ~N— o n n—
+ g%am (Ivay ) - va;=)? ) + g%az (Ivaz=> = va;=2)?) + Fh (Va2 = [ Vu; = H1?)
— (Hp = e 1||2)+ (i +p) 1,V~uj)—§(pj,V-(uj+1+uj ) (3.8)
ni|2
< IR
Once the parameter fluctuation condition is satisfied, Dpin — 3V, > 0. Setting 81 = % - %‘fi’:z >0,
we then have
1 3 1
(1 - Bl)ljmi’ﬂ - 3V';na:r = (5 + 3 2 IV/:::: )Vmin - Sy:nam = 5 (Dmin - 31/7/naa:) > 0. (39)

Inequality (3.8) is now reduced to

oxz (72 = 1) o (17 -2~ 19 - %) + s (195 — 95 )

¥ Vs (17372~ ||va7*2u2) + SR (v - v R)

S 2~ I ) + 5 05 Y ) - LV ()

< mnﬁn%l. (3.10)

We can rewritten the two pressure terms in (3.10) as
P+ Veu)) = (0], V- (uf T +u ) (3.11)
= [ V) = (0, Vo ) = (07 Vi ™) = (07 V)]
Summing up (3.10) from n = 3 to n = N — 1 and multiplying through by 2At gives

14" 17+ 1ay =17+ BIV - u |2+ BIV - 2 + Bupae At Va2 (3.12)
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+ Voo AL VY 72|17 + ah ALVl |* + ah At Vul) 1?4 eAt?||p) |12
2 N—1}2 N N—-1 N—-1 N
+ eAt Hpj I +At[(pj ,V'uj ) — (pj Vo )]

<GP+ 16512 + BIV - w3 |? + BIV - w1 + 305,00 AHVE | + 1,0, At V5|

N—-1
At .,
FORAHVAI + ohAUVE + o Zrs S 2+ A
maa: n=3

+ eAP||p3|1? + At[(p}, V- u3) = (pF, V- u)].

Now we further bound the following term by Cauchy-Schwarz inequality and Young’s inequality.

At|(p§-v,v.u§v—1)_(p;y—l’v.uj,V)| (3.13)
< At [[lp IV - UN*IH + ey Y -]

< At eAtp P+ o IV - uf TP edtpy TP+ IV -

4At 4At

_ 1 _
= eAt(llpg 1 + [ %) + (V- w3 12 + 1V - w1
If 3 > £, then (3.12) reduces to

|q§V|2+ 1 = 12+ 30,0 AHIVEY 2 4 1, 0 A VY 22
+ ahAt|Vul ||? 4+ ahAt]|Vul ~11? (3.14)
<g1* + g 1* + BIV - wj1* + BIV - uf|* + 3u;mm|\va2||2
N—

Z 17112

( Vmin — maz n=3

+ eAtQH]D?H2 + eAt2||p?||2 + At[(p?-, V- u?) - (p?7 V- uj)}

+ Upae AV [|? 4+ ahAt]| VU3 || + ahAt|Vu?||* +

Finally, by
At[(p},V-u3) — (3, V- ud)] < AP (103117 + I3 17) + BUIV - w3 + |V - u3[?) (3.15)
we have

) 12+ 1q) = 1 + 30, AL VAN 7?4+ 1,0, AL VEY 722 + ahAt|Vul | + ahAt]|ValY 12

(3.16)
<GP +1g5 1 + 281V - uf* + 28|V - w1 + 305,00 AHIVE + 10, AL VG| + ah AV |2
At N-1
+ ah At Vug]|* + A —— D12+ 2eA8 17 4 2682 312,
Vmax n=3

4. Implementation Algorithm. The equations (2.5) and (2.7) in the AC-SAV-CNLF scheme
are coupled systems of u"+1 and q"+1 hence we need a strategy to decouple u and ¢ so that the
implementation achieves de51red eﬂimency. In the following we describe implementation skills for the
AC-SAV-CNLF ensemble algorithm, following the decoupling strategy in [40,41]. After that, we also
state advantages of the AC-SAV-CNLF ensemble scheme from the aspect of numerical linear algebra.

A new scalar S;-H'l will be introduced to split the numerical solution u"+ into two parts yielding
two subproblems. Based on this splitting, one can formulate a separate equatlon for Sj’“l then.
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Let

1 q 1 sntl Lyntl
S;”r =— u;”r :u;”r —&—S;”r u}”. (4.1)

Substituting (4.1) into (2.5) and (2.7) and collecting the terms with S;L+17 we can derive an equation

~n+1, Sn+1

for 4 ;" collecting those terms without we then derive an equation for 11;-”1. Instead of solving

n+1

(2.5) and (2.7), we then solve the resultlng two subproblems to obtain 47" and 11;“'1 respectively:

AM — AT, 1 - ~ T AT
gapl = BATIV(V it = oV (Vi) — ahAdg T
N T, _ 1 e n— n—
= I} + gy = BACIV(V w4 SV - (V) ) — ahAug !
+ V- (V,Va}) — Vp}, in Q
a;”' g;”'l, on 99.

(AC-SAV-CNLF subproblem 1)

! - pAtLT 1V(V'“"*1)f%V-(DV&?“)fahAfL?H

QAt
= (" V), in Q (AC-SAV-CNLF subproblem 2)
J

ﬂ?“ =0, on 0L2.

Y

To derive an equation for S;ZH, we proceed as follows.

qn+1+q7 1

RPN e g+ = 2y/Bup) + 087 - g 4

n+1

Plugging this expression of ¢;'"" into (3.5) gives

1 n+1 1 n—1\2 U?Jrl_u;l ' ~n n+1 n n ~n n
2At(q )? - QAt(qJ )" — T oAr W - 5; /Q(uj~V)uj'ujdx+bj:0

L n n+1_n712_i n—1\2
:>2At(2\/E(“j)+5Sj 9 ) INAUER

An41 1 on+1 -1 +1 41
C(ETaspt o et
2At ’ 2 J 2
ﬁﬂ+1 + uﬂ—l ,ELT_H-I
_ S;“Hrl A(u? . V)u;‘ . ( J 5 J 4 S;l+1 ]2 )dw + b;} =0.

The equation for solving S?H then writes
ATFL(SEH)? 4 BRHLGnHl 4 ot = o, (AC-SAV-CNLF subproblem 3)

where

) vT_L+1 ,Lvtr_wrl ,&T_L+1
n+1l __ n J J n n J
Al At(E(uj)+5)<2At, : )/Q(uj.V)uj~2 d,



2At’ 2

antl + w1
- [ (g s,

~n+1 n—1 ~n+1 n—1
e I R N B H
J 2At ’ 2 7

vn+1l ~n+1 n—1 ~n—+1 n—1 vn+1
2 ’U/T-l U, —+ u. U, — U u.:
n+1 n n—1 J J J J J J
BT = ——\/E})+ ¢ — - ,

To compute S]’-l“, we only need to pick the root of above scalar quadratic equation that is close to 1.
Subproblem 1 and 2 can be solved in a very efficient way, as their fully discretized systems have
the same constant coefficient matrix shared by all realizations. Subproblem 3 can also be solved super

fast since it is a scalar quadratic equation. After obtaining ﬂ?“ "t and S;”’l, we then compute

Y
ol — gt 4 S;LHM’H. The pressure can be updated directly through (2.6).

u] J J

Remarks on Algebraic Linear Systems. For spatial discretization we resort to the finite
element method and denote the basis functions for u and p by {xj}jvzl and {x? };V:pl respectively. In
the fully discretized linear systems, the following matrices My, Dyy, Dyup, S(v), and N(u) will be

used, and their (k,l) entries are
Myt = /Q XX D = /Q (VXY X, Duwplu = /Q (X,

S = [ vVt Vi NGl = [ e

In the numerical experiment section, we will test efficiency of the AC-SAV-CNLF ensemble scheme
by comparing it with the one not using AC technique, namely the SAV-CNLF ensemble scheme. To
have a better understanding, below we write out then compare the matrices of algebraic linears system
discretized from above schemes, and the standard CNLF nonensemble scheme, for the realization of
sample j =1,---,J.

(1) AC-SAV-CNLF ensemble:

1 1% B
A covons = —M - —D
acsavens IAL uu+s(2 +04h)+ N

(2) SAV-CNLF ensemble:

s Muy +S(5 +ah) —1Dyup
Asavens = 1T .
1)) 0

uuUp

(3) CNLF nonensemble:

nonens

—5D7T., 0

Several advantages exist on the structure of the matrix Acsavens- When compared with Agavens,
the matrix Acsavens 18 not only in reduced size, but also symmetric and positive definite (SPD),
hence the conjugate gradient (CG) iterative linear solver is applicable. As compared with Ag{;ﬂgns,
the matrix A,csavens 1S constant, independent of the sample index j or time index n, thus we can
realize all J simulations concurrently by solving a single linear system with multiple right hand sides
corresponding to different samples. In contrast, the matrix Afﬂ)’ggns from the nonensemble scheme
varies with the sample index j and time index n, so we need to assemble a new matrix at each time
step for each sample, which is much more time consuming.
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Table 5.1: Numerical errors and convergence rates of the AC-SAV-CNLF ensemble algorithm (J = 10)
with T'=0.5,At = 0.1h, a =1, 8 =0.1, ¢ = 2.5, Vi, = 0.1.

E,10 E,10
2 Rate [pn — p|;3 Rate

1/8 2504 x 1073 — 2076 x107® — [ 2303x107% —  2.097 x 107% —
1/16 | 6.321 x 107* 1.99 5048 x 107* 2.04 | 5797 x 10~* 1.99 5133 x107* 2.03
1/32 | 1577 x 107% 2.00 1.263x 107* 2.00 | 1.447x 10~* 2.00 1.292 x 10=* 1.99
1/64 | 3.934x107° 2.00 3.027x107° 2.06 | 3.612x107° 2.00 3.088 x 10~° 2.06
1/128 | 9.835 x 1076 2.00 7.717x 1075 1.97 | 9.029x 1075 2.00 7.837 x 107¢ 1.98

At ‘ |up, — u|g’11 Rate |pp, —p|f§1 Rate ‘ lup, —u

The system associated with A ,csavens in the AC-SAV-CNLF ensemble scheme can be handeled
by the block CG method [23,43,46] or CG method with vectorization operation, preconditioned by
multigrid. In this way, we can achieve high computational efficiency by solving J solutions simuta-
neously, as we can remove redundance due to linear dependence of different realizations in advance.
As for the SAV-CNLF ensemble scheme, the block GMRES solver [6,13] with the least-squares com-
mutator preconditioner was claimed having good performance [33]. So this linear solver is used for
the SAV-CNLF ensemble scheme in the upcoming efficiency test.

5. Numerical Experiments.

5.1. Convergence test. In this section we use a Green-Taylor vortex solution [14] to validate
the convergence rate of the proposed algorithm. The exact solution is defined on a square domain

Q=(0,1)%
u = (—coszsiny,sinz cosy) T g(t),

p= —i[cos(?x) + cos(2y)]g(t)%.

Then the forcing term is given accordingly by
f(z,y,t) = [¢'(t) + 2vg(t)](— cos xsiny, sin x cos y) T,

with g(t) = e” cos(2t). A Dirichlet boundary condition is used and set to match the exact solution.
In our test, the ensemble of flows are computed based on the following viscosities:

Vj:Vmin(l—‘y-Gj), ]:17 ,J.

We compute J = 10 samples in this test with e; = 0.2(j —1)/J. The AC parameters are set as
a=1, =01, e=0.25/8 = 2.5.

Simulations are performed on successively refined meshs with h = 1/8,---,1/128. The final
simulation time is set to be T' = 0.5. Taking At = ch, the expected errors of numerical solutions on
w in H! semi-norm and p in L? norm are both O(h% + At?) = O(At?). In Table 5.1, 5.2, and 5.3, we
report the errors and convergence rates for the first and tenth samples with vy, = 0.1, Vi, = 0.01,
and Vy,qn, = 0.001, respectively. Specifically, in these tables, |uj — u\gf denotes the numerical error

for w; at final time in H ! semi-norm, and |p, — p LQ’J the numerical error for p; in L? norm. The
AC-SAV-CNLF ensemble scheme shows second-order convergence in time as expected.

5.2. Channel flow past a cylinder. We now consider a two-dimensional channel flow past
a cylinder, a classical benchmark problem introduced in Schéfer and Turek [47] and then widely
used [32,39] to observe the stability or effectiveness of certain numerical schemes of Navier-Stokes

9



Table 5.2: Numerical errors and convergence rates of the AC-SAV-CNLF ensemble algorithm (J = 10)
with T'=0.5,At = 0.1h, a =1, 8 =0.1, € = 2.5, V3, = 0.01.

E,10 E,10
o Rate [pn — p|;3 Rate

1/8 5609 x 1073 —  1.874x 1073 — | 5505%x 1073 — 1877 x 1073 —
1/16 | 1.577 x 1073 1.85 4.627x 107* 2.02 | 1.498 x 1073 1.88  4.643 x 107* 2.02
1/32 | 3994 x107* 1.98 1.218x107* 1.93 | 3.757x107% 2.00 1.224x107* 1.92
1/64 | 9.870 x 107° 2.02 2.746 x 107° 2.15 | 9.287 x 107° 2.02  2.750 x 10~° 2.15
1/128 | 2458 x 1075 2.01  6.845x 1076 2.00 | 2.316 x 107> 2.00 6.845 x 107% 2.00

At ‘ |up, — u|f1’11 Rate |pp, —p|f2’1 Rate ‘ lup, —u

Table 5.3: Numerical errors and convergence rates of the AC-SAV-CNLF ensemble algorithm (J = 10)
with T = 0.5, At = 0.01h, a = 1, 8 = 0.1, € = 2.5, Umin = 0.001.

E,10

At ‘ lup, — u|f1’11 Rate |pn —p|f§1 Rate ‘ |up — ul Rate |pp—p 52’10 Rate
1/8 4.530 x 1073 —— 3.212x 1074 — 4.317 x 1073 3213 x 1074 ——

1/16 | 1.192 x 1072 1.93  7.235x107° 2.15 | 1.070 x 1073 2.01 7.245x 107> 2.15
1/32 | 2168 x 107% 246 1.947x107° 1.89 | 1.920 x 10=* 248 1.947 x 107° 1.90
1/64 | 3.777 x 107° 252 4.716 x 1076 2.05 | 3.407 x 1075 249 4.714x107% 2.05
1/128 | 7.596 x 10=¢ 231  1.220x 1075 1.96 | 7.021 x 10=¢ 2.28 1.216 x 1075 1.96

equations. Our purpose here is to illustrate that the AC-SAV-CNLF scheme produces reasonable
simulations even with large time steps if appropriate stabilization and AC parameters are chosen.

The flow pasts through a 2.2 x 0.41 rectangular channel blocked by an internal cylinder of radius
0.05 centered at (0.2,0.2). Its inflow and outflow boundary conditions are set as

6 .
’U,l(o, y) = u1(227y) = 0.412 Sln(ﬂ-t/S)y(Oéll - y)7

u2(0,y) = u2(2.2,y) = 0.

No-slip boundary conditions are imposed on the other parts, including the top and bottom of the
channel, the boundary of cylinder. The initial condition and body force are set to be zero. When
setting v = 1073, the problem features a laminar flow with Reynolds number Re = 100; a Karmén
vortex street will be developed behind the cylinder.

Simulations are performed with At = 0.01,0.005,0.001, while the stabilization and AC parameters
are set as « = 1,8 = 0.1, = 0.25/8 = 2.5. All simulations have a common spatial resolution with
maximum 0.0147, and the Taylor-Hood elements hold 63920 (16155 resp.) degrees of freedom for the
velocity (pressure resp.). The time histories of simulated energy and S7 are plotted in Figure 5.1.
One can observe that S7' does converge to one when the simulation is performed using relatively large
time steps. Specifically, a large At = 0.01 is good enough for stable and reliable simulations.

Figure 5.2 plots the velocity fields and magnitudes of the flow at ¢ = 4,5,7, 8, simulated by the
AC-SAV-CNLF method with At = 0.01. Figure 5.3 is produced with At = 0.001. In both figures, the
simulation results are satisfactory: the AC-SAV-CNLF method is stable and the flow patterns match
with those in [32,36].

5.3. 2D and 3D efficiency tests.

2D performance. Here we resort to the analytic solution in Section 5.1 for the purpose of testing
the AC efficiency and ensemble efficiency of the AC-SAV-CNLF ensemble scheme. The viscosities v;
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Fig. 5.1: Flow past cylinder: evolution of energy and S7 computed by the AC-SAV-CNLF scheme
with v = 1073, hypas = 0.0147, T =8,J =1 = j.

are set as
Vi = Z/min(l—i—ej)’ €; 202(] — 1)/J, j: 1, ’J’

the numerical resolutions are fixed as h = At = 0.01, and the final time is taken at 7' = 0.5.

To begin with, the performance of AC-SAV-CNLF and SAV-CNLF schemes on simulating a single
flow, i.e. J = 1, is compared to observe the advantage of AC technique. Extensive testing is carried out
with different v,,;, values: vy, = 0.1,0.01,0.001. In this efficiency test, we use the block CG linear
solver preconditioned by multi-grid for the AC-SAV-CNLF method. As for the SAV-CNLF scheme,
the block GMRES linear solver with the least-squares commutator preconditioner is employed. The
efficiency is studied in MATLAB with our finite-element code based on the data structure of iFEM
package.

The execution times and numerical errors computed by the two schemes are reported in Table
5.4, where |E[uj, — u]| g1 denotes the expection of error in H' semi-norm. We have set a = 1 in both
methods. To obtain comparable accuracy, we adjust the values of AC parameters 8 and € in AC-SAV-
CNLF. In particular, we take 8 = 0.5, = 0.25/8 for the cases Vi, = 0.1 and vy, = 0.01, whereas
B =0.06,e = 0.25/0 for the case Vi, = 0.001. One can see from Table 5.4 that the AC-SAV-CNLF
scheme outperforms SAV-CNLF since its execution consumes much less CPU time while providing
similar accuracy. This is a consequence of using AC technique for splitting the velocity and pressure.
We also mention the reason why the reported CPU time for SAV-CNLF is less as vy,;, decreases: the
least-squares commutator preconditioner is more efficient for smaller viscosity, as illustrated in Table
1 of [33].

Table 5.4: Numerical errors and CPU times evaluated with T'= 0.5,h = At = 0.01,J = 1.

| AC-SAV-CNLF | SAV-CNLF
Umin ‘ |[E[un, — u]|g1 Exe time ‘ |[E[un, — u]|g1 Exe time
0.1 1.50 x 10~* 157s | 1.18 x 107* 786 s
0.01 2.37 x 107* 2225 | 2.29x 1074 425 s
0.001 | 9.20 x 10~* 147s | 9.20x 107* 363 s

We then study the ensemble efficiency by simulating with different J values: J = 1,10, 100. Figure
5.4 plots the CPU times of performing the AC-SAV-CNLF ensemble algorithm with respect to the
sample size J. There, the red line of dashes serves as a reference to linear increase of execution time
with respect to J. From this figure we can observe that the advantage of the AC-SAV-CNLF ensemble
algorithm is apparent; when the sample size J is kind of large, the execution time is significantly
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Fig. 5.2: Flow past cylinder: velocity fields and magnitudes at ¢ = 4,5,7,8, computed by the AC-
SAV-CNLF scheme with At = 0.01.
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Fig. 5.3: Flow past cylinder: velocity fields and magnitudes at ¢ = 4,5,7,8, computed by the AC-
SAV-CNLF scheme with At = 0.001.
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Fig. 5.4: 2D efficiency test: execution times of simulations with J = 1,10, 100, and fixed T = 0.5,
h = At = 1/100. The red line in dash refers to linear increase of CPU time with respect to the number

J of samples.

reduced as compared to that of individual simulations for J flows. This thanks to the fact that all
realizations in the ensemble method share a common constant operator in the left hand side, hence
all the J simulations can be realized simutaneously.

3D performance. In this subsection, we observe the three-dimensional computational efficiency
by simulating the Arnold-Beltrami-Childress flow introduced by Arnold [2] and Childress [7], which

has been widely studied in the literature.
The Navier-Stokes flow is prescibed by an analytical solution

uy = (sinz + cosy)e "?,
uy = (sinx + cos z)e ",
u3 = (siny + cosx)e” V",
p = —(cosxsiny + sinx cos z + sin z cos y)e 2**.

For ensemble efficiency check, the number J of realizations will vary from 1 to 100. The viscosities v;

are set as

Vj

with €; being a random variable uniformly distributed in [0,0.2]. The numerical resolutions have fixed

values h = 1/16, At = 0.01. The stabilization parameter « is set as a = 0 for v, = 0.1, and o = 0.1
for smaller v, = 0.01 or 0.001. To make a fair comparison with SAV-CNLF [34], the least-squares

:Vmin(1+€,j)7 .7: 17 5J7

commutator preconditioner therein is solved by a multigrid V cycle.

Table 5.5 reports the execution times and expection of numerical errors |Eup — u]|g: at final
time T' = 5 in H' semi-norm computed by the AC-SAV-CNLF and SAV-CNLF schemes. A single
realization, i.e. J = 1, is considered there. We have taken 8 = 0.01,e = 0.25/3 in AC-SAV-CNLF,
ensuring accuracy comparable to those by SAV-CNLF. Table 5.5 shows that the AC-SAV-CNLF
scheme outperforms SAV-CNLF since its execution consumes much less CPU time while maintaining
comparable accuracy, which is similar to the observation in 2D efficiency test.
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Table 5.5: 3D Arnold-Beltrami-Childress flow: numerical errors and execution times computed with
T=5h=1/16,At = 0.01,J = 1. Below tcpy fixedmat denotes the execution time for assembling fixed

matrices, tepu sub1 and tepusubz denote the averaged CPU times for solving subproblem 1 and 2 in one
step respectively, tcpu 1step denotes the average CPU time for one time step.
| Vmin (SAV-CNLF scheme)

| ¥min (AC-SAV-CNLF scheme)

\ 0.1 0.01 0.001 | 0.1 0.01 0.001
tepu,fixedmat 56.4s 60.9s 59.8s 20.2s 20.4s 20.3s
tepu,subl 2.1s 1.7s 1.5s 8.2s 5.3s 4.6s
Lepu,sub2 3.3s 4.4s 5.8s 15s 12s 12s
Lepu,istep 31.8s 32.9s 34s 51.3s 43s 42.7s
Total CPU time 16044s 16968s 17797s 26202s 21611s 21422s

[Efwn — u]| 1 229x107* 143 x 107 6.88x107% | 1.89 x 107* 1.66 x 10™®  5.55 x 1073
x10° S 0 IS [0 :
/ i /
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Fig. 5.5: 3D Arnold-Beltrami-Childress flow: execution times of simulations with J = 1,10,100, and
fixed T = 0.5, h = 1/16, At = 0.01. The red line in dash refers to linear increase of execution time

with respect to the number J of samples.

We then study the ensemble efficiency by simulating with different J values: J = 1,10, 100.
Similar to the 2D case, the execution times of performing the AC-SAV-CNLF ensemble algorithm

with respect to the sample size J are plotted in Figure 5.5. From this figure, again we observe that

the advantage of the AC-SAV-CNLF ensemble algorithm is apparent. Its better efficiency is more
obvious when the sample size J is kind of large, since the execution time is significantly reduced
This

as compared with CPU times of individual realizations predicted by the reference red line.
validates that the AC-SAV-CNLF ensemble scheme has an efficient scaling performance for ensemble

computing.
5.4. Three-dimensional lid driven cavity flow. In this experiment, the three-dimensional

lid driven cavity flow that has been widely studied in literatures [1,52] will be simulated to illustrate

the performance of the AC-SAV-CNLF scheme presented. Specifically, the flow in a cubic cavity
Q = (-0.5,0.5)3 is driven by (uy,uz,u3z) = (0,1,0) on the plane x = —0.5. No-slip boundary
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Fig. 5.6: 3D lid driven cavity flow with Re = 400 simulated by the AC-SAV-CNLF scheme. Top:
streamlines and magnitude of velocity in 3D coordinates. Bottom: streamlines generated by velocities
projected on the z-y plane, x-z plane, and y-z plane respectively.

conditions are imposed on the other parts of the cavity boundary. The initial condition and body
force are set to be zero. Taking Reynolds number Re = % = 400 and Re = 1000 respecitively, we run
simulations until 7' = 40, while the discretization reslutions are h = 1/20, At = 0.02.

In the top of Figure 5.6, the streamlines and magnitude of velocity in 3D coordinates are illustrated
for the case Re = 400. Similarly, the top of Figure 5.7 plots simulations of the lid driven cavity flow
with Re = 1000. All the flows are simulated by the AC-SAV-CNLF scheme, and almost idential to
the solutions provided by the SAV-CNLF scheme (not illustrated here to keep the paper brief). In
the bottom of these figures, streamlines are generated by velocities projected on the z-y plane, z-z
plane, and y-z plane respectively.

6. Conclusions. We have presented an efficient, second order ensemble algorithm for numerically
solving the Navier-Stokes equations in a UQ setting. The algorithm is based on the CNLF ensemble
timestepping incorporating the AC technique and the recent SAV approach. It results in a constant
operator on the left hand side of the system, shared by all realizations of the flow corresponding to
different model parameters, so that efficient block linear solvers can be used to significantly improve
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Fig. 5.7: 3D lid driven cavity flow with Re = 1000 simulated by the AC-SAV-CNLF scheme. Top:
streamlines and magnitude of velocity in 3D coordinates. Bottom: streamlines generated by velocities
projected on the z-y plane, x-z plane, and y-z plane respectively.

computational efficiency. In particular, the AC approach splits the computation of velocity and
pressure resulting in smaller linear systems to be solved at each time step, and the pressure can be
updated efficiently with no need to solve a Poisson equation. We have proved the proposed algorithm
is long time stable without any timestep constraints. Ample numerical experiments were performed
for various flow problems to illustrate that our ensemble algorithm is highly efficient and competitively
accurate as compared with the pure SAV-CNLF scheme or individual realizations.
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