
162 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

SCALR: Communication-Efficient Secure
Multi-Party Logistic Regression

Xingyu Lu, Hasin Us Sami , Graduate Student Member, IEEE, and BaËsak Güler , Member, IEEE

AbstractÐ Privacy-preserving coded computing is a popular
framework for multiple data-owners to jointly train machine
learning models, with strong end-to-end information-theoretic
privacy guarantees for the local data. A major challenge against
the scalability of current approaches is their communication
overhead, which is quadratic in the number of users. Towards
addressing this challenge, we present SCALR, a communication-
efficient collaborative learning framework for training logistic
regression models. To do so, we introduce a novel coded com-
puting mechanism, by decoupling the communication-intensive
encoding operations from real-time training, and offloading the
former to a data-independent offline phase, where the commu-
nicated variables are independent from training data. As such,
the offline phase can be executed proactively during periods of
low network activity. Communication complexity of the data-
dependent (online) training operations is only linear in the
number of users, greatly reducing the quadratic state-of-the-
art. Our theoretical analysis presents the information-theoretic
privacy guarantees, and shows that SCALR achieves the same
performance guarantees as the state-of-the-art, in terms of
adversary resilience, robustness to user dropouts, and model
convergence. Through extensive experiments, we demonstrate up
to 80× reduction in online communication overhead, and 6×

speed-up in the wall-clock training time compared to the state-
of-the-art.

Index TermsÐ Privacy-preserving distributed learning,
information-theory, decentralized training.

I. INTRODUCTION

MACHINE learning has led to recent breakthroughs

in a variety of fields. In many modern applications,

the data is privacy-sensitive (such as healthcare records or

geolocation data), and distributed across a large number of

data-owners. Information and coding theory offers a promising

approach to the design of privacy-preserving machine learning

(PPML) frameworks, called privacy-preserving coded comput-

ing, as initiated by the recent works [1], [2], [3], [4], [5].

These approaches build on Lagrange coded computing (LCC),

a popular framework for function computation over data

Manuscript received 1 November 2022; revised 11 May 2023;
accepted 15 August 2023. Date of publication 28 August 2023; date of current
version 17 January 2024. This research was sponsored in part by the NSF
CAREER Award CCF-2144927, OUSD (R&E)/RT&L under Cooperative
Agreement Number W911NF-20-2-0267, and the UCR OASIS Funding
Award. The views and conclusions contained in this document are those of
the authors. The associate editor coordinating the review of this article and
approving it for publication was M. Ji. (Corresponding author: BaËsak Güler.)

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California at Riverside, Riverside, CA 92521 USA (e-mail:
xlu065@ucr.edu; hsami003@ucr.edu; bguler@ece.ucr.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2023.3308954.

Digital Object Identifier 10.1109/TCOMM.2023.3308954

distributed across multiple users [1]. LCC allows computing

any multi-variate polynomial function f(X1), . . . , f(XK) of

degree deg f on a dataset X = (X1, . . . ,XK), while provid-

ing strong information-theoretic privacy guarantees against T
adversarial users, and robustness against S dropout (or strag-

gling) users, as long as N ≥ (T +K−1) deg f+S+1. To do

so, the dataset X is first encoded by combining the K parts

X1, . . . ,XK along with T random matrices R1, . . . ,RT using

the well-known Lagrange interpolation polynomial. Then, each

user i ∈ [N] receives an encoded dataset X̃i, and computes

the function f(X̃i) over the encoded dataset. At the end,

the true function values f(X1), . . . , f(XN) can be decoded

by collecting the computations performed on the encoded

datasets, via polynomial interpolation.

In the context of PPML, adversarial users are parties who try

to gain information on the privacy-sensitive data of other users.

In this work, our focus is on the honest but curious adversary

model, as is the most common threat model in PPML [5].

Such adversaries follow the protocol truthfully, but try to gain

additional information on the private data of honest users using

the information exchanged during the protocol. In a network of

N users, we assume that up to T users are adversarial, who

may collude with each other. Dropout and straggling users,

on the other hand, are parties who fail to send their messages

successfully during training, due to various reasons such as

poor connectivity, low battery, or device unavailability. Out of

N users, it is assumed that up to S users may drop out at any

given training round.

Collaborative privacy-preserving machine learning

(COPML) is a recent application of LCC to logistic

regression (a binary classification framework widely-used

due to its practicality and interpretability). In this approach,

the dataset X corresponds to the combination of N local

datasets, each held by a different user. Then, COPML

encodes X by first partitioning it into K parts, and then

combining the K parts along with T random matrices

using a Lagrange interpolation polynomial. The additional

randomness protects the privacy of sensitive local datasets

against any collusions between up to T adversarial users,

such that no information (in an information-theoretic sense)

about the datasets are revealed beyond the final model. At the

end, user i learns an encoded dataset X̃i whose size is only

(1/K)
th

of the original dataset X. The training computations

are then performed on the encoded datasets, as if they were

computed on the original datasets. As the network size N
grows, one can select a larger K, reducing the training load

per user, speeding up training. At the end, the final model

0090-6778 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 163

is recovered using polynomial interpolation, by collecting

the local computations from a sufficient number of users,

as long as N ≥ (T + K − 1) deg f + S + 1. COPML

has shown significant (an order of magnitude) speed-up

in training compared to conventional cryptographic PPML

frameworks [5].

The major challenge of such privacy-preserving coded

machine learning approaches is the communication overhead.

This is due to the fact that the degree of the polynomial f(·)
doubles with every multiplication operation (associated with

gradient computations), which leads to an exponential increase

in the minimum number of users required for successful

decoding of the final model, since the number of users must

satisfy N ≥ (T +K−1) deg f +S+1. After several training

rounds, the degree deg f can grow to a level that the number

of users is no longer sufficient for correct decoding of the final

model. To prevent such a degree explosion, a communication-

intensive degree reduction step is carried out, to reduce the

polynomial degree after each training round. This process has

a communication complexity of O(N2) per training iteration,

creating a major bottleneck against scalability to large net-

works.

To address this challenge, in this work we pro-

pose SCALR, a Secure Communication-efficient Multi-party

Logistic Regression framework. The key intuition behind

SCALR is an online-offline communication trade-off for

Lagrange coding. Online communication depends on the local

datasets, hence should be carried out after training starts.

Offline communication is independent of the data and/or

the model, hence can be carried out in advance when the

network traffic is low, or paralellized with other components

of training. In doing so, SCALR introduces a novel encoding

and degree reduction strategy for Lagrange coding, which

achieves a highly-efficient (linear) online communication

overhead, as opposed to the quadratic online communica-

tion overhead of the state-of-the-art, while providing equal

adversary-resilience, robustness to user dropouts, and training

performance. Through extensive distributed experiments for

various image classification tasks, we observe that SCALR

reduces the online communication overhead by up to 80×,

and achieves 6× speed up in the wall-clock training time

compared to the state-of-the-art while achieving comparable

model accuracy. Our contributions can be summarized as

follows:

• We propose an online-offline communication trade-off for

Lagrange coding, where communication is decoupled into

data-dependent online and data-agnostic offline phases.

• We introduce SCALR, a communication-efficient logistic

regression framework with linear online communication

overhead, as opposed to the quadratic overhead of the

state-of-the-art.

• We present formal information-theoretic privacy guaran-

tees for SCALR, while achieving the adversary-resilience,

robustness to user dropouts, and model accuracy of the

state-of-the-art.

• Through extensive numerical experiments, we demon-

strate an order of magnitude reduction in the online

communication overhead compared to the state-of-the-art.

II. RELATED WORK

In addition to the coding-theoretic approaches, there are

three complementary approaches to PPML. Secure multi-party

computing (MPC) protocols are based on a cryptographic

primitive known as secret sharing, where parties inject ran-

domness to sensitive data, and computations are then per-

formed on the secret shared data [6], [7], [8], [9], [10], [11],

[12]. Secure MPC can provide information-theoretic privacy,

however, requires extensive communication and interaction

between the parties. As such, current constructions are limited

to 3-4 parties [13], [14], [15]. Recently, MPC has also been

utilized for gradient aggregation in federated learning, also

known as secure aggregation, where the aggregated gradi-

ent/model is revealed after each training round [16], [17], [18],

[19]. It has been shown, however, that the aggregated models

can still reveal private information over multiple training

rounds [20], [21]. In contrast, our focus is on end-to-end

training, where no intermediate model/gradient can be revealed

(even in aggregated form) beyond the final model.

Differential Privacy (DP) is a noisy release mechanism

that aims to protect the privacy of personally identifiable

information (PII) by injecting permanent noise (unlike MPC

or HE) to the computations, so that an adversary observing the

released model cannot backtrack whether a certain individual’s

information was used in the computations [22], [23], [24],

[25], [26], [27], [28]. Privacy in DP is quantified by the amount

of noise injected in the training computations; stronger privacy

requires higher noise, leading to a privacy-accuracy trade-off.

In contrast, our focus is on ensuring information-theoretic pri-

vacy throughout training, while preserving the accuracy of the

final model. Although beyond our current focus, we note that

the two can in principle be combined and benefit DP, as recent

works have shown that information-theoretic techniques can

boost DP accuracy [29].

Homomorphic encryption (HE) is a cryptographic frame-

work which allows computations to be performed on encrypted

data [30], [31]. The privacy guarantees of HE are based on

computational assumptions (adversaries have bounded com-

putational power), as opposed to information-theoretic privacy

(where adversaries may have unlimited computational power).

Computing in the encrypted domain is computationally-

intensive, and stronger privacy guarantees require a larger

encrypted data size, which limits scalability in larger networks.

As such, HE is primarily utilized for the inference task in

ML, as opposed to the more computationally-intensive training

(which is the focus of current work) [32], [33], [34], [35], [36],

[37].

III. SYSTEM MODEL

We consider a network of N users illustrated in Fig. 1,

where user i holds a local dataset Di consisting of |Di| data

points, represented by a |Di| × d matrix Xi, along with the

labels Yi ∈ {0, 1}
|Di|. The collection of all local datasets

D ≜ D1 ∪ . . . ∪ DN is represented by a |D| × d matrix

X ≜ (X
T

i , . . . ,X
T

N)
T

where the ith row xi holds the features

of data point i ∈ D, and d is the number of features. The

corresponding labels are represented by a vector y ∈ {0, 1}|D|,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

164 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

Fig. 1. System model. The collaborative learning architecture with N users.
User i ∈ [N] holds a dataset Di with labels Yi.

where the ith element yi ∈ {0, 1} denotes the label of data

point i ∈ |D|. The goal is to train a logistic regression model

w over X, by minimizing a cross entropy loss function:

F(w) =
1

|D|

|D|∑

i=1

(−yi log ŷi − (1− yi) log(1− ŷi)) (1)

where ŷi = g(xi × w) ∈ (0, 1) is the probability of label

i being equal to 1, and g(x) ≜ 1/(1 + e−x) is the sigmoid

function. The model is trained via gradient descent with a

learning rate η,

w(t+1) = w(t) −
η

|D|
XT (g(X×w(t))− y) (2)

where ∇F(w) ≜ 1
|D|X

T (g(X×w)−y) is the gradient, w(t)

is the state of the model at training iteration t, and function

g(·) is applied element-wise over X×w(t). At each training

round, up to S users may drop out from the system (e.g., due

to poor channel quality, low battery etc).

A. Threat Model

We consider an honest-but curious adversary model (most

common threat model in PPML [2], [3], [4], [5]), where

adversaries follow the protocol, but try to reveal the datasets

of honest users using the messages exchanged during training.

From N users, up to T are adversarial (who may collude with

each other) denoted by a set T . Honest users are denoted by

a set H = [N]\T .

B. Information-Theoretic Privacy

Our goal is to ensure that adversaries learn no information

about the local datasets of honest users, beyond the final

model. Formally, for all T such that |T | ≤ T , and J being

the total the number of training rounds, this condition can be

stated as,

I({Di,Yi}i∈[N]\T ;MT |{Di,Yi}i∈T ,w
(J)) = 0 (3)

where I denotes the mutual information, and MT is the

collection of all messages received by adversaries. Similar

to [2], [4], [5], and [3], our framework is bound to finite field

operations, which requires the representation of datasets in a

finite field. As such, in the sequel, we assume that all datasets

are represented in a finite field Fq of integers modulo a large

prime q, and all operations are carried out in Fq. For space

considerations, we refer to [2], [4], [5], and [3] for the details

of this mapping.

C. Background and Challenges

In order to solve (1) under the constraint (3), the state-of-

the-art is the COPML framework from [5]. In this setup, user

i ∈ [N] first secret shares its local dataset Xi ∈ F
D×d
q using

Shamir’s T -out-of-N secret sharing (detailed in Appendix A),

by sending a secret share [Xi]j ∈ F
D×d
q to each user j ∈

[N] where D = |Di| for i ∈ [N]. This has a (quadratic)

total communication overhead of O(N2Dd) across the N
users. Then, Lagrange encoding is performed using the secret

shares. To do so, user i ∈ [N] concatenates the received

shares {[Xj]i}j∈[N], partitions it into K equal-sized shards

{[Xk]i}k∈[K], forms a Lagrange interpolation polynomial of

degree K + T − 1,

[φ(z)]i ≜
∑

k∈[K]

[Xk]i
∏

l∈[K+T]\{k}

z − βl

βk − βl

+
K+T∑

l=K+1

[Vk]i
∏

l∈[K+T]\{k}

z − βl

βk − βl

(4)

where [φ(βk)]i = [Xk]i for k ∈ [K] and i ∈ [N], and sends

an evaluation [X̃j]i ≜ [φ(αj)]i to user j ∈ [N]. Here, [Vk]i

denotes the secret share of a random matrix Vk ∈ F
D
K

×d
q

for k ∈ [T] generated by a crypto-service provider [5].

Upon receiving {[X̃i]j}j∈[N], client i ∈ [N] recovers its

encoded matrix X̃i through polynomial interpolation. The

total communication overhead of this stage across the N
users is O(N2

K
Dd). The model w(t) is encoded similarly;

at each round t ∈ [J], user i learns an encoded model

w̃
(t)
i . The encoded dataset X̃i and model w̃

(t)
i correspond to

evaluation points of the following degree K+T −1 Lagrange

polynomials,

φ(z) =
∑

k∈[K]

Xk

∏

l∈[K+T]\{k}

z − βl

βk − βl

+
K+T∑

l=K+1

Vk

∏

l∈[K+T]\{k}

z − βl

βk − βl

(5)

ψ(t)(z) ≜
∑

k∈[K]

w(t)
∏

l∈[K+T]\{k}

z − βl

βk − βl

+
K+T∑

k=K+1

v
(t)
k

∏

l∈[K+T]\{k}

z − βl

βk − βl

(6)

where X̃i = φ(αi) and w̃
(t)
i = ψ(t)(αi), respectively, and

{Vk,v
(t)
k }k∈{K+1,...,K+T} are random masks that hide the

true dataset (X1, . . . ,XK) and model w(t) against up to T
adversaries.

D. Degree Explosion

Using the encoded dataset and model, user i ∈ [N]
computes a local gradient f(X̃i, w̃

(t)), which is then used

to update the model. After multiple training rounds, the

final model w
(J)
i is decoded via polynomial interpolation,

by collecting the computations from at least deg(f)+1 users.

On the other hand, the degree deg f grows exponentially over

the iterations, leading to a degree-explosion after multiple

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 165

rounds, preventing correct recovery of the final model. We next

demonstrate degree explosion with an illustrative example. The

gradient f(X̃i, w̃
(0)) ≜ X̃T

i ĝ(X̃i× w̃
(0)
i) computed by user i

at round t = 0 corresponds to a degree (2r + 1)(K + T − 1)
polynomial, where ĝ(·) is a degree r polynomial approxi-

mation of the sigmoid function (as detailed in Section IV).

Then, from (2), the encoded model w̃(1) at round t = 1 will

have degree (2r + 1)(K + T − 1), and the corresponding

gradient f(X̃i, w̃
(1)) ≜ X̃T

i ĝ(X̃i × w̃
(1)
i) will have degree

(K + T − 1) + r((K + T − 1) + (2r + 1)(K + T − 1)) =
(2r2 +2r+1)(K+T −1). After J training rounds, the degree

will grow to deg(f) = (2rJ +2rJ−1+. . .+2r+1)(K+T−1),
requiring the local computations from at least deg(f)+1 users

to decode the final model. As the number of iterations grow,

the total number of users will no longer be sufficient to decode

the model. This necessitates a communication-intensive degree

reduction step (described in Appendix A) after each training

round, where user i ∈ [N] secret shares its local gradient

X̃T
i ĝ(X̃i × w̃

(t)
i) ∈ F

d×1
q using Shamir’s T -out-of-N secret

sharing, by sending a secret share [X̃T
i ĝ(X̃i × w̃

(t)
i)]j to

each user j ∈ [N]. This incurs a quadratic O(N2d) total

communication overhead (across N users) per round. Unlike

dataset encoding, the degree reduction operation is repeated

at each training round, hence the overhead increases as the

number of training rounds increase. The data-reliant nature

of this communication requires online communication during

training, leading to limited scalability in low-bandwidth envi-

ronments.

E. Main Problem

In this work, our goal is to address this challenge. In partic-

ular, we seek to develop an efficient framework that decouples

the communication-intensive operations from real-time train-

ing. To this end, we separate the overall communication into

two phases:

1) Online phase depends on the training data, hence can

only take place after training starts. For fast training, it is crit-

ical to have a highly efficient online communication protocol.

2) Offline phase is independent from the training data,

such as randomness generation. Hence, offline phase can take

place way in advance before training starts, when the network

traffic is low, or can be parallelized with other components of

training, such as gradient computations.

Our goal is to develop a PPML framework with highly effi-

cient online communication, whose overhead is no greater than

O(N) (linear in the number of users), along with an offline

communication component whose overhead is no greater than

O(N2). We ask the following:

• How can we solve (1) under the information-theoretic

guarantees from (3), with linear online communication

complexity?

To address this challenge, in this work we introduce

SCALR, a communication-efficient logistic regression frame-

work with linear online communication overhead. The key

contribution is a novel encoding and degree reduction strategy

with a linear online communication overhead of O(N) (broad-

cast), as opposed to the former O(N2) (point-to-point) online

TABLE I

ONLINE COMMUNICATION OVERHEAD OF SCALR WITH RESPECT TO

COPML, WITH |Di| = D FOR ALL i ∈ [N]

overhead of the state-of-the-art. To do so, SCALR decouples

the communication-intensive operations for coding and model

updating, and offloads them to a data-agnostic offline phase,

which can be performed in advance during low network traffic.

We next describe the details of SCALR.

IV. THE SCALR FRAMEWORK

SCALR consists of five main components shown in Table I,

where the online communication overhead of each component

is compared with respect to COPML [5]. The offline phases

do not depend on online/offline phases from previous stages,

hence can be fully carried out in advance and in parallel,

independently from other components. As such, user dropouts

are assumed to occur only during the online phase, and after

the dataset encoding and label secret sharing stages. For the

latter, if any users drop out during dataset encoding/label

secret sharing, training can proceed by removing such dropout

users from the protocol. We next describe the details of each

component. Table II provides the list of notations used in the

sequel.

Stage 1: Dataset Encoding. The first stage of SCALR is

Lagrange encoding of the datasets, which enables the training

computations to be handled efficiently, while hiding the con-

tents of the local datasets. The encoding process consists of

the following online and offline phases.

(Offline): Initially, users agree on N+K+T distinct public

parameters {αj}j∈[N] and {βj}j∈[K+T] from Fq. User i ∈ [N]

then generates K + T random matrices Rik ∈ F

|Di|

K
×d

q for

k ∈ [K], Vik ∈ F

|Di|

K
×d

q for k ∈ {K + 1, . . . ,K + T}, and

forms a Lagrange polynomial of degree K + T − 1:

φi(z) =
∑

k∈[K]

Rik

∏

l∈[K+T]\{k}

z − βl

βk − βl

+
K+T∑

k=K+1

Vik

∏

l∈[K+T]\{k}

z − βl

βk − βl

(7)

where the additional randomness {Vik}k∈{K+1,...,K+T} is

to hide the true contents of {Rik}k∈[K] against up to T
adversaries, and sends to each user j ∈ [N] an encoded

random matrix,

R̃ij ≜ φi(αj). (8)

The key intuition behind (7) is to perform Lagrange coding on

the random matrices, which can be handled offline, as opposed

to directly on the data (which should be handled online during

training). The Lagrange coded random matrices {R̃ji}j∈[N]

will later be used to construct a Lagrange coded dataset

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

166 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

TABLE II

LIST OF NOTATIONS AND DEFINITIONS

X̃i at each user i ∈ [N] as in (5), but with a linear

communication overhead. This allows us to decouple the

communication-intensive encoding operations from real-time

training, by moving the quadratic communication overhead to

the offline phase.

(Online): In the online phase, each user i ∈ [N] partitions

its local dataset Di into K submatrices (Xi1, . . . ,XiK) each

of size
|Di|
K
× d, and broadcasts,

X̂ik = Xik −Rik ∀k ∈ [K]. (9)

After receiving {X̂1k, . . . , X̂Nk}k∈[K], user i generates an

encoded dataset:

X̃i ≜
∑

k∈[K]

[
X̂T

1k · · · X̂
T
Nk

]T ∏

l∈[K+T]\{k}

αi − βl

βk − βl

+
[
R̃T

1i · · · R̃
T
Ni

]T

(10)

=
∑

k∈[K]

Xk

∏

l∈[K+T]\{k}

αi − βl

βk − βl

+
K+T∑

k=K+1

Vk

∏

l∈[K+T]\{k}

αi − βl

βk − βl

(11)

where {R̃ji}j∈[N] are defined in (8). The key intuition behind

(10) is to simultaneously cancel the additive randomness

{Rjk}j∈[N],k∈[K], and form a Lagrange polynomial to encode

the datasets,

φ(z) ≜
∑

k∈[K]

Xk

∏

l∈[K+T]\{k}

z − βl

βk − βl

+
K+T∑

k=K+1

Vk

∏

l∈[K+T]\{k}

z − βl

βk − βl

(12)

where Xk ≜
[
XT

1k · · · X
T
Nk

]T
and Vk ≜

[
VT

1k · · · V
T
Nk

]T
,

such that φ(βk) = Xk for all k ∈ [K]. The encoded dataset at

user i ∈ [N] then corresponds to X̃i = φ(αi). The additional

randomness {Vk}k∈{K+1,...,K+T} hides the contents of the

datasets against up to T adversaries.

Stage 2: Label Secret Sharing. In order to update

the model as in (2), users also need to compute XT y =∑
i∈[N]

∑
l∈Di

xT
l yl. In doing so, the computation should not

reveal the true content of the labels. In SCALR, this is handled

by the following offline and online phases.

(Offline): User i ∈ [N] generates a random vector ai ∈
F

d×1
q , and secret shares it with other users, using Shamir’s

T -out-of-N secret sharing (details of Shamir’s secret sharing

is available in Appendix A). The secret share sent from user

i to user j is denoted by [ai]j ∈ F
d×1
q .

(Online): User i ∈ [N] locally computes
∑

l∈Di
xT

l yl, and

broadcasts,

âi ≜

(∑

l∈Di

xT
l yl

)
− ai. (13)

After receiving {âj}j∈[N], user i ∈ [N] can compute a secret

share of XT y as follows:

[XT y]i ≜
∑

j∈[N]

(âj + [aj]i)

=
∑

j∈[N]

((∑

l∈Dj

xT
l yl

)
− aj + [aj]i

)

=
[∑

j∈[N]

∑

l∈Dj

xT
l yl

]

i
(14)

since summing the shares of multiple variables leads to a secret

share of the sum (Appendix A).

Stage 3: Model Initialization. The model at time t =
0 (i.e., w(0)) is initialized randomly within Fq. In doing so,

to preserve the privacy of intermediate computations, its true

value should not be revealed to any user. To do so, each user

i ∈ [N] generates a random vector w
(0)
i ∈ F

d
q , and secret

shares it using Shamir’s T -out-of-N secret sharing, where the

secret share sent from user i to user j is denoted by [w
(0)
i]j .

After receiving {[w
(0)
j]i}j∈[N] user i ∈ [N] computes,

[w(0)]i ≜
∑

j∈[N]

[w
(0)
j]i = [

∑

j∈[N]

w
(0)
j]i (15)

where w(0) =
∑

i∈[N] w
(0)
i denotes the initialized model at

round t = 0. At the end of (15), user i obtains a secret share

[w(0)]i of the initial model w(0) =
∑

i∈[N] w
(0)
i , but the real

value of w
(0)
i cannot be recovered by any group of up to T

users. This stage can be fully carried out offline.

Stage 4: Model Encoding. At each training round, users

encode the current state of the model w(t), to preserve its

privacy and enable gradient computations to be performed on

encoded data. At the beginning of each round t, user i holds a

secret share [w(t)]i of w(t). Initially, at round t = 0, [w(0)]i is

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 167

generated as in (15). For all other rounds (i.e., t > 0), [w(t)]i
is obtained at the end of the model update in (33), which will

be described later. Using the secret shares [w(t)]i, the model

w(t) is encoded as we describe next, where user i learns an

encoded model w̃
(t)
i .

(Offline): User i ∈ [N] generates T + 1 random vectors

r
(t)
i ∈ F

d×1
q and v

(t)
ik ∈ F

d×1
q for k ∈ {K + 1, . . . ,K +

T}, and then secret shares r
(t)
i using Shamir’s T -out-of-N

secret sharing. The secret share sent from user i to user j is

denoted by [r
(t)
i]j . In addition, user i ∈ [N] encodes r

(t)
i by

constructing a Lagrange polynomial of degree K + T − 1,

ψ
(t)
i (z) ≜

∑

k∈[K]

r
(t)
i

∏

l∈[K+T]\{k}

z − βl

βk − βl

+
K+T∑

k=K+1

v
(t)
ik

∏

l∈[K+T]\{k}

z − βl

βk − βl

(16)

where v
(t)
ik ∈ F

d
q are generated uniformly at random, and sends

an encoded vector,

r̃
(t)
ij ≜ ψ

(t)
i (αj) (17)

to each user j ∈ [N]. After receiving {r̃ji}j∈[N], user i
aggregates them,

r̃
(t)
i =

∑

j∈[N]

r̃
(t)
ji =

∑

k∈[K]

r(t)
∏

l∈[K+T]\{k}

αi − βl

βk − βl

+
K+T∑

k=K+1

v
(t)
k

∏

l∈[K+T]\{k}

αi − βl

βk − βl

(18)

where r(t) ≜
∑

j∈[N] r
(t)
j and v

(t)
k ≜

∑
j∈[N] v

(t)
jk . Finally,

user i aggregates the secret shares {[r
(t)
j]i}j∈[N] received from

users j ∈ [N], to generate a secret share of r(t) as follows,
∑

j∈[N]

[r
(t)
j]i = [

∑

j∈[N]

r
(t)
j]i = [r(t)]i (19)

(Online): In this phase, user i broadcasts a secret share

[ŵ(t)]i of ŵ(t) ≜ w(t) − r(t), defined as,

[ŵ(t)]i ≜ [w(t)]i − [r(t)]i = [w(t) − r(t)]i (20)

where the last equality follows from the additivity property

of Shamir’s secret sharing from Appendix A, i.e., summing

the shares of two secrets leads to a secret share of their sum.

Specifically, by denoting the two secret shares as [w(t)]i =
w(t) +

∑
l∈[T] α

l
inl and [r(t)]i = r(t) +

∑
l∈[T] α

l
in

′
l, where

nl ∈ F
d
q and n′

l ∈ F
d
q are uniformly random vectors,

we observe that,

[w(t)]i − [r(t)]i = (w(t) − r(t))

+
∑

l∈[T]

αl
i(nl − n′

l) = [w(t) − r(t)]i (21)

is a share of the secret w(t)−r(t), where the secret is hidden by

T uniformly random masks nl − n′
l for l ∈ [T]. Accordingly,

by broadcasting [ŵ(t)]i = [w(t)]i − [r(t)]i, user i broadcasts

a secret share of w(t) − r(t). Let U1 ⊆ [N] denote the set of

surviving users at this stage. After receiving [ŵ(t)]i from any

set U1 of |U1| ≥ T + 1 users, each user can decode:

ŵ(t) = w(t) − r(t). (22)

via polynomial interpolation, where the true model w(t) is

hidden by the random vector r(t). Finally, each user i ∈ [N]
constructs an encoded model:

w̃
(t)
i ≜

∑

k∈[K]

ŵ(t)
∏

l∈[K+T]\{k}

αi − βl

βk − βl

+ r̃
(t)
i (23)

=
∑

k∈[K]

w(t)
∏

l∈[K+T]\{k}

αi − βl

βk − βl

+
K+T∑

k=K+1

v
(t)
k

∏

l∈[K+T]\{k}

αi − βl

βk − βl

(24)

where the T random vectors {v
(t)
k }k∈{K+1,...,K+T} hide the

contents of w(t) against up to T adversaries. Intuitively, (24)

embeds the model w(t) in a Lagrange polynomial of degree

K + T − 1,

ψ(t)(z) ≜
∑

k∈[K]

w(t)
∏

l∈[K+T]\{k}

z − βl

βk − βl

+
K+T∑

k=K+1

v
(t)
k

∏

l∈[K+T]\{k}

z − βl

βk − βl

(25)

and at the end user i obtains an encoded model w̃
(t)
i =

ψ(t)(αi).
Stage 5: Gradient Computing and Model Update. The

last component of SCALR is to compute the gradients and

update the model. As detailed in Section III, Lagrange coding

is bound to polynomial computations. On the other hand, the

sigmoid function from (1) is not a polynomial, hence is often

approximated using a polynomial function ĝ(x) =
∑r

i=0 θix
i,

where coefficients {θi}i∈[r] are public parameters fitted via

least squares [5]. The degree r quantifies the accuracy of

approximation [38]. Given ĝ(·), the model update from (2)

can be rewritten as:

w(t+1) = w(t) −
η

|D|
XT (ĝ(X×w(t))− y). (26)

Then, gradient computing and model updates consist of the

following online and offline phases.

(Offline): User i ∈ [N] generates a uniformly random vector

u
(t)
i ∈ F

d
q , and secret shares it via Shamir’s T -out-of-N secret

sharing, where the secret share sent to user j is denoted by

[u
(t)
i]j .

(Online): In the online phase, user i ∈ [N] locally computes

a gradient,

f(X̃i, w̃
(t)
i) ≜ X̃T

i ĝ(X̃i × w̃
(t)
i) (27)

using the coded dataset X̃i and model w̃
(t)
i , and broadcasts,

û
(t)
i ≜ f(X̃i, w̃

(t)
i)− u

(t)
i = X̃T

i ĝ(X̃i × w̃
(t)
i)− u

(t)
i (28)

where the true content of X̃T
i ĝ(X̃i × w̃

(t)
i) is hidden by the

random vector u
(t)
i . Next, users decode the gradients and

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

168 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

Algorithm 1 SCALR - Offline Phase

Input: Number of users N , polynomial coefficients

(α1, . . . , αN), (β1, . . . , βK).
Output: Random vectors {R̃ij , [ai]j}i,j∈[N],

{r̃
(t)
i , [rt]i, [u

(t)
i]j}i∈[N],t∈{0,...,J−1}, and

{[w(0)]i}i∈[N].

1 for user i = 1, . . . , N do

2 Encode random matrices

{Rik}k∈[K],{Vik}k∈{K+1,...,K+T} from (7), send the

encoded matrix R̃ij to user j∈ [N].
3 for user i = 1, . . . , N do

4 Generate a random vector ai from Fq, send a secret

share [ai]j to user j ∈ [N].
5 for user i = 1, . . . , N do

6 Generate a random vector w
(0)
i from Fq, send a

secret share [w
(0)
i]j to user j ∈ [N]

7 for user i = 1, . . . , N do

8 Initialize the model [w(0)]i =
∑

j∈[N][w
(0)
j]i as given

in (15).
9 for iteration t = 0, . . . , J − 1 do

10 for user i = 1, . . . , N do

11 Encode the random vectors {r
(t)
ik }k∈[K],

{v
(t)
ik }k∈{K+1,...,K+T} from (17).

12 for j = 1, . . . , N do

13 Send the encoded vector r̃
(t)
ij and secret share

[r
(t)
i]j to user j.

14 for user i = 1, . . . , N do

15 Aggregate the coded vectors r̃
(t)
i =

∑
j∈[N] r̃

(t)
ji

and secret shares [r(t)]i =
∑

j∈[N][r
(t)
j]i as in

(18), (19).
16 for user i = 1, . . . , N do

17 Generate a random vector u
(t)
i from Fq, and send

a secret share [u
(t)
i]j to user j ∈ [N].

update the model, but without learning their true content. This

is achieved by polynomial interpolation, where we define a

polynomial h(t)(z) = f(φ(z), ψ(t)(z)) such that,

h(t)(αi) = f(φ(αi), ψ
(t)(αi))

= f(X̃i, w̃
(t)
i) = X̃T

i ĝ(X̃i × w̃(t)) (29)

h(t)(βk) = f(φ(βk), ψ(t)(βk))

= f(Xk,w
(t)) = XT

k ĝ(Xk ×w(t)) for k ∈ [K]
(30)

Let U2 ⊆ U1 ⊆ [N] denote the set of surviving users at this

stage. Then, after receiving û
(t)
j from any set of users j ∈

U2 of size at least |U2| ≥ deg(h) + 1 = (2r + 1)(K + T −
1) + 1, user i can compute a secret share of f(Xk,w

(t)) =
XT

k ĝ(Xk ×w(t)) as follows,

[f(Xk,w
(t))]i ≜

∑

j∈I

(û
(t)
j + [u

(t)
j]i)

∏

l∈I\{j}

βk− αl

αj− αl

∀k ∈ [K],

(31)

Algorithm 2 SCALR - Online Phase

Input: Dataset (D,y) = ((D1,y1), . . . , (DN ,yN))
distributed across N users.

Output: Model parameters w(J) after J training rounds.

1 for user i = 1, . . . , N do

2 Partition Di into K shards (Xi1, . . . ,XiK), broadcast

the masked dataset X̂ik = Xik −Rik for k ∈ [K].
3 for user i = 1, . . . , N do

4 Generate the coded dataset X̃i as given in (10).

5 for user i = 1, . . . , N do

6 Broadcast
(∑

l∈Di
xT

l yl

)
− ai.

7 for user i = 1, . . . , N do

8 Compute a secret share

[XT y]i =
∑

j∈[N](âj + [a
(t)
j]i) of the labels as given

in (14).
9 for iteration t = 0, . . . , J − 1 do

10 for i = 1, . . . , N do

11 Broadcast [ŵ(t)]i from (20).

12 for i = 1, . . . , N do

13 Decode ŵ(t) ≜ w(t) − r(t) using polynomial

interpolation, compute the encoded model w̃
(t)
i .

14 for user i = 1, . . . , N do

15 Compute the gradient

f(X̃i, w̃
(t)
i)=X̃T

i ĝ(X̃i × w̃
(t)
i) in (27), broadcast

û
(t)
i =X̃T

i ĝ(X̃i×w̃
(t)
i)−u

(t)
i in (28).

16 for user i = 1, . . . , N do

17 Decode the gradient [XT ĝ(X×w(t))]i as given

in (32), update the model as given in (33).

and then sum them up to obtain a secret share of XT ĝ(X ×
w(t)) =

∑
i∈[N] X

T
i ĝ(Xi ×w(t)),

∑

k∈[K]

[f(Xk,w
(t))]i = [

∑

k∈[K]

f(Xk,w
(t))]i

= [
∑

i∈[N]

XT
i ĝ(Xi ×w(t))]i

= [XT ĝ(X×w(t))]i (32)

After computing the gradient, users update the model. Note

that SCALR relies on finite field polynomial operations, bound

to finite field addition and multiplications. Conversely, the

model update in (2) requires a division. To handle this, one

approach is to treat model updating as an integer operation

(assuming a large field size), as detailed in Appendix B.

In practice, one can also apply the secure truncation protocol

from [39] and [5] to update the model according to (26),

[w(t+1)]i = [w(t)]i −
η

|D|
([XT ĝ(X×w(t))]i − [XT y]i),

(33)

where η is selected such that
|D|
η
∈ Fq, at the end of which

user i obtains a secret share [w(t+1)]i of the updated model

w(t+1) for the next training round. This protocol takes as

input the secret shares {[z]i}i∈[N] of a variable z (client i
holds a share [z]i), and two public integer parameters p1 and

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 169

p2 such that 0 < p1 < p2, and z ∈ F2p2 . Then, the protocol

returns the secret shares of the variable ⌊ z
2p1
⌋+ u where u is

a binary random variable with probability P [u = 1] = (z
mod 2p1)/2p1 . This quantization is unbiased, ensuring the

convergence of training [5].

Final Model. After J training rounds, the final model w(J)

is decoded by collecting the secret shares [w(J)]i from any

set of T + 1 users, and using polynomial interpolation. The

offline and online components of SCALR are presented in

Algorithms 1 and 2, respectively.

Remark 1: The use of Shamir’s secret sharing in model

encoding/update builds on two key intuitions: 1) In contrast

to dataset encoding where the individual users can observe

their local datasets in the clear, the true model should be kept

private from all users, during both model encoding and update

stages throughout the training. 2) During the model update,

gradients corresponding to different data points, including

those that are mapped to different Lagrange coefficients in

the coded dataset, should be accumulated. In our framework,

this is handled by using Shamir’s secret sharing, to decode

and sum up the gradients evaluated at different Lagrange

coefficients, without revealing their true value to any user.

V. THEORETICAL ANALYSIS

A. Privacy

We first present the information-theoretic privacy guarantees

of SCALR from (3).

Theorem 1: (Information-theoretic privacy) SCALR guar-

antees information theoretic-privacy:

I({Xi,Yi}i∈H;MT |{Xi,Yi}i∈T ,w
(J)) = 0 (34)

against any set of adversaries T ⊆ [N] such that |T | ≤
T , where MT denotes the collection of all messages held

(received or generated) by the adversaries.

Proof: The proof is provided in Appendix B. □

B. Communication and Computation Complexity

We next analyze the communication and computation com-

plexity of SCALR. For clarity, we let |Di| = D for all i ∈ [N],
to explicitly demonstrate the complexity with respect to the

number of users. The total communication and computation

complexity of SCALR is given in Table III.

Theorem 2: (Communication complexity) SCALR incurs a

per-user communication overhead of O(dD + dJ)) in the

online phase, and O(NdD
K

+NdJ) in the offline phase.

Proof: Offline per-user overhead consists of: 1) O(NdD
K

)
for dataset encoding, 2) O(Nd) for label secret sharing, 3)

O(Nd) for model initialization, 4) O(Nd) for model encoding

per training round, 5) O(Nd) for gradient computing and

model update per round. All communications are point-to-

point. Online per-user overhead includes: 1) O(dD) for dataset

encoding, 2) O(d) for label secret sharing, 3) O(d) for model

initialization, 4) O(d) for model encoding per round, 5) O(d)
for gradient computing and model update per round. All

communications are broadcast. □

Theorem 3: (Computation complexity) The per-user compu-

tation complexity of SCALR is given by O(NDd+ J ND
K

(d+

r)+Jdr(K+T) log2 r(K+T) log log r(K+T)) for the online

phase, and O(N2d(D
K

+ J) log2(K + T) log log(K + T)) for

the offline phase.

Proof: (Offline) Interpolating a polynomial of degree κ
(and evaluating it at κ points) has a computational complexity

of O(κ log2 κ log log κ) [40]. Then, the per-user complexity of

the offline phase is: 1) O(NdD
K

log2(K + T) log log(K+T))

to generate {R̃ij}j∈[N], 2) O(Nd log2 T log log T) to com-

pute the secret share {[ai]j}j∈[N], 3) O(Nd log2 T log log T)

to compute the secret share {[w
(0)
i]j}j∈[N]; and O(Nd)

to compute [w(0)]i, 4) O(Nd log2(K + T) log log(K +

T)) to compute r̃
(t)
ij ; O(Nd) to compute r̃

(t)
i =∑

j∈[N] r̃
(t)
ji ; O(Nd log2 T log log T) for constructing the

secret shares {[r
(t)
i]j}j∈[N]; O(Nd) to sum the secret shares

{[r
(t)
j]i}j∈[N] (per training round), 5) O(Nd log2 T log log T)

to compute the secret share {[u
(t)
i]j}j∈[N] (per training

round).

(Online) The per-user complexity of the online phase is:

1) O(Dd) for computing X̂i; O(NDd) for computing X̃i, 2)

O(Dd) for computing âi; O(Nd) for computing [XT y]i =∑
j∈[N](âj + [aj]i), 4) O(Td log2 T log log T) for computing

ŵ(t); O(Kd) for computing w̃i (per round), 5) O(ND
K

(d +

r)) to compute X̃T
i ĝ(X̃i × w̃

(t)
i); O(d) for computing ûi;

O(dr(K + T) log2 r(K + T) log log r(K + T)) for decoding

[f(Xk,w
(t))]i; O(Kd) to compute [XT ĝ(X×w(t))]i; O(d)

to update the model (per round). □

C. Recovery Threshold

The recovery threshold is defined as the minimum number

of surviving users that are needed for correct recovery of the

final model. The recovery threshold of SCALR is N − S ≥
(2r+1)(K+T − 1)+1 (equal to COPML), as model update

requires local computations to be collected from at least |U2| ≥
(2r + 1)(K + T − 1) + 1 surviving users.

Remark 2: SCALR can also be applied to simpler linear

regression, following the same steps.

D. Relation to Secure Aggregation (SA)

Both SCALR and SA [19] leverage offline genera-

tion/encoding of random masks. The key difference is that,

in SA each user knows the true mask that hides their local

model/gradient, and learns the updated model (and the aggre-

gate of the gradients) after each training round, while in

SCALR the updated model should stay private throughout the

training, and the true masks that hide the model can not be

known by any user. The two frameworks provide different

benefits and trade-offs; SA can be applied to highly complex

training tasks, but as the intermediate model parameters are

revealed after each training iteration, privacy degrades as

the number of rounds increase [21], and can be breached

through multi-round privacy attacks [20]. In contrast, SCALR

reveals no intermediate model or gradient parameters dur-

ing training, preventing such privacy degradation throughout

training.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

170 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

TABLE III

TOTAL COMMUNICATION AND COMPUTATION COMPLEXITY (ACROSS ALL USERS) OF SCALR

E. Randomness Generation

We next present the volume of randomness generated per

user for SCALR. For dataset encoding (Stage 1), each user i ∈
[N] generates O(|Di|d(K+T)

K
) random parameters. For label

secret sharing (Stage 2) and model initialization (Stage 3),

each user generates O(dT) random parameters. Then, at each

training round, each user generates O(dT) random parameters

for model encoding (Stage 4) and model update (Stage 5).

In comparison, the randomness generated per user for secure

aggregation [19] is O(d(N−S)
N−S−T

) per training round.

VI. EXPERIMENTS

A. Setup

We consider logistic regression for binary classification on

two image datasets chosen in accordance with [5]: CIFAR-

10 [41] and GISETTE [42], which are of size (|D|, d) =
(9019, 3073) and (6000, 5000) respectively. The datasets are

distributed evenly across the users. We implement a multi-user

network where communication between the users are carried

out through a Message Passing Interface (MPI) using the

MPI4Py Python programming tool [43].

B. Benchmark

We evaluate the performance with respect to the state-of-

the-art multi-party logistic regression framework with end-to-

end information-theoretic privacy (beyond 3-4 users), which is

the COPML framework from [5]. We measure both the com-

munication volume, and the wall-clock training time, including

both communication and computation. The communication

volume includes all protocol stages. Note that the experi-

mental results in [5] do not include the one-time operations,

i.e., secret sharing the datasets and labels. As they are also

data-dependent, we include them here. For both frameworks,

we leverage the secure quantization operation to avoid overlap

errors during model updating, with (p1, p2) = (21, 24) [5].

We further optimize (speed-up) COPML using the grouping

strategy suggested in [5], which partitions users into groups

of size T + 1, and communicates secret shares only between

users within the same group.

C. Hyperparameters

To demonstrate the performance under the same experi-

mental settings with prior work, the average communication

bandwidth is set to 40Mbps, finite field size is set to q =
226 − 5, along with r = 1 and J = 50. [5].

D. Performance Evaluation

We first consider the scenario where the degree of privacy

(T) and parallelism (K) are (almost) equal, by letting N =

Fig. 2. Online communication volume (Fig. 2(a)-2(b) and wall-clock training
time (Fig. 2(c)-2(d)) for SCALR and COPML.

TABLE IV

COMMUNICATION AND COMPUTATION TIME (IN SECONDS)
PER USER FOR N=60

3(K + T − 1) + 1 with T = ⌊N−3
6 ⌋ and K = ⌊N+2

3 ⌋ −
T . In Figs. 2(a)-2(b), we compare the total communication

overhead during training (i.e., online communication over-

head) of SCALR with COPML (where all communication is

online). We observe that SCALR significantly decreases the

online communication overhead, by up to 80× and 70× on

the CIFAR-10 and GISETTE datasets, respectively. We also

note that the broadcast functionality of the MPI protocol

communicates messages through a tree topology. As such,

the communication overhead observed for SCALR scales with

respect to O(N logN). In an ideal broadcasting scenario (e.g.,

a cellular network), one can expect further gains (approach-

ing O(N)). We next compare the wall-clock online training

time (per user) of the two frameworks in Figs. 2(c)-2(d).

We observe that SCALR reduces the training time by up

to 6.0× and 5.8× on the CIFAR-10 and GISETTE datasets,

respectively. In Table IV we also present the wall-clock time

for communication and computation in the offline and online

phases per user, respectively.

E. Accuracy

We next demonstrate the model convergence for SCALR,

COPML, and conventional logistic regression (which

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 171

Fig. 3. Model convergence (Figs. 3(a)-3(b)), and online training time of
SCALR for varying K (Figs. 3(c)-3(d)) with N = 60.

represents the target accuracy, without any privacy constraints)

in Figs. 3(a)-3(b) for N = 60. We observe that SCALR

achieves comparable model accuracy to COPML and

conventional centralized logistic regression.

F. Varying the Parallelism Degree

One of the key system parameters is K (degree of par-

allelism), as the training load per user scales with respect

to 1/K. In Figs. 3(c)-3(d), we present the role of K on

the wall-clock training time, by fixing the number of users

to N = 60, and varying K. We observe that increasing

K decreases the training time, demonstrating the trade-off

between parallelism (accordingly, the training time) and adver-

sary resilience, as increasing K decreases the maximum

number of adversaries (i.e., T) that the protocol is resilient

against.

G. Varying the Degree of Polynomial Approximation for the

Sigmoid

In Figs. 3(a) and 3(b), we present the model accuracy for

SCALR with both r = 1 and r = 2, where we observe

that the two settings have comparable accuracy. To deter-

mine the range of r needed for more complex scenarios,

one approach is to let each user initially select a local

value that meets their minimum performance requirement on

their local dataset, and then agree on a common param-

eter r by selecting the maximum of the locally selected

parameters.

VII. CONCLUSION AND FUTURE WORK

In this work, we introduce SCALR, a fast and scalable

framework for logistic regression with end-to-end information-

theoretic privacy. SCALR builds on an offline-online commu-

nication trade-off, where the online communication overhead

is only linear in the number of users, and the offline communi-

cation is data-agnostic, and can take place anytime when the

network load is low. Our experiments demonstrate an order

of magnitude reduction in the communication overhead, while

achieving the same performance guarantees with the state-of-

the-art.

Future directions include extending our framework to com-

plex learning tasks, such as neural networks, by using poly-

nomial approximations for non-linear functions such as ReLU

and softmax. Different privacy trade-offs can be provided by

leveraging relaxed privacy notions, such as statistical secu-

rity [39], where the leakage probability is quantified by a

security parameter. Another interesting direction is to integrate

our framework with complementary differential privacy (DP)

techniques [22], [25], [27], to prevent potential information

leakage from the final model [44], [45], [46], [47], [48].

Interestingly, doing so can further improve the model accuracy

for DP in distributed settings [47], [48]. Another important

direction is reducing the computational load of decoding for

low-powered devices, by integrating our approach with gradi-

ent/model quantization, compression, and pruning. In doing

so, one can potentially reduce the dimensionality of the

gradients/model parameters, as well as the required field size

for computational efficiency.

APPENDIX A

SHAMIR’S SECRET SHARING PROTOCOL AND DEGREE

REDUCTION

Shamir’s T -out-of-N secret sharing [8] embeds a secret s
to a degree T polynomial f(ξ) = s + ξn1 + . . . + ξTnT ,

where {nk}k∈[T] ∈ Fq are generated uniformly random, and

sends a share [s]i ≜ f(αi) to each user i ∈ [N], where

{αi}i∈[N] are distinct parameters in Fq. The secret s can

be recovered from any collection of T + 1 shares, but any

collection of T or fewer shares reveals no information about

s. Shamir’s secret sharing supports addition and multiplication

operations.

Addition: To compute the sum s+ s′ of two secrets s and

s′, user i sums the secret shares:

[s]i + [s′]i = (s+ αin1 + . . .+ αT
i nT)

+ (s′ + αin
′
1 + . . .+ αT

i n
′
T) (35)

= (s+ s′) + αi(n1 + n′1) + . . .+ αT
i (nT + n′T)

= [s+ s′]i (36)

where the result [s + s′]i is a secret share of s + s′. This

operation requires no communication.

Multiplication-by-a-constant: To multiply s with a public

constant c, user i locally computes c[s]i = [cs]i, which results

in a secret share of cs.
Multiplication and degree reduction: For computing the

product ss′ of two secrets, user i initially multiplies the secret

shares gi ≜ [s]i × [s′]i = ss′ + . . .+ α2T
i (nTn

′
T), where the

resulting polynomial has degree 2T . As such, recovering xx′

with polynomial interpolation requires collecting the shares

from at least 2T + 1 users. Each successive multiplication

further increases the degree, hence the minimum number of

users required, necessitating a degree reduction step to avoid a

degree explosion [7]. Note that ss′ can be written as a linear

function of 2T+1 evaluation points, hence ss′ =
∑2T+1

i=1 λigi

for some {λi}i∈[2T+1]. To perform degree reduction, user i

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

172 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

then secret shares gi = [s]i[s
′]i using Shamir’s T -out-of-

N secret sharing. After receiving {[gi]j}i∈[N], user j can

compute a new secret share [ss′]j =
∑2T+1

i=1 λi[gi]j =

[
∑2T+1

i=1 λigi]j of ss′, where the new share [ss′]j corresponds

to a polynomial of degree T (as opposed to 2T). On the other

hand, this has a quadratic communication complexity, which

is O(N2) over N users.

APPENDIX B

INFORMATION-THEORETIC PRIVACY

Proof: For tractability of the theoretical analysis, here

we consider a sufficiently large field size, and treat all model

updates as integer operations. This can be achieved by letting

η̄ ≜ |D|/η be an integer, and re-defining the local computation

from (27) performed by user i as,

f(X̃i, w̃
(t)
i) =

r∑

j=0

θj η̄
(r−j)ctX̃T

i (X̃i × w̃
(t)
i)j (37)

where the operation (·)j stands for element-wise exponentia-

tion, and,

ct ≜

{
0 for t = 0

rct−1 + 1 for t ≥ 1
(38)

Equation (37) represents evaluations of a univariate poly-

nomial h(z) = f(φ(z), ψ(z)) such that, h(αi) =

f(φ(αi), ψ(αi)) = f(X̃i, w̃
(t)
i) and

h(βk) = f(φ(βk), ψ(βk)) = f(Xk,w
(t))

=
r∑

j=0

θj η̄
(r−j)ctXT

k (Xk ×w(t))j ∀k ∈ [K]. (39)

After receiving ûi = f(X̃i, w̃
(t)
i) − ũi from (28), user

i computes (31) to obtain a secret share [f(X,w(t))]i ≜∑
k∈[K][f(Xk,w

(t))]i of the true gradient f(X,w(t)) =∑
k∈[K] f(Xk,w

(t)) =
∑

k∈[K] h(βk). Finally, the model

update operation from (33) can be re-defined as,

[w(t+1)]i =̄η
(r−1)ct+1[w(t)]i − ([f(X,w(t))]i − η̄

rct [XT y]i).
(40)

After J rounds, users can decode w(J) by collecting

{[w(J)]i}i∈[N], and recover the final model as w(J) ←
w(J)/η̄cJ . The correctness of this update process is presented

in Appendix C.

Privacy. We now proceed with the privacy analysis.

Consider an arbitrary set of adversaries T ⊆ N . For ease of

exposition, we focus on the worst case scenario |T | = T , while

the same analysis holds for all |T | < T . Let Mj
T denote the

messages collected by the adversaries in Stages j ∈ {1, 2, 3},
and Mj,t

T denote the messages received by the adversaries in

Stages j ∈ {4, 5} at training round t ∈ {0, . . . , J−1}, respec-

tively. Then, from the chain rule of mutual information [49],

one can rewrite the mutual information condition from (34) as

follows:

I({Di,Yi}i∈H;MT |{Di,Yi}i∈T ,w
(J)) (41)

= I({Di,Yi}i∈H;M1
T ,M

2
T ,M

3
T ,∪t∈[J]M

4,t
T ,∪t∈[J]M

5,t
T |

{Di,Yi}i∈T ,w
(J)) (42)

= I({Di,Yi}i∈H;M1
T |{Di,Yi}i∈T ,w

(J))

+ I({Di,Yi}i∈H;M2
T |M

1
T , {Di,Yi}i∈T ,w

(J))

+ I({Di,Yi}i∈H;M3
T |M

1
T ,M

2
T , {Di,Yi}i∈T ,w

(J))

+
J−1∑

t=0

I({Di,Yi}i∈H;M4,t
T |M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈T ,w

(J))

+

J−1∑

t=0

I({Di,Yi}i∈H;M5,t
T |M

1
T ,M

2
T ,M

3
T ,

∪t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈T ,w

(J))
(43)

We next investigate each term in the summation (43).

Stage 1: Dataset Encoding. First, we start with the first

term in (43), which corresponds to the first stage, dataset

encoding of SCALR. This term can be written as:

I({Di,Yi}i∈H;M1
T |{Di,Yi}i∈T ,w

(J)) (44)

= I({Di,Yi}i∈H; {R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

,

{Vik} i∈T
k∈{K+1,...,K+T}

, {X̂ik} i∈[N]
k∈[K]

|{Di,Yi}i∈T ,w
(J))

= H({R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

,

{X̂ik} i∈[N]
k∈[K]

|{Di,Yi}i∈T ,w
(J))

−H({R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

,

{X̂ik} i∈[N]
k∈[K]

|{Di,Yi}i∈[N],w
(J)) (45)

= H({R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

,

{X̂ik} i∈H
k∈[K]

|{Di,Yi}i∈T ,w
(J))

−H({R̃ij}j∈T
i∈H

, {Rik} i∈[N]
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

)

(46)

≤ H({R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

,

{X̂ik} i∈H
k∈[K]

)−H({R̃ij}j∈T
i∈H
|{Rik} i∈[N]

k∈[K]

,

{Vik} i∈T
k∈{K+1,...,K+T}

)−H({Vik} i∈T
k∈{K+1,...,K+T}

)

−H({Rik} i∈[N]
k∈[K]

) (47)

≤ d
(T
K

+ 1
)(∑

i∈[N]

|Di|
)

log q −
∑

i∈H

H({Zij}j∈T)

−
Td

K
(
∑

i∈T

|Di|) log q − d(
∑

i∈[N]

|Di|) log q (48)

≤ 0 (49)

where (46) holds since given {Di,Yi}i∈[N], there is no uncer-

tainty in {Xik}i∈[N],k∈[K], and that the random matrices are

independent; (47) is from the chain rule of entropy, and the

fact that conditioning cannot increase entropy; (48) holds since

uniform distribution maximizes entropy, which is equal to

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 173

log |A| over an alphabet A [49]. In (48), we define Zij ≜∑K+T
k=K+1 Vik

∏
l∈[K+T]\{k}

αj−βl

βk−βl
for all i ∈ H, j ∈ T .

For simplicity, in the following we let T = [T] and H =
{T +1, . . . , N}, hence the first T users are adversarial, while

noting that the same analysis holds for any arbitrary set of

adversaries. Then, we let:

λjk ≜
∏

l∈[K+T]\{k}

αj − βl

βk − βl

(50)

for all j ∈ [N] and k ∈ [K + T], from which one can write,

(Zi1, . . . ,ZiT)

= (Vi,K+1, . . . ,Vi,K+T)



λ1,K+1 · · · λT,K+1

...
. . .

...

λ1,K+T · · · λT,K+T




︸ ︷︷ ︸
M

(51)

where M is a T×T MDS matrix, hence is invertible [1]. As a

result,

H({Zij}j∈T)=H(Zi1, . . . ,ZiT) = H(Vi,K+1, . . . ,Vi,K+T)

=
Td|Di|

K
log q (52)

where (52) follows from (51) and that M is an MDS matrix.

Finally, from (49) we observe:

0 ≤ I({Di,Yi}i∈H;M1
T |{Di,Yi}i∈T ,w

(J)) ≤ 0 (53)

where the first inequality follows from the non-negativity of

mutual information. Therefore, the first term in (43) satisfies

I({Di,Yi}i∈H;M1
T |{Di,Yi}i∈T ,w

(J)) = 0.

Stage 2: Label Secret Sharing. We next consider the

second term in (43), which corresponds to the secret sharing

of the labels. Denote the secret share of ai from user i to user

j as:

[ai]j ≜ ai +
∑

k∈[T]

γk
j bik (54)

where bik ∈ F
d×1
q are random vectors for k ∈ [T]. Coef-

ficients {γi}i∈[N] are distinct public parameters in Fq agreed

between the users. Then, the second term in (43) can be written

as:

I({Di,Yi}i∈H;M2
T |M

1
T , {Di,Yi}i∈T ,w

(J)) (55)

= I({Di,Yi}i∈H; {âi}i∈H, {[ai]j}i∈H
j∈T

, {ai}i∈T , {bik} i∈T
k∈[T]

|

M1
T , {Di,Yi}i∈T ,w

(J)) (56)

≤ H({âi}i∈H, {[ai]j}i∈H
j∈T

, {ai}i∈T , {bik} i∈T
k∈[T]

)

−H({âi}i∈H, {[ai]j}i∈H
j∈T

, {ai}i∈T , {bik} i∈T
k∈[T]

|

M1
T , {Di,Yi}i∈[N],w

(J)) (57)

where (57) holds since conditioning cannot increase entropy.

For the first term in (57),

H({âi}i∈H, {[ai]j}i∈H
j∈T

, {ai}i∈T , {bik} i∈T
k∈[T]

)

≤ ((T + 1)Nd) log q (58)

which follows from |H| = N − |T | with |T | = T . For the

second term in (57), we have:

H({âi}i∈H, {[ai]j}i∈H
j∈T

, {ai}i∈T , {bik} i∈T
k∈[T]

|

M1
T , {Di,Yi}i∈[N],w

(J))

= H({[ai]j}i∈H
j∈T
|{ai}i∈H, {ai}i∈T , {bik} i∈T

k∈[T]
)

+H({ai}i∈H, {ai}i∈T , {bik} i∈T
k∈[T]

) (59)

= H
({ ∑

k∈[T]

γk
j bik

}
i∈H
j∈T

)
+ ((N − T)d+ Td+ T 2d) log q

(60)

=
∑

i∈H

H({sij}j∈T) + (Nd+ T 2d) log q (61)

where (59) is from the chain rule of entropy, and that given

{Di,Yi}i∈[N], the only uncertainty in âi is due to ai; (60)

is from the entropy of uniform random variables. In (61),

we define:

sij ≜
∑

k∈[T]

γk
j bik for all j ∈ T (62)

from which one can write,

(si1, . . . , siT) = (bi1, . . . ,biT)



γ1 · · · γT

...
. . .

...

γT
1 · · · γ

T
T




︸ ︷︷ ︸
A

(63)

where A is a T×T MDS matrix (invertible), which represents

a bijective mapping. Hence,

H({sij}j∈T) = H(si1, . . . , siT)

= H(bi1, . . . ,biT) = Td log q (64)

By combining (64) with (61), we have:

H({âi}i∈H, {[ai]j}i∈H
j∈T

, {ai}i∈T , {bik} i∈T
k∈[T]

|

M1
T , {Di,Yi}i∈[N],w

(J)) = ((T + 1)Nd) log q (65)

Finally, by combining (65) and (58) with (57), we find that:

0 ≤ I({Di,Yi}i∈H;M2
T |M

1
T , {Di,Yi}i∈T ,w

(J))

≤ ((T + 1)Nd) log q − ((T + 1)Nd) log q ≤ 0 (66)

where the first inequality follows from the non-negativity

of mutual information. Hence, the second term in (43) also

satisfies I({Di,Yi}i∈H;M2
T |M

1
T , {Di,Yi}i∈T ,w

(J)) = 0.

Stage 3: Model Initialization. We now consider the

third term in (43), which corresponds to model initialization.

We denote the secret share [w
(0)
i]j sent from user i to user j

as:

[w
(0)
i]j ≜ w

(0)
i +

∑

k∈[T]

γk
j z

(0)
ik (67)

where {z
(0)
ik }k∈[T] are uniformly random vectors of size d,

and {γj}j∈[N] are as defined in (54). We can then rewrite the

mutual information condition from the third term in (43) as

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

174 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

follows:

I({Di,Yi}i∈H;M3
T |M

1
T ,M

2
T , {Di,Yi}i∈T ,w

(J))

= I({Di,Yi}i∈H; {[w
(0)
i]j}i∈H,j∈T , {w

(0)
i , zik}i∈T ,k∈[T]|

M1
T ,M

2
T , {Di,Yi}i∈T ,w

(J))
(68)

= I({Di,Yi}i∈H; {w
(0)
i , zik}i∈T ,k∈[T]|

M1
T ,M

2
T , {Di,Yi}i∈T ,w

(J))

+ I({Di,Yi}i∈H; {[w
(0)
i]j}i∈H,j∈T |{w

(0)
i , zik}i∈T ,k∈[T],

M1
T ,M

2
T , {Di,Yi}i∈T ,w

(J))
(69)

= H({w
(0)
i , zik}i∈T ,k∈[T]|M

1
T ,M

2
T , {Di,Yi}i∈T ,w

(J))

−H({w
(0)
i , zik}i∈T ,k∈[T]|M

1
T ,M

2
T , {Di,Yi}i∈[N],w

(J))

+H({[w
(0)
i]j}i∈H,j∈T |{w

(0)
i , zik}i∈T ,k∈[T],

M1
T ,M

2
T , {Di,Yi}i∈T ,w

(J))

−H({[w
(0)
i]j}i∈H,j∈T |{w

(0)
i , zik}i∈T ,k∈[T],

M1
T ,M

2
T , {Di,Yi}i∈[N],w

(J)) (70)

We next consider each term in (70) separately. For the first

term in (70), we have that,

H({w
(0)
i , zik}i∈T ,k∈[T]|M

1
T ,M

2
T , {Di,Yi}i∈T ,w

(J))

≤ H({w
(0)
i , zik}i∈T ,k∈[T]) (71)

≤ (dT + dT 2) log q (72)

which holds since uniform distribution maximizes entropy. For

the second term in (70), we have,

H({w
(0)
i , zik}i∈T ,k∈[T]|M

1
T ,M

2
T , {Di,Yi}i∈[N],w

(J))

≥ H({w
(0)
i , zik}i∈T ,k∈[T]|w

(0)) (73)

= H({w
(0)
i , zik}i∈T ,k∈[T]) (74)

= (dT + dT 2) log q (75)

where (73) follows from the data processing inequality, since

{w
(0)
i , zik}i∈T ,k∈[T]−w(0)−w(J),M1

T ,M
2
T , {Di,Yi}i∈[N]

forms a Markov chain, and (74) holds since,

H({w
(0)
i , zik}i∈T ,k∈[T])−H({w

(0)
i , zik}i∈T ,k∈[T]|w

(0))
(76)

= I({w
(0)
i , zik}i∈T ,k∈[T];w

(0)) (77)

= H(w(0))−H(w(0)|{w
(0)
i , zik}i∈T ,k∈[T])

= d log q − d log q = 0 (78)

where (78) holds since w
(0)
i are uniformly random for all i ∈

[N]. For the third term in (70),

H({[w
(0)
i]j}i∈H,j∈T |{w

(0)
i , zik}i∈T ,k∈[T],

M1
T ,M

2
T , {Di,Yi}i∈T ,w

(J))

≤ H({[w
(0)
i]j}i∈H,j∈T)

≤ (N − T)T log q (79)

Finally, for the last term in (70), we rewrite the condition from

(67) as follows:

([w
(0)
i]1, . . . , [w

(0)
i]T) = w

(0)
i (1, . . . , 1)︸ ︷︷ ︸

1

+ (z
(0)
i1 , . . . , z

(0)
iT)︸ ︷︷ ︸

z
(0)
i

A

= w
(0)
i 1 + z

(0)
i A (80)

where A is an T × T MDS matrix as defined in (63). Then,

the last term in (70) becomes:

H({[w
(0)
i]j}i∈H,j∈T |{w

(0)
i , zik}i∈T ,k∈[T],M

1
T ,M

2
T ,

{Di,Yi}i∈[N],w
(J))

≥ H({[w
(0)
i]j}i∈H,j∈T |{w

(0)
i , zik}i∈T ,k∈[T],M

1
T ,M

2
T ,

{Di,Yi}i∈[N],w
(J), {w

(0)
i }i∈H) (81)

= H({w
(0)
i 1 + z

(0)
i A}i∈H|{w

(0)
i , zik}i∈T ,k∈[T],M

1
T ,M

2
T ,

{Di,Yi}i∈[N],w
(J), {w

(0)
i }i∈H)

= H({z
(0)
i }i∈H) (82)

= (N − T)Td log q (83)

where (82) holds since A is an MDS matrix, hence is

invertible, and that random vectors generated by the honest

users are independent from the random vectors generated by

adversarial users, and (83) holds since z
(0)
i are generated

uniformly random for all i ∈ [N].
Finally, by combining (72), (75), (79), (83) with (70),

we have for the third term in (43):

0 ≤ I({Di,Yi}i∈H;M3
T |M

1
T ,M

2
T , {Di,Yi}i∈T ,w

(J))
(84)

≤ (dT + dT 2) log q − (dT + dT 2) log q

+ (N − T)Td log q − (N − T)Td log q = 0
(85)

Stage 4: Model Encoding. We next consider the fourth term

in (43), which corresponds to model encoding (Stage 4) of

SCALR. We represent the secret share of r
(t)
i at user j ∈ [N]

as:

[r
(t)
i]j = r

(t)
i +

∑

k∈[T]

γk
j g

(t)
ik for all i ∈ [N], (86)

where g
(t)
ik ∈ F

d
q are uniformly random vectors, and γj for

j ∈ [N] are as given in (54). Without loss of generality,

we represent the secret share of the model w(t) at user i ∈ [N]
as:

[w(t)]i = w(t) +
∑

k∈[T]

γk
i z

(t)
k for all i ∈ [N], (87)

where z
(t)
k ∈ F

d
q , and {γi}i∈[N] are defined in (54). Then, for

the third term in (43), we observe,

I({Di,Yi}i∈H;M4,t
T |M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈T ,w

(J))

= I({Di,Yi}i∈H; {[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}
, {[ŵ(t)]i}i∈[N]|M

1
T ,M

2
T ,M

3
T ,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 175

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈T ,w

(J)) (88)

= H({[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}
, {[ŵ(t)]i}i∈[N]|M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈T ,w

(J))

−H({[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}

, {[ŵ(t)]i}i∈[N]|M
1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈[N],w

(J)) (89)

= H({[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T

, {r
(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]

,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}

,w(t) −
∑

j∈[N]

r
(t)
j ,

{z
(t)
k −

∑

j∈[N]

g
(t)
jk }k∈[T]|M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈T ,w

(J))

−H({[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}
,w(t) −

∑

j∈[N]

r
(t)
j ,

{z
(t)
k −

∑

j∈[N]

g
(t)
jk }k∈[T]|M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈[N],w

(J)) (90)

= H({[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}
,w(t) −

∑

j∈H

r
(t)
j ,

{z
(t)
k −

∑

j∈H

g
(t)
jk }k∈[T]|M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈T ,w

(J))

−H({[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}
,w(t) −

∑

j∈H

r
(t)
j ,

{z
(t)
k −

∑

j∈H

g
(t)
jk }k∈[T]|M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈[N],w

(J)) (91)

where (90) holds since, from (87) and (20), one can write,

[ŵ(t)]i = [w(t)]i − [r(t)]i

=
(
w(t) −

∑

j∈[N]

r
(t)
j

)
+

∑

k∈[T]

γk
i

(
z
(t)
k −

∑

j∈[N]

g
(t)
jk

)

(92)

which is a polynomial of degree T . Since the coefficients of

any degree T polynomial can be uniquely determined from

T + 1 evaluation points, there is a bijective (one-to-one)

mapping from any sequence of T + 1 coefficients (w(t) −∑
j∈[N] r

(t)
j , z

(t)
1 −

∑
j∈[N] g

(t)
j1 , . . . , z

(t)
T −

∑
j∈[N] g

(t)
jT) to a

valid {[ŵ(t)]i}i∈[N]. We next define a few variables to simplify

the analysis of (91),

([w(t)]1, . . . , [w
(t)]T) = w(t) (1, . . . , 1)︸ ︷︷ ︸

1

+ (z
(t)
1 , . . . , z

(t)
T)︸ ︷︷ ︸

z(t)

A

= w(t)1 + z(t)A (93)

where A is an MDS matrix as defined in (63). Similarly,

we let:

([r
(t)
i]1, . . . , [r

(t)
i]T) = r

(t)
i (1, . . . , 1)︸ ︷︷ ︸

1

+ (g
(t)
i1 , . . . ,g

(t)
iT)︸ ︷︷ ︸

g
(t)
i

A

= r
(t)
i 1 + g

(t)
i A (94)

Finally, by using the coefficients defined in (50), we can write:

(r̃
(t)
i1 , . . . , r̃

(t)
iT) = r

(t)
i

K∑

k=1

(λk1, . . . , λkT)

︸ ︷︷ ︸
λ

+ (v
(t)
i(K+1), . . . ,v

(t)
i(K+T))︸ ︷︷ ︸

v
(t)
i

M = r
(t)
i λ+ v

(t)
i M (95)

where M is as defined in (51). From (93)-(95), chain rule

of entropy, and the independence of the random vectors

generated, the second term in (91) can be rewritten as:

H({r
(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
, {v

(t)
ik } i∈T

k∈{K+1,...,K+T}
)

+H({[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T
,w(t) −

∑

j∈H

r
(t)
j ,

{z
(t)
k −

∑

j∈H

g
(t)
jk }k∈[T]|M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈[N],w

(J)) (96)

= dT (2T + 1) log q +H({[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T
,w(t) −

∑

j∈H

r
(t)
j ,

{z
(t)
k −

∑

j∈H

g
(t)
jk }k∈[T]|M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈[N],w

(J)) (97)

= dT (2T + 1) log q +H({r
(t)
i 1 + g

(t)
i A}i∈H,

{r
(t)
i λ+ v

(t)
i M}i∈H,w

(t) −
∑

i∈H

r
(t)
i , z(t) −

∑

i∈H

g
(t)
i |M

1
T ,

M2
T ,M

3
T ,∪

t−1
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈[N],w

(J))
(98)

≥ dT (2T + 1) log q +H({r
(t)
i 1 + g

(t)
i A}i∈H,

{r
(t)
i λ+ v

(t)
i M}i∈H,w

(t) −
∑

i∈H

r
(t)
i , z(t) −

∑

i∈H

g
(t)
i |

M1
T ,M

2
T ,M

3
T ,∪

t−1
l=0M

4,l
T ,∪t−1

l=0M
5,l
T ,

{Di,Yi}i∈[N],w
(J),w(t), z(t)) (99)

= dT (2T + 1) log q +H({r
(t)
i 1 + g

(t)
i A}i∈H,

{r
(t)
i λ+ v

(t)
i M}i∈H,

∑

i∈H

r
(t)
i ,

∑

i∈H

g
(t)
i |M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈[N],w

(J)) (100)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

176 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

= dT (2T + 1) log q +H({r
(t)
i 1 + g

(t)
i A}i∈H,

{r
(t)
i λ+ v

(t)
i M}i∈H,

∑

i∈H

r
(t)
i ,

∑

i∈H

g
(t)
i) (101)

= dT (2T + 1) log q +H({r
(t)
i λ+ v

(t)
i M}i∈H|

{r
(t)
i 1 + g

(t)
i A}i∈H,

∑

i∈H

r
(t)
i ,

∑

i∈H

g
(t)
i)

+H({r
(t)
i 1 + g

(t)
i A}i∈H,

∑

i∈H

r
(t)
i ,

∑

i∈H

g
(t)
i)

(102)

≥ dT (2T + 1) log q +H({r
(t)
i λ+ v

(t)
i M}i∈H|

{r
(t)
i 1 + g

(t)
i A}i∈H,

∑

i∈H

r
(t)
i ,

∑

i∈H

g
(t)
i , {r

(t)
i }i∈H)

+H({r
(t)
i 1 + g

(t)
i A}i∈H,

∑

i∈H

r
(t)
i ,

∑

i∈H

g
(t)
i)

(103)

= dT (2T + 1) log q +H({v
(t)
i }i∈H)

+H({r
(t)
i 1 + g

(t)
i A}i∈H,

∑

i∈H

r
(t)
i ,

∑

i∈H

g
(t)
i)

(104)

= dT (2T + 1) log q + (N − T)dT log q

+H({r
(t)
i 1 + g

(t)
i A}i∈H,

∑

i∈H

r
(t)
i ,

∑

i∈H

g
(t)
i)

(105)

≥ (T + 2TN + 1)d log q (106)

where (99) and (103) holds since conditioning cannot increase

entropy, (101) and (104) holds from the independence of

random vectors, and that M is an MDS matrix (invertible);

(105) follows from the entropy of uniform random variables.

Finally, (106) follows from,

H({r
(t)
i 1 + g

(t)
i A}i∈H,

∑

i∈H

r
(t)
i ,

∑

i∈H

g
(t)
i)

= H(
∑

i∈H

g
(t)
i |{r

(t)
i 1 + g

(t)
i A}i∈H,

∑

i∈H

r
(t)
i)

+H({r
(t)
i 1 + g

(t)
i A}i∈H,

∑

i∈H

r
(t)
i) (107)

= H({r
(t)
i 1 + g

(t)
i A}i∈H,

∑

i∈H

r
(t)
i) (108)

≥ H({r
(t)
i 1 + g

(t)
i A}i∈H|

∑

i∈H

r
(t)
i , {r

(t)
i }i∈H)

+H(
∑

i∈H

r
(t)
i) (109)

= (N − T)Td log q + d log q (110)

where (108) is from
∑

i∈H g
(t)
i = (

∑
i∈H(r

(t)
i 1 + g

(t)
i A) −∑

i∈H r
(t)
i 1)A−1; (110) holds since A is an MDS matrix.

We next analyze the first term in (91). For this term, we have

that:

H({[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}
,w(t) −

∑

j∈H

r
(t)
j , {z

(t)
k −

∑

j∈H

g
(t)
jk }k∈[T]|

M1
T ,M

2
T ,M

3
T ,∪

t−1
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈T ,w

(J))
(111)

≤ H({r
(t)
i 1 + g

(t)
i A}i∈H, {r

(t)
i λ+ v

(t)
i A}i∈H,

{r
(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
, {v

(t)
ik } i∈T

k∈{K+1,...,K+T}
,

w(t) −
∑

i∈H

r
(t)
i , z(t) −

∑

i∈H

g
(t)
i) (112)

= H({r
(t)
i 1 + g

(t)
i A}i∈H, {r

(t)
i λ+ v

(t)
i A}i∈H, {r

(t)
i }i∈T ,

{g
(t)
ik } i∈T

k∈[T]
, {v

(t)
ik } i∈T

k∈{K+1,...,K+T}
,w(t) −

∑

i∈H

r
(t)
i)

(113)

≤ (T + 2TN + 1)d log q (114)

where (112) holds since conditioning cannot increase entropy,

and (113) holds since:

z(t) −
∑

i∈H

g
(t)
i =

(
(w(t)1 + z(t)A)

− (w(t) −
∑

i∈H

r
(t)
i)1−

∑

i∈H

(r
(t)
i 1 + g

(t)
i A)

)
A−1

(115)

and (114) holds since entropy is maximized by the uniform

distribution. Finally, by combining (106) and (114) with (91)

and (89), we find for the fourth term in (43) that:

0 ≤ I({Di,Yi}i∈H;M4,t
T |M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈T ,w

(J))

≤ (T + 2TN + 1)d log q − (T + 2TN + 1)d log q = 0
(116)

Stage 5: Gradient Computing and Model Update. We next

consider the last term in (43), which corresponds to Stage 5 of

the proposed framework, i.e., local gradient computation and

model update. Without loss of generality, we denote the secret

share of u
(t)
i at user j ∈ [N] as:

[u
(t)
i]j ≜ u

(t)
i +

∑

k∈[T]

γk
j n

(t)
ik for all i ∈ [N], (117)

where u
(t)
ik ∈ F

d
q are uniformly random vectors for all i ∈

[N], k ∈ [T], and γj is as defined in (54). Similar to (95),

we also represent (117) in matrix notation as:

([u
(t)
i]1, . . . , [u

(t)
i]T) = u

(t)
i (1, . . . , 1)︸ ︷︷ ︸

1

+ (ni1, . . . ,niT)︸ ︷︷ ︸
n

(t)
i

A

= u
(t)
i 1 + n

(t)
i A (118)

where A is a T × T MDS matrix as given in (63). Then, the

last term in (43) can be written as:

I({Di,Yi}i∈H;M5,t
T |M

1
T ,M

2
T ,M

3
T ,

∪t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Di,Yi}i∈T ,w

(J))

= I({Di,Yi}i∈H; {[u
(t)
i]j}i∈H

j∈T
, {û

(t)
i }i∈[N], {u

(t)
i }i∈T ,

{n
(t)
ik } i∈T

k∈[T]
|M, {Di,Yi}i∈T) (119)

≤ H({[u
(t)
i]j}i∈H

j∈T
, {û

(t)
i }i∈[N], {u

(t)
i }i∈T ,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 177

{n
(t)
ik } i∈T

k∈[T]
|M, {Di,Yi}i∈T)

−H({[u
(t)
i]j}i∈H

j∈T
, {û

(t)
i }i∈[N], {u

(t)
i }i∈T ,

{n
(t)
ik } i∈T

k∈[T]
|M, {Di,Yi}i∈[N], {X̃

T
i ĝ(X̃i, w̃

(t)
i)}i∈[N])

≤ H({[u
(t)
i]j}i∈H

j∈T
, {X̃T

i ĝ(X̃i, w̃
(t)
i)− u

(t)
i }i∈H, {u

(t)
i }i∈T ,

{n
(t)
ik } i∈T

k∈[T]
)−H({n

(t)
i A}i∈H, {u

(t)
i }i∈[N], {n

(t)
ik } i∈T

k∈[T]
)

(120)

≤ N(T + 1)d log q −N(T + 1)d log q (121)

= 0 (122)

where M ≜ {M1
T ,M

2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T ,w(J)};

(121) holds since random vectors are generated independently,

A is an MDS matrix (invertible), conditioning cannot increase

entropy, and that given M1
T ,M

4,l
T , there is no uncertainty in

{X̃T
i ĝ(X̃i, w̃

(t)
i)}i∈T .

Combining Stages 1-5. Finally, by combining

(53), (66), (116), and (122) with (43), we have

I({Di,Yi}i∈H;MT |{Di,Yi}i∈T ,w
(J)) = 0, which

completes the proof. □

APPENDIX C

CORRECTNESS

The correctness of Lagrange coding and Shamir’s secret

sharing follows from [1] and [8]. We next show that the model

update operations from (40) correctly recover the target model

in (26). From (40), at the end of each round t, client i holds

a secret share [w(t+1)]i of w(t+1), where

w(t+1) = η̄(r−1)ct+1w(t) − (f(X,w(t))− η̄rctXT y).
(123)

Next, define w(t) as the target model from (26), where w(0) ≜

w(0),

w(t+1) ≜ w(t) −
1

η̄
XT (ĝ(X×w(t))− y)

for t ∈ {0, . . . , J − 1}, (124)

and show that the model updates from (40) satisfy w(t)

η̄ct
= w(t)

for all training rounds t ≥ 0. The proof follows by induction,

from the following two steps: 1) Base case: For the base case

t = 0, the result follows directly from (40) and that c0 ≜ 0,

2) Induction step: Next, assume that w(t)

η̄ct
= w(t) holds for an

arbitrary round t, and show that it also holds for round t+ 1,

w(t+1)

= η̄(r−1)ct+1w(t) − (f(X,w(t))− η̄rctXT y) (125)

= η̄(r−1)ct+1η̄ctw(t) − (f(X, η̄ctw(t))− η̄rctXT y) (126)

= η̄rct+1w(t) − (XT

r∑

j=0

η̄(r−j)ctθj(X× η̄
ctw(t))j

− η̄rctXT y) (127)

= η̄rct+1w(t) − η̄rct(XT

r∑

j=0

θj(X×w(t))j −XT y)

(128)

= η̄rct+1
(
w(t) −

1

η̄
(XT ĝ(X×w(t))−XT y)

)

= η̄ct+1w(t+1) (129)

where (126) holds since w(t) = η̄ctw(t) for round t holds by

assumption, (129) follows from (124) and that ct+1 = rct +1,

which completes the proof.

REFERENCES

[1] Q. Yu et al., ªLagrange coded computing: Optimal design for resiliency,
security, and privacy,º in Proc. Int. Conf. Artif. Intell. Statist. (AISTATS),
2019, pp. 1±11.

[2] J. So, B. Güler, and A. S. Avestimehr, ªCodedPrivateML: A fast and
privacy-preserving framework for distributed machine learning,º IEEE

J. Sel. Areas Inf. Theory, vol. 2, no. 1, pp. 441±451, Mar. 2021.

[3] J. So, B. Güler, and A. S. Avestimehr, ªByzantine-resilient secure
federated learning,º IEEE J. Sel. Areas Commun., vol. 39, no. 7,
pp. 2168±2181, Jul. 2021.

[4] J. So, B. Güler, and A. S. Avestimehr, ªTurbo-aggregate: Breaking the
quadratic aggregation barrier in secure federated learning,º IEEE J. Sel.

Areas Inf. Theory, vol. 2, no. 1, pp. 479±489, Mar. 2021.

[5] J. So, B. Güler, and A. S. Avestimehr, ªA scalable approach for privacy-
preserving collaborative machine learning,º in Proc. Annu. Conf. Neural

Inf. Process. Syst. (NeurIPS), Dec. 2020, pp. 1±13.

[6] A. C. Yao, ªProtocols for secure computations,º in Proc. 23rd Annu.

Symp. Found. Comput. Sci., Nov. 1982, pp. 160±164.

[7] M. Ben-Or and A. Wigderson, ªCompleteness theorems for non-
cryptographic fault-tolerant distributed computation,º in Proc. 20th

Annu. ACM Symp. Theory Comput., 1988, pp. 1±10.

[8] A. Shamir, ªHow to share a secret,º Commun. ACM, vol. 22, no. 11,
pp. 612±613, Nov. 1979.

[9] I. Damgård and J. B. Nielsen, ªScalable and unconditionally secure
multiparty computation,º in Proc. Annu. Int. Cryptol. Conf. Cham,
Switzerland: Springer, 2007, pp. 572±590.

[10] Z. Beerliová-Trubìniová and M. Hirt, ªPerfectly-secure MPC with linear
communication complexity,º in Proc. Theory Cryptography Conf. Cham,
Switzerland: Springer, 2008, pp. 213±230.

[11] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N.
Taft, ªPrivacy-preserving ridge regression on hundreds of millions of
records,º in Proc. IEEE Symp. Secur. Privacy, May 2013, pp. 334±348.

[12] A. Gascón et al., ªPrivacy-preserving distributed linear regression on
high-dimensional data,º Proc. Privacy Enhancing Technol., vol. 2017,
no. 4, pp. 345±364, Oct. 2017.

[13] P. Mohassel and Y. Zhang, ªSecureML: A system for scalable privacy-
preserving machine learning,º in Proc. IEEE Symp. Secur. Privacy (SP),
May 2017, pp. 19±38.

[14] P. Mohassel and P. Rindal, ªABY 3: A mixed protocol framework for
machine learning,º in Proc. ACM SIGSAC Conf. Comput. Commun.

Secur., Oct. 2018, pp. 35±52.

[15] S. Wagh, D. Gupta, and N. Chandran, ªSecureNN: 3-party secure
computation for neural network training,º Proc. Privacy Enhancing

Technol., vol. 2019, no. 3, pp. 26±49, Jul. 2019.

[16] K. Bonawitz et al., ªPractical secure aggregation for privacy-preserving
machine learning,º in Proc. ACM SIGSAC Conf. Comput. Commun.

Secur., Oct. 2017, pp. 1±14.

[17] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
ªSecure single-server aggregation with (poly) logarithmic overhead,º
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2020,
pp. 1±10.

[18] Y. Zhao and H. Sun, ªInformation theoretic secure aggregation with
user dropouts,º in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021,
pp. 1124±1129.

[19] J. So et al., ªLightSecAgg: A lightweight and versatile design for secure
aggregation in federated learning,º in Proc. Mach. Learn. Syst., vol. 4,
2022, pp. 1±27.

[20] J. So, R. E. Ali, B. Guler, J. Jiao, and S. Avestimehr, ªSecuring
secure aggregation: Mitigating multi-round privacy leakage in federated
learning,º in Proc. AAAI Conf. Artif. Intell., 2023, pp. 1±9.

[21] A. R. Elkordy, J. Zhang, Y. H. Ezzeldin, K. Psounis, and S. Avestimehr,
ªHow much privacy does federated learning with secure aggregation
guarantee?º in Proc. Priv. Enhancing Technol. (PETS), 2023, pp. 1±16.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

178 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

[22] C. Dwork, F. McSherry, K. Nissim, and A. Smith, ªCalibrating noise to
sensitivity in private data analysis,º in Proc. Theory Cryptography Conf.

Cham, Switzerland: Springer, 2006, pp. 265±284.

[23] K. Chaudhuri and C. Monteleoni, ªPrivacy-preserving logistic regres-
sion,º in Proc. Adv. Neural Inf. Proc. Sys., 2009, pp. 1±8.

[24] R. Shokri and V. Shmatikov, ªPrivacy-preserving deep learning,º in
Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Sep. 2015, pp. 1310±1321.

[25] M. Abadi et al., ªDeep learning with differential privacy,º in Proc. ACM

SIGSAC Conf. Comp. Commun. Secur., 2016, pp. 308±318.

[26] M. Pathak, S. Rane, and B. Raj, ªMultiparty differential privacy via
aggregation of locally trained classifiers,º in Proc. Adv. Neural Inf.

Process. Syst., 2010, pp. 1876±1884.

[27] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, ªLearning
differentially private recurrent language models,º in Proc. Int. Conf.

Learn. Represent., 2018, pp. 1±14.

[28] A. Rajkumar and S. Agarwal, ªA differentially private stochastic gradient
descent algorithm for multiparty classification,º in Proc. Int. Conf. Artif.

Intell. Statist. (AISTATS), 2012, pp. 933±941.

[29] B. Jayaraman, L. Wang, D. Evans, and Q. Gu, ªDistributed learning
without distress: Privacy-preserving empirical risk minimization,º in
Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 6346±6357.

[30] C. Gentry and D. Boneh, A Fully Homomorphic Encryption Scheme,
vol. 20, no. 9. Stanford, CA, USA: Stanford University, 2009.

[31] C. Gentry, ªFully homomorphic encryption using ideal lattices,º in Proc.

41st Annu. ACM Symp. Theory Comput., May 2009, pp. 169±178.

[32] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, ªCryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,º in Proc. Int. Conf. Mach. Learn.,
2016, pp. 201±210.

[33] T. Graepel, K. Lauter, and M. Naehrig, ªML confidential: Machine
learning on encrypted data,º in Proc. Int. Conf. Inf. Secur. Cryptol.

Cham, Switzerland: Springer, 2012, pp. 1±21.

[34] J. Yuan and S. Yu, ªPrivacy preserving back-propagation neural network
learning made practical with cloud computing,º IEEE Trans. Parallel

Distrib. Syst., vol. 25, no. 1, pp. 212±221, Jan. 2014.

[35] P. Li, J. Li, Z. Huang, C.-Z. Gao, W.-B. Chen, and K. Chen, ªPrivacy-
preserving outsourced classification in cloud computing,º Cluster Com-

put., vol. 21, pp. 277±286, Apr. 2017.

[36] Q. Wang et al., ªPrivacy-preserving collaborative model learning: The
case of word vector training,º IEEE Trans. Knowl. Data Eng., vol. 30,
no. 12, pp. 2381±2393, Dec. 2018.

[37] K. Han, S. Hong, J. H. Cheon, and D. Park, ªLogistic regression on
homomorphic encrypted data at scale,º in Proc. Annu. Conf. Innovative

App. Artif. Intell. (IAAI), 2019, pp. 1±6.

[38] J. Brinkhuis and V. Tikhomirov, Optimization: Insights and Applications.
Princeton, NJ, USA: Princeton Univ. Press, 2005.

[39] O. Catrina and A. Saxena, ªSecure computation with fixed-point num-
bers,º in Proc. Int. Conf. Financial Cryptogr. Data Secur. Cham,
Switzerland: Springer, 2010, pp. 35±50.

[40] K. S. Kedlaya and C. Umans, ªFast polynomial factorization and
modular composition,º SIAM J. Comput., vol. 40, no. 6, pp. 1767±1802,
Jan. 2011.

[41] A. Krizhevsky and G. Hinton, ªLearning multiple layers of features from
tiny images,º M.S. thesis, Dept. Comput. Sci., Univ. Toronto, 2009.

[42] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, ªResult analysis of
the NIPS 2003 feature selection challenge,º in Proc. Conf. Neural Inf.

Process. Syst. (NeurIPS), vol. 17, 2004, pp. 1±8.

[43] L. Dalcín, R. Paz, and M. Storti, ªMPI for Python,º J. Parallel Distrib.

Comput., vol. 65, no. 9, pp. 1108±1115, Sep. 2005.

[44] M. Fredrikson, S. Jha, and T. Ristenpart, ªModel inversion attacks
that exploit confidence information and basic countermeasures,º in
Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2015,
pp. 1±12.

[45] L. Zhu and S. Han, ªDeep leakage from gradients,º in Federated

Learning. Cham, Switzerland: Springer, 2020, pp. 17±31.

[46] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, ªInverting
gradientsÐHow easy is it to break privacy in federated learning?º
in Proc. Annu. Conf. Neural Inf. Process. Syst. (NeurIPS), 2020,
pp. 1±11.

[47] P. Kairouz, Z. Liu, and T. Steinke, ªThe distributed discrete Gaussian
mechanism for federated learning with secure aggregation,º in Proc. Int.

Conf. Mach. Learn. (ICML), 2021, pp. 1±54.

[48] W. Chen, C. A. Choquette-Choo, P. Kairouz, and A. T. Suresh,
ªThe fundamental price of secure aggregation in differentially private
federated learning,º in Proc. Int. Conf. Mach. Learn. (ICML), 2022,
pp. 1±34.

[49] M. C. Thomas and A. T. Joy, Elements of Information Theory. Hoboken,
NJ, USA: Wiley-Interscience, 2006.

Xingyu Lu received the B.E. degree from the
Department of Computer Science and Information
Technology, Zhejiang Gongshang University, China,
in 2019, and the M.Sc. degree in robotics (computer
science) from the Khoury College of Computer
Science and the College of Engineering, Northeast-
ern University, Boston, MA, USA. He is currently
pursuing the Ph.D. degree with the Department of
Electrical and Computer Engineering, University of
California, Riverside. His research interests include
private machine learning, distributed learning, and
federated learning.

Hasin Us Sami (Graduate Student Member, IEEE)
received the B.Sc. degree in electrical and elec-
tronic engineering from the Bangladesh University
of Engineering and Technology, Dhaka, Bangladesh,
in 2019. He is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering, University of California, Riverside. His
research interests include federated and distributed
machine learning, information theory, secure and
private computing, and wireless networks.

BaËsak Güler (Member, IEEE) received the B.Sc.
degree in electrical and electronics engineering
from Middle East Technical University (METU),
Ankara, Turkey, and the Ph.D. degree from the
Wireless Communications and Networking Labora-
tory, The Pennsylvania State University, in 2017.
From 2018 to 2020, she was a Post-Doctoral Scholar
with the University of Southern California. She is
currently an Assistant Professor with the Department
of Electrical and Computer Engineering, Univer-
sity of California, Riverside. Her research interests

include information theory, distributed computing, machine learning, and
wireless networks. She is a recipient of the 2022 NSF CAREER Award.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:53:09 UTC from IEEE Xplore. Restrictions apply.

