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Abstract. In this report we propose two highly efficient ensemble algorithms incorporating the gPAV and the rotational
pressure correction methods for computing Stokes-Darcy flow ensembles. All variables are fully decoupled including the three
components of the velocity, leading to smaller linear systems to be solved at each time step. Moreover, all ensemble members
share the same constant coefficient matrix for which the fast block CG method can be applied for computing the ensemble at
one pass at significantly reduced computational cost. We prove the two new ensemble algorithms are unconditionally stable with
respect to the modified energy without any constraints on the uncertain parameters or the time steps. We will provide details
of implementation and discuss how to efficiently solve the corresponding linear systems. Numerical examples are presented to
show the efficiency and effectiveness of the algorithms.
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1. Introduction. Uncertainty quantification (UQ) usually requires repeated simulations of a flow prob-
lem with random inputs of an uncertain parameter. This leads to a high demand on computer resources
especially for complex flow problems. There have been significant efforts put into studying efficient numerical
methods to reduce the computational cost for UQ, including multilevel Monte Carlo method [4], quasi-Monte
Carlo sequences [35], Latin hypercube sampling [19], centroidal Voronoi tessellations [45], and more recently
developed stochastic collocation methods [3, 51], non-intrusive polynomial chaos methods [21, 44], and en-
semble algorithms [25]. In particular, unlike other methods that aim to reduce the number of simulations
or samples required for effective UQ, the ensemble algorithms are specially designed for fast computation of
an ensemble of flows in response to different flow parameters and its goal is to be able to compute a large
ensemble at significantly reduced computational cost. The ensemble algorithms were initially studied for
nonlinear flow problems [25], and the idea is to decompose the nonlinear term into two parts: the mean and
the fluctuation. The mean is independent of the ensemble index and will be the same for all realizations,
while the fluctuation is different for each realization but is lagged to the previous timesteps so that it goes
to the right hand side of the system and does not contribute to the coefficient matrix. Consequently all
ensemble members computed will have the same coefficient matrix at each timestep and efficient block linear
solvers such as block CG, block GMRES, can be used to compute all realizations at one pass at significantly
reduced computational cost. The ensemble algorithms have been extensively tested on various nonlinear
flow problems such as the Navier-Stokes flows [16, 17, 18, 24, 26, 31, 32, 48, 49], MHD flows [1, 2, 30, 42],
natural convection [13, 14] and fluid-fluid interactions [11], and demonstrated to be very effective in reduc-
ing computational cost while maintaining comparable accuracy. The ensemble timestepping idea has also
been extended to linear PDE models such as the heat equations [13, 40, 41] and the Stokes-Darcy equations
[20, 29, 27], to handle uncertain model parameters.

The Stokes-Darcy equations are a coupled PDE system that models the coupling of a free surface flow
and a subsurface porous media flow that appears in many geophysical applications. The main difficulties in
designing efficient and long time stable numerical schemes for computing the system include 1) the coupling
terms in the discrete schemes usually can not be properly bounded and lead to a time step condition to ensure
stability; 2) projection type methods that alleviate the incompressibility constraint in the Stokes equations
do not provide intended efficiency as it only decouples the computation of pressure from the velocity but
not the three components of the velocity field due to a term

∑
i

∫
I
ηi(u · τ̂i)(v · τ̂i) ds from the interface

conditions of the Stokes-Darcy model. There have been some recent developments to address the first issue,
such as adding a stabilization [28] to remove the time step condition and using the SAV approach to avoid
bounding the coupling terms [33, 34]. To our best knowledge, the second issue has not been addressed
in the literature. In this report, we propose two ensemble algorithms that have both issues addressed by
adopting the generalized positive auxiliary variable (gPAV) idea [52]. The two ensemble algorithms are 1)
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The gPAV methods are first proposed in [52] for dissipative systems and have been studied for different
PDE models, e.g., Cahn-Hilliard [43], Navier-Stokes [31, 38], MHD [2]. They provide a general framework
to devise unconditionally stable linear numerical schemes for nonlinear systems and guarantee that the
computed scalar auxiliary variables are positive. Herein we extend this approach to the linear Stokes-Darcy
model and utilize it to design unconditionally stable numerical schemes by avoiding bounding the coupling
terms in the model. We are also able to lag the interface term

∑
i

∫
I
ηi(u · τ̂i)(v · τ̂i) ds to the previous time

steps and have all components of the velocity field decoupled leading to highly efficient ensemble schemes.
We define a shifted energy of the form

Ej(t) = E(uj , φj) =

∫

Df

1

2
|uj |2dx+

∫

Dp

gS0

2
|φj |2dx+ C0, (1.3)

where E(uj , φj) is the total kinetic energy of the system, which for physical examples is bounded from below,
and C0 is an arbitrarily small positive constant chosen in such a way that Ej(t) > 0 for 0 ≤ t ≤ T . Next,
let F be any one-to-one increasing differentiable function with F−1 = G such that

{
F (χ) > 0, χ > 0,

G (χ) > 0, χ > 0.

(1.4)

(1.5)

The scalar variable Rj(t) is defined by

Rj(t) = G (Ej), (1.6)

Ej(t) = F (Rj). (1.7)

With Ej as in (1.3), Rj(t) then satisfies

F
′(Rj)

dRj

dt
=

∫

Df

uj ·
∂uj
∂t

dx+

∫

Dp

gS0φj ·
∂φj
∂t

dx. (1.8)

Since
F(Rj)

Ej
= 1 for all j, we may write

F
′(Rj)

dRj

dt
=

∫

Df

uj ·
∂uj
∂t

dx+

∫

Dp

gS0φj ·
∂φj
∂t

dx

−
[
F (Rj)

Ej
− 1

] [
ν(∇uj ,∇uj)f − (pj ,∇ · uj)f

−
∫

∂Df\I

ν(∇uj · n̂f ) · uj ds+
∫

∂Df\I

pj(uj · n̂f ) ds− (ff,j , uj)f

+ g(Kj∇φj ,∇φj)p −
∫

∂Dp\I

gφjKj∇φj · n̂p ds− g(fp,j , ψ)p

]

− F (Rj)

Ej

([∑

i

∫

I

ηi,j(uj · τ̂i)(uj · τ̂i) ds+ cI(uj , φj)− cI(uj , φj)

]

−
[∑

i

∫

I

ηi,j(uj · τ̂i)(uj · τ̂i) ds+ cI(uj , φj)− cI(uj , φj)

])

+

[
1− F (Rj)

Ej

] ∣∣∣∣
∫

Df

ff,j · ujdx+

∫

Dp

gfp,j · φjdx

+

∫

∂Df\I

νaj · (∇uj · n̂f ) ds−
∫

∂Df\I

aj · n̂fpj ds+

∫

∂Dp\I

gbjKj∇φj · n̂p ds

∣∣∣∣

=

∫

Df

uj ·
∂uj
∂t

dx+

∫

Dp

gS0φj ·
∂φj
∂t

dx

+

[
ν(∇uj ,∇uj)f +

F (Rj)

Ej

∑

i

∫

I

ηi,j(uj · τ̂i)(uj · τ̂i) ds− (pj ,∇ · uj)f
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+
F (Rj)

Ej
cI(uj , φj)−

∫

∂Df\I

ν(∇uj · n̂f ) · uj ds+
∫

∂Df\I

pj(uj · n̂f ) ds− (ff,j , uj)f

+ g(Kj∇φj ,∇φj)p −
F (Rj)

Ej
cI(uj , φj)−

∫

∂Dp\I

gφjKj∇φj · n̂p ds− g(fp,j , ψ)p

]

− F (Rj)

Ej

[
ν(∇uj ,∇uj)f +

∑

i

∫

I

ηi,j(uj · τ̂i)(uj · τ̂i) ds− (pj ,∇ · uj)f

+ cI(uj , φj)−
∫

∂Df\I

ν(∇uj · n̂f ) · uj ds+
∫

∂Df\I

pj(uj · n̂f ) ds− (ff,j , uj)f

+ g(Kj∇φj ,∇φj)p − cI(uj , φj)−
∫

∂Dp\I

gφjKj∇φj · n̂p ds− g(fp,j , ψ)p

]

+

[
1− F (Rj)

Ej

] ∣∣∣∣
∫

Df

ff,j · ujdx+

∫

Dp

gfp,j · φjdx

+

∫

∂Df\I

νaj · (∇uj · n̂f ) ds−
∫

∂Df\I

aj · n̂fpj ds+

∫

∂Dp\I

gbjKj∇φj · n̂p ds

∣∣∣∣

=

∫

Df

uj ·
∂uj
∂t

dx+

∫

Dp

gS0φj ·
∂φj
∂t

dx

+

[
ν(∇uj ,∇uj)f +

F (Rj)

Ej

∑

i

∫

I

ηi,j(uj · τ̂i)(uj · τ̂i) ds− (pj ,∇ · uj)f

+
F (Rj)

Ej
cI(uj , φj)−

∫

∂Df\I

ν(∇uj · n̂f ) · uj ds+
∫

∂Df\I

pj(uj · n̂f ) ds− (ff,j , uj)f

+ g(Kj∇φj ,∇φj)p −
F (Rj)

Ej
cI(uj , φj)−

∫

∂Dp\I

gφjKj∇φj · n̂p ds− g(fp,j , ψ)p

]

− F (Rj)

Ej

[
ν(∇uj ,∇uj)f +

∑

i

∫

I

ηi,j(uj · τ̂i)(uj · τ̂i) ds−
∫

∂Df\I

ν(∇uj · n̂f ) · uj ds− (ff,j , uj)f

+

∫

∂Df\I

pj(uj · n̂f ) ds+ g(Kj∇φj ,∇φj)p −
∫

∂Dp\I

gφjKj∇φj · n̂p ds− g(fp,j , ψ)p

]

+

[
1− F (Rj)

Ej

] ∣∣∣∣
∫

Df

ff,j · ujdx+

∫

Dp

gfp,j · φjdx

+

∫

∂Df\I

νaj · (∇uj · n̂f ) ds−
∫

∂Df\I

aj · n̂fpj ds+

∫

∂Dp\I

gbjKj∇φj · n̂p ds

∣∣∣∣.

Note that all the additional terms above amount to adding zero to (1.8). We next present two uncondi-
tionally stable ensemble methods with shared coefficient matrix across different realizations and time steps
for solving the Stokes-Darcy model, based on this reformulation. We will also incorporate the rotational
pressure correction method [8, 15, 50] to decouple the the computation of the pressure from the velocity
which also makes it possible to decouple all the components of the velocity. The main advantage of the
rotational pressure correction projection method for the Navier-Stokes/Stokes equations is that it alleviates
the incompressiblity constraint, decouples the pressure from velocity, and decouples all the components of
the velocity field. But for the Stokes-Darcy system considered here, the components of the velocity field are
difficult to decouple due to the term

∑
i

∫
I
ηi(u · τ̂i)(v · τ̂i) ds from the interface condition, [36, 37]. With the

help of the gPAV approach, we will lag this term to previous time steps so that all the components of the
unknown velocity field are fully decoupled while still being able to construct unconditionally stable ensemble
schemes.

Define the function spaces:

Velocity: Xf :=
(
H1(Df )

)d
,

Pressure: Qf := L2(Df ), Y 0
f := {q ∈ H1(Df ) : q = 0 on I},
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Hydraulic Head: Xp := H1(Dp).

The first order pressure correction ensemble scheme based on the Backward Euler time stepping and the
gPAV approach we propose is

Algorithm 1.1. Given unj , φ
n
j , and p

n
j , find w

n+1
j , un+1

j ∈ Xf , r
n+1
j ∈ Y 0

f , p
n+1
j ∈ Qf , and φ

n+1
j ∈ Xp

satisfying

(
wn+1

j − unj
∆t

, v

)

f

+ ν(∇wn+1
j ,∇v)f + ξn+1

j

∑

i

∫

I

ηi,j(u
n
j · τ̂i)(v · τ̂i) ds−

(
pnj ,∇ · v

)
f

(1.9)

+ ξn+1
j cI(v, φ

n
j )−

∫

∂Df\I

ν(∇wn+1
j · n̂f ) · v ds+

∫

∂Df\I

pnj v · n̂f ds = (fn+1
f,j , v)f , ∀v ∈ Xf ,





(∇rn+1
j ,∇q)f + 1

∆t (∇ · wn+1
j , q)f = 0, rn+1

j |I = 0,
∂rn+1

j

∂n̂f
|∂Df\I = 0, ∀q ∈ Y 0

f ,

(un+1
j , v)f = (wn+1

j , v)f −∆t(∇rn+1
j , v)f , ∀v ∈ Xf ,

pn+1
j = rn+1

j + pnj − ε∇ · wn+1
j ,

(1.10)

gS0

(
φn+1
j − φnj

∆t
, ψ

)

p

+ g(K̄ ∇φn+1
j ,∇ψ)p + g((Kj − K̄ )∇φnj ,∇ψ)p − ξn+1

j cI(u
n
j , ψ) (1.11)

−
∫

∂Dp\I

gψK̄ ∇φn+1
j · n̂p ds−

∫

∂Dp\I

gψ(Kj − K̄ )∇φnj · n̂p ds = g(fn+1
p,j , ψ)p, ∀ψ ∈ Xp,

ξn+1
j =

F (Rn+1
j )

E(˜̃un+1
j ,

˜̃
φn+1
j )

, (1.12)

E(˜̃un+1
j ,

˜̃
φn+1
j ) =

1

2
‖˜̃un+1

j ‖2 + gS0

2
‖ ˜̃φn+1

j ‖2 + C0, (1.13)

F (Rn+1
j )− F (Rn

j )

∆t
=

(
wn+1

j − unj
∆t

, wn+1
j

)

f

+ gS0

(
φn+1
j − φnj

∆t
, φn+1

j

)

p

(1.14)

+

[
ν(∇wn+1

j ,∇wn+1
j )f + ξn+1

j

∑

i

∫

I

ηi,j(u
n
j · τ̂i)(wn+1

j · τ̂i) ds−
(
pnj ,∇ · wn+1

j

)
f

+ ξn+1
j cI(w

n+1
j , φnj )−

∫

∂Df\I

ν(∇wn+1
j · n̂f ) · an+1

j ds+

∫

∂Df\I

pnj (w
n+1
j · n̂f ) ds

− (ff,j , w
n+1
j )f + g(K̄ ∇φn+1

j ,∇φn+1
j )p + g((Kj − K̄ )∇φnj ,∇φn+1

j )p − ξn+1
j cI(u

n
j , φ

n+1
j )

−
∫

∂Dp\I

gbn+1
j K̄ ∇φn+1

j · n̂p ds−
∫

∂Dp\I

gbn+1
j (Kj − K̄ )∇φnj · n̂p ds− g(fn+1

p,j , φn+1
j )p

]

− ξn+1
j

[
ν(∇˜̃un+1

j ,∇˜̃un+1
j )f +

∑

i

∫

I

ηi,j(˜̃u
n+1
j · τ̂i)(˜̃un+1

j · τ̂i) ds

−
∫

∂Df\I

ν(∇˜̃un+1
j · n̂f ) · an+1

j ds+

∫

∂Df\I

˜̃pn+1
j (an+1

j · n̂f ) ds− (fn+1
f,j , ˜̃un+1

j )f

+ g(Kj∇ ˜̃
φn+1
j ,∇ ˜̃

φn+1
j )p −

∫

∂Dp\I

gbn+1
j Kj∇ ˜̃

φj · n̂p ds− g(fn+1
p,j ,

˜̃
φn+1
j )p

]

+
[
1− ξn+1

j

] ∣∣∣∣
∫

Df

ff,j · ˜̃un+1
j dx+

∫

Dp

gfp,j · ˜̃φn+1
j dx

+

∫

∂Df\I

νan+1
j · (∇˜̃un+1

j · n̂f ) ds−
∫

∂Df\I

an+1
j · n̂f

˜̃pn+1
j ds+

∫

∂Dp\I

gbn+1
j Kj∇ ˜̃

φn+1
j · n̂p ds

∣∣∣∣.

Here ˜̃un+1
j , ˜̃pn+1

j , and
˜̃
φn+1
j are first order approximations of un+1

j , pn+1
j , and φn+1

j that will be defined later.
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Define

v∗n+3/2 =
3

2
vn+1 − 1

2
vn, ṽn+1 = 2vn − vn−1. (1.15)

The second order ensemble scheme based on the second order backward differentiation formula (BDF2)
time stepping and the gPAV approach we propose is

Algorithm 1.2. Given un−1
j , unj , φ

n−1
j , and φnj , for n ≥ 1, find wn+1

j , un+1
j ∈ Xf , r

n+1
j ∈ Y 0

f ,

pn+1
j ∈ Qf , and φ

n+1
j ∈ Xp satisfying

(
3wn+1

j − 4unj + un−1
j

2∆t
, v

)

f

+ ν(∇wn+1
j ,∇v)f + ξn+1

j

∑

i

∫

I

ηi,j(ũ
n+1
j · τ̂i)(v · τ̂i) ds−

(
p̃n+1
j ,∇ · v

)
f

+ ξn+1
j cI(v, φ̃

n+1
j )−

∫

∂Df\I

ν(∇wn+1
j · n̂f ) · v ds+

∫

∂Df\I

p̃n+1
j v · n̂f ds = (fn+1

f,j , v)f , ∀v ∈ Xf ,

(1.16)




(∇rn+1
j ,∇q) + 3

2∆t (∇ · wn+1
j , q) = 0, rn+1

j |I = 0,
∂rn+1

j

∂n̂f
|∂Df\I = 0, ∀q ∈ Y 0

f ,

(un+1
j , v)f = (wn+1

j , v)f − 2
3∆t(∇r

n+1
j , v)f , ∀v ∈ Xf ,

pn+1
j = rn+1

j + 2pnj − pn−1
j − ε∇ · wn+1

j ,

(1.17)

gS0

(
3φn+1

j − 4φnj + φn−1
j

2∆t
, ψ

)

p

+ g(K̄ ∇φn+1
j ,∇ψ)p + g((Kj − K̄ )∇φ̃n+1

j ,∇ψ)p − ξn+1
j cI(ũ

n+1
j , ψ)

−
∫

∂Dp\I

gψK̄ ∇φn+1
j · n̂p ds−

∫

∂Dp\I

gψ(Kj − K̄ )∇φ̃n+1
j · n̂p ds = g(fn+1

p,j , ψ)p, ∀ψ ∈ Xp, (1.18)

ξn+1
j =

F (R
∗n+3/2
j )

E(˜̃u
n+3/2
j ,

˜̃
φ
n+3/2
j )

, (1.19)

E(˜̃u
n+3/2
j ,

˜̃
φ
n+3/2
j ) =

1

2
‖˜̃un+3/2

j ‖2 + gS0

2
‖ ˜̃φn+3/2

j ‖2 + C0, (1.20)

F (R
∗n+3/2
j )− F (R

∗n+1/2
j )

∆t
=

(
3wn+1

j − 4unj + un−1
j

2∆t
, wn+1

j

)

f

+ gS0

(
3φn+1

j − 4φnj + φn−1
j

2∆t
, φn+1

j

)

p

+

[
ν(∇wn+1

j ,∇wn+1
j )f + ξn+1

j

∑

i

∫

I

ηi,j(ũ
n+1
j · τ̂i)(wn+1

j · τ̂i) ds−
(
p̃n+1
j ,∇ · wn+1

j

)
f

(1.21)

+ ξn+1
j cI(w

n+1
j , φ̃n+1

j )−
∫

∂Df\I

ν(∇un+1
j · n̂f ) · an+1

j ds+

∫

∂Df\I

p̃n+1
j (wn+1

j · n̂f ) ds

− (ff,j , w
n+1
j )f + g(K̄j∇φn+1

j ,∇φn+1
j )p + g((Kj − K̄ )∇φ̃n+1

j ,∇φn+1
j )p − ξn+1

j cI(ũ
n+1
j , φn+1

j )

−
∫

∂Dp\I

gbn+1
j K̄ ∇φn+1

j · n̂p ds−
∫

∂Dp\I

gbn+1
j (Kj − K̄ )∇φ̃n+1

j · n̂p ds− g(fn+1
p,j , φn+1

j )p

]

− ξn+1
j

[
ν(∇˜̃un+1

j ,∇˜̃un+1
j )f +

∑

i

∫

I

ηi,j(˜̃u
n+1
j · τ̂i)(˜̃un+1

j · τ̂i) ds

−
∫

∂Df\I

ν(∇˜̃un+1
j · n̂f ) · an+1

j ds+

∫

∂Df\I

˜̃pn+1
j (an+1

j · n̂f ) ds− (fn+1
f,j , ˜̃un+1

j )f

+ g(Kj∇ ˜̃
φn+1
j ,∇ ˜̃

φn+1
j )p −

∫

∂Dp\I

gbn+1
j Kj∇ ˜̃

φj · n̂p ds− g(fn+1
p,j ,

˜̃
φn+1
j )p

]

+
[
1− ξn+1

j

] ∣∣∣∣
∫

Df

ff,j · ˜̃un+1
j dx+

∫

Dp

gfp,j · ˜̃φn+1
j dx

+

∫

∂Df\I

νan+1
j · (∇˜̃un+1

j · n̂f ) ds−
∫

∂Df\I

an+1
j · n̂f

˜̃pn+1
j ds+

∫

∂Dp\I

gbn+1
j Kj∇ ˜̃

φn+1
j · n̂p ds

∣∣∣∣.
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Here ˜̃u
n+3/2
j , ˜̃un+1

j , ˜̃pn+1
j ,

˜̃
φ
n+3/2
j and

˜̃
φn+1
j are second order approximations of u

n+3/2
j , un+1

j , pn+1
j , φ

n+3/2
j ,

and φn+1
j that will be defined later.

The rest of the paper is outlined here. In Section 2, we prove the unconditionally long time stability of
the proposed algorithms. Section 3 presents an efficient way to implement our numerical algorithms. Section
4 numerically tests the proposed algorithms in terms of effectiveness and efficiency. Conclusion remarks are
presented in Section 5.

2. Stability of the ensemble algorithms.

2.1. Backward Euler. Theorem 2.1. With homogeneous Dirichlet boundary conditions on ∂Df\I
and ∂Dp\I, and forcing terms equal to zero, Algorithm (1.1) is unconditionally stable with respect to the
modified energy F (Rj).

Proof.
Set v to wn+1

j in (1.9), set ψ to φn+1
j in (1.11), and add these to (1.14). Then one gets

F (Rn+1
j )− F (Rn

j ) = −∆t
F (Rn+1

j )

E(˜̃un+1
j ,

˜̃
φn+1
j )

[
ν‖∇˜̃un+1

j ‖2f +
∑

i

∫

I

ηi,j(˜̃u
n+1
j · τ̂i)(˜̃un+1

j · τ̂i) ds (2.1)

+g

(
Kj∇ ˜̃

φn+1
j ,∇ ˜̃

φn+1
j

)

p

]
+


1−

F (Rn+1
j )

E(˜̃un+1
j ,

˜̃
φn+1
j )


 |Sn+1

j |∆t+
F (Rn+1

j )

E(˜̃un+1
j ,

˜̃
φn+1
j )

Sn+1
j ∆t,

where

Sn+1
j =

∫

Df

fn+1
f,j · ˜̃un+1

j dx+

∫

Dp

gfn+1
p,j · ˜̃φn+1

j dx

+

∫

∂Df\I

νan+1
j · (∇˜̃un+1

j · n̂f ) ds−
∫

∂Df\I

an+1
j · n̂f ˜̃pn+1

j ds+

∫

∂Dp\I

gbn+1
j Kj∇ ˜̃

φn+1
j · n̂p ds.

Solving for F (Rn+1
j ) gives

F (Rn+1
j ) =

F (Rn
j ) + |Sn+1

j |∆t
1 + ∆t

E(˜̃un+1

j
,
˜̃
φn+1

j
)

[
Hn+1

j + (|Sn+1
j | − Sn+1

j )
] , (2.2)

where

Hn+1
j = ν‖∇˜̃un+1

j ‖2f +
∑

i

∫

I

ηi,j(˜̃u
n+1
j · τ̂i)2 ds+ g

(
Kj∇ ˜̃

φn+1
j ,∇ ˜̃

φn+1
j

)

p

> 0.

If aj = 0, bj = 0, ff,j = 0 and fp,j = 0, then Sn+1
j = 0 and

F (Rn+1
j ) =

F (Rn
j )

1 + ∆t

E(˜̃un+1

j
,
˜̃
φn+1

j
)
Hn+1

j

. (2.3)

Note the denominator in (2.3) is greater than or equal to 1. By definition (1.4), if R0
j > 0, then F (R0

j ) > 0.

In fact R0
j would be initialized as G (E(u0j (x), φ

0
j (x))), which by definition (1.5) is guaranteed positive. Then

by induction, for any timestep n we have F (Rn+1
j ) > 0 and

0 < F (Rn+1
j ) ≤ F (Rn

j ), n ≥ 0. (2.4)
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2.2. BDF2. Theorem 2.2. With homogeneous Dirichlet boundary conditions on ∂Df\I and ∂Dp\I,
and forcing terms equal to zero, Algorithm (1.2) is unconditionally stable with respect to the modified energy
F (Rj) as long as the approximations of Rj(t) at timestep 3

2 are positive.

Proof.
Set v to wn+1

j in (1.16), set ψ to φn+1
j in (1.18), and add these to (1.21). Then one gets

F (R
∗n+3/2
j )− F (R

∗n+1/2
j ) = −∆t

F (R
∗n+3/2
j )

E(˜̃u
n+ 3

2

j ,
˜̃
φ
n+ 3

2

j )

[
ν‖∇˜̃un+1

j ‖2f +
∑

i

∫

I

ηi,j(˜̃u
n+1
j · τ̂i)(˜̃un+1

j · τ̂i) ds (2.5)

+g

(
Kj∇ ˜̃

φn+1
j ,∇ ˜̃

φn+1
j

)

p

]
+


1−

F (R
∗n+3/2
j )

E(˜̃u
n+ 3

2

j ,
˜̃
φ
n+ 3

2

j )


 |Sn+1

j |∆t+
F (R

∗n+3/2
j )

E(˜̃u
n+ 3

2

j ,
˜̃
φ
n+ 3

2

j )
Sn+1
j ∆t,

where

Sn+1
j =

∫

Df

fn+1
f,j · ˜̃un+1

j dx+

∫

Dp

gfn+1
p,j · ˜̃φn+1

j dx

+

∫

∂Df\I

νan+1
j · (∇˜̃un+1

j · n̂f ) ds−
∫

∂Df\I

an+1
j · n̂f ˜̃pn+1

j ds+

∫

∂Dp\I

gbn+1
j Kj∇ ˜̃

φn+1
j · n̂p ds.

Solving for F (R
∗n+3/2
j ) gives

F (R
∗n+3/2
j ) =

F (R
∗n+1/2
j ) + |Sn+1

j |∆t
1 + ∆t/E(˜̃u

n+ 3
2

j ,
˜̃
φ
n+ 3

2

j )
[
Hn+1

j + (|Sn+1
j | − Sn+1

j )
] . (2.6)

where

Hn+1
j = ν‖∇˜̃un+1

j ‖2f +
∑

i

∫

I

ηi,j(˜̃u
n+1
j · τ̂i)2 ds+ g

(
Kj∇ ˜̃

φn+1
j ,∇ ˜̃

φn+1
j

)

p

.

If aj = 0, bj = 0, ff,j = 0 and fp,j = 0, then Sn+1
j = 0 and

F (R
∗n+3/2
j ) =

F (R
∗n+1/2
j )

1 + ∆t/E(˜̃u
n+ 3

2

j ,
˜̃
φ
n+ 3

2

j )Hn+1
j

. (2.7)

The denominator above is greater than or equal to 1. Now by definition (1.4), if it’s ensured the

approximation of Rj(t) at timestep 3/2 is positive, i.e. R
∗3/2
j > 0, then F (R

∗3/2
j ) > 0. Then by induction for

any timestep n ≥ 1, F (R
∗n+3/2
j ) > 0 and

0 < F (R
∗n+3/2
j ) ≤ F (R

∗n+1/2
j ), n ≥ 1. (2.8)

Note that for the choice of F (χ) = χ2 ≥ 0 for all χ ∈ (−∞,∞), (2.8) and unconditional stability will

hold regardless of whether R
∗1/2
j > 0.

3. Implementation. Let Xh
f be a finite element space approximating Xf with spatial resolution h,

Xh,0
f := {v ∈ Xh

f : v = 0 on ∂Df\I}. The space Qh
f , Y

h,0
f ⊂ Y 0

f , X
h
p and Xh,0

p are defined similarly.

3.1. Backward Euler. To efficiently implement Algorithm (1.1), we proceed in the following manner.
Assume

wn+1
j,h = ŵn+1

j,h + ξn+1
j,h w̆n+1

j,h , φn+1
j,h = φ̂n+1

j,h + ξn+1
j,h φ̆n+1

j,h (3.1)
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gPAV-BE-Projection: solve the following four subproblems for ŵn+1
j,h , φ̂n+1

j,h , w̆n+1
j,h ,φ̆n+1

j,h respectively.

(BE sub-problem 1): Find ŵn+1
j,h ∈ Xh

f satisfying ∀ vh ∈ Xh,0
f ,





1
∆t

(
ŵn+1

j,h , vh

)
f
+ ν(∇ŵn+1

j,h ,∇vh)f = (fn+1
f,j , vh)f + 1

∆t

(
unj,h, vh

)
f
+
(
pnj,h,∇ · vh

)
f
,

ŵn+1
j,h |∂Df\I = an+1

j,h .

(BE sub-problem 2): Find φ̂n+1
j,h ∈ Xh

p satisfying ∀ ψh ∈ Xh,0
p ,





gS0

∆t

(
φ̂n+1
j,h , ψh

)
p
+ g(K̄ ∇φ̂n+1

j,h ,∇ψh)p

= g(fn+1
p,j , ψh)p +

gS0

∆t

(
φnj,h, ψh

)
p
− g((Kj − K̄ )∇(φnj,h),∇ψh)p,

φ̂n+1
j,h |∂Dp\I = bn+1

j,h .

(Be sub-problem 3): Find w̆n+1
j,h ∈ Xh

f satisfying ∀ vh ∈ Xh,0
f ,





1
∆t

(
w̆n+1

j,h , vh

)
f
+ ν(∇w̆n+1

j,h ,∇vh)f = −∑i

∫
I
ηi,j(u

n
j,h · τ̂i)(vh · τ̂i) ds− cI(vh, φ

n
j,h),

w̆n+1
j,h |∂Df\I = 0.

(BE sub-problem 4): Find φ̆n+1
j,h ∈ Xh

p satisfying ∀ ψh ∈ Xh,0
p ,





gS0

∆t

(
φ̆n+1
j,h , ψh

)
p
+ g(K̄ ∇φ̆n+1

j,h ,∇ψh)p = cI(u
n
j,h, ψh),

φ̆n+1
j,h |∂Dp\I = 0.

We use the following approximations,

˜̃vn+1
j = v̂n+1

j + v̆n+1
j .

then update ξn+1
j,h as

ξn+1
j,h =

F (Rn
j,h) + |Sn+1

j,h |∆t

E(˜̃un+1
j,h ,

˜̃
φn+1
j,h ) + ∆t

[
Hn+1

j,h + (|Sn+1
j,h | − Sn+1

j,h )
] , (3.2)

where

Hn+1
j,h = ν‖∇˜̃un+1

j,h ‖2f +
∑

i

∫

I

ηi,j(˜̃u
n+1
j,h · τ̂i)2 ds+ g

(
Kj∇ ˜̃

φn+1
j,h ,∇ ˜̃

φn+1
j,h

)

p

> 0.

Sn+1
j,h =

∫

Df

fn+1
f,j,h · ˜̃un+1

j,h dx+

∫

Dp

gfn+1
p,j,h · ˜̃φn+1

j,h dx

+

∫

∂Df\I

νan+1
j,h · (∇˜̃un+1

j,h · n̂f ) ds−
∫

∂Df\I

an+1
j,h · n̂f

˜̃pn+1
j,h ds+

∫

∂Dp\I

gbn+1
j,h Kj∇ ˜̃

φn+1
j,h · n̂p ds.

Notice ξn+1
j,h is updated via a linear equation and is very direct.

Once we have ξn+1
j,h , using the solutions of above four sub-problems we can get wn+1

j,h , φn+1
j,h . The final

solution (un+1
j,h , pn+1

j,h ) can be obtained by first solving the pressure Poisson equation for rn+1
j,h ∈ Y h,0

f





(∇rn+1
j,h ,∇qh) = − 1

∆t (∇ · wn+1
j,h , qh), ∀qh ∈ Y h,0

f ,

rn+1
j,h |I = 0,

∂rn+1

j,h

∂n̂f
|∂Df\I = 0,

then updating un+1
j,h and pn+1

j,h by

(un+1
j,h , vh)f = (wn+1

j,h , vh)f −∆t(∇rn+1
j,h , vh)f , ∀vh ∈ Xh

f ,

9



pn+1
j,h = rn+1

j,h + pnj,h − ε∇ · wn+1
j,h .

For the next timestep iteration, we update

Rn+1
j,h = G

(
ξn+1
j,h E(˜̃un+1

j,h ,
˜̃
φn+1
j,h )

)
(3.3)

and proceed to the next timestep iteration. Since ξn+1
j,h is a ratio of the SAV to itself, we should expect the

result to be close to one.
Theorem 3.1. The scalar ξn+1

j,h in (3.2) and Rn+1
j,h in (3.3) are guaranteed to be positive at all timesteps.

Proof. By definition (1.4), F (R0
j,h) > 0 so long as R0

j,h = G (E(u0j,h, φ
0
j,h)) > 0. The energy function

E(u, φ) is always positive. Since |Sn+1
j,h | − Sn+1

j,h ≥ 0, the initially computed ξn+1
j,h is ensured positive. Then

by induction, ξn+1
j,h at any timestep is guaranteed positive.

Once it’s ensured ξn+1
j,h > 0, from the definition (1.5) we can guarantee Rn+1

j,h in (3.3) is positive.

3.2. BDF2. For Algorithm (1.2), we develop an efficient implementation with the same approach. Note
solving Algorithm (1.2) is equivalent the following:

gPAV-BDF2-Projection: solve the following four subproblems for ŵn+1
j,h , φ̂n+1

j,h , w̆n+1
j,h , φ̆n+1

j,h respectively.

(BDF2 sub-problem 1): Find ŵn+1
j,h ∈ Xh

f satisfying ∀ vh ∈ Xh,0
f ,





3

2∆t

(
ŵn+1

j,h , vh

)
f
+ ν(∇ŵn+1

j,h ,∇vh)f

= (fn+1
f,j , vh)f +

2

∆t

(
unj,h, vh

)
f
− 1

2∆t

(
un−1
j,h , vh

)
f
+
(
p̃n+1
j,h ,∇ · vh

)
,

ŵn+1
j,h |∂Df\I = an+1

j,h .

(BDF2 sub-problem 2): Find φ̂n+1
j,h ∈ Xh

p satisfying ∀ ψh ∈ Xh,0
p ,





3gS0

2∆t

(
φ̂n+1
j,h , ψh

)
p
+ g(K̄ ∇φ̂n+1

j,h ,∇ψh)p = g(fn+1
p,j , ψh)p +

2gS0

∆t

(
φnj,h, ψh

)
p
− gS0

2∆t

(
φn−1
j,h , ψh

)
p

− g((Kj − K̄ )∇(φ̃n+1
j,h ,∇ψh)p,

φ̂n+1
j,h |∂Dp\I = bn+1

j,h .

(BDF2 sub-problem 3): Find w̆n+1
j,h ∈ Xh

f satisfying ∀ vh ∈ Xh,0
f ,





3

2∆t

(
w̆n+1

j,h , vh

)
f
+ ν(∇w̆n+1

j,h ,∇vh)f = −
∑

i

∫

I

ηi,j(ũ
n+1
j,h · τ̂i)(vh · τ̂i) ds− cI(vh, φ̃

n+1
j,h ),

w̆n+1
j,h |∂Df\I = 0.

(BDF2 sub-problem 4): Find φ̆n+1
j,h ∈ Xh

p satisfying ∀ ψh ∈ Xh,0
p ,





3gS0

2∆t

(
φ̆n+1
j,h , ψh

)
p
+ g(K̄ ∇φ̆n+1

j,h ,∇ψh)p = cI(ũ
n+1
j,h , ψh),

φ̆n+1
j,h |∂Df\I = 0.

We use the following approximations,





˜̃vn+1
j,h = v̂n+1

j,h + v̆n+1
j,h ,

˜̃v
n+3/2
j,h =

3

2
˜̃vn+1
j,h − 1

2
vnj,h.

(3.4)

(3.5)

10



We update ξn+1
j,h as

ξn+1
j,h =

F (R
∗n+1/2
j,h ) + |Sn+1

j,h |∆t

E(˜̃u
n+ 3

2

j,h ,
˜̃
φ
n+ 3

2

j,h ) + ∆t
[
Hn+1

j,h + (|Sn+1
j,h | − Sn+1

j,h )
] , (3.6)

where

Hn+1
j,h = ν‖∇˜̃un+1

j,h ‖2f +
∑

i

∫

I

ηi,j(˜̃u
n+1
j,h · τ̂i)2 ds+ g

(
Kj∇ ˜̃

φn+1
j,h ,∇ ˜̃

φn+1
j,h

)

p

, (3.7)

Sn+1
j,h =

∫

Df

fn+1
f,j,h · ˜̃un+1

j,h dx+

∫

Dp

gfn+1
p,j,h · ˜̃φn+1

j,h dx (3.8)

+

∫

∂Df\I

νan+1
j,h · (∇˜̃un+1

j,h · n̂f ) ds−
∫

∂Df\I

an+1
j,h · n̂f

˜̃pn+1
j,h ds+

∫

∂Dp\I

gbn+1
j,h Kj∇ ˜̃

φn+1
j,h · n̂p ds.

Once we have ξn+1
j,h , using the solutions of above four sub-problems we can get wn+1

j,h , φn+1
j,h . The final

solution (un+1
j,h , pn+1

j,h ) can be obtained by first solving the pressure Poisson equation for rn+1
j,h ∈ Y h,0

f





(∇rn+1
j,h ,∇qh) = − 3

2∆t (∇ · wn+1
j,h , qh), ∀qh ∈ Y h,0

f ,

rn+1
j,h |I = 0,

∂rn+1

j,h

∂n̂f
|∂Df\I = 0,

then updating un+1
j,h and pn+1

j,h by

(un+1
j,h , vh)f = (wn+1

j,h , vh)f − 2

3
∆t(∇rn+1

j,h , vh)f , ∀vh ∈ Xh
f ,

pn+1
j,h = rn+1

j,h + 2pnj,h − pn−1
j,h − ε∇ · wn+1

j,h .

For the next timestep iteration, we update R
∗n+3/2
j,h as follows:





R
∗n+3/2
j,h = G

(
ξn+1
j,h E(˜̃u

n+3/2
j,h ,

˜̃
φ
n+3/2
j,h )

)
,

Rn+1
j,h =

2

3
R
∗n+3/2
j,h +

1

3
Rn

j,h.

(3.9)

(3.10)

Theorem 3.2. The scalar ξn+1
j,h in (3.6) and Rn+1

j,h in (3.10) are guaranteed to be positive at timesteps
n ≥ 1.

Proof. R
∗3/2
j,h can be easily initialized as

R
∗3/2
j,h = G

(
E(u∗3/2j,h , φ

∗3/2
j,h )

)
, (3.11)

which by definition (1.5) is guaranteed positive. Again by definition (1.4), F (R
∗3/2
j,h ) > 0. The argument for

positivity of ξn+1
j,h proceeds identically to that made in the proof of Theorem (2.2).

Once it’s ensured ξn+1
j,h > 0, again from definition (1.5) we can guarantee R

∗3/2
j,h in (3.9) is positive. It’s

also guaranteed R1
j,h is positive when initialized as G

(
E(u1j,h, φ

1
j,h)
)
. Thus we conclude by induction that

Rn+1
j,h in (3.10) will be positive for all n ≥ 1.

3.3. Algebraic systems. The proposed gPAV-BDF2-Projection ensemble scheme will be compared
to other schemes such as the gPAV-BDF2-Projection nonensemble scheme, the gPAV-BDF2 ensemble and
nonensemble schemes (without projection) for computational efficiency check in Sec. 4.2. So we state below
the difference among these schemes in terms of algebraic systems after spatial discretization by the finite
element method.

Let Mu and Su denote the mass and stiffness matrices for u1. Coefficient matrices corresponding to
different schemes in Sec. 4.2 (efficiency test) are listed below.
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1. gPAV-BDF2-Projection ensemble: coefficient matrices for solving ŵn+1
j,h and w̆n+1

j,h are both

A1 =




3
2∆tMu + νSu 0 0

0 3
2∆tMu + νSu 0

0 0 3
2∆tMu + νSu


 ,

so the three components of ŵn+1
j,h or w̆n+1

j,h can be solved independently and simutaneously.

2. gPAV-BDF2-Projection nonensemble: coefficient matrices for solving ŵn+1
j,h and w̆n+1

j,h are both

A
j
2 = A1 +Bj ,

where Bj is the finite element matrix corresponding to the bilinear form

a(u, v) =
∑

i

∫

I

ηi,j(u · τ̂i)(v · τ̂i).

Since A
j
2 depends on j and is not block-diagonal, the three components of ŵn+1

j,h or w̆n+1
j,h cannot be

solved independently nor simutaneously.
3. gPAV-BDF2 ensemble: coefficient matrices for solving the two subproblems w.r.t. un+1

j,h are both

A3 =

(
A1 +B −C

−CT 0

)
or

(
A1 −C

−CT 0

)
in a more radical way.

Here C is the finite element matrix corresponding to the blinear form b(u, p) = (p,∇ · u)f and

B = 1
J

J∑
j=1

Bj .

4. gPAV-BDF2 nonensemble: coefficient matrices for solving the two subproblems w.r.t. un+1
j,h are both

A
j
4 =

(
A1 +Bj −C

−CT 0

)
.

In summary, the gPAV-BDF2-Projection ensemble scheme results in a common coefficient matrix for
all J realizations, thus simultaneous computation for each single component of u can proceed using LU
factorization or the block CG iterative solver. In contrast, the other schemes either need to solve u1, u2,
u3, and p together or need to handle J realizations one by one. In Sec. 4.2, we will use iterative solvers to
observe computational efficiency. Specifically, for matrix A1 and A

j
2, the (block) CG solver with multigrid

preconditioner is enough. For the matrix A3 and A
j
4, however, the (block) GMRES method needs to be

used.
Remark 3.3. The SAV-BDF2AC ensemble method proposed in [34] has a coefficient matrix

AuAC = A1 +B+
1

3α∆t
D,

where D is the finite element matrix associated with the blinear form d(u, v) = (∇ · u,∇ · v)f . Note that
AuAC is not block diagonal, so the three components u1, u2, u3 cannot be solved independently.

4. Numerical examples. This section presents some numerical tests on validating the convergence
rate, efficiency, and feasibility in application. We use F (χ) =

√
χ in all of the following tests.

4.1. Convergence test. To validate the convergence rate of the proposed algorithms, we use an an-
alytic solution defined on Df = (0, 1) × (1, 2) and Dp = (0, 1) × (0, 1) with interface I = [0, 1] × {1}. It
writes

u(x, y, t) = (u1(x, y, t), u2(x, y, t)),

u1(x, y, t) =
(
x2(y − 1)2 + exp(y/

√
k11)

)
cos(t),
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Table 3.1: Convergence rates of the gPAV-BE-Projection ensemble algorithm for u, p, φ with J = 3, ∆t = h.

∆t ‖uh − u‖E,1
H1 Rate ‖uh − u‖E,2

H1 Rate ‖uh − u‖E,3
H1 Rate

1/8 1.253× 10−1 — 1.348× 10−1 — 1.473× 10−1 —
1/16 6.083× 10−2 1.04 6.587× 10−2 1.03 7.239× 10−2 1.03
1/32 2.962× 10−2 1.04 3.222× 10−2 1.03 3.558× 10−2 1.02
1/64 1.444× 10−2 1.04 1.577× 10−2 1.03 1.749× 10−2 1.02
1/128 7.065× 10−3 1.03 7.746× 10−3 1.03 8.618× 10−3 1.02

∆t ‖ph − p‖E,1
L2 Rate ‖ph − p‖E,2

L2 Rate ‖ph − p‖E,3
L2 Rate

1/8 1.027× 10−1 — 1.089× 10−1 — 1.217× 10−1 —
1/16 4.769× 10−2 1.11 5.135× 10−2 1.08 5.849× 10−2 1.06
1/32 2.294× 10−2 1.06 2.520× 10−2 1.03 2.915× 10−2 1.00
1/64 1.126× 10−2 1.03 1.259× 10−2 1.00 1.473× 10−2 0.98
1/128 5.598× 10−3 1.01 6.338× 10−3 0.99 7.472× 10−3 0.98

∆t ‖φh − φ‖E,1
H1 Rate ‖φh − φ‖E,2

H1 Rate ‖φh − φ‖E,3
H1 Rate

1/8 8.023× 10−2 — 4.955× 10−2 — 4.920× 10−2 —
1/16 4.005× 10−2 1.00 2.474× 10−2 1.00 2.461× 10−2 1.00
1/32 1.988× 10−2 1.01 1.222× 10−2 1.02 1.223× 10−2 1.01
1/64 9.858× 10−3 1.01 6.023× 10−3 1.02 6.068× 10−3 1.01
1/128 4.890× 10−3 1.01 2.969× 10−3 1.02 3.014× 10−3 1.01

Table 3.2: Convergence rates of the gPAV-BDF2-Projection ensemble algorithm for u, p, φ with J = 3,
∆t = h.

∆t ‖uh − u‖E,1
H1 Rate ‖uh − u‖E,2

H1 Rate ‖uh − u‖E,3
H1 Rate

1/8 3.651× 10−3 — 3.906× 10−3 — 4.200× 10−3 —
1/16 1.028× 10−3 1.83 1.103× 10−3 1.83 1.194× 10−3 1.82
1/32 2.652× 10−4 1.96 2.835× 10−4 1.96 3.043× 10−4 1.97
1/64 6.442× 10−5 2.04 6.795× 10−5 2.06 7.113× 10−5 2.10
1/128 1.458× 10−5 2.14 1.483× 10−5 2.20 1.450× 10−5 2.29

∆t ‖ph − p‖E,1
L2 Rate ‖ph − p‖E,2

L2 Rate ‖ph − p‖E,3
L2 Rate

1/8 7.350× 10−3 — 7.878× 10−3 — 8.579× 10−3 —
1/16 1.926× 10−3 1.93 2.081× 10−3 1.92 2.278× 10−3 1.91
1/32 4.933× 10−4 1.96 5.339× 10−4 1.96 5.840× 10−4 1.96
1/64 1.238× 10−4 1.99 1.334× 10−4 2.00 1.448× 10−4 2.01
1/128 3.025× 10−5 2.03 3.227× 10−5 2.05 3.440× 10−5 2.07

∆t ‖φh − φ‖E,1
H1 Rate ‖φh − φ‖E,2

H1 Rate ‖φh − φ‖E,3
H1 Rate

1/8 4.009× 10−3 — 4.039× 10−3 — 4.192× 10−3 —
1/16 7.958× 10−4 2.33 7.422× 10−4 2.44 7.528× 10−4 2.48
1/32 1.765× 10−4 2.17 1.483× 10−4 2.32 1.445× 10−4 2.38
1/64 4.102× 10−5 2.11 3.114× 10−5 2.25 2.890× 10−5 2.32
1/128 9.502× 10−6 2.11 6.394× 10−6 2.28 5.626× 10−6 2.36

13



u2(x, y, t) =
(2
3
x(1− y)3 + k22(2− π sin(πx)

)
cos(t),

p(x, y, t) = (2− π sin(πx)) sin(0.5πy) cos(t),

φ(x, y, t) = (2− π sin(πx))(1− y − cos(πy)) cos(t).

In this setup, the interface and initial conditions are compatible, and the forcing terms are fomulated ac-
cording to the exact solutions. For model parameters, we set g, ν, S0, and αBJS to be one, and the hydraulic

conductivity tensor to be

[
k11 0
0 k22

]
with k11 and k22 being constants. The parameter ε in pressure projec-

tion is 0.8.
For ensemble computation, we assume J = 3 samples of k11 and k22 are seleted from a uniform distri-

bution:

kj11 = 1− 0.1(j − 1), kj22 = 1 + 0.1(j − 1), j = 1, 2, 3.

Then we get three samples for the initial conditions, boundary conditions, and forcing terms since they all
depend on the values of k11 and k22. The sample size three was chosen just for computational convenience,
while a much larger size such as 1000 is also fine.

The expected computational errors ‖uh − u‖H1 , ‖ph − p‖L2 , and ‖φh − φ‖H1 are O(h2 +∆t) for gPAV-
BE-Projection and O(h2 +∆t2) for gPAV-BDF2-Projection. In the simulation, we set the mesh size h and
time step size ∆t to be equal, and they are uniformly refined simutaneously, from the initial time step size
∆t = 1/8 to final size ∆t = 1/128. In this setting, the computational errors should be O(∆t) and O(∆t2) for
BE and BDF2 respectively. We report the computational errors at the final time T = 5 by the gPAV-BE-
Projection scheme in Table 3.1 for the fluid velocity u, fluid pressure p, and hydraulic head φ, illustrating
that the gPAV-BE-Projection algorithm is first order convergent in time. We also report in Table 3.2 the
errors computed by the gPAV-BDF2-Projection scheme, from which we can easily validate the expected
second order convergence rate.

4.2. Efficiency test. In this experiment, we take a random hydraulic conductivity tensor K (x, y, ω)
to form a stochastic problem and consider the computation of ensemble flows. Here ω ∈ Ω and (Ω,F ,P) is
a complete probability space. The hydraulic conductivity K (x, y, ω) is assumed to be a diagonal stochastic
tensor diag(k11(x, y, ω), k22(x, y, ω)) with diagonal entries given by the Karhunen-Loève expansion

k11(x, y, ω) = k22(x, y, ω) = a0 + σ
√
λ0Y0(ω) +

nf∑

i=1

σ
√
λi[Yi(ω) cos(iπx) + Ynf+i(ω) sin(iπx))], (4.1)

where λ0 = 1
2

√
πLc, λi =

√
πLcexp(− 1

4 (iπLc)
2) for i = 1, · · · , nf , and Y0, · · · , Y2nf

are indepdendent and

identically uniformly distributed in [−
√
3,
√
3] having zero mean and unit variance. In the computation, we

set Lc = 0.25, a0 = 1, σ = 0.15, and nf = 2, so there are 5 random variables Y0, Y1, · · · , Y4 in total.
The free and porus medias are Df = (0, 1)×(1, 2) and Dp = (0, 1)×(0, 1) respectively and their interface

is I = [0, 1] × {1}. Values for the physical parameters are mostly the same as in Sec. 4.1, except that the
initial condition, Dirichlet boundary condition, and forcing terms are given according to

u(x, y, t, ω) = (u1(x, y, t, ω), u2(x, y, t, ω)),

u1(x, y, t, ω) = Y0(ω)
(
y2 − 2y + 1)

)
cos(t),

u2(x, y, t, ω) = Y1(ω)
(
x2 − x

)
cos(t),

φ(x, y, t, ω) = Y2(ω)y cos(t),

ff = (Y3(ω)xy, Y3(ω)xy),

fp = Y4(ω)xy.

For the stochastic Stokes-Darcy problem, we solve it by a sparse-grid collocation method utilizing the Smolyak
formula. Taking h = 1/50, ∆t = 1/100, and J = 241 collocation points, we simulate the ensemble flow until
T = 2 using the gPAV-BDF2-Projection ensemble and nonensemble schemes, gPAV-BDF2 ensemble and
nonensemble schemes (no Projection).
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Table 4.1: Efficiency performance of the proposed gPAV-BDF2-Projection ensemble scheme versus other
schemes, tested using sparse-grid with J = 241 collocation points, h = 1/50,∆t = 1/100, T = 2. Below tcpu
denotes the CPU time in seconds.

gPAV-BDF2-
Projection
ensemble

gPAV-BDF2-
Projection
nonensemble

gPAV-BDF2
ensemble

gPAV-BDF2
nonensemble

Average tcpu per time step 10.35 s 0.11×241 s 26.42 s 1.22×241 s

Total CPU time 2070 s 5457 s 5284 s 58883 s

(a) gPAV-BDF2-Projection ensemble

(b) gPAV-BDF2-Projection nonensemble (c) gPAV-BDF2 ensemble (d) gPAV-BDF2 nonensemble

Fig. 4.1: Simulations at T = 2 by four different schemes using the sparse-grid method with J = 241
collocation points, h = 1/50,∆t = 1/100. The streamlines of expectations of fluid flow velocity u and porous
media flow velocity v = −K ∇φ are plotted in the left of each subfigure; expectations of p and φ are plotted
in the right of each subfigure.

The CPU times using the mentioned four different schemes are listed in Table 4.1, which shows that the
gPAV-BDF2-Projection ensemble scheme outperforms all the other schemes. The win on efficiency thanks
to simultaneous computation of 241 solutions in which redundant information due to linear dependence of
multiple samples are removed; one should also own to the usage of projection method in combination with
gPAV so that the system for solving u1, u2, p is fully decoupled into three systems.

The streamlines of the expectations of fluid flow velocity u and porous media flow velocity v = −K ∇φ
are plotted in the left of each subfigure of Figure 4.1. The expectations of fluid flow pressure p and hydraulic
head φ are also plotted in the right of each subfigure. From the figure we can observe that the four numerical
schemes in efficiency comparison provide almost identical simulations.
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4.3. Simulating the extraction of shale oil. In this experiment, we simulate the extraction of shale
oil by a vertical production wellbore. The computational domain is illustrated in Fig. 4.2, which consists of
an oil reservoir represented by Dp and a vertical production wellbore denoted by the pipe Df . The setup here
is mainly for validating the feasibility of gPAV-BDF2-Projection. More realistic features can be considered,
for instance the pipe can be replaced by a multistage hydraulic fractured vertical wellbore with cased-hole
completion [7].

The physical parameters g, ν, K , and αBJS are set to be one. For boundary conditions, we set φ = 1
on ∂Dp\I, u = (0, 0)T on the vertical sides of the pipe above the reservoir and u = (0, 1)T on the top of
the pipe. We will vary the specific mass storativity coefficient S0 in simulation. The simulated fluid flow
velocity u and porous media flow velocity v = −K ∇φ are then plotted in Figure 4.5 for t = 0.2, 0.5, 1.0 from
top to bottom. In particular, the left of Figure 4.5 corresponds to S0 = 10−5, while the right corresponds
to S0 = 1. From the figure we can see that when S0 is relatively large, which implies greater oil storage
capacity, it takes longer time for the oil extraction process to reach a steady state.

Fig. 4.2: Domains for the simulation of oil extraction.

4.4. Simulating the subsurface flow in a karst aquifer. Inspired by [39], we condier a realistic
simulation of the subsurface flow in a karst aquifer. The computational domain is shown in Figure 4.4,
where the free flow domain Df with a curvy boundary ABCDEFGH represents a T-shape conduit, and the
porous media flow domain Dp simulates the karst aquifer. The two domains together form a unie square and
they interact at the the curvy interfaces BCD,EFG,HA. Specifically, the computational domain is given
by A = (0, 0.8), B = (0, 0.55), C = (0.55, 0.4), D = (0.7, 0), E = (0.85, 0), F = (0.75, 0.45), G = (1, 0.5), and
H = (1, 0.7). The physical parameters g, ν, and S0 are set to be one, and αBJS = 0.1. The source terms in
the Stokes-Darcy equations are set to be zero and φ = 0 on ∂Dp\I. The hydraulic conductivity K (x, y) is
assumed to be mI, where m is the conductivity magnitude determing how easily the water can flow through
the interface. The inflow/outflow boundary condition for u is

u =





(s1, 0) on AB
(0, s2) on DE
(s3, 0) on GH

,

where s1, s2 and s3 are constants.
Simulations are performed for different scenarios using by the gPAV-BDF2-Projection scheme with

h = 0.011 and ∆t = 0.002. For simulation, we assume the inflow comes from the left boundary AB,
and flows out through the bottom and right outlets DE,GH. The boundary conditions should satisfy
s1 > 0, s2 < 0, s3 > 0. Two cases are taken into consideration: a balanced case with s1 = 2, s2 = −1, s3 = 1
and an imbalanced case with s1 = 2, s2 = −0.1, s3 = 0.2. Here “imbalanced” means the infow speed is much
higher than the outflow speed. To study the effect of the hydraulic conductivity on the filtration, we also
vary the magnitude m among 1, 10−2, and 10−4.
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t = 0.2, S0 = 10−5 t = 0.2, S0 = 1.0

t = 0.5, S0 = 10−5 t = 0.5, S0 = 1.0

t = 1.0, S0 = 10−5 t = 1.0, S0 = 1.0

Fig. 4.3: Fluid flow velocity u and porous media flow velocity v = −K ∇φ simulated with different S0. Left:
S0 = 10−5; right: S0 = 1. From top to bottom: t = 0.2, 0.5, 1.0.
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Fig. 4.4: Domains for the simulation of subsurface flow in a karst aquifer.

The simulated fluid flow velocity u and porous media flow velocity v = −K ∇φ are then plotted in
Figure 4.5. In particular, the left of the figure corresponds to s1 = 2, s2 = −1, s3 = 1, while the right
corresponds to s1 = 2, s2 = −0.1, s3 = 0.2. From top to bottom of the figure, the conductivity magnitudes
are m = 1, 10−2, 10−4. From Figure 4.5 we can see that when m decreases, the flow speed in porous
media is significantly reduced, and the flow filtrated from the conduit cannot stream too much further if the
hydraulic conductivity is too small (see the bottome of Figure 4.5).

We then consider another situation: the inflow comes from both the left boundary AB and the right
inlet GH, and steams out through the bottom outlet DE. Thus the boundary conditions should satisfy
s1 > 0, s2 < 0, s3 < 0. A representative balanced case will be s1 = 1, s2 = −1, s3 = −1 and an imbalanced
case be s1 = 0.5, s2 = −1, s3 = −2. The simulations are reported in Figure 4.6. Again, when the hydraulic
conductivty is small, the stream meanders very slowly from the conduit to the porous media.

5. Conclusions. In this report we proposed two highly efficient ensemble algorithms based on the
gPAV approach and the rotational pressure correction method. We proved the proposed algorithms are
unconditionally stable with respect to the modified energy. With the adoption of gPAV approach we were
also able to make use of the rotational pressure correction method to fully decouple all the variables in the
equations including all the components of the velocity field, leading to much smaller linear systems to be
solved at each time step. Additionally, all the ensemble members share the same constant coefficient matrix,
for which the efficient block CG method can be used to solve all ensemble members together at significantly
reduced computational cost using much lest CPU time.
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