HIGHLY EFFICIENT ENSEMBLE ALGORITHMS FOR COMPUTING THE
STOKES-DARCY EQUATIONS

NAN JIANG* AND HUANHUAN YANG f

Abstract. In this report we propose two highly efficient ensemble algorithms incorporating the gPAV and the rotational
pressure correction methods for computing Stokes-Darcy flow ensembles. All variables are fully decoupled including the three
components of the velocity, leading to smaller linear systems to be solved at each time step. Moreover, all ensemble members
share the same constant coefficient matrix for which the fast block CG method can be applied for computing the ensemble at
one pass at significantly reduced computational cost. We prove the two new ensemble algorithms are unconditionally stable with
respect to the modified energy without any constraints on the uncertain parameters or the time steps. We will provide details
of implementation and discuss how to efficiently solve the corresponding linear systems. Numerical examples are presented to
show the efficiency and effectiveness of the algorithms.
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1. Introduction. Uncertainty quantification (UQ) usually requires repeated simulations of a flow prob-
lem with random inputs of an uncertain parameter. This leads to a high demand on computer resources
especially for complex flow problems. There have been significant efforts put into studying efficient numerical
methods to reduce the computational cost for UQ, including multilevel Monte Carlo method [4], quasi-Monte
Carlo sequences [35], Latin hypercube sampling [19], centroidal Voronoi tessellations [45], and more recently
developed stochastic collocation methods [3, 51], non-intrusive polynomial chaos methods [21, 44], and en-
semble algorithms [25]. In particular, unlike other methods that aim to reduce the number of simulations
or samples required for effective UQ, the ensemble algorithms are specially designed for fast computation of
an ensemble of flows in response to different flow parameters and its goal is to be able to compute a large
ensemble at significantly reduced computational cost. The ensemble algorithms were initially studied for
nonlinear flow problems [25], and the idea is to decompose the nonlinear term into two parts: the mean and
the fluctuation. The mean is independent of the ensemble index and will be the same for all realizations,
while the fluctuation is different for each realization but is lagged to the previous timesteps so that it goes
to the right hand side of the system and does not contribute to the coefficient matrix. Consequently all
ensemble members computed will have the same coefficient matrix at each timestep and efficient block linear
solvers such as block CG, block GMRES, can be used to compute all realizations at one pass at significantly
reduced computational cost. The ensemble algorithms have been extensively tested on various nonlinear
flow problems such as the Navier-Stokes flows [16, 17, 18, 24, 26, 31, 32, 48, 49], MHD flows [1, 2, 30, 42],
natural convection [13, 14] and fluid-fluid interactions [11], and demonstrated to be very effective in reduc-
ing computational cost while maintaining comparable accuracy. The ensemble timestepping idea has also
been extended to linear PDE models such as the heat equations [13, 40, 41] and the Stokes-Darcy equations
[20, 29, 27], to handle uncertain model parameters.

The Stokes-Darcy equations are a coupled PDE system that models the coupling of a free surface flow
and a subsurface porous media flow that appears in many geophysical applications. The main difficulties in
designing efficient and long time stable numerical schemes for computing the system include 1) the coupling
terms in the discrete schemes usually can not be properly bounded and lead to a time step condition to ensure
stability; 2) projection type methods that alleviate the incompressibility constraint in the Stokes equations
do not provide intended efficiency as it only decouples the computation of pressure from the velocity but
not the three components of the velocity field due to a term Y, [, ni(u - 7;)(v - 7;) ds from the interface
conditions of the Stokes-Darcy model. There have been some recent developments to address the first issue,
such as adding a stabilization [28] to remove the time step condition and using the SAV approach to avoid
bounding the coupling terms [33, 34]. To our best knowledge, the second issue has not been addressed
in the literature. In this report, we propose two ensemble algorithms that have both issues addressed by
adopting the generalized positive auxiliary variable (gPAV) idea [52]. The two ensemble algorithms are 1)
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unconditionally stable without any time step constraints; 2) fully decoupled with the three components of
the velocity w1, us, us, the pressure p, the hydraulic head ¢ computed separately.

Let D denote the surface fluid flow region and D, the porous media flow region, where D¢, D, C
R%(d = 2,3) are both open, bounded domains. These two domains lie across an interface, I, from each other
and Dy N D, =0,D; N D, = I, see Figure 1.1.

Fig. 1.1: A sketch of the porous median domain D,,, fluid domain Dy, and the interface I.

The linear Stokes-Darcy system [5, 10] that models the coupling of the surface and porous media flows
is: find fluid velocity u(x,t), fluid pressure p(x,t), and hydraulic head ¢(x,t) that satisfy

Ou—vAu+Vp = fr(x,t),V-u=0 in D;x(0,T],
SoOp —V - (K (x)V) = fp(z,t) in Dpx(0,T], (1.1)
#(x,0) = ¢°(x) in D, and u(x,0) = v°(z) in Dy,
o(z,t) = b(z,t) in 0D\Ix(0,T] and u(z,t) = a(x,t) in 0D N\Ix(0,T),
where v, J, So, fr, fp, and T are the kinematic viscosity, the hydraulic conductivity tensor, specific mass
storativity coefficient (positive), the external body force density, the sink/source term, and the final time,
respectively. Let 7y, denote the outward unit normal vector on I associated with Dy, where ny = —7,.

The coupling conditions across I are conservation of mass, balance of forces, and the Beavers-Joseph-Saffman
condition on the tangential velocity [6, 46, 22]:

u-ny—HVe-np=0and p—vny-Vu-ny=gpon Ix(0,T],

—vT; - Vu-ny = \/?‘:B"Tsau -7; on Ix(0,T], for any tangential vector 7; on I.

Here, g is the gravity constant, apjg is a dimensionless constant in the Beavers-Joseph-Saffman condition
depending only on the structure of the porous medium. The conductivity 2 is assumed to be symmetric
positive definite (SPD).
We consider computing an ensemble of J Stokes-Darcy systems, corresponding to J different parameter
sets (U?a ¢9’ aj> b5 f1.5 s %)a J=1..J,
Owu; — vAu; + Vp; = fri(z,t), V-u; =0, in Dy,
50010 =V - (Hi(2)V ;) = fpj(x,t), in Dy, (1.2)
¢;(x,0) = ¢Y(x), in D), and u;(z,0) = u)(z), in Dy,
¢j(x,t) = bj(x,t), in OD,\I and u,;(x,t) = a;(z,t), in IDf\I.

We assume there are uncertainties in the initial conditions u®(z),¢°(z), Dirichlet boundary conditions
a(z,t),b(z,t), forcing terms fr(xz,t), fp(x,t) and the hydraulic conductivity tensor % (), J is the number of

total samples, and (u?, ¢?, a;,bi, fr.j fp.j, ;) is one of the samples drawn from the respective probabilistic

distributions. Let ¢ = l] ijl J; denote the ensemble mean of the hydraulic conductivity tensor .%; and

P QABJS
let n; ; = e



The gPAV methods are first proposed in [52] for dissipative systems and have been studied for different
PDE models, e.g., Cahn-Hilliard [43], Navier-Stokes [31, 38], MHD [2]. They provide a general framework
to devise unconditionally stable linear numerical schemes for nonlinear systems and guarantee that the
computed scalar auxiliary variables are positive. Herein we extend this approach to the linear Stokes-Darcy
model and utilize it to design unconditionally stable numerical schemes by avoiding bounding the coupling
terms in the model. We are also able to lag the interface term Y, [, n;(u-7;)(v - 7;) ds to the previous time
steps and have all components of the velocity field decoupled leading to highly efficient ensemble schemes.

We define a shifted energy of the form

E(t) = Euj, ;) = / L P+ /

S
E219,de + Co, (1.3)
Dy Dy

where E(u;, ¢;) is the total kinetic energy of the system, which for physical examples is bounded from below,
and Cp is an arbitrarily small positive constant chosen in such a way that E;(t) > 0 for 0 < ¢ < T. Next,
let .# be any one-to-one increasing differentiable function with .# ~! = ¢ such that

{ Z(x) >0, x>0, (1.4)
Y(x) >0, x>0. (1.5)
The scalar variable R;(t) is defined by
R;(t) =¥9(E;), (1.6)
Ej(t) = Z(R;) 1.7
With E; as in (1.3), R;(¢) then satisfies
dR; ou, 00,
/ j j j
Il A e’ s 1y 1.
7(Ry) ] /Df uj- o dx+/ngSo¢] oy (18)

Since ‘gJ(ERj ) =1 for all 4, we may write
J

dR; ou; 0
yl(Rj) dt] :/ uj - a,L;de_'_/ gSO¢j' ;;Jdit
Dy Dy
[ Z(Ry)

E,

J

— 1} |:I/(Vu]',vuj)f = (P, V- u5),

—/ v(Vug -7if) - uj d5+/ pi(uj-ng)ds — (frj,uj)s
oD\ oD\

+9(HV ¢,V j)p — /a 99 K5V ¢j - i ds — g(fp,5, ¢)p]

Dy

- y](;jj) ([;/jﬁm‘(ug‘ ) (uj - 7) ds + cr(uy, ) — CI(%%‘)]

- [;/jni,j(uj 7)) ds + er(ug; ¢5) — Cl(uw%)])

F(R;
+ |:]. — 72, J):| ‘ ff,j . ’LLjd$ +/ gfpyj . ¢)de
j D; ,

p

+/ vaj - (Vu; -ny)ds 7/ a; - nyp;ds +/ gb; ;N ¢ -y ds
D \I AD\I d

_ - Ouy 99
_/Df ot d“/Dp 95005 gy 4
F(R; ~ ~
+ [V(Vujavuj)f + ;;J)Z/I”ivj(“j Ti)(uy - 7i) ds — (pj, V- uj),
J i
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F(R -
I8 rtugso)— [ oueng)ugds+ [ gyl ag)ds = (frs);
J an\I an\I

+

7 (R;)
E;

(Y85, — T s ) / 96,56, - Ty ds — g(fo. w>p]

p\L

TRy
é )[ v(Vuj, Vu,) f—l—Z/nw uj - 7)(uj - 7i) ds — (pj, V- uj);

+ cr(uj, ¢5) — / v(Vuj -nip) - ujds + / pj(uj-ng)ds — (frj,u;)s
OD\I OD\I

+ 9(HV ¢, Vj)p — cr(uj, ;) — / 9o AN bj - npds — g(fp.js ¢)p]

F (R,
+ [1— é,])} ‘ ff,j'ujd33+/ 9fpi - Pidx
J Df Dy

+/ va; - (Vu, -ﬁf)ds—/ a; - nyp; ds—l—/ gb; NV ¢ -y, ds
D \I OD\I OD\I
:/ uj-ade—F/ 9506, - d)jd

Dy ot D,

ﬁ
[ v(Vuj, Vu;) g + Z/nw uj - 7)(uj - 7i) ds — (pj, V- uj),

F(R; ~
+ é,j)cl(%@)—/ V(Vuj'”f)'ujd5+/ pj(uj-nig)ds — (frj,u;)y
J 8Df\] BDJ\I
T (R;) _
+9(HiV 0, Vbj)p — —p—ciluj, ¢5) — / . 99; NV ¢j -y ds — g(fp.5,1)p
J P
F(R; - ~ .
- E(CJ) [V(VUj,VUj)f+Z/ﬂi’j(Uj~T¢)(uj'~7'i) dS*/ V(Vl%’ﬂf)"ll,j dS*(ffJ,uj')f
J i I 6D‘f\I

+ / pi(uj-nyg)ds+ g( ANV, Vi)p — / 99 H#;V ;- ds — g( fp.j, M
OD\I

ODp\I
F(R;
+ |:1 — (j):| ‘ ffyj ~’LLjdl’ +/ gfpyj . ¢Jd$
Dy D

E; .

+/ vaj - (Vu; -ny)ds — / a; - nyp; der/ gb; ;N ¢ - iy ds|.
DI DI DI

Note that all the additional terms above amount to adding zero to (1.8). We next present two uncondi-
tionally stable ensemble methods with shared coefficient matrix across different realizations and time steps
for solving the Stokes-Darcy model, based on this reformulation. We will also incorporate the rotational
pressure correction method [8, 15, 50] to decouple the the computation of the pressure from the velocity
which also makes it possible to decouple all the components of the velocity. The main advantage of the
rotational pressure correction projection method for the Navier-Stokes/Stokes equations is that it alleviates
the incompressiblity constraint, decouples the pressure from velocity, and decouples all the components of
the velocity field. But for the Stokes-Darcy system considered here, the components of the velocity field are
difficult to decouple due to the term Y, [; n;(u-7;)(v-7;) ds from the interface condition, [36, 37]. With the
help of the gPAV approach, we will lag this term to previous time steps so that all the components of the
unknown velocity field are fully decoupled while still being able to construct unconditionally stable ensemble
schemes.

Define the function spaces:

Velocity: X; := (H'(Dy))",
Pressure: Qf := L*(Dy), Yj :={qe H'(Dy):q=0on I},



Hydraulic Head: X, := H'(D,).

The first order pressure correction ensemble scheme based on the Backward Euler time stepping and the
gPAV approach we propose is

ALGORITHM 1.1. Given u?
satisfying

?, ¢, and p}, find 'w;“rl e Xy ’.L"‘l € YO, "te Qy, and gb"“ € X,

w”.H_l —um” R R
(JAtj’v +1/(Vw;-l+1,Vv)f+£§L+1Z/I77i,j(u?~Ti)(v~n) ds — (p?7v'v)f (1.9)
f (3

+ & er(0,0) — / v(Vwi™ - fy) - vds + / pjo-fgds=(f{j ), e Xy,
AD\I OD\I

81””+1

(V75 V) + & (Vowi ™)y =0 =0, Sloppa =0, Ve €Yy,
(W) = i) — AUV, Yo X, (10)
p;z+1 n+1+p] V~w;”1,
ortt — gn . >
950 <A,w) + g(AVGTL V), + (A = A )V} V), — & e (uf, ) (1.11)
p

- / GOV Ty ds / GOt — VG - pds = g(fr,0)y, W EX
OD\I D \I

F Rn+1
et _ (R™) 7 (1.12)
J ~“n+1 n+1
E(uj J )
7 L= 950 5n
(@, 6) = 187 + 21651 + Co, (113)
(Rnﬂ) 7 (R ) wglﬂ R d);'lﬂ — 9
- = () s (e (114)
f P
|: (V n+1 vwn+1 +€n+12/7h,] . z n+1 A.) ds — (p;)vw;rl-l)f
+§?+lcl(w;‘+17¢?) —/ V(Vw;-’+1 -ﬁf)-a;”l ds—i—/ P (w ;H ny)ds
dDs\I OD\I
— (fr 0™+ g( AV V) + g((H — )V, V), — € er(uf, 65
- vt s [ G V0 Ry a3 05
_g;z+1 |:I/(V1:L?+1,V’L:L?+1)f + Z/Im’j(a;wrl ﬁ'\z)(ﬁ?+l 5_\1) ds
— V(Vfﬂ“ “ny) - a"ttds +/ 15"L+1(a’7’Jrl ny)ds — (f”“, ~"'H)
/an\I 3 f) 4 ODAT i j f3 2%
ST, = [ SRy ds -l )
dD\I
+ 1 -] / frj -éy+1dx+/ 9fpj - &1 dw
Dy Dy

+/ VCL;»H_l . (Vﬁ?“ -My)ds — / a?“ ~ﬁf§?+1 ds Jr/ gb?""lji/ngg?H - Mp ds|.
OD\I OD\I OD\I

, and ¢"+1 are first order approximations of u”'H, p;l'H, and qﬁ?"'l that will be defined later.
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Define

rbs/z Z 3ynt1 _ lv", gt = 2" — L, (1.15)
2 2
The second order ensemble scheme based on the second order backward differentiation formula (BDF2)
time stepping and the gPAV approach we propose is
ALGORITHM 1.2. Given u?fl, u?, (i)?*l, and ¢, for n > 1, find w;”l,u?H € Xy, 7”?+1 € Y?,
p;”l € Qy, and qS;“Ll € X, satisfying

3w"+1 4yn + 1t )
( DA v) Vet V) f+5"+12/77w w7 ds— (5, V- 0),
f

+E e (0,071 */ v(Vwitt - 7iy) 'Ud8+/ it -npds = (ffT vy, Yo e Xy,
aD\I D \I w1
1.16

Br
(VTnH Vq) + 557 (V - W?H q) =0, 7’?+1|I =0, 25 |6Df\1 =0, Vq € YJ97

(Wit v)y = (Wit o)y — A6V ), Yo e X, (1.17)

n+1_ n+1 n—1 Lot
p; T —i—2pJ p; — eV w; T,

n+1 n n—1
oS0 (3@ — 497 + ¢}
2At

,¢> +g(A VT V), + (G — AV, V), — & e (@)
p

- /6D \ g¢jv¢?+l ‘ﬁp ds */ 97/)(%/] - f)vé;“*‘l ‘ﬁp ds = g(f;jl,l/f)p, Vi € Xp, (1-18)

dD\I
%
F Rn+3/2
et _ ( i ) (1.19)
( Zn+3/2 ¢ +3/2)
n n =n S n
B2, 3002y = L R 4 0GR e 4 g, (1.20)
SR B (s 1) 4 gs (AT
At B 2At P g0 2At e
f P
{ (V™ v+t +§”+1Z/n” T (w7 ds = (5L Vwp ) (1.21)

+ £?+1cj(w?+1,¢;?+1) _ /(,)D y V(V’UJ?'H . ﬁf) . a?-ﬁ-l ds + /aD \Iﬁ;&-ﬁ-l( ;H—l .ﬁf) ds
s s

— (frgwl ™) s+ g( AV NG, + g(HG — )V V), = e (Al gt

_/ gb;’“quS?Hﬁpds—/ gb?*l(%—f)V$?+l~ﬁpds (fn+1 ¢;}+1)p
dDp\I aD,\I
UM A TASTED B RFTCASLASRORE
7
- v(Va - n -a’?+1ds+/ it at ng)ds — (Fp ant!
/aw( ) P A ds = (7,
AT ) B AT e o 37
P

+[1—§y+1} /D ff,j-ﬁ;t“d:cjt/D gfp,j-éyﬂdx
f P

+/ Va?+1 : (Vﬁ?“ ‘ng)ds — / a;-”rl ~ﬁfﬁ?+1 ds —|—/ gbyﬂt%/qu;?H -7y ds|.
DI D \I dD\I



3/2 = =
Here u;wr / , u?“ p;”rl

and ¢;L+1 that will be defined later.

The rest of the paper is outlined here. In Section 2, we prove the unconditionally long time stability of
the proposed algorithms. Section 3 presents an efficient way to implement our numerical algorithms. Section
4 numerically tests the proposed algorithms in terms of effectiveness and efficiency. Conclusion remarks are
presented in Section 5.

3/2
, (anr /2 and gb"“ are second order approrimations ofu , U

J ) )

n+3/2  nt+l ntl n+3/2
p; :¢j

2. Stability of the ensemble algorithms.

2.1. Backward Euler. THEOREM 2.1. With homogeneous Dirichlet boundary conditions on 0D \I
and 0D, \I, and forcing terms equal to zero, Algorithm (1.1) is unconditionally stable with respect to the
modified energy F(R;).

Proof.
Set v to wﬁJrl (1.9), set ¢ to (b"“ in (1.11), and add these to (1.14). Then one gets

T n (Rn+1 ~n =n ~\/=n ~
ﬂ(Rj - F(R}) = -At ( - gz:)bJr ) VHVUJ‘HH? + Z/Iﬂi,j(uj+1 -7'1-)(uj+1 -7;) ds (2.1)
z = F(RV ! g (Rpnt1
+g <%V¢?“,V¢?“) + 11— % S AL + %sjﬂ“m,
P E(u;H' ,¢§L+ ) E(u;L-‘r ,d);z-&- )

where
Sn+1 / fn+1 ~?+1dx+/ fn+1 5? Ly

/ z/a?+1 . (Vﬁ?“ ) ds — ag‘“ ,ﬁf5?+1 ds Jr/ gb?“%VgZ?“ iy ds.
ODNI oD \I aD,\I

Solving for . (R?H) gives

FRIT) =7 M‘%ngfl'f nzﬁil' cEa (2:2)
E@@+ gnth) J
where
HI = || Vi3 + Z/Im,j(a;“ )% ds +g(;@v$g+1,v$y+l>p >0,
Ifa; =0,b; =0, fr; =0 and f,; =0, then ST =0 and
F (R = = Z(f%y) T (2.3)

41 Tn41 j
B g I

Note the denominator in (2.3) is greater than or equal to 1. By definition (1.4), if R? > 0, then Q(Rg)) > 0.
In fact R? would be initialized as %(E(u?(x), gb(;(m))), which by definition (1.5) is guaranteed positive. Then
by induction, for any timestep n we have % (R?H) > 0 and

0<.Z(RIM <F(R}), n>0. (2.4)



2.2. BDF2. THEOREM 2.2. With homogeneous Dirichlet boundary conditions on 0D¢\I and 0Dy\I,
and forcing terms equal to zero, Algorithm (1.2) is unconditionally stable with respect to the modified energy
F(R;) as long as the approzimations of R;(t) at timestep 3 are positive.

Proof.

Set v to w;“Ll (1.16), set ¢ to QS”H (1.18), and add these to (1.21). Then one gets

k
Xn-+3/2 Xn+1/2 y(R;LH/Q) n+12 n+1 2N\ (Entl |~
PG = F R = b IV ) Jma@t R Ry as (25)
E(u; 7¢ 2)
. - F n+3/2 Ca n+3/2
+g<%9v¢?+l,w;‘“) +|1- :,E+§ +) S AL+ :,E+§ +) SpHiat
b B@E ot B, ot

where
S;H_l _ / f;Lj—l . a?—i-ldx _|_/ fn+1 ¢n+1dI
D; )

+ / val*t (Vi g ds — / af o mppit ds + / gby T AN I Ry ds.
ODs\I ODs\I 8D, \I

Solving for % (ﬁ?JFg/ %) gives

Xn n
y(ﬁ“i”/?) B y(Rj+1/2) n |Sj At (2.6)
7 o :"+% :nJF% n+1 n+1l) _ gn+l1 ' '
L+ At/E(a; 2, ¢; %) [HP T+ (1S7 = S7+h)]

where

o = AT+ Y [ R s o v va)
i I

p

Ifa; =0,b; =0, fr; =0and f,; =0, then S}IH =0 and

Xn+1/2
FRH?) = ;) . (2.7)
’ L+ At/B@ET 0 H

J 77 J

The denominator above is greater than or equal to 1. Now by deﬁnltlon (1.4), if it’s ensured the
approximation of R;(t) at timestep 3/2 is positive, i.e. R3/2 > 0, then #(R 3/2) > 0. Then by induction for
any timestep n > 1, % (Rn+3/2) > 0 and

0< Z(E < (B, >l (2.8)

0
Note that for the choice of .Z(x) = x? > 0 for all x € (—00,00), (2.8) and unconditional stability will
hold regardless of whether Rl/ > >0.

3. Implementation. Let X J'} be a finite element space approximating X; with spatial resolution A,
X]}}’O ={ve X}‘ :v=0on 0D;\I}. The space Q’}, th,,o c Yy, Xg and X;}*O are defined similarly.

3.1. Backward Euler. To efficiently implement Algorithm (1.1), we proceed in the following manner.
Assume

n+1 ~n+1 n+1 un+1 n+1 _ In+l n+1 in+1
Win = Win +€ Wih s ¢ ¢ +£J h Qth (31)



¢PAV-BE-Projection: solve the following four subproblems for 12);’;21, (;5?;17 “;”;Lrlgb;lzl respectively.

(BE sub-problem 1): Find ' € X} satisfying ¥ v, € X},

& (w;’;;l,vh> + V(VIIAJ;IZl?VUh)f = (f;f;r% n)f+ a7 (“?,m”h)f + (p}fh,V : vh)f,
ntl
Jh IaDf\l - ayh :
(BE sub-problem 2): Find (b"“ € X satisfying V ¢y, € X0,
Lo (3550 0n) +9(AVEE Vun),
= gyt un)y + R (S5 0n) = 9l = H)V(5). Vo)
Mopg = b}l}{l-

(Be sub-problem 3): Find w;;ﬁl € X}‘ satisfying V vy, € X?’O,

ﬁ(wﬁ%vh)fw(vtuﬁ%wh =S Sy (T on - R) ds = er(on, 67),

v n+1 _
wj_’h ‘an\I = 0.

(BE sub-problem 4): Find (5?‘};1 € X satisfying V ¢y, € X0,

@ (¢y L) oAV Vin)y = en(u ).
T lop,ng = 0.

We use the following approximations,

ot =t gt
then update 5;;21 as

F(Ry,) + S350

g};‘:l Zp41 = ntl 1 ntl ) (32)
Bt oty + At [HE 4+ (15757 - Sith)]
where
H]n;;bf‘l —V||VU7L+1||f+Z/771] n+1 A,)? d5+g<%v~;—}tl,v¢n+l) > 0.
P

+1 _ +1  F +1 +1  In+l
ST —/D ffin-u a” dx—i—/ 9fpin Oin dx
s
+/ V@?H (V”’H Af)ds—/ a?;l ﬁfpyzl ds—i—/ ”+1%V¢"+1 Ny ds.
AOD\I DI aDp\I

Notice f;‘zl is updated via a linear equation and is very direct.
Once we have §”+ , using the solutions of above four sub-problems we can get w;f, gb"“. The final

solution (u ?Jhrl, pﬁ;l) can be obtained by first solving the pressure Poisson equation for r"'H € Yh 0

n n h,
(Vrj;}tlv V(]h) (V ’LU] }tlaqh) th S Yf 07

n+1 6T?.h _
1 =0, o lop,\r =0,

then updating u”“ and p”Jrl by
(Wit on) g = (it on) g — AUVIEE on) g, Yon € X,
9



n+1 n+1

n n+1
Pin =Tjn TPjn— eV -wi.

For the next timestep iteration, we update

R?‘;L‘l =& <£n+1E( ;1—}4;1’ &Z-}tl)) (33)

and proceed to the next timestep iteration. Since 5”“ is a ratio of the SAV to itself, we should expect the
result to be close to one.

THEOREM 3.1. The scalar fﬁ{l in (3.2) and R;;l in (3.3) are guaranteed to be positive at all timesteps.

Proof. By definition (1.4), #(RJ,) > 0 so long as RY, = 4(E(u),,¢},)) > 0. The energy function
E(u, ¢) is always positive. Since |S’;f;[1 — S;f;[l > 0, the initially computed f"“ is ensured positive. Then
by induction, f"“ at any timestep is guaranteed positive.

Once it’s ensured 5?’;[1 > 0, from the definition (1.5) we can guarantee R;.L,J,gl in (3.3) is positive
]

3.2. BDF2. For Algorithm (1.2), we develop an efficient implementation with the same approach. Note
solving Algorithm (1.2) is equivalent the following:
gPAV-BDF2-Projection: solve the following four subproblems for @™/ S wrtt ¢"+1

Win s Pin s Win s respectively.
(BDF2 sub-problem 1): Find wﬁl'l € X}‘ satisfying V vy, € X?’O,

3 An n
IA; (wJ Zl, vh)f + 1/(ijj§17 Voup) s

2 1
n+1 e n o 7_171 n+1 v . )
(ffj v ) + At (u],h’vh)f 2AL (uj,h 7vh)f + (pjh ) Vh ),
w.;ljb_l‘an\I = a_] Zl‘

(BDF2 sub-problem 2): Find ¢"+1 € Xh satisfying V v, € X;“O,

395 (5 o 295 S,
oA (0t n) + (VT V), = o(f )y + 5 (G tn), — g (650" )

At 2At
- g((% - j)v((b?jgl? V¢h)p,
Hopg = bt

(BDF2 sub-problem 3): Find w “"H € Xh satisfying V vy, € Xh o

3 on on - .
2At( J;Lrl’vh) +u(ijzl,Vuh Z/Wu ) (vn - 73) ds — cr(vn, 6551,

W ap,a = 0.
(BDF2 sub-problem 4): Find ¢"+1 € X[,‘ satisfying V vy, € X]?’O,

3950 In+1 77 in+1 n+1
22 (an ,¢h)p+g<%wj7h Vn)p = er(@tt i),

7 1
¢?Z lop,\1 = 0.

We use the following approximations,

“n+1 ~n—+1 vn+1

03y =00 U (3.4)
n+3/2 3~n 1 n
%ﬁ/ Q%fl 5Yin (3.5)

10



We update 5";1 as

et _ F(G) + ISy A 56
Jh T +3 Fps ) .
B o) + At [HIE + (53— 53]
where
Hi = || VaitF + Z / mg (@t 7i)? ds + g<xg-w3;zl, ¢"+l) : (3.7)
P
S;f;{l = / f}‘ﬁl ~;L;;ldac —|—/ gf”+1 (;3 i (3.8)
Dj D,
+/ I/ajj;l (Vﬁle -ny)ds 7/ aﬁ:l ﬁfpﬁtl ds+/ b;“,’;lz%/ng"H np ds.
AD\I OD\I AD\I
Once we have fj”;fl, using the solutions of above four sub-problems we can get wJ"Zl, ¢"+1. The final
solution (u "Zl, pﬁ;l) can be obtained by first solving the pressure Poisson equation for T"'H € Yh 0
(VTZ;LLla VQh) 2At (v w] h 7Qh) th € th,()’
87”7.”'1
n+1|[ 7 6%}; |3Df\[ 207
then updating u”Jrl and pn+1 by
(u;"}tl,vh)f = (w} Tun)y — At(Vrﬁ;l,vh)f, Yoy, € X]}},
p;lzl = rnzl +2p} ), — pjyh —eV- wjnzl
For the next timestep iteration, we update Rn+3/ % as follows:
R;H;«:?)/Q —g (£n+1E(~n+3/2, ¢n+3/2)) (3.9)
RIfl = 53223/2 + gR;ﬁh. (3.10)

THEOREM 3.2. The scalar f”?{l in (3.6) and R;’j;l in (3.10) are guaranteed to be positive at timesteps
n>1.
Proof. R / can be easily initialized as

R =q(BER, 7)), (3.11)

which by definition (1.5) is guaranteed positive. Again by definition (1.4), .7 (Rs/ %) > 0. The argument for

n+1

positivity of £} proceeds identically to that made in the proof of Theorem (2.2).

*
"l > 0, again from definition (1.5) we can guarantee R:;/hZ in (3.9) is positive. It’s

also guaranteed Rj,h is p051tive when initialized as ¢ (E(u},h,qﬁ}vh)). Thus we conclude by induction that
R;L’J,gl in (3.10) will be positive for all n > 1.
0

Once it’s ensured &

3.3. Algebraic systems. The proposed gPAV-BDF2-Projection ensemble scheme will be compared
to other schemes such as the gPAV-BDF2-Projection nonensemble scheme, the gPAV-BDF2 ensemble and
nonensemble schemes (without projection) for computational efficiency check in Sec. 4.2. So we state below
the difference among these schemes in terms of algebraic systems after spatial discretization by the finite
element method.

Let M, and S, denote the mass and stiffness matrices for u;. Coefficient matrices corresponding to
different schemes in Sec. 4.2 (efficiency test) are listed below.

11



1. gPAV-BDF2-Projection ensemble: coefficient matrices for solving uﬁyzl and w;;l are both

3
A1 = 0 EMU + Z/Su 0 s

~n—+1 vn+1
h

so the three components of @}’;~ or @}~ can be solved independently and simutaneously.

2. gPAV-BDF2-Projection nonensemble: coefficient matrices for solving 12)]"?;1 and u”)]"?;l are both
A} = A, +B;j,

where B; is the finite element matrix corresponding to the bilinear form

a(w) = 3 [l 7w 7).

Since A% depends on j and is not block-diagonal, the three components of w;j;l or u“);‘;;l cannot be

solved independently nor simutaneously.
3. gPAV-BDF2 ensemble: coefficient matrices for solving the two subproblems w.r.t. u;“gl are both

A+ B -C A, -C
Aj = or in a more radical way.
~-CT 0 -CT o

Here C is the finite element matrix corresponding to the blinear form b(u,p) = (p,V - u); and
_ J
B=1y B,

j=1

4. gPAV-BDF2 nonensemble: coefficient matrices for solving the two subproblems w.r.t. ug”,gl are both

[ AtB C
4 —cr o )

In summary, the gPAV-BDF2-Projection ensemble scheme results in a common coefficient matrix for
all J realizations, thus simultaneous computation for each single component of u can proceed using LU
factorization or the block CG iterative solver. In contrast, the other schemes either need to solve wuy, uo,
ug, and p together or need to handle J realizations one by one. In Sec. 4.2, we will use iterative solvers to
observe computational efficiency. Specifically, for matrix A; and AJ, the (block) CG solver with multigrid
preconditioner is enough. For the matrix As and Ai, however, the (block) GMRES method needs to be
used.

REMARK 3.3. The SAV-BDF2AC ensemble method proposed in [34] has a coefficient matriz

b

Aac=A B
AC 1+B+ 3aAt

D,

where D is the finite element matriz associated with the blinear form d(u,v) = (V -u,V -v)s. Note that
A, ac is not block diagonal, so the three components uy, us, us cannot be solved independently.

4. Numerical examples. This section presents some numerical tests on validating the convergence
rate, efficiency, and feasibility in application. We use F(x) = /x in all of the following tests.

4.1. Convergence test. To validate the convergence rate of the proposed algorithms, we use an an-
alytic solution defined on Dy = (0,1) x (1,2) and D, = (0,1) x (0,1) with interface I = [0,1] x {1}. It

writes

u(x,y,t) = (ul(xayvt)7 uz(x,y,t)),

ui(@,y,t) = (2%(y — 1)* + exp(y/v/k11)) cos(t),

12



Table 3.1: Convergence rates of the gPAV-BE-Projection ensemble algorithm for u, p, ¢ with J = 3, At = h.

Table 3.2: Convergence

At = h.

At fup, —ul 5 Rate |lup —ul|5  Rate [lup —ullhi  Rate
1/8 1.253 x 1071 — 1.348 x 1071 — 1473 x 1071 —

1/16  6.083 x 1072 1.04 6.587 x 1072 1.03 7.239 x 1072 1.03
1/32  2.962x 1072 1.04 3.222x1072 1.03 3.558 x 1072 1.02
1/64 1444 x 1072 1.04 1577 x1072 1.03 1.749 x 1072 1.02
1/128 7.065x 1073 1.03 7.746 x 1073 1.03 8.618 x 1073 1.02
At llpr — p| fgl Rate ||pn —p| 52’2 Rate ||pp — p||f;3 Rate
1/8 1.027 x 107t — 1.089 x 1071 — 1.217 x 107t —

1/16 4769 x 1072 1.11 5.135x 1072 1.08 5.849 x 102 1.06
1/32  2294x 1072 1.06 2.520x 1072 1.03 2.915x 1072 1.00
1/64 1126 x 1072 1.03 1.259 x 1072 1.00 1.473 x 1072 0.98
1/128 5598 x 1072 1.01  6.338 x 102 0.99 7.472x 1073 0.98
At |lgn—¢llgi Rate |¢n — ol Rate |lgn — gl Rate
1/8 8.023 x 1072 — 4.955 x 1072 — 4.920 x 1072 —

1/16  4.005 x 1072 1.00 2474 x 1072 1.00 2.461 x 1072 1.00
1/32 1988 x 1072 1.01 1.222x1072 1.02 1.223x1072 1.01
1/64  9.858 x 1072 1.01  6.023 x 10~ 1.02  6.068 x 102 1.01
1/128 4.890 x 1073 1.01  2.969 x 10~2 1.02 3.014 x 1073 1.01

rates of the

gPAV-BDF2-Projection ensemble algorithm for w,p,¢ with J = 3,

At |lup, — u||f1’11 Rate ||up — u||1€’12 Rate |jup — u||1€’13 Rate
1/8 3.651 x 1073 — 3.906 x 1073 — 4200 x 1073  —

1/16  1.028 x 10~2 1.83 1.103 x 1073 1.83 1.194x 1072 1.82
1/32  2652x107* 1.96 2.835x107* 1.96 3.043x10"% 1.97
1/64  6.442x107° 2.04 6.795x107° 2.06 7.113x 1075 2.10
1/128 1.458 x 1075  2.14 1483 x 107° 220 1.450 x 1075 2.29
At Ilpn —pllis" Rate |pn —pll5>  Rate |[jpn —p[F3*  Rate
1/8 7.350 x 1073 — 7878 x 1073 — 8579 x 1073 —

1/16  1.926 x 1073 1.93 2.081 x 10~2 1.92 2278 x 1073 1.91
1/32 4933 x107* 1.96 5.339x107* 1.96 5.840x 107* 1.96
1/64  1.238 x107* 1.99 1.334x107* 2.00 1.448x10™* 2.01
1/128 3.025 x 1075 2.03  3.227 x 107° 2.05  3.440 x 1075 2.07
At lgn— ol Rate |lgn— ¢l Rate |[lgn — ¢l Rate
1/8 4.009 x 1073 — 4.039 x 1073 — 4192 x 1073 —

1/16 7958 x 107 233 7.422x107* 244 7528 x 107* 2.48
1/32  1.765 x 107% 2,17 1483 x 107*% 232 1.445x107% 2.38
1/64  4.102x 1075 211 3.114x107° 225 2.890 x 1075 2.32
1/128 9.502 x 107% 2,11  6.394 x 1075 228 5.626 x 107% 2.36
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us(z,y,t) = (%x(l —y)® + kao(2 — wsin(7z)) cos(t),
p(z,y,t) = (2 — wsin(mx)) sin(0.5my) cos(t),
d(z,y,t) = (2 — wsin(mx))(1 — y — cos(my)) cos(t).

In this setup, the interface and initial conditions are compatible, and the forcing terms are fomulated ac-
cording to the exact solutions. For model parameters, we set g, v, Sy, and apjg to be one, and the hydraulic
k‘11 0

conductivity tensor to be
0 koo

tion is 0.8.
For ensemble computation, we assume J = 3 samples of k11 and koo are seleted from a uniform distri-
bution:

} with k11 and koo being constants. The parameter € in pressure projec-

K,=1-01(G—-1), kl,=1401(-1), j=1,2,3.

Then we get three samples for the initial conditions, boundary conditions, and forcing terms since they all
depend on the values of k17 and kg2. The sample size three was chosen just for computational convenience,
while a much larger size such as 1000 is also fine.

The expected computational errors ||up — ul| g1, [|[pn — pllz2, and ||¢n — @[ z1 are O(h? + At) for gPAV-
BE-Projection and O(h? 4+ At?) for gPAV-BDF2-Projection. In the simulation, we set the mesh size h and
time step size At to be equal, and they are uniformly refined simutaneously, from the initial time step size
At = 1/8 to final size At = 1/128. In this setting, the computational errors should be O(At) and O(At?) for
BE and BDF2 respectively. We report the computational errors at the final time 7' = 5 by the gPAV-BE-
Projection scheme in Table 3.1 for the fluid velocity w, fluid pressure p, and hydraulic head ¢, illustrating
that the gPAV-BE-Projection algorithm is first order convergent in time. We also report in Table 3.2 the
errors computed by the gPAV-BDF2-Projection scheme, from which we can easily validate the expected
second order convergence rate.

4.2. Efficiency test. In this experiment, we take a random hydraulic conductivity tensor % (z,y,w)
to form a stochastic problem and consider the computation of ensemble flows. Here w € Q and (2, #, &) is
a complete probability space. The hydraulic conductivity # (z,y,w) is assumed to be a diagonal stochastic
tensor diag(k11(z,y,w), kea(z, y,w)) with diagonal entries given by the Karhunen-Loeve expansion

k11 (2, y,w) = koo (2, y,w) = ag + o/ Ao Yo(w) + ZO’\/> ) cos(imx) 4 Yy, yi(w) sin(imx))], (4.1)

where \g = %\/WLQ A = ﬁLCexp(—i(ich)z) fori=1,--- ,ny, and Yo, -+, Ya,, are indepdendent and
identically uniformly distributed in [—v/3, /3] having zero mean and unit variance. In the computation, we
set L, = 0.25,ap = 1,0 = 0.15, and ny = 2, so there are 5 random variables Yy, Y1, -+, Y, in total.

The free and porus medias are Dy = (0,1) x (1,2) and D, = (0, 1) x (0, 1) respectively and their interface
is I = [0,1] x {1}. Values for the physical parameters are mostly the same as in Sec. 4.1, except that the
initial condition, Dirichlet boundary condition, and forcing terms are given according to

w(a, g, ) = (ur (2, 9,1, w), us(z,y,1,w),
i (2, y,t,w) = Yo(w) (y* — 2y + 1)) cos(t),
us(z,y,t,w) = Y1 (w)(2* — z) cos(t),
¢(z,y,t,w) = Ya(w)y cos(t),
fr = (Ys(w)zy, Ya(w)zy),
fp = Ya(w)zy
For the stochastic Stokes-Darcy problem, we solve it by a sparse-grid collocation method utilizing the Smolyak
formula. Taking h = 1/50, At = 1/100, and J = 241 collocation points, we simulate the ensemble flow until

T = 2 using the gPAV-BDF2-Projection ensemble and nonensemble schemes, gPAV-BDF2 ensemble and
nonensemble schemes (no Projection).
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Table 4.1: Efficiency performance of the proposed gPAV-BDF2-Projection ensemble scheme versus other
schemes, tested using sparse-grid with J = 241 collocation points, h = 1/50, At = 1/100,T = 2. Below t¢p,,
denotes the CPU time in seconds.

gPAV-BDF2- gPAV-BDF2- gPAV-BDF2 gPAV-BDF2
Projection Projection ensemble nonensemble
ensemble nonensemble
Average t¢p, per time step 10.35 s 0.11x241 s 26.42 s 1.22x241 s
Total CPU time 2070 s 5457 s 5284 s 58883 s

(a) gPAV-BDF2-Projection ensemble

(b) gPAV-BDF2-Projection nonensemble (c) gPAV-BDF2 ensemble (d) gPAV-BDF?2 nonensemble

°
N
o
N

o
o

0 05 1

Fig. 4.1: Simulations at T = 2 by four different schemes using the sparse-grid method with J = 241
collocation points, h = 1/50, At = 1/100. The streamlines of expectations of fluid flow velocity v and porous
media flow velocity v = —# V¢ are plotted in the left of each subfigure; expectations of p and ¢ are plotted
in the right of each subfigure.

The CPU times using the mentioned four different schemes are listed in Table 4.1, which shows that the
gPAV-BDF2-Projection ensemble scheme outperforms all the other schemes. The win on efficiency thanks
to simultaneous computation of 241 solutions in which redundant information due to linear dependence of
multiple samples are removed; one should also own to the usage of projection method in combination with
gPAV so that the system for solving uq, us, p is fully decoupled into three systems.

The streamlines of the expectations of fluid flow velocity u and porous media flow velocity v = —# V¢
are plotted in the left of each subfigure of Figure 4.1. The expectations of fluid flow pressure p and hydraulic
head ¢ are also plotted in the right of each subfigure. From the figure we can observe that the four numerical
schemes in efficiency comparison provide almost identical simulations.
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4.3. Simulating the extraction of shale oil. In this experiment, we simulate the extraction of shale
oil by a vertical production wellbore. The computational domain is illustrated in Fig. 4.2, which consists of
an oil reservoir represented by D), and a vertical production wellbore denoted by the pipe D¢. The setup here
is mainly for validating the feasibility of gPAV-BDF2-Projection. More realistic features can be considered,
for instance the pipe can be replaced by a multistage hydraulic fractured vertical wellbore with cased-hole
completion [7].

The physical parameters g, v, £, and apjs are set to be one. For boundary conditions, we set ¢ = 1
on dD,\I, u = (0,0)T on the vertical sides of the pipe above the reservoir and u = (0,1)7 on the top of
the pipe. We will vary the specific mass storativity coefficient Sy in simulation. The simulated fluid flow
velocity u and porous media flow velocity v = —# V¢ are then plotted in Figure 4.5 for t = 0.2,0.5,1.0 from
top to bottom. In particular, the left of Figure 4.5 corresponds to Sy = 10~°, while the right corresponds
to Sg = 1. From the figure we can see that when Sy is relatively large, which implies greater oil storage
capacity, it takes longer time for the oil extraction process to reach a steady state.

6 e

pipe|

D,

N

N

'»

FERSTSI TSTI TI IIN
2 3 4

(=}
o o e e

Fig. 4.2: Domains for the simulation of oil extraction.

4.4. Simulating the subsurface flow in a karst aquifer. Inspired by [39], we condier a realistic
simulation of the subsurface flow in a karst aquifer. The computational domain is shown in Figure 4.4,
where the free flow domain Dy with a curvy boundary ABCDEFGH represents a T-shape conduit, and the
porous media flow domain D, simulates the karst aquifer. The two domains together form a unie square and
they interact at the the curvy interfaces BCD, EFG, HA. Specifically, the computational domain is given
by A =(0,0.8), B =(0,0.55), C = (0.55,0.4), D = (0.7,0), E = (0.85,0), F = (0.75,0.45), G = (1,0.5), and
H = (1,0.7). The physical parameters g, v, and Sy are set to be one, and agys = 0.1. The source terms in
the Stokes-Darcy equations are set to be zero and ¢ = 0 on dD,\I. The hydraulic conductivity % (x,y) is
assumed to be mI, where m is the conductivity magnitude determing how easily the water can flow through
the interface. The inflow/outflow boundary condition for u is

(s1,0) on AB

u=14 (0,s2) on DE ,
(s3,0) on GH

where s1, s and s3 are constants.

Simulations are performed for different scenarios using by the gPAV-BDF2-Projection scheme with
h = 0.011 and At = 0.002. For simulation, we assume the inflow comes from the left boundary AB,
and flows out through the bottom and right outlets DE,GH. The boundary conditions should satisfy
s1 > 0,89 < 0,83 > 0. Two cases are taken into consideration: a balanced case with s1 = 2,89 = —1,s3 =1
and an imbalanced case with s; = 2,89 = —0.1, s3 = 0.2. Here “imbalanced” means the infow speed is much
higher than the outflow speed. To study the effect of the hydraulic conductivity on the filtration, we also
vary the magnitude m among 1,1072, and 1074
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Fig. 4.3: Fluid flow velocity u and porous media flow velocity v = — % V¢ simulated with different Sy. Left:
So = 107; right: Sy = 1. From top to bottom: ¢t = 0.2,0.5, 1.0.
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Fig. 4.4: Domains for the simulation of subsurface flow in a karst aquifer.

The simulated fluid flow velocity v and porous media flow velocity v = — % V¢ are then plotted in
Figure 4.5. In particular, the left of the figure corresponds to s; = 2,59 = —1,s3 = 1, while the right
corresponds to s; = 2,59 = —0.1,s3 = 0.2. From top to bottom of the figure, the conductivity magnitudes

are m = 1, 1072, 107*. From Figure 4.5 we can see that when m decreases, the flow speed in porous
media is significantly reduced, and the flow filtrated from the conduit cannot stream too much further if the
hydraulic conductivity is too small (see the bottome of Figure 4.5).

We then consider another situation: the inflow comes from both the left boundary AB and the right
inlet GH, and steams out through the bottom outlet DE. Thus the boundary conditions should satisfy
s1 > 0,89 < 0,83 < 0. A representative balanced case will be s; = 1,59 = —1,s3 = —1 and an imbalanced
case be s1 = 0.5, = —1,s3 = —2. The simulations are reported in Figure 4.6. Again, when the hydraulic
conductivty is small, the stream meanders very slowly from the conduit to the porous media.

5. Conclusions. In this report we proposed two highly efficient ensemble algorithms based on the
gPAV approach and the rotational pressure correction method. We proved the proposed algorithms are
unconditionally stable with respect to the modified energy. With the adoption of gPAV approach we were
also able to make use of the rotational pressure correction method to fully decouple all the variables in the
equations including all the components of the velocity field, leading to much smaller linear systems to be
solved at each time step. Additionally, all the ensemble members share the same constant coefficient matrix,
for which the efficient block CG method can be used to solve all ensemble members together at significantly
reduced computational cost using much lest CPU time.
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