IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

5857

Privacy-Preserving Collaborative Learning With
Linear Communication Complexity

Xingyu Lu, Hasin Us Sami*™, Graduate Student Member, IEEE, and Basak Giiler™, Member, IEEE

Abstract— Collaborative machine learning enables privacy-
preserving training of machine learning models without collecting
sensitive client data. Despite recent breakthroughs, communica-
tion bottleneck is still a major challenge against its scalability
to larger networks. To address this challenge, in this work we
propose PICO, the first collaborative learning framework with
linear communication complexity, significantly improving over
the quadratic state-of-the-art, under formal information-theoretic
privacy guarantees. Theoretical analysis demonstrates that PICO
slashes the communication cost while achieving equal compu-
tational complexity, adversary resilience, robustness to client
dropouts, and model accuracy to the state-of-the-art. Extensive
experiments demonstrate up to 91 X reduction in the communi-
cation overhead, and up to 8 X speed-up in the wall-clock training
time compared to the state-of-the-art. As such, PICO addresses
a key technical challenge in multi-party collaborative learning,
paving the way for future large-scale privacy-preserving learning
frameworks.

Index Terms— Coded computing, distributed training, collab-
orative machine learning, information-theoretic privacy.

I. INTRODUCTION

RIVACY-PRESERVING collaborative machine learning
(PPML) allows multiple data owners to collaborate to
train ML models without sharing their data. PPML can
greatly improve ML performance by increasing the volume
and diversity of data, without compromising privacy [2], [3].
It can even foster novel applications in which data is rare
and collaboration has traditionally been limited due to privacy
concerns, such as the treatment of rare diseases [4], [5].
Recently, coding-theoretic approaches have shown promis-
ing performance gains in the design of PPML [6], [7], [8].
This approach, known as Lagrange Coded Computing (LCC),
encodes the local datasets using a Lagrange interpolation
polynomial, prior to training. The encoding operation injects

Manuscript received 6 March 2023; revised 23 September 2023; accepted
13 December 2023. Date of publication 19 December 2023; date of
current version 16 July 2024. This work was supported in part by OUSD
(R&E)/RT&L under Grant W911NF-20-2-0267, in part by NSF CAREER
Award CCF-2144927, and in part by the UCR Opportunity to Advance
Sustainability Innovation and Social Inclusion (OASIS) Funding Award.
An earlier version of this paper was presented in part at the 26th Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS’23) [1].
(Corresponding author: Basak Giiler.)

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California at Riverside, Riverside, CA 92521 USA (e-mail:
x1u065 @ucr.edu; hsamiO03 @ucr.edu; bguler@ece.ucr.edu).

Communicated by W. Bajwa, Associate Editor for Machine Learning and
Statistics and Signal Processing and Source Coding.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2023.3345270.

Digital Object Identifier 10.1109/T1T.2023.3345270

randomness and (computational) redundancy within the local
computations, to provide strong information-theoretic privacy
guarantees and resilience to client dropouts, while also reduc-
ing the training load per client. Training is then performed
on the encoded data, as if they were performed on the clear
data. After multiple training rounds, the final model is decoded
using polynomial interpolation, by collecting the computa-
tions (performed over encoded data) from individual clients.
By doing so, an order-of-magnitude speed-up can be achieved
in the training time compared to state-of-the-art cryptographic
baselines, where for the latter the training load per client is as
large as centralized training (over the collection of all client
datasets) [7].

The major challenge against the scalability of information-
theoretic PPML is the communication complexity, which is
quadratic in the number of clients. This is caused by the
multiplication operations associated with gradient computa-
tions. Specifically, interpolating a polynomial f of degree
deg(f) requires collecting at least deg(f) + 1 interpolation
points. As such, decoding the final model from the local
computations requires computations to be collected from at
least N > deg(f) + 1 clients. On the other hand, the
multiplication operations during gradient computations lead to
an exponential growth in the polynomial degree, leading to a
degree explosion after a few training rounds. This necessitates
an expensive degree reduction step with a quadratic commu-
nication overhead (after each round), preventing scalability to
large networks.

To address this challenge, in this work we propose PICO,’
the first information-theoretic PPML framework with lin-
ear communication complexity. Our focus is on logistic
regression, a widely used machine learning mechanism due
to its practicality and interpretability [9]. Although logistic
regression has a long history in PPML dating back to [10],
[11], and [12], enabling communication-efficient and scal-
able mechanisms for large-scale networks is still an open
problem. The key intuition behind PICO is an online-offline
communication trade-off combined with an efficient offline
randomness generation mechanism. In particular, we first
trade-off expensive online (data-dependent) communications
with offline (data-agnostic) communications. The online phase
trades-off the quadratic point-to-point communication over-
head with a broadcast mechanism with linear overhead. Our
key contribution is a coded efficient randomness generation
mechanism for the offline phase. In particular, we then develop

PICO stands for privacy-preserving collaborative learning.

0018-9448 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5858

a coded layered randomness generation mechanism for the
offline phase, that builds on MDS (Maximum Distance Sepa-
rable) matrices (also related to hyperinvertible matrices [13])
and Lagrange codes, and reduces the quadratic offline com-
munication overhead to linear, by reducing the volume of
variables communicated by each client; communicating each
variable has a quadratic cost, but the total number of variables
scales inversely with the number of clients, leading to a linear
amortized overhead. As such, in a network of N clients,
PICO incurs an O(N) communication complexity both offline
and online, as opposed to the O(NN?) online communication
complexity of the state-of-the-art. A major contribution of our
work is ensuring equal adversary-tolerance, dropout-resilience
to the state-of-the-art, and computational complexity, while
reducing the communication overhead.

Our theoretical analysis provides formal guarantees for
information-theoretic privacy, correctness, and key perfor-
mance trade-offs in terms of the communication and com-
putation complexity, adversary resilience, client dropouts, and
training time. We perform extensive experiments to evaluate
the performance of PICO, by implementing a distributed
multi-client network for various image classification tasks.
We then demonstrate the communication/computation volume
and the wall-clock training time of PICO with respect to
state-of-the-art benchmarks, identify the impact of key system
parameters and trade-offs, and present the model convergence
and accuracy.

Our contributions can be summarized as follows:

o We introduce PICO, the first privacy-preserving collab-
orative learning framework with linear communication
complexity (both online and offline), under strong end-
to-end information-theoretic privacy guarantees.

« We demonstrate a novel offline (data-agnostic) coded
randomness generation mechanism for privacy-preserving
logistic regression, which can reduce the amortized com-
munication complexity to linear in the number of users.

e Our theoretical analysis presents formal information-
theoretic privacy guarantees (for end-to-end training), and
shows that PICO cuts the communication overhead while
achieving the same computation complexity, adversary
resilience, robustness to client dropouts, and model accu-
racy of the state-of-the-art.

e Our experiments demonstrate up to 91X reduction in
the communication overhead, and up to 8 speed-up in
the wall-clock training time compared to the state-of-
the-art, while achieving the same adversary and dropout
resilience, and model accuracy.

II. RELATED WORK

In addition to coded computing, there are several other
techniques that are commonly employed for PPML. A popular
approach is Secure Multi-Party Computing (MPC) [13], [14],
[15], [16], which allows parties to compute a function over
their inputs without revealing their inputs in the clear [10],
[17], [18], [19], [20]. Secure MPC protocols often rely on
a cryptographic primitive known as secret sharing, where
clients locally add local randomness to their datasets prior
sharing them with others [21]. Then, training is carried out

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

using the secret shared datasets (as opposed to the true
datasets). The injected randomness is reversible, i.e., par-
ties can decode the computations performed on the secret
shared data to recover the true computation results, preserving
model accuracy. Secure MPC can provide strong information-
theoretic privacy guarantees, such that no information about
the datasets is revealed beyond the final model (even if
adversaries have unbounded computational power) [2]. The
major challenge is the extensive communication required to
perform secure computations between the parties, which limits
scalability in larger networks.

In addition to the secret sharing-based mechanisms, there
are notable MPC mechanisms that are not based on secret
sharing, including the well-known Yao’s garbled circuits [22]
and its modern variants [23], [24], [25], [26], [27], [28],
[29], [30]. Recent works also consider computationally secure
MPC mechanisms by utilizing homomorphic encryption prin-
ciples [11], [31], [32], [33], [34], [35], [36]. Combining secure
MPC with homomorphic encryption can further trade-off the
communication and computation complexity of MPC proto-
cols, as communication is a major bottleneck in large-scale
applications [37]. For a comparative study of modern MPC
frameworks, including the benefits and trade-offs of hybrid and
mixed-protocol mechanisms, we refer to [38]. Recently, MPC
mechanisms have also been used for aggregating the local
user updates (e.g., local models or gradients) in distributed
and federated learning, which is known as secure aggrega-
tion, where parties learn the sum of client models/gradients
after each (global) training round, but without observing the
individual models/gradients [39], [40], [41], [42]. In contrast,
our focus in this work is on end-fo-end PPML, where parties
can learn only the final model (after multiple training rounds),
and no intermediate model/gradient should be revealed during
training.

Homomorphic encryption (HE) mechanisms enable the exe-
cution of computations on encrypted data in scenarios where
adversaries possess limited computational capabilities [12],
[43], [44], [45], [46], [47], [48], [49], [50], [51], [52]. Such
mechanisms can withstand a larger number of adversaries,
surpassing what secure MPC protocols can handle. However,
the level of privacy hinges on the size of the encrypted
data; stronger guarantees require larger encrypted data sizes
(in contrast to MPC, where the size of the secret shared
data remains consistent), consequently increasing the compu-
tational overhead for the clients. As a result, HE finds more
common use in the inference stage of machine learning tasks,
as opposed to the more computationally intensive training
phase.

Finally, differential privacy (DP) mechanisms protect the
privacy of local datasets by injecting noise to local computa-
tions during training. By doing so, DP prevents information
leakage from the final released model also, as opposed to
secure MPC and HE protocols where the final model is
released as is [53], [54], [55], [56], [57], [58], [59], and [60].
The privacy guarantees are controlled by the level of noise
introduced during training, leading to an accuracy-privacy
trade-off. The main challenge in distributed settings is the
accumulation of noise as the number of users grow, which
degrades models accuracy. To address this, DP mechanisms

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY

are recently combined with secure MPC protocols, which can
improve model accuracy by reducing the amount of noise
introduced by each client [61], [62], [63]. While beyond our
current scope, we note that our methods can also be integrated
with DP as an interesting future direction.

Notation. In the following, z is a scalar, x is a vector, and
X is a matrix. A set is represented by X with cardinality
|X|. tr(X) denotes the trace of matrix X, whereas X! is
the matrix transpose, and @ denotes the Kronecker product.
[N] represents the set {1,..., N}, and |z| denotes the largest
integer less than or equal to x. Finally, [x]; denotes a share
of a secret x at client ¢ € [N]. All secret shares are generated
by using Shamir’s T-out-of-N Secret Sharing (SSS), which
embeds the secret in a degree 7' random polynomial, such that
the secret can be reconstructed from any set of 7'+ 1 shares,
but any set of at most 7" shares reveals no information about
the secret. For the details, we refer to [21]. The remainder
of the paper is organized as follows. Section III provides
the system model, whereas Section IV presents the potential
approaches, limitations, and main results. Section V introduces
our framework PICO, whereas Section VI provides a moti-
vating example. Section VII presents the theoretical results,
and Section VIII demonstrates the experiments. Section IX
concludes the paper.

III. PROBLEM FORMULATION

In this work, our focus is on collaborative logistic regres-
sion with N clients. Client ¢ holds a local dataset X; €
R™: %4 consisting of m; data points (where each data point
has d features), along with the corresponding labels y; €
{0,1}™i. The collection of all local datasets is represented
by a matrix X = [XT XT] € R™*4 consisting of
m A valmz data p01nts along with the corresponding
labels y = [y] yN] € {0, 1}™>1. The goal is to train
a logistic regression model w jointly over the collective dataset
X, by minimizing a binary cross entropy loss function:

%Z(yi log g(x; xw) — (1*y1:)10g(1—g(xi><w))>

ey

where g(x; x w) £ 1/(1 + e **%) € (0,1) denotes the
sigmoid function, which quantifies the probability of label ¢
being equal to 1, and x; € R'*¢ denotes the i*" row of
X (features of data point ¢). The model is then trained via
gradient descent,

wittD) — w® _ I xT (9(X x W(t)) ~-y)

7
m
n T)y _

Y g xw) —y) @)

Ms\

—w® _

i
_

7

where w(*) is the estimated model parameters at training round
t, n is the learning rate, and function g(-) is applied element-
wise. We consider a decentralized communication topology,
where clients can communicate through point-to-point unicast
or (one-to-many) broadcast links. At each training round, up to
D clients may drop out from the system due to various reasons
such as poor connectivity or device unavailability. We do not

5859

Client 2

local dataset X; Client 1

colluding adversaries

Fig. 1. System model. The multi-client learning setup of PICO. Client
i € [N] holds a dataset X; with labels y;. Any set of up to 7' out of N
clients may be adversarial. Adversaries may collude with each other.

assume the existence of a trusted third party or a central
coordinator. Our system model is presented in Fig. 1.

Remark 1: The binary cross entropy loss (also known as
the logistic loss), which fits the model parameters w through
a maximum likelihood principle, where minimizing the loss
function L£(w) corresponds to maximizing the conditional
likelihood of the labels given the features [9, Section 4.4.1],
is a widely used loss function in practice [64]. For the binary
classification task (to predict one of two classes 0 or 1), this
can be viewed as a convex surrogate of the 0 — 1 loss (to
minimize the number of misclassifications) [65], [66], which
is NP-hard to optimize directly [67], [68]. Depending on the
problem characteristics, alternative loss functions can also be
considered for different tasks, which is an interesting future
direction [69], [70].

Threat Model. The most common adversary model in PPML
is honest-but-curious adversaries, which is also the focus of
this work [2]. In this setup, adversaries follow the protocol
truthfully (i.e., do not poison the datasets/messages), but may
attempt to reveal sensitive local datasets of honest clients using
the messages exchanged. Out of IV clients, any set of up to T’
clients can be adversarial, who may collude with each other.
The adversaries are unknown to the honest clients. The set
of adversarial and honest clients are denoted by 7 and H =
[N]\{T'}, respectively.

Information-Theoretic Privacy. Our focus is on information-
theoretic privacy, where the goal is to ensure that the
adversaries learn no information about the local datasets of
honest clients, beyond the final model [2]. Similar to former
works, our framework is bound to finite field operations, and
in the following we assume that all datasets and labels are
represented in a finite field Fy, of integers modulo a large
prime g. For the details of this finite field transformation
(which is handled via a quantization mechanism), we refer
to [2], [7], [8], [39], and [40]. In the following, we let
X; € F*? and y;, € F*! denote the finite field
representatlon of X; € Rm:xd and y; € RmiX1 respectively.
Similarly, X € quXd and y € F7"*! denotes the finite
field representation of X € R™*? and y € R™*!, All
training computations are then carried out within IF,. The
model parameters are updated in the finite field throughout
the training, and are converted to the real domain only at
the end of training. We let w(®) denote the finite field model
parameters at round ¢. At the end of training (after J rounds),
the final model W) is decoded in the finite field, and then

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5860

converted to the real domain w(”). Accordingly, the Markov
relation,

{Xi,yitiein) — {X6, ¥i ey
holds between the finite field and real domain representations,
hence from the data processing inequality (DPI) [71], w(/)
does not carry any further information about the local datasets

than W), Then, the information-theoretic privacy condition
can be formally stated as,

I{X, ¥ hiewnnt M X, ¥ bier, W) =0 3)
for all 7 such that |7| < T, where M is the collection of

all messages received or generated by the adversaries, and J
is the total the number of training rounds.

—w) —w

Main Problem. In this work, our goal is to solve (1) with the
information-theoretic guarantees from (3), We then ask the
following question:

e How can we develop a scalable PPML framework
to solve (1) with linear total communication complex-
ity, under the formal information-theoretic guarantees
from (3)?

We next review the potential approaches and challenges to
address this challenge, and introduce our main results.

IV. POTENTIAL APPROACHES, CHALLENGES,
AND MAIN RESULTS

A. COPML (Coded Private Machine Learning)

To solve (1) with the end-to-end information-theoretic guar-
antees from (3), the state-of-the-art is the COPML framework
from [7], which leverages Shamir’s Secret Sharing (SSS)
[21] to encode the datasets and model. For dataset encod-
ing, each client i € [N] secret shares its local dataset X;

using SSS, and sends a secret share [X;]; to client j € [N].
Client j concatenates the received shares and partitions

them into K equal-sTized shards [[Xy]] ... [XN]]T]T =
[[X;]]T [X;(]ﬂ , then sends an encoded matrix,
X! i — B
el = S X, I 5=
ke[K] tet+T{ky F T
K4T 5
+ 2 Rl I3 _51 @)
k=K+1 e[k T\ {k} 8
to client i € [N], where {[Rgl;}reqr+1,.. k47 € IFm/K

are uniformly random matrices secret shared by a crypto-
service provider. After receiving {[f(ci)];}je(n], client i
recovers the encoded dataset X; = f(«;) using polynomial
interpolation. For model encoding, at each training round ¢,
client j € [N], who holds a secret share [W!)]; of the
model W) (without learning its true value), sends an encoded

matrix,
_ — 3
e = Y w0, [Sl
ke[K] te(k+T\{k} " !
KA4T () 3
¢ i — B
- Ji 5
k ;ﬂ le H ﬁk — A ®
E[K+TI\{k}

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

to client ¢ € [IN], where {[v,it)]i}ke{K+17,,,)K+T} € Fg“ are
uniformly random matrices secret shared by a crypto-service
provider. After receiving {[h(c)];};e[n), client i recovers the
encoded model v?l(t) = h(w;) using polynomial interpolation.
Training is then performed using the encoded datasets and
model. The total online communication overhead is quadratic
O(N?d) across the N clients. Importantly, the polynomial
degree deg h grows after each multiplication operation. To pre-
vent a degree explosion, a degree reduction step has to be
carried out after each training round, also with a quadratic
overhead, limiting scalability to larger networks.

B. Naive Offline-Online Communication Offloading

To address the communication overhead, a potential
approach is to offload the communication-intensive tasks (e.g.,
model encoding) to a data-independent offline phase [72], [73].
To do so, prior to training (offline), each client ¢ € [N] can
locally generate a uniformly random mask rgt) € Fg and send
to client j € [N]: 1) a secret share [r(t)

:’]; € F4 (e.g., using
SSS), 2) an encoded mask,

~(t (t) a5 — B
I‘
Z le[KpT]\{k} B = b
K+T o ﬂ
i — Ml
+ > v I T (©6)
k=K+1 le[K+T\{k} "~

where {Vgl?}k:e{ K41, . K+T} €]Fg are generated uniformly
at random, using which client j can obtain: 1) a secret share

r®]; =Y r{"];, and 2) an encoded mask,
~(t ~(t
0o 3 2
i€[N]
_ () a; — B
= r
kez[;f] le[KpT]\{k} Pu =B
K+T " 5
t
2 (X) II 3= O
kT N 5k G’
- i€[N] IE[K+T]\{k}

of a common random mask r(*) = diev] rgt) shared across
all users (in encoded form), without learning its true value.
The common randomness r(*) encoded by the 7 random
vectors {VEZ)}ke{K+1,A..,K+T} allows clients to use broad-
casting in the online phase, to reduce the communication
overhead of model encoding from point-to-point quadratic to
linear broadcast. To do so, client j € [N] can broadcast a
secret share [W)]; — [r(]; = [W") — r(V)]; of the masked
model W) — r(t), where the true model W* is hidden
by the random mask r(®). Using the received shares, each
client i € [N] can decode W) — r(® using polynomial
interpolation, and locally generate an encoded model w(t)

7 4 (wlt) —p(®) Y ket e s gry 5=5-- This reduces
the online communication overhead from quadratic O(N?2d)
point-to-point unicast, to linear O(Nd) one-to-many broad-
cast. On the other hand, the offline communication overhead
is still quadratic O(NN2d) point-to-point.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY

C. This Work

In this work, we introduce PICO to solve (1) with the end-
to-end information-theoretic guarantees from (3). In contrast to
naive offline-online communication offloading, PICO achieves
linear communication overhead both offline and online. This
is achieved by a coded randomness generation mechanism
using MDS codes to reduce the total number of variables
communicated in the offline phase. Specifically, in the offline
phase, each client ¢ € [N] first generates a lower-dimensional

random mask rz(-t) € Fy'~" uniformly at random, where the

local mask size is reduced to ﬁ from d. Then, client 7 sends
_d__
to each client j € [N]: 1) a secret share [rgt)]j eF;~",2) an

d
encoded mask r(t) € F; ™" as described in (7), however, all
coded masks communicated with the other clients are now of
dimension ﬁ as opposed to d. Using the lower-dimensional

coded random masks {rw , [ri]ét)}le[~] € Fq T, client j then
locally generates a large-dimensional encoded mask r§t) € IFZ

of size d,
~(t)

T
M®I) x

~(t)
Nj

— (t) o — B
Z ' H Br — B

>

~(t)
r;

ke[K] le[K+T)\{k}
o0
K+T 1 '—/Bl
+), Meh)x| I 5=5®
Pl S0 |ty T
N

T
and a secret share [r]§t) £ (M®I)x {[rgt)]jT. [rs\t,)]ﬂ €
F¢, corresponding to a common random mask r() £ (M ®
T
I) x [(rgt))T (rs\t,))T} € F¢ of size d, whose true
value is unknown by the clients, I is a N_dT T X7 N_dT) e
identity matrix, and M is an (N — T) x N MDS matrix,
as will be detailed later. The key intuition is that, while
the communication overhead for each variable is quadratic
O(N?) point-to-point (unicast), the total number of coded
variables to be communicated is reduced to O(w%5), which
is inversely proportional to the number of cllents Hence
the overall amortized communication overhead is O(-Z N T)
point-to-point, which is linear O(dN) for any T = O(N).
In the online phase, the offline encoded masks [r(")];, ~(t)

allows client j to broadcast the secret share [w(")]; [r(t)]
[w® —r®]; of the masked model W*) — r(®*), using which
clients can decode the masked model through polynomial
1nterpolat10n and client j can obtain the encoded model
~(t) (t) + (W(t) _ r®)Zke[K] Hle[K+T]\{k} Bk*ﬁz
As a result communication complexity of the online phase is
reduced from O(N?) point-to-point unicast to O(N) one-to-
many broadcast. While reducing the communication overhead,
PICO achieves equal dropout-resilience, adversary-tolerance,
and computation complexity to COPML. In doing so, a reliable
broadcasting mechanism is considered [74], which can be
achieved through various approaches in practice, such as using

5861

an inherently broadcast medium such as cellular networks or
satellite links, or through leveraging broadcasting mechanisms
at the hardware level, e.g., IP multicast for local area networks.

V. THE PICO FRAMEWORK

We next describe the details of our framework, which

consists of five main components:

1) Dataset encoding: Clients ¢ € [N] encode their local
datasets {X;};c[n) to preserve their privacy while dis-
tributing the computatlon load across the clients. At the
end, each client ¢ € [N] learns an encoded dataset X,
whose size is (1/K)™ of the original dataset X.

2) Label encoding: To preserve the privacy of labels, clients
also encode their local labels using locally generated
random masks. At the end, each client learns an encoded
label.

3) Model initialization: To prevent information leakage
from intermediate training computations, the model w(®
at round ¢t = 0 is initialized uniformly random within
IF,, but without revealing its true value to any client (and
any collusions between up to T clients).

4) Model encoding: To prevent information leakage from
intermediate model parameters, the model at each round
should be kept private from the clients. To that end,
at each training round ¢, client ¢ € [N] holds a secret
share [W]; (as opposed to the true model) of the
current state of the model W(t), using which the clients
encode the model, to enable training computations to be
performed on the encoded datasets. At the end, client
i € [N] obtains an encoded model v~v£t), without learning
any information about the true model w®)

5) Gradient computing and model update: Using the
encoded datasets and model, clients compute the gra-
dient and update the model for the next training round,
but without learning the true value of the gradient or the
updated model. In doing so, the key ingredient is a novel
degree reduction mechanism with linear communication
cost, which reduces the degree of the polynomial cor-
responding to the gradients computed on the encoded
datasets and model, to prevent an exponential growth as
the number of training rounds increase.

Table I presents the communication overhead of each compo-
nent of PICO and COPML [7]. The individual components of
PICO comprise of online and offline phases as demonstrated
in Fig. 2. We now describe the details of each component.
For ease of presentation, we describe the offline and online
phases sequentially, to show how the variables generated in
the former are utilized in the latter. We note that each offline
phase is independent from past online/offline phases, hence all
offline phases can be executed in parallel.

A. Dataset Encoding

Initially, clients encode their datasets using locally generated
randomness. The goal of the encoding process is two-fold.
First, it hides the dataset contents against adversaries. Second,
it reduces the size of the data each client should process during
training. The encoding process consists of the following offline
and online phases.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5862

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

TABLE I
COMPARISON OF THE TOTAL COMMUNICATION OVERHEAD (ACROSS ALL CLIENTS) FOR PICO (INCLUDING BOTH ONLINE AND

OFFLINE PHASES), AND COPML (ONLINE), WHERE K = ©(N), T = O(N), AND m; = m FOR ¢ € [N]
COPML (online) PICO (offline+online)
1. Dataset encoding O(NZdm) O(Ndm)
2. Label encoding O(N?m + N%d) O(Nd)
3. Model initialization O(N2%d) O(Nd)
4. Model encoding O(N2%dJ) O(NdJ)
5. Gradient computing and model update O(N2dJ) O(NdJ)

1) Offline: Clients first agree on N 4+ K + T distinct public
parameters {c; }jcn] and {3} ek 47 from Fy. Each client
i € [N] then sends an encoded matrix,

_ . —
R;; = Z Rk H ﬁj — gl
ke[K] le[K+T\{k} F
K+T a —ﬁ
2 Ve I 5= ﬁl ©)
k=K+1 le[K+T\{k} " F
to client j S [N], where {Rik}kE[K], {Vik}kE{K+1,...,K+T}

m;

are uniformly random matrices of size 7 X d, generated
locally by client 1.
2) Online: In the online phase, client ¢ € [N] locally

partitions its dataset X; into K equal-sized shards X; =

T — my
[X; XZTK} , where X, € Fj© “® for all k € K],
and broadcasts,

X =X — Rip, Vk € [K]. (10)

After receiving {)A(jk}je[
ates an encoded dataset:

N],ke[K]» €ach client i € [N] gener-

D S R A T
ke[K)] le[K+TI\{k} b !
+[RI, - RL] (11)

Intuitively, the encoding operation from (11) simultaneously
cancels the additive randomness due to {Rjr }relr],je[N»
and embeds the dataset X in a degree K + T — 1 Lagrange

polynomial,
—T —1 1T aiﬁl
Sl =
ke[K] le[K+TN\{k}
K+T . a—p
+ Z [VF{k V;rVk] H 5 _6
k=K-+1 le[K+T\{k} "F
(12)

T
XTVI@] for all k € [K], and
i)~ The

<T
where f(0x) = [Xlk
client ¢ € [N] obtains the encoded dataset X; = f(«

T T 1T
{ [V Vil ke{K+1,.. K+T}
along with the random masks {R.x}rec(x) allow clients to
use (one-to-many) broadcast while encoding the datasets as
opposed to (point-to-point) unicast in the online phase, while
hiding the true values of the local datasets against up to T’
adversaries. As will be described later, client ¢ then computes
the gradient on the encoded dataset X;, whose size is (1/K)*"

T random matrices

1. Dataset encoding | |2. Label encoding| |3. Model initialization

4. Model encoding
i

offline |=#|online m’m offline o
=

S <T —(0 3

X X' Lt E

[

[offling] = | online — <

5. Gradient computing and model update

Fig. 2. PICO consists of five main components.

of the original dataset X. As the network size N increases,
one can select a larger K, reducing the training load per client
(called the parallelization gain) to speed up training.

Remark 2: In practice, if m;/K is not an integer, client
i can zero-pad their local dataset [75] with synthetic data
samples x; = 0, by setting all features to 0. As the gradients
of such samples are zero, the pre-processing will not change
the final model. Another approach is for each client to locally
create additional training samples using common data augmen-
tation mechanisms, such as label-preserving transformations
(e.g., rotations, horizontal/vertical flips, and random cropping),
which can further improve test accuracy [76], [77].

B. Label Encoding

Clients also encode their labels through the following offline
and online phases.

1) Offline: Client j € [N | generates K uniformly random
vectors a;, € BN 7K Lt for k € [K], and sends to each

client 4 € [N]: 1) a secret share [a;i]; of a;; using SSS, 2)
an encoded vector,

- -5
i = Z Ak H Br — B
ke[K] le[K+TN\{k}
K+T
FY b [S
Ik ﬁk -6
k=K+1 le[K+T)\{k}

d
where b, € Fg'~" are uniformly random vectors for k €
{K +]., ey K + T} By Combining {ﬁji7 [ajk]i}je[NLke[K],
client ¢ then forms a (large-dimensional) encoded vector,

a2Mael)x @, - ay]" (14)
and a secret share,
[ar)i 2 (M @T) x [[a]] lani]T]" k€ [K], (15)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY

where a;, £ (M ® 1) x [aj, ain-iT, Iisa (N—LT)K X
ﬁ identity matrix, and
I M ANt
M= : (16)
1 An-r AL
isa (N —T)x N MDS matrix, where Ay,...,Ay_p are

distinct public parameters from IF,. The key intuition is that,
to generate an encoded vector of size %, each client only sends
m parameters to every other client.” The final encoded
vector is then generated by combining the lower-dimensional
encoded vectors received from all N clients, using the MDS
matrix M.

2) Online: In the online phase, client ¢ € [N] partitions

iji into K equal-sized shards XZ-TE = [y}l yZ-TK]T,
and sends an encoded vector,
~ S —] ﬁl
ke[K] le[K+T)\{k}
K+T
+) 1T Rl (17)
" ﬁk - B
k=K+1 le[K+T)\{k}

to each client j € [N], where r;, € IE‘q? are generated
uniformly at random. After receiving {y;;}ic[ni, client j €
[N] broadcasts,

Yij — a; (18)

which can be viewed as an evaluation point of a Lagrange
polynomial of degree K + 1" — 1. Upon receiving &; from
any set of at least K + T clients, client ¢ € [N] decodes
> jern) Yk —ax forall k € [K] via polynomial interpolation,

and computes a secret share of b y = de[N] X i¥is

(Xjen ¥j1 — a1 + [an]i)

—T_ .
X'y £ : (19)
(X e ¥ix — ak + [akli)
C. Model Initialization

Model W) at time ¢ = 0 is initialized uniformly random
(offline), without revealing its true value to any client. To do
so, client 7 generates a random vector WEO) of size 4, and
sends a secret share [WEO)]j of WEO) to client j € [N] using
SSS. After receiving [WE-O)]i for j € [N], each client ¢ € [N]
constructs a new (larger) secret share,

T
%), (w9)"]
which corresponds to a secret share of the initialized model,

W]

identity matrix.

& (MaT) x [(w])" (20)

w0 = (MeT) x (@) 21

: d d
where Lis a 57 X 57

>Typically d > N in real-world tasks [78].

5863

D. Model Encoding

At the beginning of each round, client ¢ holds a secret
share [W("]; of the current state of the model W'*). Initially
at t = 0, [W9]; is generated during model initialization as
described in (20). For all other training rounds (i.e., ¢ > 0),
[W(")]; is obtained after the model updating stage, which will
be described in (40). At each round, clients then encode the
model W) using the secret shares [W(t)]i, to enable gradient
computations to be performed on the encoded datasets. At the
end of this stage, each client ¢ € [N] learns an encoded model
VNVZ@. Model encoding consists of the following offline and
online phases.

1) Offline: Chent i € [N] generates a uniformly random

vector r() €]FN T, and sends to each client j € [N]: 1)
a secret share [r(-t)]j of rz(-) using SSS, and 2) an encoded

3
vector,

() 2 (t) o — B
r.. = Ir.
EDEN g =
€[K] le[K+T)\{k}
K+T © o — B
+ > v Il 5=
k=K+1 le[K+TI\{k}

(22)

where v(t) € IFN T for k € {K+1,...,K+T} are generated
uniformly at random. By combining {r]?, [rj] Et)}je[NJ» client

1 then generates a (large-dimensional) encoded vector,

T
DA (MeT) x [(fgw (;W} 7 23)
and a (large-dimensional) secret share,
® & (D1 @]
D [IR 5)))
T
where r®) £ (M ®1T) x [(rgt))T (r$)T| " is a random

mask that will later be utilized to hide the true model in the
online phase. In doing so, the key intuition is to generate secret
shares [r(!)]; of a random mask r*) that will later be utilized
to decode a masked model in the online phase (where the
true model will be hidden by the mask r(*)), after which the
encoded masks th) will be utilized to encode the model for
training.

2) Online: In the online phase, client ¢ initially broadcasts,

[‘,Av(t)]i L [W(t)]i _ [r(t)]i - [W(t) _ r(t)]i (25)
which corresponds to a secret share of the masked model
w — v, After receiving {[W()];};c(n], each client can

decode a masked model,

7 =w® _ p® (26)
via polynomial interpolation, where the true value of the model
w® is hidden by the random mask r(*). Using (26), client i

then constructs an encoded model,

Z w®

ke[K]

— [0

. 27
5k*5 ! D

le[K+T\{k}

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5864

Intuitively, the encoding operation in (27) embeds the model
w® in a Lagrange polynomial,

h N —(t) a — ﬂl
(a) Z W H Br — B
ke[K] le[K+T\{k}
K+T ® a— ﬁl
+ Z Vi H Br — B (28)
k=K-+1 LE[K+T\{k}
such that v](:) £ M®I) x [(ka))T (V%)k)] ’

where h(3,) = W) for k € [K], and client i obtains
an encoded model ng) = h(a).

{vk Yke{K+1,....k+7) hide the true value of w(®) against up
to T adversaries.

The random vectors

E. Gradient Computing and Model Update

The last component of PICO is gradient computation and
model update, using the encoded datasets and model. At the
end, client i learns a secret share [W(**1)]; of the model w(* 1)
for the next training round.

(Gradient Computing): Initially, clients compute the gra-
dient using the encoded dataset and model. The offline and
online phases of this stage proceed as follows.

1) Offline: Client i € [N] generates C = (2r + 1)(K +
T — 1) + 1 random vectors u;; of size ﬁ, and constructs
a Lagrange polynomial of degree C' — 1,

2y I 5

ke[C] 1€[C\{F} B — B

(29)

where {8k }re{i+1,..,c} are distinct public parameters from

F,, and ¢;(0x) = ugtk) for k € [C]. Client ¢ then sends an
encoded vector,

) 2 6i(ay) (30)

to each client j € [N]. After Feceiving {ﬁg-ti) }iens client ¢
constructs a new (large-dimensional) encoded vector,

@]

which can be viewed as an evaluation of a degree C' — 1
Lagrange polynomial,

a2 Mel) x @) (31)

- B

(t)
u, (32)
kGZC] le[cl‘_{{k} B = B
(1) & (T @]’
such that u,” = (M ®I) x [(ulk) e (uyy)] , Where

d(Bk) = u,(C) for all k£ € [C], and client ¢ obtains an encoded
vector ug) = ¢(ay). Client ¢ then secret shares the sum
> okelK] uz(;), by sending each client j € [IN] a secret share,

[T] s Tl e
ke[K] ke[K] le[T]
where zl(.lt) are uniformly random vectors, and {v;};cn) are

distinct public parameters. After receiving [>; ¢ (g 11;12]1 for

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

Jj € [IV], client i generates a secret share of 3, - x u,(f),

[> ke uli

M®I) x (34)

L .
e [kerng uli

2) Online: PPML frameworks that build on polynomial
embeddings, as in our framework, are bound to finite field
polynomial operations. The sigmoid function in (1) is not a
polynomial, hence is often approximated with a polynomial
g(z) = >i_, 0;x" [38] where {0; };c[, are public coefficients
fitted via least squares (prior to training), and degree r
quantifies the accuracy of approximation [79]. Then, client
1 computes a local gradient,

o) =
(t)

using the encoded dataset X; and model w,; ’, where we define
a degree C' — 1 polynomial ¢(a) = f(a)Tg(f(a) x h(a))
using (12) and (28), such that client ¢ computes the encoded
gradient o («;), whereas the true gradient is given by,

S elB) =Y X)X, x wh),

ke[K] ke[K]

XT3(X; x wit)) (35)

X' 5(X x wit)) =
(36)

< a —T =1 17
where X, = f(Bg) = [Xlk XNk}
client 7 broadcasts a masked gradient,

from (12). Then,

a2 XT5(X; x W) —al = p(a;) — o),

which is an evaluation of the degree C — 1 polynomial 1(a) =
p(a) — ¢(a). Upon receiving ﬁ§t) from any set 7 € S of at
least deg(v) + 1 = C clients, client ¢ can recover () via
polynomial 1ntefrp01at10n and compute a secret share of the
true gradient X §(X x w*)) using (34),

(37

7'1‘/\ — .
{X §(X x w) } 3 (s + [3 ,j] (38)
ke[K ke[K] !
= XX x w® + > qla, (39
le[T]
T
where z(t) (M®I) x l(gtl))T (zg\t,)l)T} for | € [T]
are random masks that hide the true gradient against up to 7'

adversaries. The model update at client ¢ can then be written
as,

w0 = W, - §X x w0 - X)), (40)
where, on the other hand, Z < 1 in (40). To handle this
operation in the finite field, one can either convert (40) to a
computation on integers [2] by assuming a sufficiently large
field size, as will be detailed in Appendix D, or can utilize
a secure multi-party truncation (quantization) protocol [80] to
reduce the required field size (albeit with weaker privacy) as
will be detailed in Section VIII. In our theoretical analysis
in Section VII, we assume a sufficiently large field size and
consider the former, whereas we utilize the latter in our

experiments from Section VIII.

(X"

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY

Dataset encoding

Offline Client 1 g R, random mask

X
'O\Q
KR
©

=

Q

Client 2
Riil

Model encoding

5865

Gradient computing

n (2 low-dimensional
mr €]F
random mask

2
r,’ €F, {usk}ke EF {u4k}ke GF

Client 3 Client 4 s a
G g Offline masks G R 8 offline masks G a?)
. —] o -)
Online gx o) i) et @02 Monx | B VL e F a2 Men« |
~—" u —) |® —)
= : = g =)
Ry =X,y — Ry; Masked j5rge-dimensional [x?v O], = [w9, - r®) AU) = XT4(X; x \TV(')) _ ~(1,)

_ dataset coded mask
broadcast

" A
xms\\\@ X

Fig. 3.

masked model masked gradient

//rx41 \\\m]d #le Wm]/@ \(t) ay Am//@

Motivating example. (Offline) Locally generated lower dimensional random vectors are combined to construct large dimensional shared randomness.

(Online) The randomness generated offline is utilized to encode the datasets and model.

3) Final Model Recovery : After J training rounds, clients
can collect the secret shares {[W(”)];};c7 from any set Z of
at least |Z| > T+ 1 clients, and decode the final model W),

Our overall algorithm is given in Appendix A.

VI. MOTIVATING EXAMPLE

We next present a motivating example for N = 4 clients,
with d = 6 and K =T =1 as illustrated in Fig 3. Initially,
clients encode their local datasets. The main intuition is to
generate and encode random masks offline, where each client
S [4]~generates a random mask R;;, and sends an encoded
mask R;; to client j € [4]. The offline random masks are
later used in the online phase to hide the local datasets X;1
where client ¢ broadcasts a masked dataset le = le —
R;1, using which, along with the offline encoded masks R;;,
clients encode the datasets. At the end, each client ¢ learns an
encoded dataset X;. In addition to dataset encoding, clients
also encode their labels and initialize the model as described
in Sections V-B and V-C, respectively.

At each training round ¢, clients also encode the model
w®. To prevent information leakage from intermediate model
parameters, no client can learn the true model during encoding.
The key intuition is to use locally generated lower-dimensional
coded masks to generate high dimensional shared coded
randomness. To do so, client ¢ locally generates a random

mask rgt) of size NfT = 2 offline, and then sends to each
client 7 € [4]: 1) an encoded mask r(j) G IF2 2) a secret
share [rg)] € IF2. After receiving {rﬂ 7[r; }i}je[zl]’ client ¢

generates two large -dimensional random vectors (each of size
d = 6): 1) encoded mask Fz(-t) € Fg, and 2) secret shared mask
[r®]; €]FS. The offline random masks are then used to mask
and encode the true model in the online phase, where each
client decodes the masked model w®) = w(®) — () ¢ F¢,
and obtains an encoded model w; € IFS, but without learning
the true model W) ¢ IS, which is hidden by the random
mask r(*) € IFg throughout the encoding.

Using the encoded dataset Xi and encoded model vat),
clients then compute the gradient and update the model.

In doing so, no client should learn the true gradient X" G(X x
w®) or the updated model W'Y, as gradients may carry
sensitive information about the true datasets. The intuition is
again to use lower-dimensional local randomness to generate
large-dimensional encoded shared randomness. To do so,
offline, client ¢ generates C' random masks {ul(.,?}ke[c] of

size 4= = 2, and sends to every other client j € [4] an

N-T
encoded mask ﬁ(t) € F2, and a secret share [u(l)]J e F2.

After receiving {uﬂ ,[u ;ﬁ)]i}j€[4], each client i generates a

large-dimensional encoded mask ﬁl(»t) € FS and secret share
[u®]; € IFS, each of size d = 6. Online, each client i computes

a local gradlent XT (X X W()) € IFG and broadcasts U (t) =
XT5(X,; x wiy —al) e]F6, using which each chent can
decode a masked gradient X g(i x w) —ul® e FS
where the true gradient XTQ(X x wit)) ¢ IFS is hidden
by the offline mask u® ¢ IE‘G to generate a secret share
[XTg(X x w(")]; € FS and update the model [w(")]; € FS
for the next training round

VII. THEORETICAL ANALYSIS

In this section, we provide the theoretical performance
guarantees of PICO. We first present the total communication
complexity (across all clients). To explicitly demonstrate the
complexity with respect to the number of clients, in the
following we let m; = m for i € [N].

Theorem 1 (Communication Complexity): For training a
logistic regression model of size d in a network of N
clients, where up to T clients are adversarial, and each client
has m data samples partitioned into K shards, the total
communication complexity of PICO after J training rounds
is given by O(Ndm + K “d + NdJ) in the online phase,
and O(4= dm + N—dJ) in the offline phase. With K =
O(N) and T = O(N), the total communication complexity
(offline+online) is linear in the number of clients, which is
O(Ndm + NdJ).

Proof: The proof is provided in Appendix B. (]

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5866

As can be observed from Theorem 1, PICO achieves a linear
communication complexity both offline and online, signifi-
cantly improving over the quadratic (online) communication
complexity of the state-of-the-art. We next demonstrate the
per-client computation complexity for PICO.

Theorem 2: (Computation complexity) For training a logis-
tic regression model of size d in a network of N clients,
where up to T clients are adversarial, and each client has
m data samples partitioned into K shards, after J train-
ing rounds, PICO incurs a per-client computation overhead
O(Nmd + Nilog?(K + T)loglog(K + T) + J&¥2(d +
) + Jdr(K + T)log” r(K + T)loglogr(K + T)) in the
online phase, and O(Nd2 log*(K + T)loglog(K + T) +

JN L= log? r(K+T)loglogr(K +T)+JNd) in the offline
phase.
Proof: The proof is provided in Appendix C. (I

In Appendix C, we also compare the computational complexity
of PICO with COPML, and show that PICO reduces the
communication complexity without any additional overhead
on the computation complexity.

The recovery threshold is defined as the minimum number
of clients needed for correct recovery of the final model.
We next present the recovery threshold of PICO.

Theorem 3 (Recovery Threshold): In a network of N
clients, where up to T clients are adversarial, and up to D
clients may drop out (or are unavailable) in each training
round, the recovery threshold of PICO is N > D + (2r +
1)(K +T — 1) 4+ 1, where r is the degree of polynomial
approximation of the sigmoid function.

Proof: The minimum number of clients is determined
by the number of local computations required for polynomial
interpolation, which, from Section V is given by N — D >
Cr+1)(K+T-1)+1. O
From [7], the recovery threshold of COPML is given by
N > D+ (2r+1)(K+T-1)+1, where r > 1. Hence, PICO
achieves equal adversary-robustness (71'), dropout-resilience
(D), and parallelization (K') guarantees, while also slashing
the communication overhead.

Remark 3: PICO can also be applied to the simpler linear
regression problem, with the same algorithm steps.

We next present the formal information-theoretic privacy
guarantees from (3).

Theorem 4 (Information-Theoretic Privacy): In a network
of N clients, where 7 and H = [N]\7 denote the set of
adversarial and honest clients, respectively, PICO guarantees
information theoretic-privacy for training a logistic regression
model w(”) after J training rounds,

I({X, 5 biers M X, ¥itier, @) =0 @D)
where M7 denotes the collection of all messages received or
generated by the adversaries throughout the training.

Proof: The proof is provided in Appendix D. (|

Finally, we show that the training operations correctly
recover the target model given in (40).

Theorem 5 (Correctness): PICO correctly recovers the tar-
get model from (40), given a sufficiently large field F,,.

Proof: The proof is given in Appendix E. (]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

VIII. EXPERIMENTS

To evaluate the performance of PICO, we implement a
distributed logistic regression task for binary classification on
the CIFAR-10 (on classes plane and car) [81], and MNIST
(on digits 0 and 1) [82] datasets, with dataset sizes (7, d) =
(9019, 3073) and (11432,785), respectively. The datasets are
distributed evenly across the clients. In all experiments, the
inter-client communication is implemented using the MPT 4Py
Message Passing Interface (MPI) for Python [83]. The broad-
cast functionality of the MPI protocol communicates messages
through a tree topology, as opposed to an ideal broadcast.
As such, the communication overhead of PICO scales with
respect to O(N log N) in the experiments, slightly higher than
O(N). This suggests PICO could in principle achieve even
higher gains in an ideal broadcasting setting, such as a cellular
network among devices within the same coverage area. The
other hyperparameters are .J = 50 and 7 = 1.4 x 1077,
respectively. For CIFAR-10, 9019 samples are used in the
training set, and 1000 samples in the test set. Then, each
local training set is complemented with simple random crop
augmentation (to avoid having too few samples per client as
the number of clients increase), leading to a total number of
18038 training samples. Similarly, for MNIST, 11432 samples
are used for training, and 2115 samples for testing. Then, each
local training set is complemented with random crop augmen-
tation, leading to 22864 training samples. Model accuracy is
evaluated on the test set, using the model trained jointly across
the IV clients.

We evaluate the performance with respect to both
COPML [7] and conventional logistic regression. For PICO
and COPML, we leverage the secure truncation protocol
from [80] to carry out the multiplication with =L during
the model update in (40), to ensure that the range of the
updated model stays within the range of the finite field as
suggested by [7]. This protocol takes as input the secret shares
{[z]i}ic|n) of a variable x (where client 7 holds a share [z];),
along with two public integer parameters «; and ko such that
0 < K1 < Ko, and = € Fas.. Then, the protocol returns the
secret shares {([2]; },¢[n] of a variable z such that z = | 5% | +b
where b is a Bernoulli random variable (random bit) with
probability P[b = 1] = (z mod 2%*)/2%*. As such, the secret
x is quantized by rounding z/(2%1) to the nearest integer with
probability 1 — p, where p is the distance between the two.
The quantization is unbiased, ensuring the convergence of the
trained model. In the experiments, (K1, k2) = (22,24) is used
for both datasets and benchmarks. We further optimize (speed
up) COPML by leveraging the grouping strategy suggested
in [7], which partitions clients into groups of size 7'+ 1, and
communicates the secret shares only between clients within the
same group. To ensure correct recovery of the final model, the
number of clients (for both PICO and COPML) must satisfy
the recovery threshold from Thm. 3. We then compare the
performance under the same system configurations from [7] to
ensure a fair comparison, by letting » = 1, and considering the
scenario where the degree of privacy (7T') and parallelization
(K) are (almost) equal, such that N = 3(K +7 — 1) + 1
with 7 = [¥=2] and K = |¥F2] — T. The bandwidth
and finite field size are set as 40Mbps and ¢ = 226 — 5,
respectively.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY

5867

2 2 0 2
24 £25 54 825
z £ z z
c €1.0 c £1.0
S 3 3 E
o o o o
Vo V0.0 o 0 o 0.0
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
N (number of clients) N (number of clients) N (number of clients) N (number of clients)
(a) Online (CIFAR-10). (b) Online (MNIST). (c) Online+offline (CIFAR-10). (d) Online+offline (MNIST).
Fig. 4. Online (a)-(b) and online+offline (c)-(d) communication overhead.
TABLE II
COMMUNICATION OVERHEAD (IN MBITS) ACROSS ALL CLIENTS FOR N = 60
CIFAR-10 MNIST
Stage Online Online + Offline Online Online + Offline
COPML PICO | COPML PICO | COPML PICO | COPML PICO
1. Dataset enc. | 4.1x10° 3.8x10° | 4.1x10° 2.4x10* | 2.6x105 2.4x10° | 2.6x10° 1.5x 10%
2. Label enc. 8.3x 102 0.7x10% | 83x10%2 8.6x10' | 47x10> 3.52x10' | 47x10> 4.34x 10
3. Model init. - - | 7.6x102 1.4x10! - - | 3.8x10%2 0.74x 10!
4. Model enc. | 29x10° 3.2x10% | 29x10° 1.1x10° | 5.8x10° 6.5x10% | 5.8x10° 2.1x103
5. Gradient 3.6x10* 65x10% | 3.6x10* 2.1x10% | 1.8x10* 3.2x10% | 1.8x10* 1.1x103
Total 46%x105 52x10° | 4.6x10° 29x10% | 2.8x10° 3.1x10° | 2.8x10° 1.7 x 10%
6 le3 le3
—— PICO 35| —&— PICO
5 3 5| —#— COPML 3.0{ —#— COPML
g“ g f§‘4 d § 25
23 o’ 93 020 d
£ £ £ Eis
2 = F, =
1 1.0
! 1 0.5
10 20 30 40 50 60 10 20 30 40 50 10 20 30 40 50 60 10 20 30 40 50 60
N (number of clients) N (number of clients) N (number of clients) N (number of clients)
(a) CIFAR-10. (b) MNIST. (c) CIFAR-10. (d) MNIST.

Fig. 5. Online (a)-(b) and online+offline (c)-(d) wall-clock training time.
80 80 80
~75 ~75
S S 37
<70 <70 e
z [20 P N
€65 ©65 65 s
H H —A— PICO (q=2%°-5) 3 —#— PICO (k;=24)
960 960 €0 (g2t 8 60 :
& —&— PICO & % PICO (q=2%'-1) & —&— PICO (ky=22)
55{ | -#- copmL 55{ |- PICO (q=22+9) 55{ | —=— PICO (k;=16)
50 —H Conventional logistic regression 50 —=— Conventional logistic regression 50 —=— Conventional logistic regression
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Iterations # Iterations # Iterations
(a) Model test accuracy. (b) Varying finite field size (g). (c) Varying truncation level («p).
Fig. 6. Model convergence (a), impact of finite field size (b), and secure truncation (quantization) level (c) on CIFAR-10.

led

—&— PICO

led

the dataset/labels) were omitted in [7], which we also include

1.50 —&— PICO
2'0 125 as they are data-dependent. In Fig. 4 (c)-(d), we compare the
El's §1.00 overall (online+offline) communication overhead, and observe
§1-° §°'75 a reduction by up to 15.8x on CIFAR-10 and 15.9x on
05 22: MNIST. In Table II we provide the details of the online and
—— e § — e overall (online+offline) communication overhead from Fig. 4
K (parallelization degree) K (parallelization degree) for N = 60 clients, where we illustrate the cost breakdown
(@) CIFAR-10. (b) MNIST. for each protocol component. Fig. 5 (a)-(b) compares the
Fig. 7. Online+offline wall-clock training time. wall-clock training time of PICO and COPML, including all

We first compare the online communication overhead (in
Mbits) in Fig. 4 (a)-(b), including all communication during
the online phases throughout training. We observe that PICO
significantly decreases the communication overhead, by up
to 88.3x and 91.5x on CIFAR-10 and MNIST, respectively.
Note that some one-time communications (i.e., secret sharing

(online) communication and computations. We observe that
PICO speeds-up the training time by up to 6.8x and 7x
on CIFAR-10 and MNIST, respectively. In Fig. 5 (c)-(d),
we present the overall wall-clock time by including both online
and offline operations, and observe a reduction by up to 4.2x
on CIFAR-10 and 4.1x on MNIST.

In Fig. 6(a), we compare the test accuracy of PICO for
N = 60 and CIFAR-10 with respect to both COPML and

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5868

le3

5
—&— PICO
—%— COPML

o

IS
%)

w
w s

Time (sec)
N

Time (sec)
~N

[
-

10 20 30 40 50 60 10 20 30 40 50 60
N (number of clients) N (number of clients)

(a) Online (CIFAR-10). (b) Online (MNIST).
Fig. 8.

conventional logistic regression (representing our target accu-
racy), where for the latter training is done in the domain of
real numbers, without any privacy constraints, in a centralized
setting with all data located at a single party. We observe
that PICO achieves comparable accuracy to both COPML
and conventional logistic regression. In Fig. 6(b), we further
evaluate the impact of the finite field size ¢, and in Fig. 6(c)
we demonstrate the impact of the secure truncation param-
eter x1 on accuracy. We observe that accuracy degrades for
very small k1, which increases the accuracy of quantization
but also the overflow errors, hence there exists a trade-off
between quantization and overflow errors. In practice, these
hyperparameters can be tuned through a local validation
set, where each client can locally identify a feasible range
prior to training, after which clients can agree on the final
parameters.

In Fig. 7, we demonstrate the role of parameter K on
the overall (offline+online) wall-clock training time of PICO
(including all communication and computations), by letting
N = 60 and varying K. As K increases, training time
decreases, as the size of the encoded dataset processed by
each client is proportional to 1/K (reducing the training load
per client). Fig. 7 also illustrates a trade-off between paral-
lelization (accordingly, training time) and adversary resilience,
as increasing K decreases the maximum number of adver-
saries T' that can be tolerated, as shown in Thm. 3. Finally,
we consider the scenario with the maximum parallelization
gain (i.e., highest K), by setting 7' = 1 and selecting K
to be the highest value that is allowed by the recovery
threshold from Thm. 3. We then present the online and overall
(offline+online) wall-clock training time in Fig. 8 for the two
datasets. We observe that PICO significantly speeds up training
by cutting the online wall-clock training time by up to 8.8x
and the overall (offline+online) wall-clock training time by up
to 5.5%, respectively.

IX. CONCLUSION AND FUTURE DIRECTIONS

This work presents PICO, the first collaborative learn-
ing framework with linear communication complexity, under
strong information-theoretic privacy guarantees. PICO builds
on an online-offline trade-off where the communication inten-
sive operations are offloaded to a data-agnostic offline phase.
Then, the amortized communication complexity for the latter
is further reduced to linear via an efficient shared randomness
generation mechanism. In doing so, PICO achieves an order
of magnitude reduction in the communication overhead, while
providing the same accuracy, dropout-resilience and privacy
guarantees as the state-of-the-art. Future directions include

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

le3

o

5| = Pico

4| - coPmL 5
=3 ;3
o
£ £
F2 F,

1 1

10 20 30 40 50 60 10 20 30 40 50 60

N (number of clients)

(c)Online+offline (CIFAR-10).

N (number of clients)

(d) Online+offline (MNIST).

Online (a)-(b) and online+offline (c)-(d) wall-clock training time (maximum parallelization gain).

expanding our mechanisms to different machine learning tasks
and loss functions. Extending our work to more complex
machine learning tasks, such as neural networks, necessitates
addressing several key challenges, including the increase in the
polynomial degree of coded computations as the number of
layers increases, due to consecutive multiplication operations
during forward and backpropagation, as well as handling
the impact of consecutive polynomial approximations for
the activation functions (e.g., ReLu activations), which can
accumulate error as the number of layers increases. Addressing
these challenges with efficient neural network architectures
and training mechanisms is an interesting future direction.
Another future direction is developing novel secure quantiza-
tion mechanisms for multi-party machine learning, to enhance
model accuracy under resource limitations.

APPENDIX A
ALGORITHM

The offline and online steps of PICO are presented in
Algorithms 1 and 2, respectively. The offline phase consists of
randomness generation across the NN clients, which will later
be used for masking the datasets, models, and computations
in the online phase.

APPENDIX B
COMMUNICATION COMPLEXITY

In the following, we analyze the per-client communication
complexity of PICO.

A. Online

The online communication per-client consists of the fol-
lowing components: 1) O(dm) for dataset encoding (Stage
1), 2) O(%) for label encoding (Stage 2), 3) O(d) for model
encoding (Stage 4) per training round, 4) O(d) for gradient
computing and model update (Stage 5) per training round.

B. Offline
The offline communication per-client consists of the fol-

lowing components: 1) O(Nd7%) for dataset encoding (Stage

D), 2) O(WLjn) for label encoding (Stage 2), 3) O(:¥4%)
for model initialization (Stage 3), 4) O(%) for model
encoding (Stage 4) per training round, 5) O(+2%) for gra-

dient computing and model update (Stage 5) per training
round.

Hence, the communication overhead per-client is O(dm +
K d+dJ) in the online phase, and O(£dm + ~=dJ) in the

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY

5869

Algorithm 1 PICO - Offline Phas

Input: Number of clients N, polynomial coefficients (a1, . . .

// 1. Dataset Encoding

N = an), (B '
Output: Random masks {R.i;}; je(ny {[ails}ijeny 4T (1, (0] Ve ny ee o,

,Br)-

J—1} random initial model {[W(O)]z‘}ie[zv]-

1 for clienti=1,...,N do
2 Encode the random matrices {R.ix }xe(k]» {Vikthe{K+1,...,k+1} from (9).
3 for j=1,...,N do
4 L Send the encoded matrix R;; to client j.
// 2. Label Encoding
s for clienti=1,...,N do
6 Encode the random vectors {a;x }re[x]s {Pik fre{Kx+1,..., k+7} from (13).
7 for j=1,...,N do
8 | Send the encoded vector &;; and secret share [a;]; to client j to client j.
9 fori=1,...,N do
10 Construct the encoded vector a; £ (M ® I) x (ah, ..,ak)T from (14).
1| Construct the secret share lag)i 2 M x ([a14]T, ..., [ang]])T for all k € [K].
// 3. Model Initialization
12 for clienti=1,...,N do
13 Generate a random vector Wi.o) from [Fyq.
14 for j=1,...,N do
15 L Send a secret share [Wgo)} 4 to client j using Shamir’s secret sharing.
16 for clienti=1,...,N do
17 L Initialize the model [W(®)]; using {[W;O)]i}je[N7 as given in (20).
18 for iteration t =0,...,J — 1 do

// 4. Model Encoding

19 for client i =1,...,N do
20 Encode the random vectors r {Vzk Yree{K+1,...,K+T)} as in (22).
21 for j=1,...,N do

(1)

L Send the encoded vector T;; (t)] j

22 and secret share [r;

,IN do
Compute the coded vector,

23 for client i = 1,.
~()

24 as given in (23).

25 Compute the secret share [r(t)]i after receiving {[r;t

to client j.

)]i}je[N] as given in (24).

// 5. Gradient Computing and Model Update
26 for client i =1,...,N do
27 Encode {ulk }k€<2r+1)(K+T 1)1 as given in (29).
28 for j =1,.
29 Send the encoded vector u() to client 7.
30 Send a secret share [Y ke[K uE k)} 4 to client j using Shamir’s secret sharing.
31 for client i =1,...,N do
32 Compute the coded vector, u() after recelvmg {uﬂ) }]G[N] as given 1n (%1)

33

Compute the secret share, [3 ;¢ (k] uk]Z after receiving {3k

jk]Z}]E[N] from (33).

offline phase. The total communication complexity across all
N chents is O(N dm+ S d+ NdJ) in the online phase, and

o5 zdm + % N ~—pdJ) in the offline phase.

C. Communication Complexity of PICO vs COPML

In Table III, we present the total communication complexity
(across all N clients) of PICO versus COPML [7] for each
stage. We observe that PICO incurs a linear communication
overhead both in the online and offline phases. As such, PICO
not only reduces the online communication overhead from
quadratic point-to-point to linear broadcast (by offloading the
communication-intensive operations to the offline phase), but
also reduces the offline amortized communication overhead to
linear, as opposed to the naive offloading strategy discussed
in Section IV, where the quadratic communication overhead is

offloaded to the offline phase, but the resulting offline overhead
is still quadratic.

APPENDIX C
COMPUTATION COMPLEXITY

In the following we analyze the per-client computational
overhead of each stage of PICO, for both the offline and online
phases, respectively.

A. Offline Phase

The offline phase consists of encoding the local randomness
generated by the clients, and random initialization of the model
as follows. _

Stage 1: Generation of {Rj;},cn) requires evaluating
a Lagrange polynomial of degree K + T — 1 at N

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5870

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

Algorithm 2 PICO - Online Phas

Input: Dataset (X,y) = ((X1,¥1),---,(Xn,¥x)) distributed over N clients.

Output: Model parameters wi

// 1. Dataset Encoding

for client i =1,...,N do
Partition the dataset X; into K equal-sized shards (iil, ..
Broadcast the masked dataset)A(m =X,z — R for k € [K].

for clienti=1,..., N do
5 L Generate the coded dataset X; from (11).

// 2. Label Encoding
for clienti=1,..., N do

after J training rounds.

-

w N

IS

Partition Kfyi into K equal-sized shards (¥;7,. -

6

7 S YiK)-
8 for client j =1,...,N do

9

L Encode {¥ ;) } k] as described in (17), and send the encoded vector ¥;; to client j.

for clienti=1,..., N do
L Broadcast 4; = Zje[N] ¥ji — a; from (18).
for client i =1,...,N do

| Compute a secret share [YTV]Z- of KTy as given in (19).

for iterationt =0,...,J — 1 do
// 4. Model Encoding
fori=1,...,N do
L Broadcast [w(®)]; from (25).
for:=1,...,N do
Decode w(*) £ w(*) — r(*) using polynomial interpolation.

L Compute the coded model v~v§t) in (27).
// 5. Gradient Computing and Model Update
for client i =1,...,N do
Compute the gradient X7 §(X; x v~v§t)).

(1) ST A o (t ~(t
| Broadcast ug):Xng(XZ- ><wl<.)) - ul().
for client i =1,...,N do

=T .

Decode (8k) = ¢(B) — 6(Bx) = X, §(Xp x w(¥) —u”

21
22
23
24
25

26
27

| Update the model with [t D], from (40).

// Final Model Recovery
28 Collect the secret shares [W(7)]; from any 7'+ 1 clients.
29 Decode the final model (/) via polynomial interpolation.

Reconstruct 3¢y ¥ — @k for all k € [K] using polynomial interpolation.

for k € [K] via polynomial interpolation.

Compute a secret share [YTQ(K x W(t)]; of the gradient YTQ(Y x W) as given in (38).

TABLE III

COMPARISON OF THE TOTAL COMMUNICATION OVERHEAD (ACROSS ALL N CLIENTS) FOR PICO AND COPML
WHERE m; = mFOR % € [N], K =O(N),AND T = O(N)

COPML PICO
1. Dataset encoding O(N?*dm + Ndm) 22?1;11?1?) 85%ZZ;
2. Label encoding O(N?m+ N%d) Eg%iir:l?) 82%3;
3. Model initialization O(N2d) Eg}‘é‘;?) oD
4. Model encoding O(N?dJ) Egrfléllr:l:)) g E%Z;;
5. Gradient computing and model update |O(N2dJ) Eg?éll?l?) 8 E%Z;;

points. It is known that by leveraging efficient algebraic
structures, interpolating a polynomial of degree ~ (and eval-
uating it at s points) has a computational complexity of
O(/{logzmloglogﬁ) [6], [84]. As such, this stage has a
complexity of O(Nd % log?(K+T') log log(K +T)) per client.

Stage 2: Computing {a,;},c;y) requires evaluating a
polynomial of degree K + T — 1 at N points, which
has a computational complexity of O(N ﬁlogQ(K +
T)loglog(K + T)) per client. Computing a; in (14) has a

complexity of O(%) per client (since only the non-zero terms
should be multiplied due to the identity matrix). Computing
the secret shares {[a;x];};env) for all k € [K] requires
evaluating each of the K polynomials of degree T at IV
points, which has complexity O(N 4+ log? T'loglog T') for
each client. Evaluating the secret shares {[ax];}recx) has an
overhead of O(Nd) per client.

Stage 3: Computing the secret share {[WEO)] j}je[n) requires
evaluating a polynomial of degree 7" at N points, which

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY

has complexity O(N —1og TloglogT) for each client.
Finally, computation of the final secret share, W from (20)
has complexity O(Nd) per client.

Stage 4: Computation of FZ(»;) requires evaluating a Lagrange
polynomial of degree K + 71 — 1 at N points, which has a
complexity of O(N d logQ(K + T)loglog(K + T)) per
client. Given {r)}]e , the computation of r() from (23)
has an overhead of O(N d) per client. Constructlng the secret
share [rgt)] i requires evaluating a polynomlal of degree T' at
N points, which has complexity O(N log TloglogT)
for each client. Afterwards, creating the secret share [r(®];
has a complexity of O(Nd) per client. Overall, this stage has
a per client computational overhead of O(N ﬁ log?(K +
T)loglog(K+T)+ Nd) per training round. For .J rounds, this
leads to an overhead of O(JN x4+ log®(K +T) log log (K +
T) + JNd) per client.

Stage 5: Computing {ﬁg) }ieln) requires evaluating a
Lagrange polynomial of degree (2r + 1)(K + T —1) at
N points, which has a complexity of O(N %= log® r(K +

)log logr(K + T)) per client per tralmng round Given
{uﬂ }jen), computation of u(t) in (31) has complexity
of O(Nd) per client per training round. Next, computing
> okelK] u') has a computational overhead of O(K i)
per client per training round. Computing the secret shares
{2 kerm uz('z)}j}je[N] requires evaluating a polynomial of

degree T at N points, which incurs a complexity of
O(N dTlog2T loglogT) per client per training round.

Finally, given {[Zke[K] u;?]i}je[N
> kerx) u,(:)]i has complexity of O(Nd) per client per train-
ing round. For J iterations, the computational complexity is
O(JN %+ log” r(K+T)loglog r(K+T)+JNd) per client.

Overall, the computation complexity of the offline phase is
O(Nd% log®(K + T)loglog(K +T) + JN 4+ log” r(K +
T)loglogr(K +T) + JNd) per client.

], the computation of

B. Online Phase

The online phase consists of encoding the dataset and the
model, gradient computations, and model update.

Stage 1: Computing {Xx }e[x] has an overhead of O(md)
per client, as each client holds a local dataset of size m locally.
Computing X; has an overhead of O(Nmd) per client.

Stage 2: Computation of Xfyi has complexity of O(md)
per client. Computation of {y;; } ;e[requires evaluation of a
Lagrange polynomial of degree K +71 — 1 at N points, which
has a complexity of O(N & log®(K +T) loglog(K + 1)) per
client. Given {y;;}je;n) and a; (from offline computation),
computation of 4&; incurs a complexity of O(N % %) per client.
Next, upon receiving {a;},c[n] from at least K + T clients,
client ¢ recovers de[N] Yk — ak for all k£ € [K], which has
a complexity of O((K + T)log*(K + T)loglog(K + T)).
Next, computation of [XTy]; from (19) has a complexity of
O(d) per client.

Stage 4: Computing W requires interpolating a
polynomial of degree 7, which has a complexity of
O(Tdlog® T'loglogT) per client per training round.
Computing the encoded model v~v£t has a computation

5871

overhead of O(Kd) per client. As the above computation
steps should be repeated at every training round, for a total
number of J tralmng iterations, the computational overhead
is O(KdJ + TdJ log® Tloglog T) per client.

Stage 5: Computation of the gradient XT §(X; x w()) has
an overhead of O(¥2(d + r)) per chent at each traming
round. The computation of G; has an overhead of O(d) per
client. Then, each client recovers the polynomial 1(«), which
requires interpolating a polynomial of degree (2r + 1)(K +
T — 1), which has complexity O(dr(K + T)log®r(K +
T)loglogr(K + T)) per client. Finally, the summation to
obtain [XTQ(X x WM)]; has a computational cost O(Kd)
per client. The computation overhead of model update is
O(d). The above computation steps are repeated over .J
training rounds. For J rounds, the computation complexity is
O(J N2 (d+7)+Jdr(K +T)log® r(K +T)loglog r(K +T))
per client.

Overall, computatlon complexity of the online phase is
O(Nmd+ N £ log (K+T)loglog(K+T)+JN2 (d+r)+
Jdr(K +T)log? r(K + T)loglogr(K + T)) per client.

C. Computation Complexity of PICO vs COPML

In Table IV, we present the per-client computational com-
plexity of PICO versus COPML [7] for each stage. For
a fair comparison, we also consider the utilization of fast
polynomial interpolation mechanisms [84] for COPML (hence
the complexity we report is even lower than the one originally
reported in [7]). In Table V, we present the per-client compu-
tational complexity for PICO (offline4-online) and COPML,
with T = O(N) and K = O(N). We observe that the
overall per-client complexity (across all algorithm steps) is
O(Ndm + dmlog® Nloglog N + JNdlog? Nloglog N +
Jm(d + 7)) for PICO and O(Ndmlog® Nloglog N +
JNdlog® N loglog N +Jm(d+7)) for COPML, respectively.
Hence, PICO achieves the same computation complexity as
COPML. This is due to the fact that PICO reduces the overall
number of variables encoded, hence the additional operations
due to the matrix transformations with MDS matrices do not
increase the overall computation complexity.

APPENDIX D
INFORMATION-THEORETIC PRIVACY

Proof: For tractability of theoretical analysis, in this
section we consider a sufficiently large field size ¢, and treat
all training operations as integer operations [2]. This can be
achieved by considering a learning rate 7 such that M = /7
is an integer and redefining the gradient computation at client
i from (35) as follows,

”
plai) =Y 0;MT DX (X; x wiy
j=0
where we define the polynomial () =
SO M D% ()T (f(@) x h(a))? such that client
i computes ¢(c;), the exponent (-)7 is applied element-wise,
and coefficient a; is defined as,

a2z ¥
¢ ra;_1 +1

(42)

fort =0

fort>1 (43)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5872

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

TABLE IV
COMPARISON OF THE COMPUTATION OVERHEAD (PER CLIENT) FOR PICO AND COPML WITH m; = m FOR i € [N]
COPML PICO
. line) O(Ndm)
1. Dataset encod 2m g 10g? (on
ataset encoding O(N*“%dlog=(K +T)loglog(K +T)) (offfine) O(N%dlogz(K+T)10g10g(K+T))
. line) O(Nilogz(K +7T)loglog(K +T))
2. Label encod 2 (on K
abel encoding O(N (m+d) log”T loglogT) oitne) O(N (N_?)K TogZ(K +T) loglog(K +T)
+% + Nﬁ log? T loglog T')
3. Model initialization |O (N dlog?(K +T)loglog(K +T)) (online) _ —
(offline) O(N x5 log T log logT + Nd)
. line) O(KdJ +TdJ log T loglogT)
4. Model encod 2 (on
odel encoding O(JNdlog”(K +T)loglog(K +T)) (offine) OUN & log (K+T)loglog(K +7)
+JNd)
Nm
5. Gradient comp./ O(J%(d +r)+Jdr(K+T) (online) oy K z(d +7)+Jdr(K+T)
del update 2 Xlog=r(K +T)loglogr(K +T))
model up Xlog“r(K +T)loglogr(K +T)) a 7
(offline) O(JN xS log”r(K +T)
xloglogr(K +T)+JNd)

TABLE V
COMPARISON OF THE COMPUTATION OVERHEAD (PER CLIENT) FOR PICO AND COPML WITH m; = m FOR % € [N], K = ©(N), AND T = O(N)

COPML PICO (online+offline)
1. Dataset encoding O (Ndmlog? N loglog N) O(Ndm + dm log® N loglog N)
2. Label encoding O(N(m+d) 1og2 Nloglog N) o(d log2 Nloglog N)
3. Model initialization | O(Ndlog® N loglog N) O(dlog?® Nloglog N + Nd)
4. Model encoding 0(JNdlog® Nloglog N) 0(JNdlog® Nloglog N)

5. Gradient comp./
model update

O(Jm(d +r) + JNdlog® N loglog N)

O(Jm(d +r) + JNdlog® N loglog N))

whereas the true gradient is given by,

DECS N

kE[K]
= Ze M-DeX (X
7=0

X)T (X, x Wty

xwt) @4

— T
such that X, 2 f(B,) = [ka X?Vk:| from (12),

replacing (35) and (36), respectively. After collecting u(f)
1 (c;) from any set of at least C'+1 clients, client ¢ can recover
¥ (ar) via polynomial interpolation, compute a secret share of

the gradient 3=, 1 (k).

[wo] 2 Y w0+ [X] @y
ke[K] ' kelK] ke[K] !
=3 0B+ Y Az 46)
ke[K] le[T]

and update the model as,

w0 = e — ([3 ()]

ke[K]

- M [XTy]Z-) . (@7)
replacing the model update operation from (40). After J
training rounds, clients collect the secret shares {[W(”)];};c(n
to decode W'/), and compute the final model as w)
w(/) J/M®7. The correctness of the model update operations
from (47) are provided in Appendix E.

We next present the information-theoretic privacy analysis
for PICO. Consider an arbitrary set of adversaries 7 C N.

For ease of exposition, we focus on the worst case scenario
by setting |7 | = T, while noting that the same analysis holds
for all |7| < T. Let ML and MZ, denote the collection of
all messages received by the adversaries during the dataset
encoding (Stage 1), and label encoding (Stage 2) stages,
respectively. Let M3- denote the collection of all messages
received by the adversaries during model initialization stage
(Stage 3). Similarly, let M‘;t denote the collection of all
messages received by the adversaries in model encoding
stage (Stage 4) at training round ¢t € {0,...,J — 1}. Let
MT denote the collection of all messages recelved by the
adversaries during the gradient computing and model update
stage (Stage 5) at training round ¢t € {0,...,.J — 1}. Finally,
let M denote the collection of all messages received by the
adversaries during the reconstruction of the final model w()
after J training rounds. Then, from the chain rule of mutual
information [71], one can rewrite (41) as follows:

I({X5, ¥ Yiers M {Xi, ¥, bier, W)
= I({Xi, ¥ bier; Moy, M5, M5,
Users) M7 Ure M7, MG X, § ier, W) (48)
= I({X:,¥: b ier: MP X, ¥ bier, W)
+I({X3, ¥ iers MFIME X, T bier, W)
+ I({X3, ¥ Hiers MF M, M3 X, ¥ Fier, W)
J—1
+ > T{Xe, ¥ibiew; M7 | My, M5, M,
t=0
U; éMT ’Ul 0
J—1
+ > T({X, ¥, iews MG MY, ME, M,
t=0

{XZ7 y1}’L€T W(]))

5,l X = —(J
Ut_g M7 UIZg MY XG5 ber, W)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY

+ I({Xza y1}i€7‘l; Mg’|M%'a M2 M3
O1 MT 7Ul () {Xl7y7,}2677 ())

We next investigate each term in the summation (49).

Stage 1: Dataset Encoding: First, we start with the first term
in (49), which corresponds to Stage 1 of PICO, i.e., encoding
the datasets. For this stage, the first term in the right hand side
of (49) can be written as:
I({X:, ¥, e MY X, ¥ Yier, W)
=I{Xi.5: bien;{Rij e {Rin} ieT {Vir} i€T)

1€EH ke[K]

ke{K+1,. ,K+T}
{ Xk} e[X, ¥ }ier, W) (50)
kE[K]

= H{Rij}jer {Rir} ier . {Vir}
ieH ke[K)
{Xir} e X, ¥ Ve, W)
ke[K]
— H{Rij}jer: {Rir} ier ., {Vir}
i€H ke[K]

{Xir}ie \{Xi,?i}ie[NpW(J))
ke[K]

(49)

€T)
ke{K+1,....K+T}

€T

kE{K+1,. . K+T}

&1y

We next bound the first term in (51) as follows:
H({Ri;}jer AR} ier AV} et
i€H ke[K] ke{K+1,...,
{Xik}ien] X, ¥, bier, W)
ke[K]
= H({Ryj}jer, {Rir} ier . {Vir}
i€H ke[K]
{(Xir} ien {Xi, ¥ bier, W)
ke[K]
< H{Rij}jer , {Rir} ieT -, {Vir} ieT
1€H ke[K] ke{K+1,...,
{Xir} ien)
ke[K]

<log (q(ZiEH %)J’_(EiET dmi)+(,er

where (53) holds since conditioning cannot increase entropy.
Equation (54) follows from the fact that uniform distribution
maximizes entropy, and that the entropy of a uniform random
variable distributed over an alphabet A is equal to log |.A|. For
the second term in (51), we find that,

H({Ry;}Yjer, {Rir} ier , {Vir} ieT ,
i€H ke[K] ke{K+1,...,.K+T}

{)A(ik}ie[zv] X, Vi tie[nys W(J))

)
K+T}

eT ’
G{K+1 7777 K+T}

K41}
(53)

Lo) 1 (g dmi)

(54)

(3 m)ss

1€[N]

(55)

ke[K]
= H({sz }j€T7 {Rzk}ze[N] {Vzk} i€l)
€EH ke[K] ke{K+1,....K+T}
{Rir}icv) {Xi, Fiiepv), W) (56)
ke[K]
= H<{R7«]}]€Ta{Rzk}z€[N] {V’Lk} ieT) (57)
eH ke[K] ke{K+1,....K+T}
- H({Rn }JETl{le}lE[N] {Vlk} €T)
kE[K] ke{K+1,...,.K+T}

5873

H{Vir} ieT |{Rbk}ze 1)+H({Rik}ien)
ke{K+1,...K+T} K] ke[K]
(58)
= H({Ru}geT\{Rzk}ze[N] {Vm} €T)
ke[K] {K+1 K+T}
+H{Vi} ieT)+ H{Rir}ien)) (59
ke{K+1,....K+T} ke[K]
(B>)
=H Z Vik H i€H
k=K+1 Lle[K+T\{k} P — Pl jer
+ log(qT4Xier %) + log(gf4 et s) (60)
(>)
=> H({ 2 Ve]I .9
iEH k=K+1 Ie[K+TI\{k} P = Bujet
Td
T Q_milogg+d() mi)logg (61)
i€T 1€[N]
Td
=> H({Zij}jeT)Jr?(Z m;)logq+d(Y m;)logg
ieH ieT i€[N]
(62)

where (56) holds since given {X;, ¥ }ie[n] there is no uncer-
tainty remaining in { Xz }ic|n) ke(K]> (57) holds since the
generated randomness is independent from the local datasets,
(58) follows from the chain rule of entropy, (59) holds since
the random matrices are generated independently where each
element is distributed uniformly at random (and indepen-

dent from other elements) from the finite field F,. In (62),
we define:
K+4T)
zi; 2 Y Vi] l (63)
k=K+1 1e[K+T)\{k} ﬁ’“ — B

for all ¢ € H and j € 7. In the following, without loss of
generality we let the first N — T clients be honest (the last T’
clients are adversarial), i.e., H =[N —T]and T = {N —T +
1,..., N}. The assumption is for notational simplicity, and the
same analysis holds for any set of adversarial clients 7 of size
T. We also represent the Lagrange polynomial coefficients as:

H - B
lE[K+T\{k} B — B

for all j € [N] and k € [K + T]. Then, from (63), one can
write:

pik = (64)

(Z; N—141 Zin] = [Vik+ Vik+r|T (65)
where
PN—-TH+1,K+1 PN,K+1
rs : (66)
PN-T+1,K+T PN,K+T

is a T' x T MDS matrix (hence is invertible), which follows
from the MDS property of Lagrange coding as shown in [6].
An MDS matrix guarantees that (65) is a bijective mapping,
hence,

H{Zi;}jer)=H(Zin-T41,---,

= H(Vi7K+17 R

Z;,N)
Vik+r)

(67)
(68)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5874

o Tdml
K

where (68) is from (65) and that T is an MDS matrix, and (69)
holds since each element of V,; is distributed uniformly at
random over [F,. By combining (69) with (62), we have:

H({Rij}jer, (Ran} ier (Vi)
i€H ke[K]

log q (69)

€T)
ke{K+1,...,K+T}
{ﬁik}ie[N] ‘{Xiii}ie[N],W(J))

kE[K]

= (T tog)+ 22 (S mi) loga + d(3 m:) log

i€H €T €T
(70)

= d(% + 1)(Z mz) log q

i€E[N]
Finally, by combining (54) and (71) with (51), we have:

0 < I({X4, ¥, ierw; ME X0, ¥ ier, W)
= H({ﬁij}je% {Rir} et . {Vir}
i€H ke[K]

{Xik}ie[N] ‘{Xﬁ?i}iemw(‘]))
ke[K]

(71)

(72)

€T)
ke{K+1,....K+T}

— H({Rigljer. (Ran} e AV} ier
i€EH ke[K] ke{K+1,...K+T}

{Xir}ien ‘{iiayi}ie[NbW(J))
ke[K]

Sd(%—i—l)(Z mi) logq—d(%—i—l)(Z mi) log q
1E[N] i
(74)

=0 (75)

where the first inequality follows from the non-negativity of
mutual information. Therefore, the first term in (49) satisfies
the following:

I({X:, ¥ Hiers MY (X, ¥ bier, W) = 0

Stage 2: Label Encoding: We next consider the second term
in (49), which corresponds to the secret sharing of the labels.
Without loss of generality, we represent the secret share of a;
from client ¢ to client j as follows:

[aik]; = aik + Z i€k
1e[T)

(76)

(77)

where e;j; are random vectors of size %, where each element
is distributed independently and uniformly at random from F .
Coefficients {7;};e[n] are distinct public parameters agreed
in advance between all N clients, where v; € F, for all
1€ [N] such that {%}ie[N] N {ﬂk}ke[KJrT] N {aj}je[N] = 0.
Using (77), we can rewrite the second term in (49) as follows:

I({Xz‘ayi}ieH§M%"M%’v {Xivyi}iGTaW(J))
= I({Xivyi}iGH; {5ija [aik]j}iEH,jGT,ke[K]a {éi}iE[N]v
{Lir, biks @i, €irt} ser p ey ierr) M X, T ier, W)

ke{K+1,....K+T}
(78)

= I({X;,¥; biew; @), [@ir]j Yierje T kelk)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

{ Z Vik — akfrex] 1 Z tjk — Brtre(K 41, . K+T}5
JE[N] JE[N]

{rik, Bik, Qikrs @ikt et 1 e[k 1€(T) (M AXi ¥ Yier, W)
ke{K+1,...,.K+T}
(79)

= H({ay, [ai]; bien jer ke(x)s
{ Z Yk — ak}ke[K]a{ Z Tk — bk}ke{KJrl,...,KJrT}a
JEIN] JE[N]
{rir, bik, airs, €irri} ieT k' e[K],le[T] |M17,{Xi§i}ie%w(‘]))
ke{K+1,....K+T}

— H({a;, [ai]; bienjerrex)s { D Fir — akbre(x)s
JE[N]

{ Z ik — brtre(k 1, KT}
JEIN]

{rir, biks ain €art} ser 1 epie)aerr) My AXe ¥ biepvy, W)
ke{K+1,....K+T}
(80)

where (79) follows from the fact that any polynomial of degree
K +7T —1 can be determined from at least K + 7" evaluation
points, therefore there is a bijective mapping from any feasible
set {&;}ie[n] to a set of K + T coefficients {>;c(n ¥ —

ak}k}E[K]a {Zje[N] g _bk}ke{K+1,.4.7K+T}~ For the second
term in (80), we find that,

H({aij, [ar]) bien,jeT kelk]
{ Z Vik — akfrer] 1 Z Tjx — brtre{k+1,.. . K+T}
JE[N] JE[N]

{rik, Bik, Qirrs @ikt et 1 e[k 1€(T) |M%'7{Xiayi}ie[N]7W(J))
ke{K+1,..,K+T}

= H({ai;, [air]j bienjer vex)s 12k b rek)

JE[N]

1 N —
{rik, bk, @i, €k} ier weir)ierr) Mz 1%, Vi iy
ke{K+1,...K+T}

w) 1)
= H({aij, [ai]j ien jeT e[k,

{(M®I) [aLc ay\rk]T}ke[K]’

IS me-Men bl - bl }WH ey

JE[N]

1 N —
{rir, bir, airs, €ixr1} ieT,k'€[K],le[T) M7, {Xi, yi}ie[N]>
ke{K+1,....K+T}

W(‘]))

= H({ay, [aik]; bien jer ke(x)s

{(M®I) (a1 a{N—T)k]T}ke[K]’{ > miks
JEIN-T]

(82)

bT

M @TI) [by, (N-T)k

'
ke{K+1,. . K+T}

1 % —
{rir, bik, air’, €ixr1} ieT k' €[K],le[T) M7, {Xi, yi}iE[N]v
ke{K+1,....K+T}

W(J))

= H({ay, [ai]; bien jer ke(x),

(83)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY

{ [aLg aﬂ(erT)ijT }ke[K]’{ Z Tk

JEIN-T]
~(MaI1) bl bT T}
M ®1) [by, (N-T)E) ke{K+1,...,K+T})
+ H({rik, bik, Qikr s €ir1 }ieT 1/ € [K) 1€ [T] k€K +1,.., K+T})
(84)
= H({ayj, [air]; Yien jeT ke(k)s {25k} je N 1] ke[K]»
{ Z rjr — (M&T) brlee(ri1,...k+7})
JEIN-T]
T T 1 T
Td() 1
TR T RN TN—T Tv_7) 81
(85)

where (81) follows from the fact that given {X;,¥,}ic(n],
there is no uncertainty in } .y ¥ for all k € [K]. In (83),
we define the following square submatrix of M from (16),

IV AT

ot Ay Tt

M<£ | . (86)
1 Av_7 AV ; !

which is an (N — T) x (NN — T) MDS matrix (hence is
invertible), from which (84) follows. Equation (85) follows
from the entropy of uniform random variables, and,
b

b2 | 87)
bn_7)k

For the first term in (85), we find that,

H({aij, [air]j Yienjer kelx], {25k} jeIN=T) ke[K]

{ Z Tjr — M®T) Bk’}ke{K—i-l,...,K-i-T})
JEIN-T]

= H({aij}ieH,jeTv

JE[N-T]

H[aik] }ZEH,JETn{aJk}Je[N T])
ke[K] ke[K]

H({[air];j Yier jer kepm{aje}je(n—1).kex])
+ H({ajk}JG T),ke[K]) (88)
({ K+T 5 }
Z bix H S
k=K+1 1e[K+T)\{k} 6 — Bulienet
Z rir — (M®I) by)
JelN-T] }ke{K+17...,K+T}
+H <{ Z Vgl‘eikl}ieH,jeT,ke[K]>
1e[T]
+ H({ajk}jen—1)ke(k]) (89)

where (88) follows from the chain rule of entropy, and (89)
holds since the random vectors are generated independently.
To simplify the analysis of (89), we let,

(X ier) YN-r41€ikl e Ynveinl]

5875
= [eir1 eir| A (90)
where
1 1
YN-T+1 TN
AL : o1
“YJTV—T+1 “YJTV

is an T" x T MDS matrix (invertible). From (90), it follows
for the second term in (89) that,

H(‘[> 7§eikl}i€H,jeT,k€[K]>

1e[T]

= Z Z ({Z Vieiri}jer) (92)
i€EH ke[K] 1€[T)

= Z Z {Z ’yjezkl}jG{N T4+1,..,83) (93)
i€[N-T] ke[K] le[T)

= > > H([lews - eur]A) (94)
i€[N—T)] ke[K]

= Z Z H(eik1, ... eirr) (95)
i€[N—T)] ke[K]

d
= Tdlogq (97)

where (92) is from the independence of the generated random
variables, (94) follows from (90), and (95) holds since matrix
A is invertible, hence represents a bijective mapping. Finally,
(96) follows from the entropy of uniform random variables.
Similarly, for the last term in (89),

logg=dlogq
(98)

which also follows from the entropy of uniform random
variables.

H({ajr}jein—1ke[x) =

For the first term (89), we rewrite
K+T a;i—pB .
{ > k—r+1 Pik Hle[K+T]\{k} 75;_52 o as
JET
H an-1+1 — 3
Z b H Bk — B
k=K+1 le[K+T)\{k}
K+T ax — 8
oo IS
k=K+1 le[K+T\{k} P~ Pl
= [bi,k+1 bi k7| T 99

where T' is the T x T MDS matrix from (66) (hence is
invertible). Using (99), one can then rewrite the first term in
(89) as:

K+T o ﬁl
H<{ Z bit H ﬁk—ﬁz}z‘eﬂ,g‘e:ﬁ’

k=K+1 I€[K+T)\{k}
{ > rjk—(m®1)5k})
JEIN-T) ke{K+1,....K+T}
= H({ [bi,K+1 bi’KJrT} I‘} ,
i€H

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5876

Y orp-(Mol) Bk} (100)

JE[N-T]
=H <{bi,K+17 ey b'L»K+T}7L€’H7
{ > - (MeI) Ek}) (101)
JEIN-T) ke{K+1,...K+T}

=H <{bi7k’}i€H7ke{K+1,.4.7K+T}7

Z rjx — (M@l bk}ke{K+l,.,.,K+T}> (102)

JEIN-T]
=H< Z I'jk-—(M@I)Bk
{je[NT] }ke{K+1,...,K+T}
‘{bi,k}ie[NT],ke{K+1,...,K+T})
+ H({bik}tieN—T),ke{K+1,...k+1}) (103)
= H({ Z I‘jk}ke{K+1,..,,K+T}
FEIN-T]
{bikbicN—T) ke{K+1,...K+T})
+ H({bir}tie[N-T),ke{K+1,.... K+T}) (104)
= H({ Z I”jk}ke{K+1,...,K+T})
FEIN-T]
+ H({bik}ie[N—T],ke{K+1,...K+T}) (105)
d d
=T—1 N-TYT————1 106
7 loga+() N -T)K 8¢ (106)
2Td
= logg (107)
where (101) holds since I' is invertible, represent-

ing a bijective mapping. Equation (103) follows from
the chain rule of entropy, (104) holds since given
{bikbicN—T),ke{K+1,....k+T}, there is no uncertainty in
(M ® I) by, (105) follows from the independence of the
random vectors, and (106) follows from the entropy of uniform
random variables. By combining (107), (97), and (98), with
(85), we can rewrite the second term in (80) as follows,

H({ai;, [ar]; bien,jer keir) Z Yik — @k brelK]>
JE[N]

{ Z Tk — bk}ke{K+1,...,K+T},
JE[N]

{rix, bir, air, €inri} i€T k' €[K],l€[T) \Mln{iu yi}iE[N]
ke{K+1,...,.K+T}
2Td
= YIqu—‘erlqu-i-dlogq

+Td(T r , t ., 7T
K KIN-T) N-T N-T

) log ¢
(108)

= (d(%+T+1)

W)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

+Td(T T LR)) lo
Ktrww-m N7 " N=T))®
(109)
Next, for the first term in (80), we observe that,
H({aij, [ar]; bien,jer keir) Z Yk — @k }relK]>
JEIN]
{ Z ik — brtre(k 41, K4+T)5
JEN]
{Tir, ik, Qikr, €irnt} st 1 e(w)ierr) M
ke{K+1,....K+T}
{Xi,¥:bier, W)
((N ~T)Td (N - T)TdK
(N-T)K ' (N-TK
+Q+Td+T2d+ T2d Td n T2d)10
K K K KN-T) N-T N-1) 1
(110)
2T
- (d(? +T+ 1)
T 1 T
Td()) 1
TR RN "N T N_T)) 81
(111)

Finally, by combining (111) and (109) with (80), we find that,

0 < I({th }167’[1 M |MTa {Xz,yz}ZETa (J)) (1 12)
2T
< il

< (d(— +T+ 1)
T 1 T
Td 1
+ (K KN-T) 'N-T " N—T)) o84

- (d(%+T+1)

T T 1 T
T 1
+ T + KN = T)+N7T+N—T)) o84
(113)
0 (114)

where the inequality in (112) follows from the non-negativity
of mutual information. Hence,

({szyl}’zeThM ‘MTa {Xuy }zET W)) =0 (115)

for the second term in (49).

Stage 3: Model Initialization: We now consider the third
term in (49), which corresponds to Stage 3 of PICO, i.e.,
model initialization. Without loss of generality, we represent
the secret share [WEO)]j sent from client ¢ € [N] to client

j € [N] as follows:

WO 2w+ 3 ks (116)

ke[T]

where {sgg)} ke[) are T' random vectors of size ﬁ, where
each element is generated independently and uniformly at
random from FF,, and coefficients {;};c[n] are as defined
in (77). We can then rewrite the mutual information condition
for the third term in (49) as follows:

I({Xza yi}ie’H; M%’|M%'a M%’a {Xu yi}iETaw(J))
= I({X:, ¥, Yier: {F") Yiergers

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY

{WZ('O)7 Sgg)heT,ke[T] My, M5, {X,, ¥, Ve, W(']))
(117)

= I({X., ¥ hiers {7 Yienjer | My, M%,
{XZ»Yz}1€T7 J))
+ I({Xi, ¥, Yiens {W(-O)v EZ)}ieT,ke[T} H{[w
M%WM {X“y }16T7 w/))
= H{[") Vier jer My, M% (X, ¥, Vier, W)
— H{W) Yienjer M, ME (X0, 5 Hiein, W)
+H{W sV ier wem) e jer. My, M,
{thz}ieT’iU))
H{ s Vet wem W)

{Xivyi}iE[N]vw())

We next consider each term in (119) separately. For the first
term in (119), we have that,

H{]; Vien jer| My, ME (X0, ¥, b ier, W)
d
< _
< (N T)TN — (120)

Z(-O)L'}ieH,jeT,
(118)

] }iGH,jGT: M%’v M%’7
(119)

Tlogq =Tdlogq

which holds since uniform distribution maximizes entropy. For
the second term in (119), we let,

%y

[[WEO)]NfTJrl

—wO 1 1+ [0 - @A a2
~——_————
1 R
=w"1+s”A (122)

where A is a T x T MDS matrix as defined in (91), and 1 is
a 1 x T vector, where each element is equal to 1. Using (122),
the second term in (119) can be written as,

H{[W); Vierjer| M, MZ, {Xi,¥: e, W)
> H{[W); Verjer | My, ME X35, e, %),
(w!)}ZEH) (123)
= H({W 1 +S A}’LEH|MT7M {Xlayz}ZG[N]7W(J),
(%Y ien) (124)
:H({Sz(') A}ieH|MlTa MZ%{Xi»yi}ie[N} 7W(J), {WEO)}ieH)
(125)
H({SZ(-O)}ieMMlT, ME X, i bien w), {WEO)}iEH)
(126)
H({s” }ien) (127
d
= (N -17)T 1 12
()T~ logg (128)
=dTloggq (129)

where (123) holds since conditioning cannot increase entropy,
and matrix A in (124) is a T x T MDS matrix as defined
in (91). Equation (126) holds since A is an MDS matrix, hence
is invertible. Equation (127) follows from the independence of
the generated random vectors, and (128) is from the entropy of

5877

uniform random variables. For the third term in (119), we have,

H{W", s Vier ke {0 Vierjer, M, MZ,
{Xia yi}iGTv W())

< H{w" sV ier nem) (130)
Td T2d

< (- 4 - 7

_(N7T+N7T)logq (131)

where (130) holds since conditioning cannot increase entropy,
and (131) follows from the entropy of uniform random vari-
ables. For the last term in (119), we find that,

0 0 —(0
HU® sV icr ke {F V) Yien jer. M, ME,

{Xia y’L}lE[N]) W(I))
> H{W", sV ier weim (W) Yien jer, M, M2,

(X0, ¥, biev), W), W) (132)
= HUF, s Ve rem {W") Yienjer, W) (133)
= H{w", s Vit kerr) (134)

Td T2d
*(N—T+N—T>1°gq (135

where (132) is from the fact that conditioning cannot increase
entropy, and (133) holds since:

—(0 0 J— (0
{W§)7S§k)}i67’,ke[T} - w0, {[WE)]j}iEH,jGT - My, M%,

{Xiayi}ie[N]aW(J) (136)

forms a Markov chain, and (135) follows from the entropy of
uniform random variables. For (134), we first observe,

I({W§) lk }’zeT ke[T); w0 {[] Yier. jeT)
= I({Wi ,Sik }ieT,ke[T]§W(0))
+ I({Wgo)v Sgg)}ieT,ke[Tﬁ {[WEO)]j}ieH,jeT|W(O)).
(137)
For the first term in (137), we find that,
0 < I({w”, s\ Vier wepr; W) (138)
= HwW") — H@O U7, s Vet peim) (139)
) o]
< dlogg— H((Ma) [(@™)T . @) |
w5y YieT ket (140)
_ r T
= dlogq - H((M oD [w) o @wWT] |
(T, s Vet perm) (141)
r T
=dlogg— H((MeT) (@) - @])
(142)
— dlogq — H(Wgo), LW) (143)
d
:dlogq—(N—T)NiTlogq (144)
-0 (145)

where M and M are as defined in (16), and (86), respectively,
(138) is due to the non-negativity of mutual information, (140)
holds since entropy is maximized by uniform distribution,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5878

(142) holds since the randomness generated by the honest
clients is independent from the randomness generated by
adversaries, (143) holds since M is an (N —T) x (N — T)
MDS matrix, hence is invertible, and (144) follows from the
entropy of uniformly random variables. From (145),

1w s Vier e W) =0 (146)
Next, for the second term in (137), we find that,
0 < I({w”, sQ Vie weiry; {7 e jer @) (147)

O Vierjerw®)
— H{W] Vier,jer WO A{wO s Yier peir) (148)

where

= H{[W;’

d
H{[W,")j}ierjer W) < 57=5(N ~T)Tlogg (149)

since uniform distribution maximizes entropy, and

H{F") Vier e 0 AF s Vier wem)
T
:H({W§°)1+S§O)A}ieﬁ|(M ©71) [(ng)T (Wﬁ?)ﬂ
sl }ieT,ke[T]) (150)
— H({WZ(.O)I +59Aien]
T
(M® 1) [(Oy (@O T)T] , {WEO’,SE?}M,%[T])
(151)
T
= H({WEOH + SEO)A}ieH| {(Wgo))T (*53) T)T]
(152)
T
H({ O AYien [(T (wgng)T]) (153)
= H({s{" }ien) (154)
d N7 —T)Tlogg (155)

N_

which holds since M and A are MDS matrices (invertible)
and that the random vectors are generated independently.
By combining (148) with (149) and (155), we find that,

—(0) (0 _
I({Wz('), Sgk)}ieT,ke[Tﬁ {w

Then, by combining (146) and (156) with (137), we have that,

1w, s Vet ke WO AW Yienjer) = 0 (157)

from which (134) follows. Finally, by combining (120), (129),
(131), and (135) with (119), we find that,
0 < I({Xl7y7,}’b€H7 M IMTaM {XzaYZ}zETv wl/))
(158)
EO)]j}iGH,jGT‘M%’vM’%'v {Xi,¥:}ier, W)
W(J))

O Yienjerw®) = 0. (156)

= H({[w

~ H{W) Yien jer M, ME (X0, 5 hiei,

+ H({Wgo), 552)}%7,/@6 (T] \{[7(0)] jtierjer, M, M5,
(X0 ¥ bier. W) — HUW s Vier e

(%) Yien jer, My, ME AKX, ¥ Y ieiv), @)
(159)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

Td T2d
< — 4
<Tdlogq— Tdlogq+ (N —7 + N T) log q
Td T2d
- — 1 1
(N7T+N7T> oed (160)
=0 (161)
Hence, the third term in (49) satisfies:
I({thi}iGH; M?’)T‘M’}v M%ﬂ {Xivyi}iGTaw(J)) =0.
(162)

Stage 4: Model Encoding. We next consider the fourth term
in (49), which corresponds to model encoding. We represent
the secret share of r(-t) at client j € [N] as,

O] =+ 3 gl

ke[T]

(163)

for i € [N], where g() is a random vector of size i
where each element is generated independently and uniformly
at random from F, and the coefficients ~y; for ¢ € [N] are as
defined in (77). Then, for the third term in (49), we observe

, that:

I({Xiayi}ieﬁ;M#t‘M’lfaM’%'aMTy Ul OMT 7Ul OM
(X, ¥, ier, W)
= I({Xuyz}ZEH? {[rgt)]ja~§§)}l€7{7 {I‘

AW)]i}ie[N]|MlT7M277M3%

}’LET7 {gl(]?} €7
ke[T]

éMT le oMy {Xi,yi}ieT,W(‘]))
= H({[rz('t)].ﬂ r;; }ZG'H> {I’ }zeT, {gl(,?} ieT
ke[T]

s {[w(t)]i}ie[N] |M%'7 M%’v M%’)

(164)

Ul 0 M%‘l7 éMgllv {X’L?yl}lGT?W(L}))
- H({[rE)L,?S)}i,en, (e Nier A8} et .
JET ke[T)
; {[w(t)]i}ie[N] |M%'7 M%’v M%’)
SIMY XL T ien), W)

Without loss of generality, we denote the secret share of the
model W(*) held at client i € [N] at time ¢ as follows:

)] —w(t)—i—sz

ke[T)

UiZo M‘% (165)

for all i € [N], (166)

where s(t) € F¢, and coefficients ; for i € [N] are as defined
in (77). From (25), we find that:

[\/h\/(t)]i _ [W(t)]i _ [r(t)}i (167)
=[Ol - MeD [EOT - (0T
(168)
_ (Wm ~ (M) [T @] T)
+Y (V-Men (@) - @G D
ke[T)
(169)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY

is an evaluation point of a polynomial of degree 7.
Since any polynomial of degree 71" can be uniquely
determined from at least 7" + 1 evaluation points, there
is a bijective mapping between the set of T + 1
coefficients,

{W‘t) ~(M®T) [(r§t>)T @M " st

~en [T - @]

S - oD [T @@)

and the feasible set of evaluation points {[W];};c(n.
Then, the second term in (165) can be rewritten as
follows:

B[], 5 Y ier, (e Vier {80} ier .
JjET ke(T]
vy e AW DL e M, M2, M
ke{K+1,...,.K+T}
W)

- 40 t— 1~ =
UjZg M7 UIZg MY X, ¥ bie
= H<{[rz('t)]av~g)}ze717 {r()} i€T s {glk } 167:;],

(t) w (M (T (ONT '
\2 W ®1 ’
tvi }k e{K+1,.. K+T} () [(rl) i) }

()

(- oren ey @] b,

’M’lTvM%'7M%'a éMT 7U[éM {Xiayi}iE[N]aW(J)
(170)

= H(H gt)]bNS)}lEHa {I‘()}lETv {glk } zE?]a

W j M (T ® 1"
t }k {K+21€,T,K+T}’(M®I) {(rl) (ry_1) } ;
(M . ())"
{sk MeI) [(glk) (g(N_T)k) } }ke[T]

M, M, M, Ui ME, UM AR T e,)

(171)
= H({I‘Et)}ie% {gf,?} i€T ,{vg,?} i€T)
ke[T] ke{K+1,....K+T}
_ T
L H ({[I‘l(»t)]ja rg;)};%?}’ (M ® I) [(I‘gt))T L (r%)iT)T:|)
T
) t t
{Sk - (M2l [(ggk)) o (gE]\), T)’C)T] }ke[T]

‘M’lfv M%’) M%ﬁ Uf;éMéll? U;;(l)Mgll7 {wal}le[N]aW(J)
(172)

Td I%d I2d 1 (0
= ty Tt log g+ H {1, 50ice,
(N—T N -1 N—T) 084 <{[rz li Ti; }]EZ}

Mon [- @]

5879

T
t NT ¢ ;
{si) - (M®T) [(gﬂ?) (s - T)k)T] }kem

w()

‘M'leM M%‘,U Mé'lau g’l7{ii7yi}i€[N]aw

(173)
Td (t)
ZN T(1+2T)logq+H<{[l]J’ Zj }Ze?z'é’
T
M) [T
OB v ONT () 1"
[s0 - Mo @) &) fm
M'1T7M MT’UZ OMT 7Ul ()M
{Xi, ¥, bien), W7, {S;(:)}kem> (174)
Td (B =)
T
M) [@]
T
(e e -]}
M, M5 M3, U éMT»Uz SM
{Xi, yi}ie[NpW(J)’ {Sg)}ke[T]> (175)
Td (M7 O
N*T(+) qu+ <{[rz]J7 (%] }‘]GE,’:Z[J
_ T
MeD [T - @]
SV i t t T
{MeD @D - @R e, (176)
Td (07, =)
T
COEn
(ONT . (o))"
{[(glk) (g(N,T)k)] }kem> (177)
Td
- 1+ 27)1
N7 (1 +2T)logg
+H({[r?)]j,ﬁ;)};%,{rE“}iemT],{g;?}ie[m],kem
(178)

where (171) follows from H = [N — T7, and that W) can
be determined from {X;,¥,}ic(n] and w(!); (172) follows
from the independence of random vectors generated by honest
clients; (173) follows from the entropy of uniform random
variables; (174) holds since conditioning cannot increase
entropy; (176) holds from the independence of generated
random vectors, and (177) follows from the fact that M is
n (N —T)x (N —T) MDS matrix (hence is invertible) as
defined in (86). Using (121), we next rewrite {[rgt)}j}jem as

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5880

follows,
[[rP]NfTH)]
O g A am
1
=1+ {gﬁ) gz(;)} A (180)

where A is the 7' x T' MDS matrix defined in (91). Similarly,
usin, ite {1,
g (99), we can rewrite {rij }jeT as follows,

~(t ~(t
[E])V T+1 T rz(])\/:|

= ri [Zke[K} PN—-T+1,k Zke[K] PNA,k]

(t) (t)
+ |:vi,K+1 vi,K—&-T} r
where T" is a T' x T" MDS matrix (hence invertible) as defined

in (66). By using (180) and (181), we rewrite the second term
in (178) as follows,

(181)

H(ﬂ Et)]J7~z(t)}1€Ha{r Viepv—1), (8% Viev -1, ke[T])
- H({rgtu + [al0

{rgt) [Eke[;q PN-T+1,k

gf’?] A}iE[N—T]7
Zke[K] PN,/C}
t t

+ {Vz(,l)(—&-l V§,1)(+T}F})

1€[N-T)]
{rz('t)}ie[NfT]a {ggl?}ie[NT],ke[T]> (182)

t

.

{rz(‘t) [ZkE[K] PN—-T+1,k

gftT)] A}ie[NfT]a
> ke[K] PN.k]
+ {VS}{H Vz(,tl)(+T:|I‘}]
1E[N-T]

{ggi?}ie[N—T],ke[T] ‘{I‘Et)}z’e[N—T]> + H({rz(‘t)}ie[N—T])

(183)
= H({ [gﬁ) gf-tT)} Atiev-;
{ [Vﬁql V’Et;(+T:| F}ie[N T

]) + H{r Yiev—m)

{glk YieIN=T),ke[T] ‘{r Yielv

(184)
= [Yerr o Vhor] Thaw o)
+ H{eW Y iev—mperm) + HUe Ve 1) (185)
H({{ Z(t2<+1 VE?HT} }z‘e[N T])
+ H({g} Yiev-rrem) + H{rYiev_r)) (186)

= (N -T)T

d d
1 N -T)T 1
N loga+()T —7loga

Wi — (M ()T

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

+(N-T) (187)

(188)

1
N_T 0gq

=d(1+2T)loggq
where (183) follows from the chain rule of entropy; (185)
follows from the independence of generated random vectors;
(186) holds since I'' is an MDS matrix (hence invertible); (187)
follows from the entropy of uniform random variables.

By combining (178) with (188), the following holds for the
second term in (165),

H({[rﬁ%fﬁ?}m,{r
v ieT
ke{K+1,...,

4.1 t—1
UiZg M7, UZ

}’LET7 {gl(]?} €7
ke(T]

AW bierw M, M5, M,
K+T}

Mg’la{iiayi}ie[N]aw(J))
T
Zd(QT—l—l)(N_T +1> log g

We next analyze the first term in (165). By utilizing (169),
(180), and (181), we find that:

H({[");, 7 m, (e, (89} et

ke(T)

Y er)by
ke{K+1,....K+T}

U?;é M§-I7 U?;OlMgll7 {leyz}ZGTa W(I))

(189)

]|M'1T7M%'7M3'Ta

t
- H({rg 1+ [gﬁ) gEtT)} A}ieH’
{1‘1@ [ZkE[K] PN—T+1,k 2 kelK) PN]
(t) (t
N [ng)ﬁtl Vz(fl)<+T:| I‘}ieH,{ri }ieT,{gik)}kig[?],

Wi wO-eD [@]

i€
ke{K+1,.. . K+T}

{sg>_(M®I) {(g&)) (g%)k)] }kem

‘MT>M75M77UZ OlMTvul éM {X’uyz}ZETu ())

(190)
:H<{rgt>1+[gg;> el Al
{rz('t) [Zke[K] PN-T+1,k ZkG[K] pN,k]
V% V] T e
{gm}m (Vi)

ieT
e{K+1,0 KT}
T
(t)
)"
T
() T
(&(x- T)k)} }ke[T]

’MlT»MQT,MSTa oML UMY XL bier W)

{st - M1 @)

(191)

Note that at the beginning of this stage, adversaries
hold secret shares {[W(®];};cr of the model W

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY

Accordingly, ("D} jer € Mb M2 M3 UZIMEY
éMT Then, by letting,

[W(t)]N] =

(W) v—r41 w1+ [sgt) sgf)} A

(192)

denote the secret shares of the model W) held by the
adversaries 7 = {N — T + 1...., N}, one can observe that,

N T
(VoMo [T)] sy
N T

oD [@])
g%? gYT)

:{Sgt) sgf)}—(l\/léﬂ) : i
(t) (t)
g(N-T)1 8(N-T)T

(193)

sgf)} A

= (W(t)l + [s(lt)

(w0 @en o @])

- en| (1 [gl) o efy]a)
(83 nl+ [g%m gEZ,T)T] A)T]T>A1

(194)

From (194), we then observe the following for (191):

H({rgt)lJr {gg) gz(tT)]A}leﬂ,

{I‘l(-t) [ZkE[K] PN—T+1,k 2relK) K]

(t) (t) (t)
+|:Vi,K+1 Vi,K+T]I‘}Z.€H7{ri

(&P} ier (v}
k€[T)

YieTs
ke{K-i—ilE,?—-aK"‘T}’

W(t)_(ﬁ@l) [(rg’f))T s (r Ei\), T))Tr7
{Sl(:)_(MQ@I) [(gﬁf)T o (8- T)k)Tr}ke[T]

’M%aM%’aM?’}v éMT aUl éM {Xi,yz'}ie’faw(])>

t
_ H({rg 14 [gﬁ) ggg] A}Z-ew’

{rz('t) (X oke(r] PN-T+1,k D ke[K] PN,k
* {V’(tf)ﬂl Vg?ﬂT]r}ieHa{rEt)}ieT’

{glk } zeT {Vlk }

€T ;
ke[T) ke{K+1,...K+T)}

N I

5881

|MT7MT7MT7U1 éMTvul (%M {Xiayi}iET7W(J)

(195)
t
<al el od]'a),
{rz(-t) (> okek) PN-T+1,k > ke[PNk
() (t))
+ i e ; r) i [)
|:VZ,K+1 Vz,K+T} }ieH {ri tier
{8y ier v ieT
keT) ke{K+1,.. K+T}
_ T
wi = MaT) @) (o)) (196)
<((N-7)T + (N -T)T d
= N_-T N_T
d d d
T T2 T2 d)1 197
tiy—rti Nt N—T+>qu (97
T
:d(2T+1)<N_T +1> log ¢ (198)

where (195) follows from (194), (196) holds since condition-
ing cannot increase entropy, and (197) holds since entropy
is maximized by uniform distribution. Finally, by combin-
ing (189) and (198) with (165), we find that:

0 < I({thz}IG'fﬁMgﬁqM%’a M%’aM%’7

Ul 0 M%'l7 éMgllv{X’uyl}7€T7W(J))
<d(2T + 1)(T +1) log ¢
N —
— 4T + 1)(r +1) log g (199)
N-T
~0 (200)

Therefore, the fourth term in (49) satisfies the following:
({thz}ZETD Mélt“\/l%’v M%’, M?'}‘,
UiZo M4Tla Uf;éMSTl, {Xi, ¥ }ier, W

forallt € {0,...,J —1}.

Stage 5: Gradient Computing and Model Update: We next
consider the fifth term in (49), which corresponds to Stage 5
of the proposed framework, i.e., local gradient computation
and model updates. In the following, we define C' £ (2r +
1)(K +T — 1)+ 1. Then, the last term in (49) can be written
as:

Dy=0 (201

I({Xi, ¥ bier; MP | My, M3 M5,
Uf:o Méllv U;;éMg‘l7 {thz}le'f)W(J))

= I({Xi,yi}ieﬁ;{ﬁij};g¥7{[Z U—ikL}i%?j—g

J

ke[K]
(XTg(Xi x W) = Wliepny, {ul) 20} ser MY,
ke[C],le[T)
M, M, UM Uz M X, yl'}z‘e%W(J))
(202)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5882

Recall that the local computations {}NCZTg()NQ X vNVZ(t))= }ie[n]
correspond to evaluations of the polynomial ¢(a) — ¢(«) at
a € {a;}ie;n]. Next, consider a second set of coefficients 3y
for k € [C], where [is as defined in (29). We know that
polynomial p(a) — ¢(«) has degree (2r + 1)(K +T —1) =
C — 1. Any polynomial of degree C' — 1 can be uniquely
determined from any set of at least C' evaluation points. As
N > (2r+1)(K+T—-1)41 = C, there is a bijective mapping
from any C' evaluation points {¢ (1) —¢(Bk) }rejc) to a valid
set of local computations {XZTQ(XZ X vA\}Et)) —U; }ien]- As a
result, one can rewrite (202) as follows,

I X, ¥ bier; {Wj Yien, ik fi€H
(e Fodicns digy (L3 sl ey

{ng(f(i X V~V§t)) - ﬁi}ie[N]: {UEZ)»ZS)} ieT
ke[Cl,le[T)

glla {Xi7yi}i€T7W(J)>
Z uik] -}iEHa
ke[K] 7TieT

{(XT9(X; % V~V§t)) — W fie[n]5 {@?»Zg)}ke[éﬁﬁ[ﬂ

4,1 — 50 (v — —
|M%'a M%’a M?’}'a Uf:OMT) U;:éMT) {Xla yi}i6T7 W(J)>

- H({ﬁij};‘_%y’{[> uik]j};‘.g;_’

ke[K]
{XTg(Xi x W) = U }ie i, {uly 24 }

|M%’M%’7M Ul OMT7UI 0

_ H<{ﬁij}3;g;7 {[

€T
ke[C],le[T)

5,! ~ =
|M%’aM%’7M Ul OMT aUl 0 T 7{Xi7yi}i€[N

Z U—ik]j};g?,

kE[K]

]7W(J)>

= H<{ﬁz‘j}zﬁ€% {[
JET
¢(ﬁk)}ke[c1,{u§?,z§f)} ieT
ke[C],le[T)
|M%'7 M%’a M’;’v Uf:OMgllv U;;(%Mgll’ {X77 yi}iET7W(J)>

- H({ﬁij};‘_%?;,{[Z uik]j};‘%?%;

ke[K]

(Br) }relc)s {UE?, Z,Elt)}

{o(Br) —

{e(Br) — M7,

€T
ke[C],le[T)

M%’7M%’>U§ OMT7UZ SM {X’L7yz}2€[N]7W(J))

(203)

= 1(10) g (13wl g

kE[K]
{0(Br) — Witnerep 10y, 20} er
ke[C],le[T)

M, M, M3 UL MB L U IME (XL T Yier, W <f>>

- H ﬁz 7) Wik |4)
(a1 20wl by
_ t) () X Ml
{o(Br) uk}kE[C]a {uik y 24 }ooier M7,
ke[C],le[T)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

M’2T7M Ul OMTaUl éM {Xl7yz}2€[N]aW(J)

(204)

where (204) holds since ¢(8;) = uy by definition from (32).
For the second term in (204), we find that,

H({ﬁij};‘,g%,{[> uikh};‘%#»

ke[K]

{2(Br) — Witkeep, (03,20} ier
ke[C],le[T)

|M%'v M%" M%’? U?:OM?lv Uf;éMgll’ {Xia yi}iE[N]) WU))

> H({ﬁij};_g771v {1> uik]j};g¥7 {@(Br) — urtrecr

ke[K]

1 2 A3 4t 40 | t=1p 45,1
Mz, M, M3 U_gMZ U Zg M7,

LS i
{ Zk l ke[C?,lTe[T]
{Xi, ¥, i), W, {so(ﬂk)}ke[co (205)
=H ~'L" i 5))))
<{uj}jg’7! {[kgqllk]]}jg% {Uk}ke[c]
{uzk7 il } ieT) (206)
ke[C],le[T)

Z uikL}iE?j'ga

kE[K] J€

= H(ﬁiﬁ;gy {[

M®]I) [u ul (t) i
{Monpf, o al) el er
(207)
= H | {u;}ien, Wik | . pieH,
(g (L5 el
{Meppd - uin")
1k N=D)k] f) e
{u), 2} ier) (208)
ke[C],le[T)
= H | {w;}tien, {[Uik} }zEH {uzk}zE’H>
(J JET kez[l:(] €T k€[C)
+ H<{uzk 2} et) (209)
ke[C],le[T)
= H({ﬁij}i_eH,{[Z Uik} }zeH {wir}ien,)
JET ke[K] eT ke[C]
d d
+ <N—TTC+N—TT >10gq (210)

where (205) holds since conditioning cannot increase entropy;
(209) holds since M is a (N —T) x (N —T) MDS matrix
(hence invertible), and that the randomness generated by
the honest clients H = [N — T] is independent from the
adversaries. Note that {u;; } ;c7 can be perfectly reconstructed
from {wx }re[c) using (29). Then, the first term in (210) can

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY

be rewritten as:

H| {0 }icn, ik| . pier, AWk }i
(b A1 2wl gy o,)

ke[K]

=H ik | picH, \ Wik [4 211
(113 ol b (o) e
- ZH<{[Z uik}j}jeT’ {uik}ke[c]> (212)
iEH k€[K]
= ZH<{ Z u;, + Z 'Y]Zzl} a{uik}kE[C])
i€H le[T) €T
(213)
= ZH({ Z u;, + Z szzz} {uik}ke[0]>
ieH le[T) €T
+> H({uik}ke[C]) 214)
i€H
ZZ H({ Z iz Lz} H{aik }re C])"’Z H({uir b refcr)
icH le[T) €T ieH
(215)
~Sa({ S ote))+ i) @10
i€H le[T] JjeT ieH
=Y H((zin,... zir)A) + > H({Winhee) (217
ieM ieH
= ZH(Zil,...,ZiT) +ZH({uzk}kE[C]) (218)
ieM ieM
d d
= (N—T)TN _Tlogq+ (N—T)CN_Tlogq (219)

= (T + C)dlogq (220)

where (213) follows from (33); (214) follows from the chain
rule of entropy; (216) follows from the independence of
random vectors generated; (217) follows from the definition
of matrix A from (91); (218) holds since A is a T' x T' MDS
matrix (hence is invertible); (219) follows from the entropy
of uniform random variables. By combining (220) with (210),
we have the following for the second term in (204),

H(‘{ﬁij};ﬁgp { [kGZ[K] U—ikL};’EZJ—Q {o(Br) — uk}ke[0]7

1 2 3t 4,0 | t—1 4 45,1
{uzk7 il } ieT |M77MT’M7”U[:0MT aUz:oMT
ke[C],le[T)

{thz}ZE[N]) W(])>

d d
>
(N F1C + T

2) logq + (T + C)dlog q
221)

= (T + C)d(l + (222)

r 1
N_T 0gq

For the first term in (204), we observe that,

H ﬁt i y u; . s —u 5
<{ J}jg;, {[kez[l:(] k]j}jg% {0(Br) — wrtreey
M, M7, M, U M7 VS MF

t t
{ugk)’ 51)} icT

ke[Cl,le[T]

5883

{Xuy }zETv wi/)>

= (g {1 Y wal, by

kE[K] J€

{Sﬁ(@c) M@I) [uf, - uJTVk]T})
ke(C]

3t 4,0 | t—1 p 45,0
{uzk:’ zl} ZGT ‘M%M MT:UlzoMTaUl:OMTr

ke[C],le[T]

{Xia yi}iGva()>

= H<{l~lij}re7}v{[> uik}j};%”,}’

7€ ke[K]

(223)

{Sﬁ(ﬂk) - (M®I) [‘qk u?NfT)k]T } ;
ke[C]

{uzk’ il } ZET
ke[Cle[T]

{X’La yz}ZET W()>

¢ 40 | =1 5 45l
‘M%M%M S UmoM7 UiZg My

(224)

Note that XT (X X w()) for any j € 7 can be perfectly
reconstructed by the adversarles since the encoded dataset
and model X; w(t e Mh, M2, ME, UL M Uz M
for j € T is already known from previous stages. In addition,
for any j € 7, the following holds,

MeI) (x §X; x Wiy = 3" (Wk)
ke[C]
~(M@TI)[uf, - ufy_ T) ﬁl)
[1k (N T)k] Cl;!:{k} ﬂkfﬁl

=MoI) (XT (X; x wi)

-6
- > ol ﬂk) 11
kelC) €[CI\{k} m — A
+ Z (M ®T) [uj, u(TN—T)k]T H ﬂ ?)
relC) telchvgry TF T

(225)

= (MgI)~ (XT (X; x wi) — XTg(X; x wi)

s
shend 15 d)

+ Z) [u
ke[C] le[C]\{k}
(226)
— G
=[X w11 ﬂk—ﬁl
ke[C] le[C\{k}
B
S e T G=3] @27
ke[C] le[C\{k}
~ T
=@y - Uy gyl (228)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5884

where (226) holds since)NCTA(XJ» x V"G§t)) = ¢(ay) =

Zke[c (@c) Hle

from polynomlal

{¢(80) - Mo 1) [ui

ﬁ
N{k} ﬁk
1nterpolat10n

can be reconstructed from {XT (X X W(

which can be observed
hence {ﬁij}ieH,jeT
)}jeT and

(N*T)k] ke[C]. Then,

from (228), the following holds for (224),

H({ﬁij}ﬁ?;,a{[> uik]j}ég’}%’

ke[K]
{sowk) (M1 [ul,

(t) @)
u,, 7, i
{ ik Tl }ke[cﬁql'e[T]

{Xi,¥itier, W w/)>
= H<{u1J}16H‘{

ke[K]
{sowk) ~(MeT)[ul,

) ()
u,’, 7z ;
(i, 2z }ke[é*?zTe[T]

{Xzayz}z€T> w(/)>

+H{[Y wik] fien

kE[K]
{sowk) (Mo [ul,

(0.2} et
ke[C],le[T)

{Xiayi}iET,w(J)>

({3 ual,biey

ke[K]

{sowk) (Mo [ul,

T T
u(N—T)k] })
ke[C]

1 2 3t 4,1 | t—1y 45,1
M7z, M7, M3, Uj_gMZ7 U Zg M7,
Wik | fi€H >

I, by

T
uF(FNfT)k] })
ke[C]

1 2 3t 4,0 | t—1p 45,1
s Mg, Mg, M, Ui g M7, U Zg M7,

T
u(TN—T)k] })
ke[C]

1
|M%'3M%'aM Ul O'/\/l’l'vuz5 OM

(229)

T
u(TN—T)k] })
ke[C]

{uzka il } €T |M%'3M%'aM L-Jl OMT 7U§ éM
ke[C],le[T]
{XiaYi}iGTaW(J)> (230)
< H<{[S ual Yo
kE[K] J JjeET
_ T
{sowk) CMen[ul, - uly_p] } 7
ke[C]
() 2} et > 231)
ke[C],le[T)
d d d
<((N-T)T T T 1
—((I tOHTCG 7+ N—T) 084
(232)
= (0 +)1+ 1) logg (233)
—T

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

where (229) follows from the chain rule of entropy; (230)
follows from (228); (231) holds since conditioning cannot
increase entropy, and (232) holds since entropy is maxi-
mized by uniform distribution. By combining (222) and (233),
we find for the last term in (49) that:

0 < I({X;, ¥ biers MP | M, ME, M3 UL M7,
Uf;é Mgll7 {Xivyi}iETa W(J))

S(T+C)d(1+NT T) 1ogq—(T+C)d(1+ TT> log q
(234)
—0 (235)

hence, the fifth term in (49) satisfies:
T({X3, Vi bier; M7 | My, M5, M, Uj_g M7,
_ i~ — .
Ufz(l) Mg’) {Xi7yi}i€T7W(J)) =0
forall t € {0,...,J —1}.

(236)

A. Final Model Recovery

Finally, we consider the last term in (49), which corresponds
to the recovery of the final model w() by collecting the secret
shares {[W(/)];};cz from any set Z of size |Z| > T + 1.
From (166), the secret share of W(’) at client i € [N] is given
by,

[(+Z’stk

ke[T]

forall i € [N], (237)

which can be viewed as an evaluation point of a degree T’
polynomial o(-) where o(0) = W(/) is the true model and
[w(7)]; is an interpolation point held by client i € [N].
Then, one can rewrite the last term in the mutual information
condition from (49) as,
I({Xu yi}iG'H; M3’|M%'a M%’a M%’a Ui]:_olMgllv
Uijz_()l M'5]1l7 {X’hyi}ie'fa W(J))
= I({X;. ¥ Yier; {7 biez| M, ME, M, U M7
U MP AKX, ier, W) (238>
= I({Xz’,yz}z‘eﬁ'w(‘]) {(w i Yier | M, MF, M,
Uiy Mz UM XY e, W) (239)
=0 (240)
where (239) holds since any polynomial of degree T can
be uniquely constructed from 7 + 1 interpolation points.
Hence, there is a bijective mapping between {[W(”)]; };c7 and
w() {L w()];}icr. Finally, (240) holds since {[W(/)];};c7 €
MT

B. Combining Stages 1-6

By combining (49) with (76), (115), (162), (201), and (236),
we have,

I({Xw yz}ZGHa MT|{szyz}l€Ta W(J)) =0

which completes the proof.

(241)

]

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY

APPENDIX E
CORRECTNESS

The correctness of the encoding and decoding process
follows from the decodability of the Lagrange interpolation
polynomial [6], in particular, any polynomial ¢ of degree
deg(¢) can be uniquely reconstructed from any set of at least
deg () + 1 interpolation points. As such, as long as the total
number of clients N satisfy the minimum number identified by
the recovery threshold, i.e., N—D > (2r+1)(K+T—1)+1,
then one can correctly recover the final model w(') from the
gradient computations performed on the encoded datasets and
models. This completes the correctness for the model update
rule from (40).

We next study the model update rule from (47), and show
that it correctly recovers the target model from (40). For the
theoretical analysis, it is assumed that the finite field size is
sufficiently large to avoid overlap errors. From (47), at the end
of round t, each client holds a secret share [W(/*1)]; of the
updated model,

w1
—1)as = Tatin
= M= +1w(t)—(o(Br) — M™X y> (242)

ke[K

= M

= M(T_l)at'i‘lw(t) _ (ng(T—j)atXT(X x W(t))j
j=0

_ M”“XTy) (243)

We next describe a virtual variable W("), where W) £ w(0),
and

1 7
T+ 270 MXT(Q(X x W) —y) for te{0,...,J-1},
(244)

which denotes the target model from (40), by letting M =
mm/n. Then, one can show that,

w(®)
Eat = Wg)
Then, the proof follows by induction, by considering the
following steps.
1) (Base Case): For the base case (t =
from (243) that,

for all ¢t > 1. (245)

0), it follows

wh = uw® - (XY 0;(Xxw") -X'y) (246)
j=0
- M%) — (X yX x %) -Xy) (247)

hence % = ng), which validates (245) for the base case.

2) (Induction step): Next, we assume that (245) holds for an
arbitrary ¢, and show that it also holds for ¢ 4+ 1. From (243),
we have that,

wittD)

— MrDactigt) (Z ng(rfj)atXT(X x w(1)J
=0

~ MX'y) (248)

5885

:M(T*l)aﬂrlMatht) _ (Z ng(T*J’)atXT(XX Matwg))j
§=0

~ M X'y) (249)

= Mt (XS MOD00,(X x Muw())

=0
~ M"X'y) (250)

= Mretig®) — pgranXT i ;X xwi)y —X'y)
= 251)
= MreHw® — (X X xw) - X'y) (252)
= e (i - (XX x W) -XTy)) ey
= Mot (254)
where (249) follows from the fact that w*) = Maw(®)

since (245) for round ¢ holds by assumption, (254) follows
from a;y;1 = ra; + 1 by definition, along with (244).
Equation (254) demonstrates that (245) also holds for ¢ 4 1,
which completes the proof.

REFERENCES
[1] X. Lu, H. U. Sami, and B. Giiler, “Dropout-resilient secure multi-party
collaborative learning with linear communication complexity,” in Proc.
Int. Conf. Artif. Intell. Statist., 2023, pp. 10566-10593.
P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2017, pp. 19-38.
M. Al-Rubaie and J. M. Chang, “Privacy-preserving machine learning:
Threats and solutions,” IEEE Secur. Privacy, vol. 17, no. 2, pp. 49-58,
Mar. 2019.
R. Nosowsky and T. J. Giordano, “The health insurance portability
and accountability act of 1996 (HIPAA) privacy rule: Implications
for clinical research,” Annu. Rev. Med., vol. 57, no. 1, pp. 575-590,
Feb. 2006.
A. Telenti and X. Jiang, “Treating medical data as a durable asset,”
Nature Genet., vol. 52, no. 10, pp. 1005-1010, Oct. 2020.
Q. Yu et al., “Lagrange coded computing: Optimal design for resiliency,
security, and privacy,” in Proc. Int. Conf. Artif. Intell. Statist. (AISTATS),
2019, pp. 1215-1225.
J. So, B. Giiler, and S. Avestimehr, “A scalable approach for privacy-
preserving collaborative machine learning,” in Proc. Annu. Conf. Neural
Inf. Process. Syst., 2020, pp. 8054-8066.
J. So, B. Giiler, and A. S. Avestimehr, “CodedPrivateML: A fast and
privacy-preserving framework for distributed machine learning,” /EEE
J. Sel. Areas Inf. Theory, vol. 2, no. 1, pp. 441-451, Mar. 2021.
T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction, vol. 2. Berlin,
Germany: Springer, 2009.
A. B. Slavkovic, Y. Nardi, and M. M. Tibbits, “‘Secure’ logistic regres-
sion of horizontally and vertically partitioned distributed databases,” in
Proc. 7th IEEE Int. Conf. Data Mining Workshops (ICDMW), Oct. 2007,
pp. 723-728.
Y. Aono, T. Hayashi, L. Trieu Phong, and L. Wang, “Scalable and
secure logistic regression via homomorphic encryption,” in Proc. 6th
ACM Conf. Data Appl. Secur. Privacy, Mar. 2016, pp. 142-144.
S. Wu, T. Teruya, J. Kawamoto, J. Sakuma, and H. Kikuchi, “Privacy-
preservation for stochastic gradient descent application to secure logistic
regression,” in Proc. 27th Annu. Conf. Jpn. Soc. Artif. Intell., vol. 27,
2013, pp. 1-4.
Z. Beerliova-TrubiniovA and M. Hirt, “Perfectly-secure MPC with linear
communication complexity,” in Proc. Theory Cryptography Conf. Cham,
Switzerland: Springer, 2008, pp. 213-230.
A. C. Yao, “Protocols for secure computations,” in Proc. IEEE Symp.
Found. Comput. Sci., Mar. 1982, pp. 160-164.

[5]
[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5886

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

M. Ben-Or and A. Wigderson, “Completeness theorems for non-
cryptographic fault-tolerant distributed computation,” in Proc. 20th
Annu. ACM Symp. Theory Comput., 1988, pp. 1-10.

I. Damgérd and J. B. Nielsen, “Scalable and unconditionally secure
multiparty computation,” in Proc. Annu. Int. Cryptol. Conf. Cham,
Switzerland: Springer, 2007, pp. 572-590.

V. Nikolaenko, U. Weinsberg, S. loannidis, M. Joye, D. Boneh, and
N. Taft, “Privacy-preserving ridge regression on hundreds of mil-
lions of records,” in Proc. IEEE Symp. Secur. Privacy, May 2013,
pp. 334-348.

A. Gascon et al., “Privacy-preserving distributed linear regression on
high-dimensional data,” Proc. Privacy Enhancing Technol., vol. 2017,
no. 4, pp. 345-364, Oct. 2017.

P. Mohassel and P. Rindal, “ABY 3: A mixed protocol framework for
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2018, pp. 35-52.

S. Wagh, D. Gupta, and N. Chandran, “SecureNN: Efficient and private
neural network training,” Int. Assoc. Cryptol. Res. (IACR), Cryptol.
ePrint Arch., San Diego, CA, USA, Tech. Rep. 442, 2018.

A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612-613, Nov. 1979.

A. C.-C. Yao, “How to generate and exchange secrets,” in Proc. 27th
Annu. Symp. Found. Comput. Sci. (SFCS), Oct. 1986, pp. 162-167.

P. Mohassel and M. Franklin, “Efficiency tradeoffs for malicious two-
party computation,” in Proc. 9th Int. Conf. Theory Pract. Public-Key
Cryptography, 2006, pp. 458—473.

Y. Lindell and B. Pinkas, “An efficient protocol for secure two-
party computation in the presence of malicious adversaries,” in
Advances in Cryptology—EUROCRYPT. Barcelona, Spain: Springer,
2007, pp. 52-78.

Y. Ishai, E. Kushilevitz, R. Ostrovsky, M. Prabhakaran, and A. Sahai,
“Efficient non-interactive secure computation,” in Proc. 30th Annu. Int.
Conf. Theory Appl. Cryptograph. Techn., 2011, pp. 406-425.

O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game, or a completeness theorem for protocols with honest majority,” in
Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali. New York, NY, USA: Association for
Computing Machinery, 2019, pp. 307-328.

B. Kreuter, A. Shelat, and C.-H. Shen, “Billion-gate secure computation
with malicious adversaries,” in Proc. 21st USENIX Secur. Symp., 2012,
pp. 285-300.

A. Shelat and C.-H. Shen, “Fast two-party secure computation with
minimal assumptions,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2013, pp. 523-534.

Y. Huang, J. Katz, and D. Evans, “Efficient secure two-party compu-
tation using symmetric cut-and-choose,” in Proc. Annu. Cryptol. Conf.
Cham, Switzerland: Springer, 2013, pp. 18-35.

Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party
computation using garbled circuits,” in Proc. 20th USENIX Secur. Symp.,
2011, pp. 1-16.

I. Damgard, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computa-
tion from somewhat homomorphic encryption,” in Proc. Annu. Cryptol.
Conf. Cham, Switzerland: Springer, 2012, pp. 643-662.

M. Keller, “MP-SPDZ: A versatile framework for multi-party computa-
tion,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2020,
pp. 1575-1590.

D. Demmler, T. Schneider, and M. Zohner, “ABY—A framework for
efficient mixed-protocol secure two-party computation,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2015, pp. 1-15.

A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0: Improved
mixed-protocol secure two-party computation,” in Proc. 30th USENIX
Secur. Symp., 2021, pp. 2165-2182.

C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE:
A low latency framework for secure neural network inference,” in Proc.
27th USENIX Secur. Symp., 2018, pp. 1651-1669.

M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation frame-
work for machine learning applications,” in Proc. Asia Conf. Comput.
Commun. Secur., May 2018, pp. 707-721.

A. Choudhury, J. Loftus, E. Orsini, A. Patra, and N. P. Smart, “Between
a rock and a hard place: Interpolating between MPC and FHE,” in Proc.
Int. Conf. Theory Appl. Cryptol. Inf. Secur. Cham, Switzerland: Springer,
2013, pp. 221-240.

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

L. K. L. Ng and S. S. M. Chow, “SoK: Cryptographic neural-network
computation,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2023,
pp. 497-514.

K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2017, pp. 1175-1191.

J. H. Bell, K. A. Bonawitz, A. Gascén, T. Lepoint, and M. Raykova,
“Secure single-server aggregation with (poly) logarithmic overhead,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2020,
pp. 1253-1269.

J. So et al., “LightSecAgg: A lightweight and versatile design for secure
aggregation in federated learning,” in Proc. Mach. Learn. Syst. (MLSys),
2022, pp. 694-720.

Y. Zhao and H. Sun, “Information theoretic secure aggregation with
user dropouts,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021,
pp. 1124-1129.

C. Gentry and D. Boneh, A Fully Homomorphic Encryption Scheme,
vol. 20, no. 9. Stanford, CA, USA: Stanford Univ., 2009.

C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annu. ACM Symp. Theory Comput., May 2009, pp. 169-178.

R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proc. Int. Conf. Mach. Learn.,
2016, pp. 201-210.

T. Graepel, K. Lauter, and M. Naehrig, “ML confidential: Machine
learning on encrypted data,” in Proc. Int. Conf. Inf. Secur. Cryptol.
Cham, Switzerland: Springer, 2012, pp. 1-21.

J. Yuan and S. Yu, “Privacy preserving back-propagation neural network
learning made practical with cloud computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 212-221, Jan. 2014.

H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff,
“Privacy-preserving classification on deep neural network,” JACR Cryp-
tol. ePrint Arch., vol. 2017, p. 35, Mar. 2017.

P. Li, J. Li, Z. Huang, C.-Z. Gao, W.-B. Chen, and K. Chen,
“Privacy-preserving outsourced classification in cloud computing,” Clus-
ter Comput., vol. 21, no. 1, pp. 277-286, Mar. 2018.

A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon, “Logistic regression
model training based on the approximate homomorphic encryption,”
BMC Med. Genomics, vol. 11, no. 4, p. 83, Oct. 2018.

Q. Wang et al., “Privacy-preserving collaborative model learning:
The case of word vector training,” IEEE Trans. Knowl. Data Eng.,
vol. 30, no. 12, pp. 2381-2393, Dec. 2018.

K. Han, S. Hong, J. H. Cheon, and D. Park, “Logistic regression on
homomorphic encrypted data at scale,” in Proc. AAAI Conf. Artif. Intell.,
Jul. 2019, vol. 33, no. 1, pp. 9466-9471.

C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Proc. Theory Cryptography Conf.
Cham, Switzerland: Springer, 2006, pp. 265-284.

K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic regres-
sion,” in Proc. Adv. Neural Inf. Proc. Syst., 2009, pp. 1-8.

R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Sep. 2015, pp. 909-910.

M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 308-318.

M. Pathak, S. Rane, and B. Raj, “Multiparty differential privacy via
aggregation of locally trained classifiers,” in Adv. Neural Inf. Process.
Syst., 2010, pp. 1876-1884.

H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning
differentially private recurrent language models,” in Proc. Int. Conf.
Learn. Represent., 2018, pp. 1-14.

A. Rajkumar and S. Agarwal, “A differentially private stochastic gradient
descent algorithm for multiparty classification,” in Proc. Int. Conf. Artif.
Intell. Statist. (AISTATS), vol. 22, Apr. 2012, pp. 933-941.

B. Jayaraman, L. Wang, D. Evans, and Q. Gu, “Distributed learning
without distress: Privacy-preserving empirical risk minimization,” in
Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 6346—-6357.

W.-N. Chen, A. Ozgur, and P. Kairouz, “The Poisson binomial mecha-
nism for unbiased federated learning with secure aggregation,” in Proc.
Int. Conf. Mach. Learn., 2022, pp. 3490-3506.

W.-N. Chen, C. A. C. Choo, P. Kairouz, and A. T. Suresh, “The fun-
damental price of secure aggregation in differentially private federated
learning,” in Proc. Int. Conf. Mach. Learn., 2022, pp. 3056-3089.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY

[63] P. Kairouz, Z. Liu, and T. Steinke, “The distributed discrete Gaussian
mechanism for federated learning with secure aggregation,” in Proc. Int.
Conf. Mach. Learn., 2021, pp. 5201-5212.

D. W. Hosmer Jr., S. Lemeshow, and R. X. Sturdivant, Applied Logistic
Regression, vol. 398. Hoboken, NJ, USA: Wiley, 2013.

T. Nguyen and S. Sanner, “Algorithms for direct 0—1 loss optimiza-
tion in binary classification,” in Proc. Int. Conf. Mach. Learn., 2013,
pp. 1085-1093.

P. L. Bartlett, M. 1. Jordan, and J. D. McAuliffe, “Convexity, classi-
fication, and risk bounds,” J. Amer. Stat. Assoc., vol. 101, no. 473,
pp. 138-156, Mar. 2006.

S. Ben-David, N. Eiron, and P. M. Long, “On the difficulty of approx-
imately maximizing agreements,” J. Comput. Syst. Sci., vol. 66, no. 3,
pp. 496-514, May 2003.

V. Feldman, V. Guruswami, P. Raghavendra, and Y. Wu, “Agnostic
learning of monomials by halfspaces is hard,” SIAM J. Comput., vol. 41,
no. 6, pp. 1558-1590, Jan. 2012.

A. Mao, M. Mohri, and Y. Zhong, “Cross-entropy loss functions:
Theoretical analysis and applications,” in Proc. Int. Conf. Mach. Learn.,
2023, pp. 1-26.

Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for training
deep neural networks with noisy labels,” in Proc. Adv. neural Inf.
Process. Syst., vol. 31, 2018, pp. 1-11.

M. C. Thomas and A. T. Joy, Elements of Information Theory. Hoboken,
NJ, USA: Wiley, 2006.

X. Lu, H. U. Sami, and B. Giiler, “SCALR: Communication-efficient
secure multi-party logistic regression,” IEEE Trans. Commun., early
access, doi: 10.1109/TCOMM.2023.3308954.

H. U. Sami and B. Giiler, “Secure aggregation for clustered federated
learning,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2023,
pp. 186-191.

C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to Reliable and
Secure Distributed Programming. Berlin, Germany: Springer, 2011.
M. M. Amiri and D. Giindiiz, “Computation scheduling for distributed
machine learning with straggling workers,” IEEE Trans. Signal Process.,
vol. 67, no. 24, pp. 6270-6284, Dec. 2019.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 25, 2012, pp. 1-9.

C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmenta-
tion for deep learning,” J. Big Data, vol. 6, no. 1, pp. 1-48, Dec. 2019.
N. C. Codella et al., “Skin lesion analysis toward melanoma detec-
tion: A challenge at the 2017 international symposium on biomedical
imaging,” in Proc. IEEE 15th Int. Symp. Biomed. Imag., Feb. 2018,
pp. 168-172.

[79] J. Brinkhuis and V. Tikhomirov, Optimization: Insights and Applications.
Princeton, NJ, USA: Princeton Univ. Press, 2005.

O. Catrina and A. Saxena, “Secure computation with fixed-point num-
bers,” in Proc. Int. Conf. Financial Cryptography Data Secur. Cham,
Switzerland: Springer, 2010, pp. 35-50.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

[78]

[80]

5887

[81] A. Krizhevsky et al., “Learning multiple layers of features from
tiny images,” Univ. Toronto, Toronto, ON, Canada, Apr. 2009.
[Online]. Available: https://www.cs.toronto.edu/~kriz/learning-features-
2009-TR.pdf

Y. LeCun, C. Cortes, and C. Burges. (210). MNIST Handwritten Digit
Database. [Online]. Available: http://yann.lecun.com/exdb/mnist

L. Dalcin, R. Paz, and M. Storti, “MPI for Python,” J. Parallel Distrib.
Comput., vol. 65, no. 9, pp. 1108-1115, Sep. 2005.

K. S. Kedlaya and C. Umans, “Fast polynomial factorization and
modular composition,” SIAM J. Comput., vol. 40, no. 6, pp. 1767-1802,
Jan. 2011.

[82]
(83]

[84]

Xingyu Lu received the Bachelor of Engineering degree from the Com-
puter Science and Information Technology Department, Zhejiang Gongshang
University, China, in 2019, and the Master of Science degree in robotics
(computer science) from the Khoury College of Computer Science and the
College of Engineering, Northeastern University, Boston, USA, in 2021.
He is currently pursuing the Ph.D. degree with the Electrical and Computer
Engineering Department, University of California at Riverside. His research
interests include private machine learning, distributed learning, and federated
learning.

Hasin Us Sami (Graduate Student Member, IEEE) received the B.Sc. degree
in electrical and electronic engineering from the Bangladesh University of
Engineering and Technology, Dhaka, Bangladesh, in 2019. He is currently
pursuing the Ph.D. degree with the Department of Electrical and Computer
Engineering, University of California at Riverside. His research interests
include federated and distributed machine learning, information theory, secure
and private computing, and wireless networks.

Basak Giiler (Member, IEEE) received the B.Sc. degree in electrical and
electronics engineering from Middle East Technical University (METU),
Ankara, Turkey, and the Ph.D. degree from the Wireless Communications
and Networking Laboratory, The Pennsylvania State University, in 2017.
From 2018 to 2020, she was a Postdoctoral Scholar with the University
of Southern California. She is currently an Assistant Professor with the
Department of Electrical and Computer Engineering, University of California
at Riverside. Her research interests include information theory, distributed
computing, machine learning, and wireless networks. She has received the
NSF CAREER Award in 2022.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

