
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024 5857

Privacy-Preserving Collaborative Learning With
Linear Communication Complexity

Xingyu Lu, Hasin Us Sami , Graduate Student Member, IEEE, and BaËsak Güler , Member, IEEE

AbstractÐ Collaborative machine learning enables privacy-
preserving training of machine learning models without collecting
sensitive client data. Despite recent breakthroughs, communica-
tion bottleneck is still a major challenge against its scalability
to larger networks. To address this challenge, in this work we
propose PICO, the first collaborative learning framework with
linear communication complexity, significantly improving over
the quadratic state-of-the-art, under formal information-theoretic
privacy guarantees. Theoretical analysis demonstrates that PICO
slashes the communication cost while achieving equal compu-
tational complexity, adversary resilience, robustness to client
dropouts, and model accuracy to the state-of-the-art. Extensive
experiments demonstrate up to 91× reduction in the communi-
cation overhead, and up to 8× speed-up in the wall-clock training
time compared to the state-of-the-art. As such, PICO addresses
a key technical challenge in multi-party collaborative learning,
paving the way for future large-scale privacy-preserving learning
frameworks.

Index TermsÐ Coded computing, distributed training, collab-
orative machine learning, information-theoretic privacy.

I. INTRODUCTION

PRIVACY-PRESERVING collaborative machine learning

(PPML) allows multiple data owners to collaborate to

train ML models without sharing their data. PPML can

greatly improve ML performance by increasing the volume

and diversity of data, without compromising privacy [2], [3].

It can even foster novel applications in which data is rare

and collaboration has traditionally been limited due to privacy

concerns, such as the treatment of rare diseases [4], [5].

Recently, coding-theoretic approaches have shown promis-

ing performance gains in the design of PPML [6], [7], [8].

This approach, known as Lagrange Coded Computing (LCC),

encodes the local datasets using a Lagrange interpolation

polynomial, prior to training. The encoding operation injects

Manuscript received 6 March 2023; revised 23 September 2023; accepted
13 December 2023. Date of publication 19 December 2023; date of
current version 16 July 2024. This work was supported in part by OUSD
(R&E)/RT&L under Grant W911NF-20-2-0267, in part by NSF CAREER
Award CCF-2144927, and in part by the UCR Opportunity to Advance
Sustainability Innovation and Social Inclusion (OASIS) Funding Award.
An earlier version of this paper was presented in part at the 26th Interna-

tional Conference on Artificial Intelligence and Statistics (AISTATS’23) [1].
(Corresponding author: BaËsak Güler.)

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California at Riverside, Riverside, CA 92521 USA (e-mail:
xlu065@ucr.edu; hsami003@ucr.edu; bguler@ece.ucr.edu).

Communicated by W. Bajwa, Associate Editor for Machine Learning and
Statistics and Signal Processing and Source Coding.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2023.3345270.

Digital Object Identifier 10.1109/TIT.2023.3345270

randomness and (computational) redundancy within the local

computations, to provide strong information-theoretic privacy

guarantees and resilience to client dropouts, while also reduc-

ing the training load per client. Training is then performed

on the encoded data, as if they were performed on the clear

data. After multiple training rounds, the final model is decoded

using polynomial interpolation, by collecting the computa-

tions (performed over encoded data) from individual clients.

By doing so, an order-of-magnitude speed-up can be achieved

in the training time compared to state-of-the-art cryptographic

baselines, where for the latter the training load per client is as

large as centralized training (over the collection of all client

datasets) [7].

The major challenge against the scalability of information-

theoretic PPML is the communication complexity, which is

quadratic in the number of clients. This is caused by the

multiplication operations associated with gradient computa-

tions. Specifically, interpolating a polynomial f of degree

deg(f) requires collecting at least deg(f) + 1 interpolation

points. As such, decoding the final model from the local

computations requires computations to be collected from at

least N ≥ deg(f) + 1 clients. On the other hand, the

multiplication operations during gradient computations lead to

an exponential growth in the polynomial degree, leading to a

degree explosion after a few training rounds. This necessitates

an expensive degree reduction step with a quadratic commu-

nication overhead (after each round), preventing scalability to

large networks.

To address this challenge, in this work we propose PICO,1

the first information-theoretic PPML framework with lin-

ear communication complexity. Our focus is on logistic

regression, a widely used machine learning mechanism due

to its practicality and interpretability [9]. Although logistic

regression has a long history in PPML dating back to [10],

[11], and [12], enabling communication-efficient and scal-

able mechanisms for large-scale networks is still an open

problem. The key intuition behind PICO is an online-offline

communication trade-off combined with an efficient offline

randomness generation mechanism. In particular, we first

trade-off expensive online (data-dependent) communications

with offline (data-agnostic) communications. The online phase

trades-off the quadratic point-to-point communication over-

head with a broadcast mechanism with linear overhead. Our

key contribution is a coded efficient randomness generation

mechanism for the offline phase. In particular, we then develop

1PICO stands for privacy-preserving collaborative learning.

0018-9448 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5858 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

a coded layered randomness generation mechanism for the

offline phase, that builds on MDS (Maximum Distance Sepa-

rable) matrices (also related to hyperinvertible matrices [13])

and Lagrange codes, and reduces the quadratic offline com-

munication overhead to linear, by reducing the volume of

variables communicated by each client; communicating each

variable has a quadratic cost, but the total number of variables

scales inversely with the number of clients, leading to a linear

amortized overhead. As such, in a network of N clients,

PICO incurs an O(N) communication complexity both offline

and online, as opposed to the O(N2) online communication

complexity of the state-of-the-art. A major contribution of our

work is ensuring equal adversary-tolerance, dropout-resilience

to the state-of-the-art, and computational complexity, while

reducing the communication overhead.

Our theoretical analysis provides formal guarantees for

information-theoretic privacy, correctness, and key perfor-

mance trade-offs in terms of the communication and com-

putation complexity, adversary resilience, client dropouts, and

training time. We perform extensive experiments to evaluate

the performance of PICO, by implementing a distributed

multi-client network for various image classification tasks.

We then demonstrate the communication/computation volume

and the wall-clock training time of PICO with respect to

state-of-the-art benchmarks, identify the impact of key system

parameters and trade-offs, and present the model convergence

and accuracy.

Our contributions can be summarized as follows:

• We introduce PICO, the first privacy-preserving collab-

orative learning framework with linear communication

complexity (both online and offline), under strong end-

to-end information-theoretic privacy guarantees.

• We demonstrate a novel offline (data-agnostic) coded

randomness generation mechanism for privacy-preserving

logistic regression, which can reduce the amortized com-

munication complexity to linear in the number of users.

• Our theoretical analysis presents formal information-

theoretic privacy guarantees (for end-to-end training), and

shows that PICO cuts the communication overhead while

achieving the same computation complexity, adversary

resilience, robustness to client dropouts, and model accu-

racy of the state-of-the-art.

• Our experiments demonstrate up to 91× reduction in

the communication overhead, and up to 8× speed-up in

the wall-clock training time compared to the state-of-

the-art, while achieving the same adversary and dropout

resilience, and model accuracy.

II. RELATED WORK

In addition to coded computing, there are several other

techniques that are commonly employed for PPML. A popular

approach is Secure Multi-Party Computing (MPC) [13], [14],

[15], [16], which allows parties to compute a function over

their inputs without revealing their inputs in the clear [10],

[17], [18], [19], [20]. Secure MPC protocols often rely on

a cryptographic primitive known as secret sharing, where

clients locally add local randomness to their datasets prior

sharing them with others [21]. Then, training is carried out

using the secret shared datasets (as opposed to the true

datasets). The injected randomness is reversible, i.e., par-

ties can decode the computations performed on the secret

shared data to recover the true computation results, preserving

model accuracy. Secure MPC can provide strong information-

theoretic privacy guarantees, such that no information about

the datasets is revealed beyond the final model (even if

adversaries have unbounded computational power) [2]. The

major challenge is the extensive communication required to

perform secure computations between the parties, which limits

scalability in larger networks.

In addition to the secret sharing-based mechanisms, there

are notable MPC mechanisms that are not based on secret

sharing, including the well-known Yao’s garbled circuits [22]

and its modern variants [23], [24], [25], [26], [27], [28],

[29], [30]. Recent works also consider computationally secure

MPC mechanisms by utilizing homomorphic encryption prin-

ciples [11], [31], [32], [33], [34], [35], [36]. Combining secure

MPC with homomorphic encryption can further trade-off the

communication and computation complexity of MPC proto-

cols, as communication is a major bottleneck in large-scale

applications [37]. For a comparative study of modern MPC

frameworks, including the benefits and trade-offs of hybrid and

mixed-protocol mechanisms, we refer to [38]. Recently, MPC

mechanisms have also been used for aggregating the local

user updates (e.g., local models or gradients) in distributed

and federated learning, which is known as secure aggrega-

tion, where parties learn the sum of client models/gradients

after each (global) training round, but without observing the

individual models/gradients [39], [40], [41], [42]. In contrast,

our focus in this work is on end-to-end PPML, where parties

can learn only the final model (after multiple training rounds),

and no intermediate model/gradient should be revealed during

training.

Homomorphic encryption (HE) mechanisms enable the exe-

cution of computations on encrypted data in scenarios where

adversaries possess limited computational capabilities [12],

[43], [44], [45], [46], [47], [48], [49], [50], [51], [52]. Such

mechanisms can withstand a larger number of adversaries,

surpassing what secure MPC protocols can handle. However,

the level of privacy hinges on the size of the encrypted

data; stronger guarantees require larger encrypted data sizes

(in contrast to MPC, where the size of the secret shared

data remains consistent), consequently increasing the compu-

tational overhead for the clients. As a result, HE finds more

common use in the inference stage of machine learning tasks,

as opposed to the more computationally intensive training

phase.

Finally, differential privacy (DP) mechanisms protect the

privacy of local datasets by injecting noise to local computa-

tions during training. By doing so, DP prevents information

leakage from the final released model also, as opposed to

secure MPC and HE protocols where the final model is

released as is [53], [54], [55], [56], [57], [58], [59], and [60].

The privacy guarantees are controlled by the level of noise

introduced during training, leading to an accuracy-privacy

trade-off. The main challenge in distributed settings is the

accumulation of noise as the number of users grow, which

degrades models accuracy. To address this, DP mechanisms

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY 5859

are recently combined with secure MPC protocols, which can

improve model accuracy by reducing the amount of noise

introduced by each client [61], [62], [63]. While beyond our

current scope, we note that our methods can also be integrated

with DP as an interesting future direction.

Notation. In the following, x is a scalar, x is a vector, and

X is a matrix. A set is represented by X with cardinality

|X |. tr(X) denotes the trace of matrix X, whereas XT is

the matrix transpose, and ⊗ denotes the Kronecker product.

[N] represents the set {1, . . . , N}, and ⌊x⌋ denotes the largest

integer less than or equal to x. Finally, [x]i denotes a share

of a secret x at client i ∈ [N]. All secret shares are generated

by using Shamir’s T -out-of-N Secret Sharing (SSS), which

embeds the secret in a degree T random polynomial, such that

the secret can be reconstructed from any set of T + 1 shares,

but any set of at most T shares reveals no information about

the secret. For the details, we refer to [21]. The remainder

of the paper is organized as follows. Section III provides

the system model, whereas Section IV presents the potential

approaches, limitations, and main results. Section V introduces

our framework PICO, whereas Section VI provides a moti-

vating example. Section VII presents the theoretical results,

and Section VIII demonstrates the experiments. Section IX

concludes the paper.

III. PROBLEM FORMULATION

In this work, our focus is on collaborative logistic regres-

sion with N clients. Client i holds a local dataset Xi ∈
R

mi×d consisting of mi data points (where each data point

has d features), along with the corresponding labels yi ∈
{0, 1}mi . The collection of all local datasets is represented

by a matrix X =
[
XT

1 . . . XT
N

]T
∈ R

m×d consisting of

m ≜
∑N

i=1mi data points, along with the corresponding

labels y =
[
yT

1 . . . yT
N

]T
∈ {0, 1}m×1. The goal is to train

a logistic regression model w jointly over the collective dataset

X, by minimizing a binary cross entropy loss function:

L(w)=
1

m

m∑

i=1

(
−yi log g(xi×w)−(1−yi) log(1−g(xi×w))

)

(1)

where g(xi × w) ≜ 1/(1 + e−xi×w) ∈ (0, 1) denotes the

sigmoid function, which quantifies the probability of label i
being equal to 1, and xi ∈ R

1×d denotes the ith row of

X (features of data point i). The model is then trained via

gradient descent,

w(t+1) = w(t) −
η

m
XT (g(X×w(t))− y)

= w(t) −
η

m

m∑

i=1

xT
i (g(xi ×w(t))− yi) (2)

where w(t) is the estimated model parameters at training round

t, η is the learning rate, and function g(·) is applied element-

wise. We consider a decentralized communication topology,

where clients can communicate through point-to-point unicast

or (one-to-many) broadcast links. At each training round, up to

D clients may drop out from the system due to various reasons

such as poor connectivity or device unavailability. We do not

Fig. 1. System model. The multi-client learning setup of PICO. Client
i ∈ [N] holds a dataset Xi with labels yi. Any set of up to T out of N
clients may be adversarial. Adversaries may collude with each other.

assume the existence of a trusted third party or a central

coordinator. Our system model is presented in Fig. 1.

Remark 1: The binary cross entropy loss (also known as

the logistic loss), which fits the model parameters w through

a maximum likelihood principle, where minimizing the loss

function L(w) corresponds to maximizing the conditional

likelihood of the labels given the features [9, Section 4.4.1],

is a widely used loss function in practice [64]. For the binary

classification task (to predict one of two classes 0 or 1), this

can be viewed as a convex surrogate of the 0 − 1 loss (to

minimize the number of misclassifications) [65], [66], which

is NP-hard to optimize directly [67], [68]. Depending on the

problem characteristics, alternative loss functions can also be

considered for different tasks, which is an interesting future

direction [69], [70].

Threat Model. The most common adversary model in PPML

is honest-but-curious adversaries, which is also the focus of

this work [2]. In this setup, adversaries follow the protocol

truthfully (i.e., do not poison the datasets/messages), but may

attempt to reveal sensitive local datasets of honest clients using

the messages exchanged. Out of N clients, any set of up to T
clients can be adversarial, who may collude with each other.

The adversaries are unknown to the honest clients. The set

of adversarial and honest clients are denoted by T and H =
[N]\{T}, respectively.

Information-Theoretic Privacy. Our focus is on information-

theoretic privacy, where the goal is to ensure that the

adversaries learn no information about the local datasets of

honest clients, beyond the final model [2]. Similar to former

works, our framework is bound to finite field operations, and

in the following we assume that all datasets and labels are

represented in a finite field Fq of integers modulo a large

prime q. For the details of this finite field transformation

(which is handled via a quantization mechanism), we refer

to [2], [7], [8], [39], and [40]. In the following, we let

Xi ∈ F
mi×d
q and yi ∈ F

mi×1
q denote the finite field

representation of Xi ∈ R
mi×d and yi ∈ R

mi×1, respectively.

Similarly, X ∈ F
m×d
q and y ∈ F

m×1
q denotes the finite

field representation of X ∈ R
m×d and y ∈ R

m×1. All

training computations are then carried out within Fq. The

model parameters are updated in the finite field throughout

the training, and are converted to the real domain only at

the end of training. We let w(t) denote the finite field model

parameters at round t. At the end of training (after J rounds),

the final model w(J) is decoded in the finite field, and then

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5860 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

converted to the real domain w(J). Accordingly, the Markov

relation,

{Xi,yi}i∈[N] − {Xi,yi}i∈[N] −w(J) −w(J)

holds between the finite field and real domain representations,

hence from the data processing inequality (DPI) [71], w(J)

does not carry any further information about the local datasets

than w(J). Then, the information-theoretic privacy condition

can be formally stated as,

I({Xi,yi}i∈[N]\T ;MT |{Xi,yi}i∈T ,w
(J)) = 0 (3)

for all T such that |T | ≤ T , where MT is the collection of

all messages received or generated by the adversaries, and J
is the total the number of training rounds.

Main Problem. In this work, our goal is to solve (1) with the

information-theoretic guarantees from (3), We then ask the

following question:

• How can we develop a scalable PPML framework

to solve (1) with linear total communication complex-

ity, under the formal information-theoretic guarantees

from (3)?

We next review the potential approaches and challenges to

address this challenge, and introduce our main results.

IV. POTENTIAL APPROACHES, CHALLENGES,

AND MAIN RESULTS

A. COPML (Coded Private Machine Learning)

To solve (1) with the end-to-end information-theoretic guar-

antees from (3), the state-of-the-art is the COPML framework

from [7], which leverages Shamir’s Secret Sharing (SSS)

[21] to encode the datasets and model. For dataset encod-

ing, each client i ∈ [N] secret shares its local dataset Xi

using SSS, and sends a secret share [Xi]j to client j ∈ [N].
Client j concatenates the received shares and partitions

them into K equal-sized shards
[
[X1]

T
j . . . [XN]Tj

]T
=[

[X
′

1]
T
j . . . [X

′

K]Tj

]T

, then sends an encoded matrix,

[f(αi)]j =
∑

k∈[K]

[X
′

k]j
∏

l∈[K+T]\{k}

αi − βl

βk − βl

+
K+T∑

k=K+1

[Rk]j
∏

l∈[K+T]\{k}

αi − βl

βk − βl
(4)

to client i ∈ [N], where {[Rk]j}k∈{K+1,...,K+T} ∈ F
m/K
q

are uniformly random matrices secret shared by a crypto-

service provider. After receiving {[f(αi)]j}j∈[N], client i

recovers the encoded dataset X̃i = f(αi) using polynomial

interpolation. For model encoding, at each training round t,
client j ∈ [N], who holds a secret share [w(t)]j of the

model w(t) (without learning its true value), sends an encoded

matrix,

[h(αi)]j =
∑

k∈[K]

[w(t)]j
∏

l∈[K+T]\{k}

αi − βl

βk − βl

+
K+T∑

k=K+1

[v
(t)
k]i

∏

l∈[K+T]\{k}

αi − βl

βk − βl
(5)

to client i ∈ [N], where {[v
(t)
k]i}k∈{K+1,...,K+T} ∈ F

d×1
q are

uniformly random matrices secret shared by a crypto-service

provider. After receiving {[h(αi)]j}j∈[N], client i recovers the

encoded model w̃
(t)
i = h(αi) using polynomial interpolation.

Training is then performed using the encoded datasets and

model. The total online communication overhead is quadratic

O(N2d) across the N clients. Importantly, the polynomial

degree deg h grows after each multiplication operation. To pre-

vent a degree explosion, a degree reduction step has to be

carried out after each training round, also with a quadratic

overhead, limiting scalability to larger networks.

B. Naive Offline-Online Communication Offloading

To address the communication overhead, a potential

approach is to offload the communication-intensive tasks (e.g.,

model encoding) to a data-independent offline phase [72], [73].

To do so, prior to training (offline), each client i ∈ [N] can

locally generate a uniformly random mask r
(t)
i ∈ F

d
q and send

to client j ∈ [N]: 1) a secret share [r
(t)
i]j ∈ F

d
q (e.g., using

SSS), 2) an encoded mask,

r̃
(t)
ij =

∑

k∈[K]

r
(t)
i

∏

l∈[K+T]\{k}

αj − βl

βk − βl

+
K+T∑

k=K+1

v
(t)
ik

∏

l∈[K+T]\{k}

αj − βl

βk − βl
, (6)

where {v
(t)
ik }k∈{K+1,...,K+T} ∈ F

d
q are generated uniformly

at random, using which client j can obtain: 1) a secret share

[r(t)]j =
∑

i∈[N][r
(t)
i]j , and 2) an encoded mask,

r̃
(t)
j =

∑

i∈[N]

r̃
(t)
ij

=
∑

k∈[K]

r(t)
∏

l∈[K+T]\{k}

αj − βl

βk − βl

+

K+T∑

k=K+1

(∑

i∈[N]

v
(t)
ik

) ∏

l∈[K+T]\{k}

αj − βl

βk − βl
, (7)

of a common random mask r(t) =
∑

i∈[N] r
(t)
i shared across

all users (in encoded form), without learning its true value.

The common randomness r(t) encoded by the T random

vectors {v
(t)
ik }k∈{K+1,...,K+T} allows clients to use broad-

casting in the online phase, to reduce the communication

overhead of model encoding from point-to-point quadratic to

linear broadcast. To do so, client j ∈ [N] can broadcast a

secret share [w(t)]j − [r(t)]j = [w(t) − r(t)]j of the masked

model w(t) − r(t), where the true model w(t) is hidden

by the random mask r(t). Using the received shares, each

client i ∈ [N] can decode w(t) − r(t) using polynomial

interpolation, and locally generate an encoded model w̃
(t)
i =

r̃
(t)
i +(w(t)−r(t))

∑
k∈[K]

∏
l∈[K+T]\{k}

αi−βl

βk−βl
. This reduces

the online communication overhead from quadratic O(N2d)
point-to-point unicast, to linear O(Nd) one-to-many broad-

cast. On the other hand, the offline communication overhead

is still quadratic O(N2d) point-to-point.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY 5861

C. This Work

In this work, we introduce PICO to solve (1) with the end-

to-end information-theoretic guarantees from (3). In contrast to

naive offline-online communication offloading, PICO achieves

linear communication overhead both offline and online. This

is achieved by a coded randomness generation mechanism

using MDS codes to reduce the total number of variables

communicated in the offline phase. Specifically, in the offline

phase, each client i ∈ [N] first generates a lower-dimensional

random mask r
(t)
i ∈ F

d
N−T
q uniformly at random, where the

local mask size is reduced to d
N−T from d. Then, client i sends

to each client j ∈ [N]: 1) a secret share [r
(t)
i]j ∈ F

d
N−T
q , 2) an

encoded mask r̃
(t)
ij ∈ F

d
N−T
q as described in (7), however, all

coded masks communicated with the other clients are now of

dimension d
N−T as opposed to d. Using the lower-dimensional

coded random masks {r̃
(t)
ij , [ri]

(t)
j }i∈[N] ∈ F

d
N−T
q , client j then

locally generates a large-dimensional encoded mask r̃
(t)
j ∈ F

d
q

of size d,

r̃
(t)
j ≜ (M⊗ I)×




r̃
(t)
1j
...

r̃
(t)
Nj




=
∑

k∈[K]

r(t)
∏

l∈[K+T]\{k}

αj − βl

βk − βl

+
K+T∑

k=K+1

(M⊗ I)×



v

(t)
1
...

v
(t)
N




∏

l∈[K+T]\{k}

αj − βl

βk − βl
, (8)

and a secret share [r]
(t)
j ≜ (M⊗I)×

[
[r

(t)
1]Tj · · · [r

(t)
N]Tj

]T

∈

F
d
q , corresponding to a common random mask r(t) ≜ (M ⊗

I) ×
[
(r

(t)
1)T · · · (r

(t)
N)T

]T

∈ F
d
q of size d, whose true

value is unknown by the clients, I is a d
(N−T)K ×

d
(N−T)K

identity matrix, and M is an (N − T) × N MDS matrix,

as will be detailed later. The key intuition is that, while

the communication overhead for each variable is quadratic

O(N2) point-to-point (unicast), the total number of coded

variables to be communicated is reduced to O(d
N−T), which

is inversely proportional to the number of clients. Hence,

the overall amortized communication overhead is O(dN2

N−T)
point-to-point, which is linear O(dN) for any T = O(N).

In the online phase, the offline encoded masks [r(t)]j , r̃
(t)
j

allows client j to broadcast the secret share [w(t)]j− [r(t)]j =
[w(t) − r(t)]j of the masked model w(t) − r(t), using which

clients can decode the masked model through polynomial

interpolation, and client j can obtain the encoded model

w̃
(t)
j = r̃

(t)
j + (w(t) − r(t))

∑
k∈[K]

∏
l∈[K+T]\{k}

αj−βl

βk−βl
.

As a result, communication complexity of the online phase is

reduced from O(N2) point-to-point unicast to O(N) one-to-

many broadcast. While reducing the communication overhead,

PICO achieves equal dropout-resilience, adversary-tolerance,

and computation complexity to COPML. In doing so, a reliable

broadcasting mechanism is considered [74], which can be

achieved through various approaches in practice, such as using

an inherently broadcast medium such as cellular networks or

satellite links, or through leveraging broadcasting mechanisms

at the hardware level, e.g., IP multicast for local area networks.

V. THE PICO FRAMEWORK

We next describe the details of our framework, which

consists of five main components:

1) Dataset encoding: Clients i ∈ [N] encode their local

datasets {Xi}i∈[N] to preserve their privacy while dis-

tributing the computation load across the clients. At the

end, each client i ∈ [N] learns an encoded dataset X̃i,

whose size is (1/K)
th

of the original dataset X.

2) Label encoding: To preserve the privacy of labels, clients

also encode their local labels using locally generated

random masks. At the end, each client learns an encoded

label.

3) Model initialization: To prevent information leakage

from intermediate training computations, the model w(0)

at round t = 0 is initialized uniformly random within

Fq, but without revealing its true value to any client (and

any collusions between up to T clients).

4) Model encoding: To prevent information leakage from

intermediate model parameters, the model at each round

should be kept private from the clients. To that end,

at each training round t, client i ∈ [N] holds a secret

share [w(t)]i (as opposed to the true model) of the

current state of the model w(t), using which the clients

encode the model, to enable training computations to be

performed on the encoded datasets. At the end, client

i ∈ [N] obtains an encoded model w̃
(t)
i , without learning

any information about the true model w(t).

5) Gradient computing and model update: Using the

encoded datasets and model, clients compute the gra-

dient and update the model for the next training round,

but without learning the true value of the gradient or the

updated model. In doing so, the key ingredient is a novel

degree reduction mechanism with linear communication

cost, which reduces the degree of the polynomial cor-

responding to the gradients computed on the encoded

datasets and model, to prevent an exponential growth as

the number of training rounds increase.

Table I presents the communication overhead of each compo-

nent of PICO and COPML [7]. The individual components of

PICO comprise of online and offline phases as demonstrated

in Fig. 2. We now describe the details of each component.

For ease of presentation, we describe the offline and online

phases sequentially, to show how the variables generated in

the former are utilized in the latter. We note that each offline

phase is independent from past online/offline phases, hence all

offline phases can be executed in parallel.

A. Dataset Encoding

Initially, clients encode their datasets using locally generated

randomness. The goal of the encoding process is two-fold.

First, it hides the dataset contents against adversaries. Second,

it reduces the size of the data each client should process during

training. The encoding process consists of the following offline

and online phases.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5862 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

TABLE I

COMPARISON OF THE TOTAL COMMUNICATION OVERHEAD (ACROSS ALL CLIENTS) FOR PICO (INCLUDING BOTH ONLINE AND

OFFLINE PHASES), AND COPML (ONLINE), WHERE K = Θ(N), T = O(N), AND mi = m FOR i ∈ [N]

1) Offline: Clients first agree on N +K+T distinct public

parameters {αj}j∈[N] and {βj}j∈[K+T] from Fq. Each client

i ∈ [N] then sends an encoded matrix,

R̃ij ≜
∑

k∈[K]

Rik

∏

l∈[K+T]\{k}

αj − βl

βk − βl

+
K+T∑

k=K+1

Vik

∏

l∈[K+T]\{k}

αj − βl

βk − βl
(9)

to client j ∈ [N], where {Rik}k∈[K], {Vik}k∈{K+1,...,K+T}

are uniformly random matrices of size mi

K × d, generated

locally by client i.
2) Online: In the online phase, client i ∈ [N] locally

partitions its dataset Xi into K equal-sized shards Xi =[
X

T

i1 · · · X
T

iK

]T

, where Xik ∈ F

mi
K

×d
q for all k ∈ [K],

and broadcasts,

X̂ik = Xik −Rik ∀k ∈ [K]. (10)

After receiving {X̂jk}j∈[N],k∈[K], each client i ∈ [N] gener-

ates an encoded dataset:

X̃i ≜
∑

k∈[K]

[
X̂T

1k · · · X̂T
Nk

]T ∏

l∈[K+T]\{k}

αi − βl

βk − βl

+
[
R̃T

1i · · · R̃T
Ni

]T
(11)

Intuitively, the encoding operation from (11) simultaneously

cancels the additive randomness due to {Rjk}k∈[K],j∈[N],

and embeds the dataset X in a degree K + T − 1 Lagrange

polynomial,

f(α) ≜
∑

k∈[K]

[
X

T

1k · · · X
T

Nk

]T ∏

l∈[K+T]\{k}

α− βl

βk − βl

+
K+T∑

k=K+1

[
VT

1k · · · VT
Nk

]T
∏

l∈[K+T]\{k}

α− βl

βk − βl

(12)

where f(βk) =
[
X

T

1k · · · X
T

Nk

]T

for all k ∈ [K], and

client i ∈ [N] obtains the encoded dataset X̃i = f(αi). The

T random matrices
{ [

VT
1k · · · VT

Nk

]T
}

k∈{K+1,...,K+T}

along with the random masks {Rik}k∈[K] allow clients to

use (one-to-many) broadcast while encoding the datasets as

opposed to (point-to-point) unicast in the online phase, while

hiding the true values of the local datasets against up to T
adversaries. As will be described later, client i then computes

the gradient on the encoded dataset X̃i, whose size is (1/K)th

Fig. 2. PICO consists of five main components.

of the original dataset X. As the network size N increases,

one can select a larger K, reducing the training load per client

(called the parallelization gain) to speed up training.

Remark 2: In practice, if mi/K is not an integer, client

i can zero-pad their local dataset [75] with synthetic data

samples xi = 0, by setting all features to 0. As the gradients

of such samples are zero, the pre-processing will not change

the final model. Another approach is for each client to locally

create additional training samples using common data augmen-

tation mechanisms, such as label-preserving transformations

(e.g., rotations, horizontal/vertical flips, and random cropping),

which can further improve test accuracy [76], [77].

B. Label Encoding

Clients also encode their labels through the following offline

and online phases.

1) Offline: Client j ∈ [N] generates K uniformly random

vectors ajk ∈ F

d
(N−T)K

×1
q for k ∈ [K], and sends to each

client i ∈ [N]: 1) a secret share [ajk]i of ajk using SSS, 2)

an encoded vector,

ãji =
∑

k∈[K]

ajk

∏

l∈[K+T]\{k}

αi − βl

βk − βl

+
K+T∑

k=K+1

bjk

∏

l∈[K+T]\{k}

αi − βl

βk − βl
(13)

where bjk ∈ F

d
N−T
q are uniformly random vectors for k ∈

{K + 1, . . . ,K + T}. By combining {ãji, [ajk]i}j∈[N],k∈[K],

client i then forms a (large-dimensional) encoded vector,

ãi ≜ (M⊗ I)×
[
ãT

1i · · · ãT
Ni

]T
(14)

and a secret share,

[ak]i ≜ (M⊗ I)×
[
[a1k]Ti · · · [aNk]Ti

]T
∀k ∈ [K], (15)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY 5863

where ak ≜ (M⊗ I)×
[
aT

1k · · · aT
Nk

]T
, I is a d

(N−T)K ×
d

(N−T)K identity matrix, and

M =




1 λ1 . . . λN−1
1

...
...

. . .
...

1 λN−T . . . λN−1
N−T


 (16)

is a (N − T) × N MDS matrix, where λ1, . . . , λN−T are

distinct public parameters from Fq. The key intuition is that,

to generate an encoded vector of size d
K , each client only sends

d
(N−T)K parameters to every other client.2 The final encoded

vector is then generated by combining the lower-dimensional

encoded vectors received from all N clients, using the MDS

matrix M.

2) Online: In the online phase, client i ∈ [N] partitions

X
T

i yi into K equal-sized shards X
T

i yi =
[
yT

i1 . . . yT
iK

]T
,

and sends an encoded vector,

ỹij ≜
∑

k∈[K]

yik

∏

l∈[K+T]\{k}

αj − βl

βk − βl

+
K+T∑

k=K+1

rik

∏

l∈[K+T]\{k}

αj − βl

βk − βl
(17)

to each client j ∈ [N], where rik ∈ F
d
K
q are generated

uniformly at random. After receiving {ỹij}i∈[N], client j ∈
[N] broadcasts,

âj ≜
∑

i∈[N]

ỹij − ãj (18)

which can be viewed as an evaluation point of a Lagrange

polynomial of degree K + T − 1. Upon receiving âj from

any set of at least K + T clients, client i ∈ [N] decodes∑
j∈[N] yjk−ak for all k ∈ [K] via polynomial interpolation,

and computes a secret share of X
T
y =

∑
j∈[N] X

T

jyj ,

[X
T
y]i ≜




(
∑

j∈[N] yj1 − a1 + [a1]i)
...

(
∑

j∈[N] yjK − aK + [aK]i)


 (19)

C. Model Initialization

Model w(0) at time t = 0 is initialized uniformly random

(offline), without revealing its true value to any client. To do

so, client i generates a random vector w
(0)
i of size d

N−T , and

sends a secret share [w
(0)
i]j of w

(0)
i to client j ∈ [N] using

SSS. After receiving [w
(0)
j]i for j ∈ [N], each client i ∈ [N]

constructs a new (larger) secret share,

[w(0)]i ≜ (M⊗ I)×
[
([w

(0)
1]i)

T · · · ([w
(0)
N]i)

T

]T

(20)

which corresponds to a secret share of the initialized model,

w(0) = (M⊗ I)×
[
(w

(0)
1)T · · · (w

(0)
N)T

]T

(21)

where I is a d
N−T ×

d
N−T identity matrix.

2Typically d≫ N in real-world tasks [78].

D. Model Encoding

At the beginning of each round, client i holds a secret

share [w(t)]i of the current state of the model w(t). Initially

at t = 0, [w(0)]i is generated during model initialization as

described in (20). For all other training rounds (i.e., t > 0),

[w(t)]i is obtained after the model updating stage, which will

be described in (40). At each round, clients then encode the

model w(t) using the secret shares [w(t)]i, to enable gradient

computations to be performed on the encoded datasets. At the

end of this stage, each client i ∈ [N] learns an encoded model

w̃
(t)
i . Model encoding consists of the following offline and

online phases.

1) Offline: Client i ∈ [N] generates a uniformly random

vector r
(t)
i ∈ F

d
N−T
q , and sends to each client j ∈ [N]: 1)

a secret share [r
(t)
i]j of r

(t)
i using SSS, and 2) an encoded

vector,

r̃
(t)
ij ≜

∑

k∈[K]

r
(t)
i

∏

l∈[K+T]\{k}

αj − βl

βk − βl

+
K+T∑

k=K+1

v
(t)
ik

∏

l∈[K+T]\{k}

αj − βl

βk − βl
(22)

where v
(t)
ik ∈ F

d
N−T
q for k ∈ {K+1, . . . ,K+T} are generated

uniformly at random. By combining {r̃
(t)
ji , [rj]

(t)
i }j∈[N], client

i then generates a (large-dimensional) encoded vector,

r̃
(t)
i ≜ (M⊗ I)×

[
(r̃

(t)
1i)T · · · (r̃

(t)
Ni)

T

]T

, (23)

and a (large-dimensional) secret share,

[r]
(t)
i ≜ (M⊗ I)×

[
[r

(t)
1]Ti · · · [r

(t)
N]Ti

]T

, (24)

where r(t) ≜ (M⊗ I)×
[
(r

(t)
1)T · · · (r

(t)
N)T

]T

is a random

mask that will later be utilized to hide the true model in the

online phase. In doing so, the key intuition is to generate secret

shares [r(t)]i of a random mask r(t) that will later be utilized

to decode a masked model in the online phase (where the

true model will be hidden by the mask r(t)), after which the

encoded masks r̃
(t)
i will be utilized to encode the model for

training.

2) Online: In the online phase, client i initially broadcasts,

[ŵ(t)]i ≜ [w(t)]i − [r(t)]i = [w(t) − r(t)]i (25)

which corresponds to a secret share of the masked model

w(t) − r(t). After receiving {[ŵ(t)]i}i∈[N], each client can

decode a masked model,

ŵ(t) = w(t) − r(t) (26)

via polynomial interpolation, where the true value of the model

w(t) is hidden by the random mask r(t). Using (26), client i
then constructs an encoded model,

w̃
(t)
i ≜

∑

k∈[K]

ŵ(t)
∏

l∈[K+T]\{k}

αi − βl

βk − βl
+ r̃

(t)
i (27)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5864 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

Intuitively, the encoding operation in (27) embeds the model

w(t) in a Lagrange polynomial,

h(α) ≜
∑

k∈[K]

w(t)
∏

l∈[K+T]\{k}

α− βl

βk − βl

+
K+T∑

k=K+1

v
(t)
k

∏

l∈[K+T]\{k}

α− βl

βk − βl
(28)

such that v
(t)
k ≜ (M ⊗ I) ×

[
(v

(t)
1k)T · · · (v

(t)
Nk)T

]T

,

where h(βk) = w(t) for k ∈ [K], and client i obtains

an encoded model w̃
(t)
i = h(αi). The random vectors

{v
(t)
k }k∈{K+1,...,K+T} hide the true value of w(t) against up

to T adversaries.

E. Gradient Computing and Model Update

The last component of PICO is gradient computation and

model update, using the encoded datasets and model. At the

end, client i learns a secret share [w(t+1)]i of the model w(t+1)

for the next training round.

(Gradient Computing): Initially, clients compute the gra-

dient using the encoded dataset and model. The offline and

online phases of this stage proceed as follows.

1) Offline: Client i ∈ [N] generates C ≜ (2r + 1)(K +
T − 1) + 1 random vectors uik of size d

N−T , and constructs

a Lagrange polynomial of degree C − 1,

φi(α) ≜
∑

k∈[C]

u
(t)
ik

∏

l∈[C]\{k}

α− βl

βk − βl
(29)

where {βk}k∈{K+1,...,C} are distinct public parameters from

Fq, and φi(βk) = u
(t)
ik for k ∈ [C]. Client i then sends an

encoded vector,

ũ
(t)
ij ≜ φi(αj) (30)

to each client j ∈ [N]. After receiving {ũ
(t)
ji }j∈[N], client i

constructs a new (large-dimensional) encoded vector,

ũ
(t)
i ≜ (M⊗ I)×

[
(ũ

(t)
1i)T · · · (ũ

(t)
Ni)

T

]T

(31)

which can be viewed as an evaluation of a degree C − 1
Lagrange polynomial,

φ(α) ≜
∑

k∈[C]

u
(t)
k

∏

l∈[C]\{k}

α− βl

βk − βl
(32)

such that u
(t)
k ≜ (M⊗ I)×

[
(u

(t)
1k)T · · · (u

(t)
Nk)T

]T

, where

φ(βk) = u
(t)
k for all k ∈ [C], and client i obtains an encoded

vector ũ
(t)
i = φ(αi). Client i then secret shares the sum∑

k∈[K] u
(t)
ik , by sending each client j ∈ [N] a secret share,

[∑

k∈[K]

u
(t)
ik

]

j
≜
∑

k∈[K]

u
(t)
ik +

∑

l∈[T]

γl
jz

(t)
il (33)

where z
(t)
il are uniformly random vectors, and {γj}j∈[N] are

distinct public parameters. After receiving [
∑

k∈[K] u
(t)
jk]i for

j ∈ [N], client i generates a secret share of
∑

k∈[K] u
(t)
k ,

[∑

k∈[K]

u
(t)
k

]

i
≜ (M⊗ I)×




[
∑

k∈[K] u
(t)
1k]i

...

[
∑

k∈[K] u
(t)
Nk]i


 (34)

2) Online: PPML frameworks that build on polynomial

embeddings, as in our framework, are bound to finite field

polynomial operations. The sigmoid function in (1) is not a

polynomial, hence is often approximated with a polynomial

ĝ(x) =
∑r

i=0 θix
i [38] where {θi}i∈[r] are public coefficients

fitted via least squares (prior to training), and degree r
quantifies the accuracy of approximation [79]. Then, client

i computes a local gradient,

ϕ(αi) ≜ X̃T
i ĝ(X̃i × w̃

(t)
i) (35)

using the encoded dataset X̃i and model w̃
(t)
i , where we define

a degree C − 1 polynomial ϕ(α) = f(α)Tĝ(f(α) × h(α))
using (12) and (28), such that client i computes the encoded

gradient ϕ(αi), whereas the true gradient is given by,

X
T
ĝ(X×w(t)) =

∑

k∈[K]

ϕ(βk) =
∑

k∈[K]

(X
′

k)Tĝ(X
′

k ×w(t)),

(36)

where X
′

k ≜ f(βk) =
[
X

T

1k · · · X
T

Nk

]T

from (12). Then,

client i broadcasts a masked gradient,

û
(t)
i ≜ X̃T

i ĝ(X̃i × w̃
(t)
i)− ũ

(t)
i = ϕ(αi)− φ(αi), (37)

which is an evaluation of the degree C−1 polynomial ψ(α) ≜

ϕ(α) − φ(α). Upon receiving û
(t)
j from any set j ∈ S of at

least deg(ψ) + 1 = C clients, client i can recover ψ(α) via

polynomial interpolation, and compute a secret share of the

true gradient X
T
ĝ(X×w(t)) using (34),

[
X

T
ĝ(X×w(t))

]

i
≜
∑

k∈[K]

ψ(βk) +
[∑

k∈[K]

u
(t)
k

]

i
(38)

= X
T
ĝ(X×w(t)) +

∑

l∈[T]

γl
iz

(t)
l , (39)

where z
(t)
l ≜ (M ⊗ I) ×

[
(z

(t)
1l)T · · · (z

(t)
Nl)

T

]T

for l ∈ [T]

are random masks that hide the true gradient against up to T
adversaries. The model update at client i can then be written

as,

[w(t+1)]i = [w(t)]i −
η

m
([X

T
ĝ(X×w(t))]i − [X

T
y]i), (40)

where, on the other hand, η
m ≪ 1 in (40). To handle this

operation in the finite field, one can either convert (40) to a

computation on integers [2] by assuming a sufficiently large

field size, as will be detailed in Appendix D, or can utilize

a secure multi-party truncation (quantization) protocol [80] to

reduce the required field size (albeit with weaker privacy) as

will be detailed in Section VIII. In our theoretical analysis

in Section VII, we assume a sufficiently large field size and

consider the former, whereas we utilize the latter in our

experiments from Section VIII.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY 5865

Fig. 3. Motivating example. (Offline) Locally generated lower dimensional random vectors are combined to construct large dimensional shared randomness.
(Online) The randomness generated offline is utilized to encode the datasets and model.

3) Final Model Recovery : After J training rounds, clients

can collect the secret shares {[w(J)]i}i∈I from any set I of

at least |I| ≥ T + 1 clients, and decode the final model w(J).

Our overall algorithm is given in Appendix A.

VI. MOTIVATING EXAMPLE

We next present a motivating example for N = 4 clients,

with d = 6 and K = T = 1 as illustrated in Fig 3. Initially,

clients encode their local datasets. The main intuition is to

generate and encode random masks offline, where each client

i ∈ [4] generates a random mask Ri1, and sends an encoded

mask R̃ij to client j ∈ [4]. The offline random masks are

later used in the online phase to hide the local datasets Xi1

where client i broadcasts a masked dataset X̂i1 = Xi1 −
Ri1, using which, along with the offline encoded masks R̃ij ,

clients encode the datasets. At the end, each client i learns an

encoded dataset X̃i. In addition to dataset encoding, clients

also encode their labels and initialize the model as described

in Sections V-B and V-C, respectively.

At each training round t, clients also encode the model

w(t). To prevent information leakage from intermediate model

parameters, no client can learn the true model during encoding.

The key intuition is to use locally generated lower-dimensional

coded masks to generate high dimensional shared coded

randomness. To do so, client i locally generates a random

mask r
(t)
i of size d

N−T = 2 offline, and then sends to each

client j ∈ [4]: 1) an encoded mask r̃
(t)
ij ∈ F

2
q , 2) a secret

share [r
(t)
i]j ∈ F

2
q . After receiving {r̃

(t)
ji , [r

(t)
j]i}j∈[4], client i

generates two large-dimensional random vectors (each of size

d = 6): 1) encoded mask r̃
(t)
i ∈ F

6
q , and 2) secret shared mask

[r(t)]i ∈ F
6
q . The offline random masks are then used to mask

and encode the true model in the online phase, where each

client decodes the masked model ŵ(t) = w(t) − r(t) ∈ F
6
q ,

and obtains an encoded model w̃i ∈ F
6
q , but without learning

the true model w(t) ∈ F
6
q , which is hidden by the random

mask r(t) ∈ F
6
q throughout the encoding.

Using the encoded dataset X̃i and encoded model w̃
(t)
i ,

clients then compute the gradient and update the model.

In doing so, no client should learn the true gradient X
T
ĝ(X×

w(t)) or the updated model w(t+1), as gradients may carry

sensitive information about the true datasets. The intuition is

again to use lower-dimensional local randomness to generate

large-dimensional encoded shared randomness. To do so,

offline, client i generates C random masks {u
(t)
ik }k∈[C] of

size d
N−T = 2, and sends to every other client j ∈ [4] an

encoded mask ũ
(t)
ij ∈ F

2
q , and a secret share [u

(t)
i1]j ∈ F

2
q .

After receiving {ũ
(t)
ji , [u

(t)
j1]i}j∈[4], each client i generates a

large-dimensional encoded mask ũ
(t)
i ∈ F

6
q and secret share

[u(t)]i ∈ F
6
q , each of size d = 6. Online, each client i computes

a local gradient X̃T
i ĝ(X̃i× w̃

(t)
i) ∈ F

6
q and broadcasts û

(t)
i =

X̃T
i ĝ(X̃i × w̃

(t)
i) − ũ

(t)
i ∈ F

6
q , using which each client can

decode a masked gradient X
T
ĝ(X × w(t)) − u(t) ∈ F

6
q

where the true gradient X
T
ĝ(X × w(t)) ∈ F

6
q is hidden

by the offline mask u(t) ∈ F
6
q , to generate a secret share

[X
T
ĝ(X×w(t))]i ∈ F

6
q and update the model [w(t+1)]i ∈ F

6
q

for the next training round.

VII. THEORETICAL ANALYSIS

In this section, we provide the theoretical performance

guarantees of PICO. We first present the total communication

complexity (across all clients). To explicitly demonstrate the

complexity with respect to the number of clients, in the

following we let mi = m for i ∈ [N].
Theorem 1 (Communication Complexity): For training a

logistic regression model of size d in a network of N
clients, where up to T clients are adversarial, and each client

has m data samples partitioned into K shards, the total

communication complexity of PICO after J training rounds

is given by O(Ndm + N2

K d + NdJ) in the online phase,

and O(N2

K dm + N2

N−T dJ) in the offline phase. With K =
Θ(N) and T = O(N), the total communication complexity

(offline+online) is linear in the number of clients, which is

O(Ndm+NdJ).

Proof: The proof is provided in Appendix B. □

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5866 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

As can be observed from Theorem 1, PICO achieves a linear

communication complexity both offline and online, signifi-

cantly improving over the quadratic (online) communication

complexity of the state-of-the-art. We next demonstrate the

per-client computation complexity for PICO.

Theorem 2: (Computation complexity) For training a logis-

tic regression model of size d in a network of N clients,

where up to T clients are adversarial, and each client has

m data samples partitioned into K shards, after J train-

ing rounds, PICO incurs a per-client computation overhead

O(Nmd + N d
K log2(K + T) log log(K + T) + J Nm

K (d +
r) + Jdr(K + T) log2 r(K + T) log log r(K + T)) in the

online phase, and O(Ndm
K log2(K + T) log log(K + T) +

JN d
N−T log2 r(K+T) log log r(K+T)+JNd) in the offline

phase.

Proof: The proof is provided in Appendix C. □

In Appendix C, we also compare the computational complexity

of PICO with COPML, and show that PICO reduces the

communication complexity without any additional overhead

on the computation complexity.

The recovery threshold is defined as the minimum number

of clients needed for correct recovery of the final model.

We next present the recovery threshold of PICO.

Theorem 3 (Recovery Threshold): In a network of N
clients, where up to T clients are adversarial, and up to D
clients may drop out (or are unavailable) in each training

round, the recovery threshold of PICO is N ≥ D + (2r +
1)(K + T − 1) + 1, where r is the degree of polynomial

approximation of the sigmoid function.

Proof: The minimum number of clients is determined

by the number of local computations required for polynomial

interpolation, which, from Section V is given by N − D ≥
(2r + 1)(K + T − 1) + 1. □

From [7], the recovery threshold of COPML is given by

N ≥ D+(2r+1)(K+T −1)+1, where r ≥ 1. Hence, PICO

achieves equal adversary-robustness (T), dropout-resilience

(D), and parallelization (K) guarantees, while also slashing

the communication overhead.

Remark 3: PICO can also be applied to the simpler linear

regression problem, with the same algorithm steps.

We next present the formal information-theoretic privacy

guarantees from (3).

Theorem 4 (Information-Theoretic Privacy): In a network

of N clients, where T and H = [N]\T denote the set of

adversarial and honest clients, respectively, PICO guarantees

information theoretic-privacy for training a logistic regression

model w(J) after J training rounds,

I({Xi,yi}i∈H;MT |{Xi,yi}i∈T ,w
(J)) = 0 (41)

where MT denotes the collection of all messages received or

generated by the adversaries throughout the training.

Proof: The proof is provided in Appendix D. □

Finally, we show that the training operations correctly

recover the target model given in (40).

Theorem 5 (Correctness): PICO correctly recovers the tar-

get model from (40), given a sufficiently large field Fq.

Proof: The proof is given in Appendix E. □

VIII. EXPERIMENTS

To evaluate the performance of PICO, we implement a

distributed logistic regression task for binary classification on

the CIFAR-10 (on classes plane and car) [81], and MNIST

(on digits 0 and 1) [82] datasets, with dataset sizes (m, d) =
(9019, 3073) and (11432, 785), respectively. The datasets are

distributed evenly across the clients. In all experiments, the

inter-client communication is implemented using the MPI4Py

Message Passing Interface (MPI) for Python [83]. The broad-

cast functionality of the MPI protocol communicates messages

through a tree topology, as opposed to an ideal broadcast.

As such, the communication overhead of PICO scales with

respect to O(N logN) in the experiments, slightly higher than

O(N). This suggests PICO could in principle achieve even

higher gains in an ideal broadcasting setting, such as a cellular

network among devices within the same coverage area. The

other hyperparameters are J = 50 and η = 1.4 × 10−7,

respectively. For CIFAR-10, 9019 samples are used in the

training set, and 1000 samples in the test set. Then, each

local training set is complemented with simple random crop

augmentation (to avoid having too few samples per client as

the number of clients increase), leading to a total number of

18038 training samples. Similarly, for MNIST, 11432 samples

are used for training, and 2115 samples for testing. Then, each

local training set is complemented with random crop augmen-

tation, leading to 22864 training samples. Model accuracy is

evaluated on the test set, using the model trained jointly across

the N clients.

We evaluate the performance with respect to both

COPML [7] and conventional logistic regression. For PICO

and COPML, we leverage the secure truncation protocol

from [80] to carry out the multiplication with η
m during

the model update in (40), to ensure that the range of the

updated model stays within the range of the finite field as

suggested by [7]. This protocol takes as input the secret shares

{[x]i}i∈[N] of a variable x (where client i holds a share [x]i),
along with two public integer parameters κ1 and κ2 such that

0 < κ1 < κ2, and x ∈ F2κ2 . Then, the protocol returns the

secret shares {[z]i}i∈[N] of a variable z such that z = ⌊ x
2κ1
⌋+b

where b is a Bernoulli random variable (random bit) with

probability P [b = 1] = (x mod 2κ1)/2κ1 . As such, the secret

x is quantized by rounding x/(2κ1) to the nearest integer with

probability 1 − ρ, where ρ is the distance between the two.

The quantization is unbiased, ensuring the convergence of the

trained model. In the experiments, (κ1, κ2) = (22, 24) is used

for both datasets and benchmarks. We further optimize (speed

up) COPML by leveraging the grouping strategy suggested

in [7], which partitions clients into groups of size T + 1, and

communicates the secret shares only between clients within the

same group. To ensure correct recovery of the final model, the

number of clients (for both PICO and COPML) must satisfy

the recovery threshold from Thm. 3. We then compare the

performance under the same system configurations from [7] to

ensure a fair comparison, by letting r = 1, and considering the

scenario where the degree of privacy (T) and parallelization

(K) are (almost) equal, such that N = 3(K + T − 1) + 1
with T = ⌊N−3

6 ⌋ and K = ⌊N+2
3 ⌋ − T . The bandwidth

and finite field size are set as 40Mbps and q = 226 − 5,

respectively.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY 5867

Fig. 4. Online (a)-(b) and online+offline (c)-(d) communication overhead.

TABLE II

COMMUNICATION OVERHEAD (IN MBITS) ACROSS ALL CLIENTS FOR N = 60

Fig. 5. Online (a)-(b) and online+offline (c)-(d) wall-clock training time.

Fig. 6. Model convergence (a), impact of finite field size (b), and secure truncation (quantization) level (c) on CIFAR-10.

Fig. 7. Online+offline wall-clock training time.

We first compare the online communication overhead (in

Mbits) in Fig. 4 (a)-(b), including all communication during

the online phases throughout training. We observe that PICO

significantly decreases the communication overhead, by up

to 88.3× and 91.5× on CIFAR-10 and MNIST, respectively.

Note that some one-time communications (i.e., secret sharing

the dataset/labels) were omitted in [7], which we also include

as they are data-dependent. In Fig. 4 (c)-(d), we compare the

overall (online+offline) communication overhead, and observe

a reduction by up to 15.8× on CIFAR-10 and 15.9× on

MNIST. In Table II we provide the details of the online and

overall (online+offline) communication overhead from Fig. 4

for N = 60 clients, where we illustrate the cost breakdown

for each protocol component. Fig. 5 (a)-(b) compares the

wall-clock training time of PICO and COPML, including all

(online) communication and computations. We observe that

PICO speeds-up the training time by up to 6.8× and 7×
on CIFAR-10 and MNIST, respectively. In Fig. 5 (c)-(d),

we present the overall wall-clock time by including both online

and offline operations, and observe a reduction by up to 4.2×
on CIFAR-10 and 4.1× on MNIST.

In Fig. 6(a), we compare the test accuracy of PICO for

N = 60 and CIFAR-10 with respect to both COPML and

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5868 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

Fig. 8. Online (a)-(b) and online+offline (c)-(d) wall-clock training time (maximum parallelization gain).

conventional logistic regression (representing our target accu-

racy), where for the latter training is done in the domain of

real numbers, without any privacy constraints, in a centralized

setting with all data located at a single party. We observe

that PICO achieves comparable accuracy to both COPML

and conventional logistic regression. In Fig. 6(b), we further

evaluate the impact of the finite field size q, and in Fig. 6(c)

we demonstrate the impact of the secure truncation param-

eter κ1 on accuracy. We observe that accuracy degrades for

very small κ1, which increases the accuracy of quantization

but also the overflow errors, hence there exists a trade-off

between quantization and overflow errors. In practice, these

hyperparameters can be tuned through a local validation

set, where each client can locally identify a feasible range

prior to training, after which clients can agree on the final

parameters.

In Fig. 7, we demonstrate the role of parameter K on

the overall (offline+online) wall-clock training time of PICO

(including all communication and computations), by letting

N = 60 and varying K. As K increases, training time

decreases, as the size of the encoded dataset processed by

each client is proportional to 1/K (reducing the training load

per client). Fig. 7 also illustrates a trade-off between paral-

lelization (accordingly, training time) and adversary resilience,

as increasing K decreases the maximum number of adver-

saries T that can be tolerated, as shown in Thm. 3. Finally,

we consider the scenario with the maximum parallelization

gain (i.e., highest K), by setting T = 1 and selecting K
to be the highest value that is allowed by the recovery

threshold from Thm. 3. We then present the online and overall

(offline+online) wall-clock training time in Fig. 8 for the two

datasets. We observe that PICO significantly speeds up training

by cutting the online wall-clock training time by up to 8.8×
and the overall (offline+online) wall-clock training time by up

to 5.5×, respectively.

IX. CONCLUSION AND FUTURE DIRECTIONS

This work presents PICO, the first collaborative learn-

ing framework with linear communication complexity, under

strong information-theoretic privacy guarantees. PICO builds

on an online-offline trade-off where the communication inten-

sive operations are offloaded to a data-agnostic offline phase.

Then, the amortized communication complexity for the latter

is further reduced to linear via an efficient shared randomness

generation mechanism. In doing so, PICO achieves an order

of magnitude reduction in the communication overhead, while

providing the same accuracy, dropout-resilience and privacy

guarantees as the state-of-the-art. Future directions include

expanding our mechanisms to different machine learning tasks

and loss functions. Extending our work to more complex

machine learning tasks, such as neural networks, necessitates

addressing several key challenges, including the increase in the

polynomial degree of coded computations as the number of

layers increases, due to consecutive multiplication operations

during forward and backpropagation, as well as handling

the impact of consecutive polynomial approximations for

the activation functions (e.g., ReLu activations), which can

accumulate error as the number of layers increases. Addressing

these challenges with efficient neural network architectures

and training mechanisms is an interesting future direction.

Another future direction is developing novel secure quantiza-

tion mechanisms for multi-party machine learning, to enhance

model accuracy under resource limitations.

APPENDIX A

ALGORITHM

The offline and online steps of PICO are presented in

Algorithms 1 and 2, respectively. The offline phase consists of

randomness generation across the N clients, which will later

be used for masking the datasets, models, and computations

in the online phase.

APPENDIX B

COMMUNICATION COMPLEXITY

In the following, we analyze the per-client communication

complexity of PICO.

A. Online

The online communication per-client consists of the fol-

lowing components: 1) O(dm) for dataset encoding (Stage

1), 2) O(Nd
K) for label encoding (Stage 2), 3) O(d) for model

encoding (Stage 4) per training round, 4) O(d) for gradient

computing and model update (Stage 5) per training round.

B. Offline

The offline communication per-client consists of the fol-

lowing components: 1) O(Ndm
K) for dataset encoding (Stage

1), 2) O(Nd
(N−T)) for label encoding (Stage 2), 3) O(Nd

N−T)

for model initialization (Stage 3), 4) O(Nd
N−T) for model

encoding (Stage 4) per training round, 5) O(Nd
N−T) for gra-

dient computing and model update (Stage 5) per training

round.

Hence, the communication overhead per-client is O(dm +
N
K d+dJ) in the online phase, and O(N

K dm+ N
N−T dJ) in the

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY 5869

Algorithm 1 PICO - Offline Phas

Input: Number of clients N , polynomial coefficients (α1, . . . , αN), (β1, . . . , βK).

Output: Random masks {R̃ij}i,j∈[N], {[ai]j}i,j∈[N], {r̃
(t)
i , [r(t)]i, [u

(t)
i]j}i∈[N],t∈{0,...,J−1}, random initial model {[w(0)]i}i∈[N].

// 1. Dataset Encoding
1 for client i = 1, . . . , N do
2 Encode the random matrices {Rik}k∈[K], {Vik}k∈{K+1,...,K+T} from (9).

3 for j = 1, . . . , N do

4 Send the encoded matrix R̃ij to client j.

// 2. Label Encoding
5 for client i = 1, . . . , N do
6 Encode the random vectors {aik}k∈[K], {bik}k∈{K+1,...,K+T} from (13).

7 for j = 1, . . . , N do
8 Send the encoded vector ãij and secret share [ai]j to client j to client j.

9 for i = 1, . . . , N do

10 Construct the encoded vector ãi ≜ (M ⊗ I) × (ãT
1i, . . . , ã

T
Ni

)T from (14).

11 Construct the secret share [ak]i ≜ M × ([a1k]Ti , . . . , [aNk]Ti)T for all k ∈ [K].

// 3. Model Initialization
12 for client i = 1, . . . , N do

13 Generate a random vector w
(0)
i from Fq .

14 for j = 1, . . . , N do

15 Send a secret share [w
(0)
i]j to client j using Shamir’s secret sharing.

16 for client i = 1, . . . , N do

17 Initialize the model [w(0)]i using {[w
(0)
j]i}j∈[N] as given in (20).

18 for iteration t = 0, . . . , J − 1 do
// 4. Model Encoding

19 for client i = 1, . . . , N do

20 Encode the random vectors r
(t)
i , {v

(t)
ik

}k∈{K+1,...,K+T} as in (22).

21 for j = 1, . . . , N do

22 Send the encoded vector r̃
(t)
ij and secret share [r

(t)
i]j to client j.

23 for client i = 1, . . . , N do

24 Compute the coded vector, r̃
(t)
i as given in (23).

25 Compute the secret share [r(t)]i after receiving {[r
(t)
j]i}j∈[N] as given in (24).

// 5. Gradient Computing and Model Update
26 for client i = 1, . . . , N do

27 Encode {u
(t)
ik

}k∈(2r+1)(K+T−1)+1 as given in (29).

28 for j = 1, . . . , N do

29 Send the encoded vector ũ
(t)
ij to client j.

30 Send a secret share [
∑

k∈[K] u
(t)
ik

]j to client j using Shamir’s secret sharing.

31 for client i = 1, . . . , N do

32 Compute the coded vector, ũ
(t)
i after receiving {ũ

(t)
ji }j∈[N] as given in (31).

33 Compute the secret share, [
∑

k∈[K] u
(t)
k

]i after receiving {[
∑

k∈[K] u
(t)
jk

]i}j∈[N] from (33).

offline phase. The total communication complexity across all

N clients is O(Ndm+ N2

K d+NdJ) in the online phase, and

O(N2

K dm+ N2

N−T dJ) in the offline phase.

C. Communication Complexity of PICO vs COPML

In Table III, we present the total communication complexity

(across all N clients) of PICO versus COPML [7] for each

stage. We observe that PICO incurs a linear communication

overhead both in the online and offline phases. As such, PICO

not only reduces the online communication overhead from

quadratic point-to-point to linear broadcast (by offloading the

communication-intensive operations to the offline phase), but

also reduces the offline amortized communication overhead to

linear, as opposed to the naive offloading strategy discussed

in Section IV, where the quadratic communication overhead is

offloaded to the offline phase, but the resulting offline overhead

is still quadratic.

APPENDIX C

COMPUTATION COMPLEXITY

In the following we analyze the per-client computational

overhead of each stage of PICO, for both the offline and online

phases, respectively.

A. Offline Phase

The offline phase consists of encoding the local randomness

generated by the clients, and random initialization of the model

as follows.

Stage 1: Generation of {R̃ij}j∈[N] requires evaluating

a Lagrange polynomial of degree K + T − 1 at N

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5870 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

Algorithm 2 PICO - Online Phas

Input: Dataset (X,y) = ((X1,y1), . . . , (XN ,yN)) distributed over N clients.

Output: Model parameters w(J) after J training rounds.
// 1. Dataset Encoding

1 for client i = 1, . . . , N do

2 Partition the dataset Xi into K equal-sized shards (Xi1, . . . ,XiK).

3 Broadcast the masked dataset X̂ik = Xik − Rik for k ∈ [K].

4 for client i = 1, . . . , N do

5 Generate the coded dataset X̃i from (11).

// 2. Label Encoding
6 for client i = 1, . . . , N do

7 Partition X
T
i yi into K equal-sized shards (yi1, . . . ,yiK).

8 for client j = 1, . . . , N do
9 Encode {yik}k∈[K] as described in (17), and send the encoded vector ỹij to client j.

10 for client i = 1, . . . , N do
11 Broadcast âi =

∑
j∈[N] ỹji − ãi from (18).

12 for client i = 1, . . . , N do
13 Reconstruct

∑
j∈[N] yjk − ak for all k ∈ [K] using polynomial interpolation.

14 Compute a secret share [X
T
y]i of X

T
y as given in (19).

15 for iteration t = 0, . . . , J − 1 do
// 4. Model Encoding

16 for i = 1, . . . , N do

17 Broadcast [ŵ(t)]i from (25).

18 for i = 1, . . . , N do

19 Decode ŵ(t) ≜ w(t) − r(t) using polynomial interpolation.

20 Compute the coded model w̃
(t)
i in (27).

// 5. Gradient Computing and Model Update
21 for client i = 1, . . . , N do

22 Compute the gradient X̃T
i ĝ(X̃i × w̃

(t)
i).

23 Broadcast û
(t)
i =X̃T

i ĝ(X̃i×w̃
(t)
i) − ũ

(t)
i .

24 for client i = 1, . . . , N do

25 Decode ψ(βk) = ϕ(βk) − φ(βk) = X
T

k ĝ(Xk × w(t)) − u
(t)
k

for k ∈ [K] via polynomial interpolation.

26 Compute a secret share [X
T
ĝ(X × w(t))]i of the gradient X

T
ĝ(X × w(t)) as given in (38).

27 Update the model with [w(t+1)]i from (40).

// Final Model Recovery

28 Collect the secret shares [w(J)]i from any T + 1 clients.

29 Decode the final model w(J) via polynomial interpolation.

TABLE III

COMPARISON OF THE TOTAL COMMUNICATION OVERHEAD (ACROSS ALL N CLIENTS) FOR PICO AND COPML
WHERE mi = m FOR i ∈ [N], K = Θ(N), AND T = O(N)

points. It is known that by leveraging efficient algebraic

structures, interpolating a polynomial of degree κ (and eval-

uating it at κ points) has a computational complexity of

O(κ log2 κ log log κ) [6], [84]. As such, this stage has a

complexity of O(Ndm
K log2(K+T) log log(K+T)) per client.

Stage 2: Computing {ãij}j∈[N] requires evaluating a

polynomial of degree K + T − 1 at N points, which

has a computational complexity of O(N d
(N−T)K log2(K +

T) log log(K + T)) per client. Computing ãi in (14) has a

complexity of O(Nd
K) per client (since only the non-zero terms

should be multiplied due to the identity matrix). Computing

the secret shares {[aik]j}j∈[N] for all k ∈ [K] requires

evaluating each of the K polynomials of degree T at N
points, which has complexity O(N d

N−T log2 T log log T) for

each client. Evaluating the secret shares {[ak]i}k∈[K] has an

overhead of O(Nd) per client.

Stage 3: Computing the secret share {[w
(0)
i]j}j∈[N] requires

evaluating a polynomial of degree T at N points, which

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY 5871

has complexity O(N d
N−T log2 T log log T) for each client.

Finally, computation of the final secret share, w(0) from (20)

has complexity O(Nd) per client.

Stage 4: Computation of r̃
(t)
ij requires evaluating a Lagrange

polynomial of degree K + T − 1 at N points, which has a

complexity of O(N d
N−T log2(K + T) log log(K + T)) per

client. Given {r̃
(t)
ji }j∈[N], the computation of r̃

(t)
i from (23)

has an overhead of O(Nd) per client. Constructing the secret

share [r
(t)
i]j requires evaluating a polynomial of degree T at

N points, which has complexity O(N d
N−T log2 T log log T)

for each client. Afterwards, creating the secret share [r(t)]i
has a complexity of O(Nd) per client. Overall, this stage has

a per client computational overhead of O(N d
N−T log2(K +

T) log log(K+T)+Nd) per training round. For J rounds, this

leads to an overhead of O(JN d
N−T log2(K+T) log log(K+

T) + JNd) per client.

Stage 5: Computing {ũ
(t)
ij }j∈[N] requires evaluating a

Lagrange polynomial of degree (2r + 1)(K + T − 1) at

N points, which has a complexity of O(N d
N−T log2 r(K +

T) log log r(K + T)) per client per training round. Given

{ũ
(t)
ji }j∈[N], computation of ũ

(t)
i in (31) has complexity

of O(Nd) per client per training round. Next, computing∑
k∈[K] u

(t)
ik has a computational overhead of O(K d

N−T)
per client per training round. Computing the secret shares

{[
∑

k∈[K] u
(t)
ik]j}j∈[N] requires evaluating a polynomial of

degree T at N points, which incurs a complexity of

O(N d
N−T log2 T log log T) per client per training round.

Finally, given {[
∑

k∈[K] u
(t)
jk]i}j∈[N], the computation of

[
∑

k∈[K] u
(t)
k]i has complexity of O(Nd) per client per train-

ing round. For J iterations, the computational complexity is

O(JN d
N−T log2 r(K+T) log log r(K+T)+JNd) per client.

Overall, the computation complexity of the offline phase is

O(Ndm
K log2(K + T) log log(K + T) + JN d

N−T log2 r(K +
T) log log r(K + T) + JNd) per client.

B. Online Phase

The online phase consists of encoding the dataset and the

model, gradient computations, and model update.

Stage 1: Computing {X̂ik}k∈[K] has an overhead of O(md)
per client, as each client holds a local dataset of size m locally.

Computing X̃i has an overhead of O(Nmd) per client.

Stage 2: Computation of X
T

i yi has complexity of O(md)
per client. Computation of {ỹij}j∈[N] requires evaluation of a

Lagrange polynomial of degree K+T −1 at N points, which

has a complexity of O(N d
K log2(K+T) log log(K+T)) per

client. Given {ỹji}j∈[N] and ãi (from offline computation),

computation of âi incurs a complexity of O(N d
K) per client.

Next, upon receiving {âj}j∈[N] from at least K + T clients,

client i recovers
∑

j∈[N] yjk − ak for all k ∈ [K], which has

a complexity of O(d
K (K + T) log2(K + T) log log(K + T)).

Next, computation of [XT y]i from (19) has a complexity of

O(d) per client.

Stage 4: Computing ŵ(t) requires interpolating a

polynomial of degree T , which has a complexity of

O(Td log2 T log log T) per client per training round.

Computing the encoded model w̃
(t)
i has a computation

overhead of O(Kd) per client. As the above computation

steps should be repeated at every training round, for a total

number of J training iterations, the computational overhead

is O(KdJ + TdJ log2 T log log T) per client.

Stage 5: Computation of the gradient X̃T
i ĝ(X̃i × w̃

(t)
i) has

an overhead of O(Nm
K (d + r)) per client, at each training

round. The computation of ûi has an overhead of O(d) per

client. Then, each client recovers the polynomial ψ(α), which

requires interpolating a polynomial of degree (2r + 1)(K +
T − 1), which has complexity O(dr(K + T) log2 r(K +
T) log log r(K + T)) per client. Finally, the summation to

obtain [X
T
ĝ(X × w(t))]i has a computational cost O(Kd)

per client. The computation overhead of model update is

O(d). The above computation steps are repeated over J
training rounds. For J rounds, the computation complexity is

O(J Nm
K (d+r)+Jdr(K+T) log2 r(K+T) log log r(K+T))

per client.

Overall, computation complexity of the online phase is

O(Nmd+N d
K log2(K+T) log log(K+T)+J Nm

K (d+r)+
Jdr(K + T) log2 r(K + T) log log r(K + T)) per client.

C. Computation Complexity of PICO vs COPML

In Table IV, we present the per-client computational com-

plexity of PICO versus COPML [7] for each stage. For

a fair comparison, we also consider the utilization of fast

polynomial interpolation mechanisms [84] for COPML (hence

the complexity we report is even lower than the one originally

reported in [7]). In Table V, we present the per-client compu-

tational complexity for PICO (offline+online) and COPML,

with T = O(N) and K = Θ(N). We observe that the

overall per-client complexity (across all algorithm steps) is

O(Ndm + dm log2N log logN + JNd log2N log logN +
Jm(d + r)) for PICO and O(Ndm log2N log logN +
JNd log2N log logN+Jm(d+r)) for COPML, respectively.

Hence, PICO achieves the same computation complexity as

COPML. This is due to the fact that PICO reduces the overall

number of variables encoded, hence the additional operations

due to the matrix transformations with MDS matrices do not

increase the overall computation complexity.

APPENDIX D

INFORMATION-THEORETIC PRIVACY

Proof: For tractability of theoretical analysis, in this

section we consider a sufficiently large field size q, and treat

all training operations as integer operations [2]. This can be

achieved by considering a learning rate η such that M ≜ m/η
is an integer and redefining the gradient computation at client

i from (35) as follows,

ϕ(αi) =
r∑

j=0

θjM
(r−j)atX̃T

i (X̃i × w̃
(t)
i)j (42)

where we define the polynomial ϕ(α) =∑r
j=0 θjM

(r−j)atf(α)T(f(α) × h(α))j such that client

i computes ϕ(αi), the exponent (·)j is applied element-wise,

and coefficient at is defined as,

at ≜

{
0 for t = 0

rat−1 + 1 for t ≥ 1
(43)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5872 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

TABLE IV

COMPARISON OF THE COMPUTATION OVERHEAD (PER CLIENT) FOR PICO AND COPML WITH mi = m FOR i ∈ [N]

TABLE V

COMPARISON OF THE COMPUTATION OVERHEAD (PER CLIENT) FOR PICO AND COPML WITH mi = m FOR i ∈ [N], K = Θ(N), AND T = O(N)

whereas the true gradient is given by,

∑

k∈[K]

ϕ(βk) =
r∑

j=0

θjM
(r−j)at(X

′

k)T(X
′

k ×w(t))j

=
r∑

j=0

θjM
(r−j)atX

T
(X×w(t))j (44)

such that X
′

k ≜ f(βk) =
[
X

T

1k · · · X
T

Nk

]T

from (12),

replacing (35) and (36), respectively. After collecting û
(t)
i =

ψ(αi) from any set of at least C+1 clients, client i can recover

ψ(α) via polynomial interpolation, compute a secret share of

the gradient
∑

k∈[K] ϕ(βk),

[∑

k∈[K]

ϕ(βk)
]

i
≜
∑

k∈[K]

ψ(βk) +
[∑

k∈[K]

u
(t)
k

]

i
(45)

=
∑

k∈[K]

ϕ(βk) +
∑

l∈[T]

γl
iz

(t)
l (46)

and update the model as,

[w(t+1)]i = M (r−1)at+1[w(t)]i −

([∑

k∈[K]

ϕ(βk)
]

i

−Mrat [X
T
y]i

)
. (47)

replacing the model update operation from (40). After J
training rounds, clients collect the secret shares {[w(J)]i}i∈[N]

to decode w(J), and compute the final model as w(J) ←
w(J)/MaJ . The correctness of the model update operations

from (47) are provided in Appendix E.

We next present the information-theoretic privacy analysis

for PICO. Consider an arbitrary set of adversaries T ⊆ N .

For ease of exposition, we focus on the worst case scenario

by setting |T | = T , while noting that the same analysis holds

for all |T | < T . Let M1
T and M2

T , denote the collection of

all messages received by the adversaries during the dataset

encoding (Stage 1), and label encoding (Stage 2) stages,

respectively. Let M3
T denote the collection of all messages

received by the adversaries during model initialization stage

(Stage 3). Similarly, let M4,t
T denote the collection of all

messages received by the adversaries in model encoding

stage (Stage 4) at training round t ∈ {0, . . . , J − 1}. Let

M5,t
T denote the collection of all messages received by the

adversaries during the gradient computing and model update

stage (Stage 5) at training round t ∈ {0, . . . , J − 1}. Finally,

let M6
T denote the collection of all messages received by the

adversaries during the reconstruction of the final model w(J)

after J training rounds. Then, from the chain rule of mutual

information [71], one can rewrite (41) as follows:

I({Xi,yi}i∈H;MT |{Xi,yi}i∈T ,w
(J))

= I({Xi,yi}i∈H;M1
T ,M

2
T ,M

3
T ,

∪t∈[J]M
4,t
T ,∪t∈[J]M

5,t
T ,M6

T |{Xi,yi}i∈T ,w
(J)) (48)

= I({Xi,yi}i∈H;M1
T |{Xi,yi}i∈T ,w

(J))

+ I({Xi,yi}i∈H;M2
T |M

1
T , {Xi,yi}i∈T ,w

(J))

+ I({Xi,yi}i∈H;M3
T |M

1
T ,M

2
T , {Xi,yi}i∈T ,w

(J))

+
J−1∑

t=0

I({Xi,yi}i∈H;M4,t
T |M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J))

+
J−1∑

t=0

I({Xi,yi}i∈H;M5,t
T |M

1
T ,M

2
T ,M

3
T ,

∪t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J))

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY 5873

+ I({Xi,yi}i∈H;M6
T |M

1
T ,M

2
T ,M

3
T ,

∪J−1
l=0 M

4,l
T ,∪J−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J)) (49)

We next investigate each term in the summation (49).

Stage 1: Dataset Encoding: First, we start with the first term

in (49), which corresponds to Stage 1 of PICO, i.e., encoding

the datasets. For this stage, the first term in the right hand side

of (49) can be written as:

I({Xi,yi}i∈H;M1
T |{Xi,yi}i∈T ,w

(J))

=I({Xi,yi}i∈H;{R̃ij}j∈T
i∈H

,{Rik} i∈T
k∈[K]

,{Vik} i∈T
k∈{K+1,...,K+T}

,

{X̂ik} i∈[N]
k∈[K]

|{Xi,yi}i∈T ,w
(J)) (50)

= H({R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

,

{X̂ik} i∈[N]
k∈[K]

|{Xi,yi}i∈T ,w
(J))

−H({R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

,

{X̂ik} i∈[N]
k∈[K]

|{Xi,yi}i∈[N],w
(J)) (51)

We next bound the first term in (51) as follows:

H({R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

,

{X̂ik} i∈[N]
k∈[K]

|{Xi,yi}i∈T ,w
(J))

= H({R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

,

{X̂ik} i∈H
k∈[K]

|{Xi,yi}i∈T ,w
(J)) (52)

≤ H({R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

,

{X̂ik} i∈H
k∈[K]

) (53)

≤ log
(
q(

∑
i∈H

T dmi
K

)+(
∑

i∈T
dmi)+(

∑
i∈T

T dmi
K

)+(
∑

i∈H
dmi)

)

(54)

= d
(T
K

+ 1
)(∑

i∈[N]

mi

)
log q (55)

where (53) holds since conditioning cannot increase entropy.

Equation (54) follows from the fact that uniform distribution

maximizes entropy, and that the entropy of a uniform random

variable distributed over an alphabet A is equal to log |A|. For

the second term in (51), we find that,

H({R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

,

{X̂ik} i∈[N]
k∈[K]

|{Xi,yi}i∈[N],w
(J))

= H({R̃ij}j∈T
i∈H

, {Rik} i∈[N]
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

,

{Rik} i∈[N]
k∈[K]

|{Xi,yi}i∈[N],w
(J)) (56)

= H({R̃ij}j∈T
i∈H

, {Rik} i∈[N]
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

) (57)

= H({R̃ij}j∈T
i∈H
|{Rik} i∈[N]

k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

)

+H({Vik} i∈T
k∈{K+1,...,K+T}

|{Rik} i∈[N]
k∈[K]

)+H({Rik} i∈[N]
k∈[K]

)

(58)

= H({R̃ij}j∈T
i∈H
|{Rik} i∈[N]

k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

)

+H({Vik} i∈T
k∈{K+1,...,K+T}

) +H({Rik} i∈[N]
k∈[K]

) (59)

= H
({ K+T∑

k=K+1

Vik

∏

l∈[K+T]\{k}

αj − βl

βk − βl

}
i∈H
j∈T

)

+ log(qTd
∑

i∈T

mi
K) + log(qKd

∑
i∈[N]

mi
K) (60)

=
∑

i∈H

H
({ K+T∑

k=K+1

Vik

∏

l∈[K+T]\{k}

αj − βl

βk − βl

}

j∈T

)

+
Td

K
(
∑

i∈T

mi) log q + d(
∑

i∈[N]

mi) log q (61)

=
∑

i∈H

H({Zij}j∈T)+
Td

K
(
∑

i∈T

mi) log q + d(
∑

i∈[N]

mi) log q

(62)

where (56) holds since given {Xi,yi}i∈[N], there is no uncer-

tainty remaining in {Xik}i∈[N],k∈[K], (57) holds since the

generated randomness is independent from the local datasets,

(58) follows from the chain rule of entropy, (59) holds since

the random matrices are generated independently where each

element is distributed uniformly at random (and indepen-

dent from other elements) from the finite field Fq. In (62),

we define:

Zij ≜

K+T∑

k=K+1

Vik

∏

l∈[K+T]\{k}

αj − βl

βk − βl
(63)

for all i ∈ H and j ∈ T . In the following, without loss of

generality we let the first N − T clients be honest (the last T
clients are adversarial), i.e., H = [N −T] and T = {N −T +
1, . . . , N}. The assumption is for notational simplicity, and the

same analysis holds for any set of adversarial clients T of size

T . We also represent the Lagrange polynomial coefficients as:

ρjk ≜
∏

l∈[K+T]\{k}

αj − βl

βk − βl
(64)

for all j ∈ [N] and k ∈ [K + T]. Then, from (63), one can

write:
[
Zi,N−T+1 · · · Zi,N

]
=
[
Vi,K+1 · · · Vi,K+T

]
Γ (65)

where

Γ ≜



ρN−T+1,K+1 · · · ρN,K+1

...
. . .

...

ρN−T+1,K+T · · · ρN,K+T


 (66)

is a T × T MDS matrix (hence is invertible), which follows

from the MDS property of Lagrange coding as shown in [6].

An MDS matrix guarantees that (65) is a bijective mapping,

hence,

H({Zij}j∈T) = H(Zi,N−T+1, . . . ,Zi,N) (67)

= H(Vi,K+1, . . . ,Vi,K+T) (68)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5874 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

=
Tdmi

K
log q (69)

where (68) is from (65) and that Γ is an MDS matrix, and (69)

holds since each element of Vik is distributed uniformly at

random over Fq. By combining (69) with (62), we have:

H
(
{R̃ij}j∈T

i∈H
, {Rik} i∈T

k∈[K]
, {Vik} i∈T

k∈{K+1,...,K+T}
,

{X̂ik} i∈[N]
k∈[K]

∣∣∣{Xi,yi}i∈[N],w
(J)
)

=
(∑

i∈H

Tdmi

K
log q

)
+
Td

K

(∑

i∈T

mi

)
log q + d

(∑

i∈T

mi

)
log q

(70)

= d
(T
K

+ 1
)(∑

i∈[N]

mi

)
log q (71)

Finally, by combining (54) and (71) with (51), we have:

0 ≤ I({Xi,yi}i∈H;M1
T |{Xi,yi}i∈T ,w

(J)) (72)

= H
(
{R̃ij}j∈T

i∈H
, {Rik} i∈T

k∈[K]
, {Vik} i∈T

k∈{K+1,...,K+T}
,

{X̂ik} i∈[N]
k∈[K]

∣∣∣{Xi,yi}i∈T ,w
(J)
)

−H
(
{R̃ij}j∈T

i∈H
, {Rik} i∈T

k∈[K]
, {Vik} i∈T

k∈{K+1,...,K+T}
,

{X̂ik} i∈[N]
k∈[K]

∣∣∣{Xi,yi}i∈[N],w
(J)
)

(73)

≤d
(T
K

+1
)(∑

i∈[N]

mi

)
log q−d

(T
K

+1
)(∑

i∈[N]

mi

)
log q

(74)

= 0 (75)

where the first inequality follows from the non-negativity of

mutual information. Therefore, the first term in (49) satisfies

the following:

I({Xi,yi}i∈H;M1
T |{Xi,yi}i∈T ,w

(J)) = 0 (76)

Stage 2: Label Encoding: We next consider the second term

in (49), which corresponds to the secret sharing of the labels.

Without loss of generality, we represent the secret share of aik

from client i to client j as follows:

[aik]j ≜ aik +
∑

l∈[T]

γl
jeikl (77)

where eikl are random vectors of size d
K , where each element

is distributed independently and uniformly at random from Fq.

Coefficients {γi}i∈[N] are distinct public parameters agreed

in advance between all N clients, where γi ∈ Fq for all

i ∈ [N] such that {γi}i∈[N] ∩ {βk}k∈[K+T] ∩ {αj}j∈[N] = ∅.
Using (77), we can rewrite the second term in (49) as follows:

I({Xi,yi}i∈H;M2
T |M

1
T , {Xi,yi}i∈T ,w

(J))

= I({Xi,yi}i∈H; {ãij , [aik]j}i∈H,j∈T ,k∈[K], {âi}i∈[N],

{rik,bik,aik′ , eik′l} i∈T ,k′∈[K],l∈[T]
k∈{K+1,...,K+T}

|M1
T ,{Xi,yi}i∈T ,w

(J))

(78)

= I({Xi,yi}i∈H; {ãij , [aik]j}i∈H,j∈T ,k∈[K],

{
∑

j∈[N]

yjk − ak}k∈[K], {
∑

j∈[N]

rjk − bk}k∈{K+1,...,K+T},

{rik,bik,aik′ , eik′l} i∈T ,k′∈[K],l∈[T]
k∈{K+1,...,K+T}

|M1
T , {Xi,yi}i∈T ,w

(J))

(79)

= H({ãij , [aik]j}i∈H,j∈T ,k∈[K],

{
∑

j∈[N]

yjk − ak}k∈[K], {
∑

j∈[N]

rjk − bk}k∈{K+1,...,K+T},

{rik,bik,aik′ , eik′l} i∈T ,k′∈[K],l∈[T]
k∈{K+1,...,K+T}

|M1
T ,{Xi,yi}i∈T ,w

(J))

−H({ãij , [aik]j}i∈H,j∈T ,k∈[K], {
∑

j∈[N]

yjk − ak}k∈[K],

{
∑

j∈[N]

rjk − bk}k∈{K+1,...,K+T},

{rik,bik,aik′ , eik′l} i∈T ,k′∈[K],l∈[T]
k∈{K+1,...,K+T}

|M1
T ,{Xi,yi}i∈[N],w

(J))

(80)

where (79) follows from the fact that any polynomial of degree

K +T − 1 can be determined from at least K +T evaluation

points, therefore there is a bijective mapping from any feasible

set {âi}i∈[N] to a set of K + T coefficients {
∑

j∈[N] yjk −
ak}k∈[K], {

∑
j∈[N] rjk−bk}k∈{K+1,...,K+T}. For the second

term in (80), we find that,

H({ãij , [aik]j}i∈H,j∈T ,k∈[K],

{
∑

j∈[N]

yjk − ak}k∈[K], {
∑

j∈[N]

rjk − bk}k∈{K+1,...,K+T},

{rik,bik,aik′ , eik′l} i∈T ,k′∈[K],l∈[T]
k∈{K+1,...,K+T}

|M1
T ,{Xi,yi}i∈[N],w

(J))

= H({ãij , [aik]j}i∈H,j∈T ,k∈[K], {ak}k∈[K],

{
∑

j∈[N]

rjk − bk}k∈{K+1,...,K+T},

{rik,bik,aik′ , eik′l} i∈T ,k′∈[K],l∈[T]
k∈{K+1,...,K+T}

|M1
T , {Xi,yi}i∈[N],

w(J)) (81)

= H({ãij , [aik]j}i∈H,j∈T ,k∈[K],{
(M⊗ I)

[
aT

1k · · · aT
Nk

]T
}

k∈[K]
,

{ ∑

j∈[N]

rjk − (M⊗ I)
[
bT

1k · · · bT
Nk

]T
}

k∈{K+1,...,K+T}
,

{rik,bik,aik′ , eik′l} i∈T ,k′∈[K],l∈[T]
k∈{K+1,...,K+T}

|M1
T , {Xi,yi}i∈[N],

w(J)) (82)

= H({ãij , [aik]j}i∈H,j∈T ,k∈[K],{
(M⊗ I)

[
aT

1k · · · aT
(N−T)k

]T
}

k∈[K]
,
{ ∑

j∈[N−T]

rjk−

(M⊗ I)
[
bT

1k · · · bT
(N−T)k

]T
}

k∈{K+1,...,K+T}
,

{rik,bik,aik′ , eik′l} i∈T ,k′∈[K],l∈[T]
k∈{K+1,...,K+T}

|M1
T , {Xi,yi}i∈[N],

w(J)) (83)

= H({ãij , [aik]j}i∈H,j∈T ,k∈[K],

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY 5875

{ [
aT

1k · · · aT
(N−T)k

]T
}

k∈[K]
,
{ ∑

j∈[N−T]

rjk

− (M⊗ I)
[
bT

1k · · · bT
(N−T)k

]T
}

k∈{K+1,...,K+T}
)

+H({rik,bik,aik′ , eik′l}i∈T ,k′∈[K],l∈[T],k∈{K+1,...,K+T})
(84)

= H({ãij , [aik]j}i∈H,j∈T ,k∈[K], {ajk}j∈[N−T],k∈[K],

{
∑

j∈[N−T]

rjk − (M⊗ I) bk}k∈{K+1,...,K+T})

+ Td
(T
K

+
T

K(N − T)
+

1

N − T
+

T

N − T

)
log q

(85)

where (81) follows from the fact that given {Xi,yi}i∈[N],

there is no uncertainty in
∑

j∈[N] yjk for all k ∈ [K]. In (83),

we define the following square submatrix of M from (16),

M ≜




1 λ1 . . . λN−T−1
1

1 λ2 . . . λN−T−1
2

...
...

. . .
...

1 λN−T . . . λN−T−1
N−T


 (86)

which is an (N − T) × (N − T) MDS matrix (hence is

invertible), from which (84) follows. Equation (85) follows

from the entropy of uniform random variables, and,

bk ≜




b1k

...

b(N−T)k


 (87)

For the first term in (85), we find that,

H({ãij , [aik]j}i∈H,j∈T ,k∈[K], {ajk}j∈[N−T],k∈[K],

{
∑

j∈[N−T]

rjk − (M⊗ I) bk}k∈{K+1,...,K+T})

= H({ãij}i∈H,j∈T ,

{
∑

j∈[N−T]

rjk − (M⊗ I) bk}k∈{K+1,...,K+T}

|{[aik]j}i∈H,j∈T ,
k∈[K]

, {ajk}j∈[N−T],
k∈[K]

)

+H({[aik]j}i∈H,j∈T ,k∈[K]|{ajk}j∈[N−T],k∈[K])

+H({ajk}j∈[N−T],k∈[K]) (88)

= H

({ K+T∑

k=K+1

bik

∏

l∈[K+T]\{k}

αj − βl

βk − βl

}

i∈H,j∈T
,

{ ∑

j∈[N−T]

rjk − (M⊗ I) bk

}

k∈{K+1,...,K+T}

)

+H

(
{
∑

l∈[T]

γl
jeikl}i∈H,j∈T ,k∈[K]

)

+H({ajk}j∈[N−T],k∈[K]) (89)

where (88) follows from the chain rule of entropy, and (89)

holds since the random vectors are generated independently.

To simplify the analysis of (89), we let,
[∑

l∈[T] γ
l
N−T+1eikl · · ·

∑
l∈[T] γ

l
Neikl

]

=
[
eik1 · · · eikT

]
A (90)

where

A ≜



γ1

N−T+1 . . . γ1
N

...
. . .

...

γT
N−T+1 . . . γT

N


 (91)

is an T × T MDS matrix (invertible). From (90), it follows

for the second term in (89) that,

H

(
{
∑

l∈[T]

γl
jeikl}i∈H,j∈T ,k∈[K]

)

=
∑

i∈H

∑

k∈[K]

H({
∑

l∈[T]

γl
jeikl}j∈T) (92)

=
∑

i∈[N−T]

∑

k∈[K]

H({
∑

l∈[T]

γl
jeikl}j∈{N−T+1,...,N}) (93)

=
∑

i∈[N−T]

∑

k∈[K]

H
([

eik1 · · · eikT

]
A
)

(94)

=
∑

i∈[N−T]

∑

k∈[K]

H(eik1, . . . , eikT) (95)

= (N − T)KT
d

(N − T)K
log q (96)

= Td log q (97)

where (92) is from the independence of the generated random

variables, (94) follows from (90), and (95) holds since matrix

A is invertible, hence represents a bijective mapping. Finally,

(96) follows from the entropy of uniform random variables.

Similarly, for the last term in (89),

H({ajk}j∈[N−T],k∈[K])=(N−T)K
d

(N−T)K
log q=d log q

(98)

which also follows from the entropy of uniform random

variables.

For the first term in (89), we rewrite{∑K+T
k=K+1 bik

∏
l∈[K+T]\{k}

αj−βl

βk−βl

}

j∈T
as:

[K+T∑

k=K+1

bik

∏

l∈[K+T]\{k}

αN−T+1 − βl

βk − βl

· · ·
K+T∑

k=K+1

bik

∏

l∈[K+T]\{k}

αN − βl

βk − βl

]

=
[
bi,K+1 · · · bi,K+T

]
Γ (99)

where Γ is the T × T MDS matrix from (66) (hence is

invertible). Using (99), one can then rewrite the first term in

(89) as:

H

({ K+T∑

k=K+1

bik

∏

l∈[K+T]\{k}

αj − βl

βk − βl

}

i∈H,j∈T
,

{ ∑

j∈[N−T]

rjk − (M⊗ I) bk

}

k∈{K+1,...,K+T}

)

= H

({[
bi,K+1 · · · bi,K+T

]
Γ

}

i∈H

,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5876 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

{ ∑

j∈[N−T]

rjk − (M⊗ I) bk

}

k∈{K+1,...,K+T}

)
(100)

= H

(
{bi,K+1, . . . ,bi,K+T }i∈H,

{ ∑

j∈[N−T]

rjk − (M⊗ I) bk

}

k∈{K+1,...,K+T}

)
(101)

= H

(
{bi,k}i∈H,k∈{K+1,...,K+T},

{ ∑

j∈[N−T]

rjk − (M⊗ I) bk

}

k∈{K+1,...,K+T}

)
(102)

= H

({ ∑

j∈[N−T]

rjk − (M⊗ I) bk

}

k∈{K+1,...,K+T}

∣∣∣{bi,k}i∈[N−T],k∈{K+1,...,K+T}

)

+H({bi,k}i∈[N−T],k∈{K+1,...,K+T}) (103)

= H({
∑

j∈[N−T]

rjk}k∈{K+1,...,K+T}

|{bi,k}i∈[N−T],k∈{K+1,...,K+T})

+H({bi,k}i∈[N−T],k∈{K+1,...,K+T}) (104)

= H({
∑

j∈[N−T]

rjk}k∈{K+1,...,K+T})

+H({bi,k}i∈[N−T],k∈{K+1,...,K+T}) (105)

= T
d

K
log q + (N − T)T

d

(N − T)K
log q (106)

=
2Td

K
log q (107)

where (101) holds since Γ is invertible, represent-

ing a bijective mapping. Equation (103) follows from

the chain rule of entropy, (104) holds since given

{bi,k}i∈[N−T],k∈{K+1,...,K+T}, there is no uncertainty in

(M ⊗ I) bk, (105) follows from the independence of the

random vectors, and (106) follows from the entropy of uniform

random variables. By combining (107), (97), and (98), with

(85), we can rewrite the second term in (80) as follows,

H({ãij , [aik]j}i∈H,j∈T ,k∈[K], {
∑

j∈[N]

yjk − ak}k∈[K],

{
∑

j∈[N]

rjk − bk}k∈{K+1,...,K+T},

{rik,bik,aik′ , eik′l} i∈T ,k′∈[K],l∈[T]
k∈{K+1,...,K+T}

|M1
T ,{Xi,yi}i∈[N],w

(J))

=
2Td

K
log q + Td log q + d log q

+ Td
(T
K

+
T

K(N − T)
+

1

N − T
+

T

N − T

)
log q

(108)

=
(
d
(2T

K
+ T + 1

)

+ Td
(T
K

+
T

K(N − T)
+

1

N − T
+

T

N − T

))
log q

(109)

Next, for the first term in (80), we observe that,

H({ãij , [aik]j}i∈H,j∈T ,k∈[K], {
∑

j∈[N]

yjk − ak}k∈[K],

{
∑

j∈[N]

rjk − bk}k∈{K+1,...,K+T},

{rik,bik,aik′ , eik′l} i∈T ,k′∈[K],l∈[T]
k∈{K+1,...,K+T}

|M1
T ,

{Xi,yi}i∈T ,w
(J))

≤
((N − T)Td

(N − T)K
+

(N − T)TdK

(N − T)K

+
Kd

K
+
Td

K
+
T 2d

K
+

T 2d

K(N − T)
+

Td

N − T
+

T 2d

N − T

)
log q

(110)

=
(
d
(2T

K
+ T + 1

)

+ Td
(T
K

+
T

K(N − T)
+

1

N − T
+

T

N − T

))
log q

(111)

Finally, by combining (111) and (109) with (80), we find that,

0 ≤ I({Xi,yi}i∈H;M2
T |M

1
T , {Xi,yi}i∈T ,w

(J)) (112)

≤
(
d
(2T

K
+ T + 1

)

+ Td
(T
K

+
T

K(N − T)
+

1

N − T
+

T

N − T

))
log q

−
(
d
(2T

K
+ T + 1

)

+ Td
(T
K

+
T

K(N − T)
+

1

N − T
+

T

N − T

))
log q

(113)

= 0 (114)

where the inequality in (112) follows from the non-negativity

of mutual information. Hence,

I({Xi,yi}i∈H;M2
T |M

1
T , {Xi,yi}i∈T ,w

(J)) = 0 (115)

for the second term in (49).

Stage 3: Model Initialization: We now consider the third

term in (49), which corresponds to Stage 3 of PICO, i.e.,

model initialization. Without loss of generality, we represent

the secret share [w
(0)
i]j sent from client i ∈ [N] to client

j ∈ [N] as follows:

[w
(0)
i]j ≜ w

(0)
i +

∑

k∈[T]

γk
j s

(0)
ik (116)

where {s
(0)
ik }k∈[T] are T random vectors of size d

N−T , where

each element is generated independently and uniformly at

random from Fq, and coefficients {γj}j∈[N] are as defined

in (77). We can then rewrite the mutual information condition

for the third term in (49) as follows:

I({Xi,yi}i∈H;M3
T |M

1
T ,M

2
T , {Xi,yi}i∈T ,w

(J))

= I({Xi,yi}i∈H; {[w
(0)
i]j}i∈H,j∈T ,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY 5877

{w
(0)
i , s

(0)
ik }i∈T ,k∈[T]|M

1
T ,M

2
T , {Xi,yi}i∈T ,w

(J))
(117)

= I({Xi,yi}i∈H; {[w
(0)
i]j}i∈H,j∈T |M

1
T ,M

2
T ,

{Xi,yi}i∈T ,w
(J))

+ I({Xi,yi}i∈H; {w
(0)
i , s

(0)
ik }i∈T ,k∈[T]|{[w

(0)
i]j}i∈H,j∈T ,

M1
T ,M

2
T , {Xi,yi}i∈T ,w

(J)) (118)

= H({[w
(0)
i]j}i∈H,j∈T |M

1
T ,M

2
T , {Xi,yi}i∈T ,w

(J))

−H({[w
(0)
i]j}i∈H,j∈T |M

1
T ,M

2
T , {Xi,yi}i∈[N],w

(J))

+H({w
(0)
i , s

(0)
ik }i∈T ,k∈[T]|{[w

(0)
i]j}i∈H,j∈T ,M

1
T ,M

2
T ,

{Xi,yi}i∈T ,w
(J))

−H({w
(0)
i , s

(0)
ik }i∈T ,k∈[T]|{[w

(0)
i]j}i∈H,j∈T ,M

1
T ,M

2
T ,

{Xi,yi}i∈[N],w
(J)) (119)

We next consider each term in (119) separately. For the first

term in (119), we have that,

H({[w
(0)
i]j}i∈H,j∈T |M

1
T ,M

2
T , {Xi,yi}i∈T ,w

(J))

≤ (N − T)T
d

N − T
log q = Td log q (120)

which holds since uniform distribution maximizes entropy. For

the second term in (119), we let,
[
[w

(0)
i]N−T+1 · · · [w

(0)
i]N

]

= w
(0)
i

[
1 1 · · · 1

]
︸ ︷︷ ︸

1

+
[
s
(0)
i1 · · · s

(0)
iT

]

︸ ︷︷ ︸
s
(0)
i

A (121)

= w
(0)
i 1 + s

(0)
i A (122)

where A is a T × T MDS matrix as defined in (91), and 1 is

a 1×T vector, where each element is equal to 1. Using (122),

the second term in (119) can be written as,

H({[w
(0)
i]j}i∈H,j∈T |M

1
T ,M

2
T , {Xi,yi}i∈[N],w

(J))

≥ H({[w
(0)
i]j}i∈H,j∈T |M

1
T ,M

2
T , {Xi,yi}i∈[N],w

(J),

{w
(0)
i }i∈H) (123)

= H({w
(0)
i 1 + s

(0)
i A}i∈H|M

1
T ,M

2
T , {Xi,yi}i∈[N],w

(J),

{w
(0)
i }i∈H) (124)

=H({s
(0)
i A}i∈H|M

1
T ,M

2
T ,{Xi,yi}i∈[N],w

(J), {w
(0)
i }i∈H)

(125)

= H({s
(0)
i }i∈H|M

1
T ,M

2
T , {Xi,yi}i∈[N],w

(J), {w
(0)
i }i∈H)

(126)

= H
(
{s

(0)
i }i∈H

)
(127)

= (N − T)T
d

N − T
log q (128)

= dT log q (129)

where (123) holds since conditioning cannot increase entropy,

and matrix A in (124) is a T × T MDS matrix as defined

in (91). Equation (126) holds since A is an MDS matrix, hence

is invertible. Equation (127) follows from the independence of

the generated random vectors, and (128) is from the entropy of

uniform random variables. For the third term in (119), we have,

H({w
(0)
i , s

(0)
ik }i∈T ,k∈[T]|{[w

(0)
i]j}i∈H,j∈T ,M

1
T ,M

2
T ,

{Xi,yi}i∈T ,w
(J))

≤ H({w
(0)
i , s

(0)
ik }i∈T ,k∈[T]) (130)

≤
(Td

N − T
+

T 2d

N − T

)
log q (131)

where (130) holds since conditioning cannot increase entropy,

and (131) follows from the entropy of uniform random vari-

ables. For the last term in (119), we find that,

H({w
(0)
i , s

(0)
ik }i∈T ,k∈[T]|{[w

(0)
i]j}i∈H,j∈T ,M

1
T ,M

2
T ,

{Xi,yi}i∈[N],w
(J))

≥ H({w
(0)
i , s

(0)
ik }i∈T ,k∈[T]|{[w

(0)
i]j}i∈H,j∈T ,M

1
T ,M

2
T ,

{Xi,yi}i∈[N],w
(J),w(0)) (132)

= H({w
(0)
i , s

(0)
ik }i∈T ,k∈[T]|{[w

(0)
i]j}i∈H,j∈T ,w

(0)) (133)

= H({w
(0)
i , s

(0)
ik }i∈T ,k∈[T]) (134)

=
(Td

N − T
+

T 2d

N − T

)
log q (135)

where (132) is from the fact that conditioning cannot increase

entropy, and (133) holds since:

{w
(0)
i , s

(0)
ik }i∈T ,k∈[T] −w(0), {[w

(0)
i]j}i∈H,j∈T −M

1
T ,M

2
T ,

{Xi,yi}i∈[N],w
(J) (136)

forms a Markov chain, and (135) follows from the entropy of

uniform random variables. For (134), we first observe,

I({w
(0)
i , s

(0)
ik }i∈T ,k∈[T];w

(0), {[w
(0)
i]j}i∈H,j∈T)

= I({w
(0)
i , s

(0)
ik }i∈T ,k∈[T];w

(0))

+ I({w
(0)
i , s

(0)
ik }i∈T ,k∈[T]; {[w

(0)
i]j}i∈H,j∈T |w

(0)).
(137)

For the first term in (137), we find that,

0 ≤ I({w
(0)
i , s

(0)
ik }i∈T ,k∈[T];w

(0)) (138)

= H(w(0))−H(w(0)|{w
(0)
i , s

(0)
ik }i∈T ,k∈[T]) (139)

≤ d log q −H
(
(M⊗ I)

[
(w

(0)
1)T · · · (w

(0)
N)T

]T ∣∣∣

{w
(0)
i , s

(0)
ik }i∈T ,k∈[T]

)
(140)

= d log q −H
(
(M⊗ I)

[
(w

(0)
1)T · · · (w

(0)
N−T)T

]T ∣∣∣

{w
(0)
i , s

(0)
ik }i∈T ,k∈[T]

)
(141)

= d log q −H
(
(M⊗ I)

[
(w

(0)
1)T · · · (w

(0)
N−T)T

]T)

(142)

= d log q −H
(
w

(0)
1 , . . . ,w

(0)
N−T

)
(143)

= d log q − (N − T)
d

N − T
log q (144)

= 0 (145)

where M and M are as defined in (16), and (86), respectively,

(138) is due to the non-negativity of mutual information, (140)

holds since entropy is maximized by uniform distribution,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5878 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

(142) holds since the randomness generated by the honest

clients is independent from the randomness generated by

adversaries, (143) holds since M is an (N − T) × (N − T)
MDS matrix, hence is invertible, and (144) follows from the

entropy of uniformly random variables. From (145),

I({w
(0)
i , s

(0)
ik }i∈T ,k∈[T];w

(0)) = 0 (146)

Next, for the second term in (137), we find that,

0 ≤ I({w
(0)
i , s

(0)
ik }i∈T ,k∈[T]; {[w

(0)
i]j}i∈H,j∈T |w

(0)) (147)

= H({[w
(0)
i]j}i∈H,j∈T |w

(0))

−H({[w
(0)
i]j}i∈H,j∈T |w

(0), {w
(0)
i , s

(0)
ik }i∈T ,k∈[T]) (148)

where

H({[w
(0)
i]j}i∈H,j∈T |w

(0)) ≤
d

N − T
(N − T)T log q (149)

since uniform distribution maximizes entropy, and

H({[w
(0)
i]j}i∈H,j∈T |w

(0), {w
(0)
i , s

(0)
ik }i∈T ,k∈[T])

=H
(
{w

(0)
i 1+s

(0)
i A}i∈H|(M⊗ I)

[
(w

(0)
1)T · · · (w

(0)
N)T

]T

,

{w
(0)
i , s

(0)
ik }i∈T ,k∈[T]

)
(150)

= H
(
{w

(0)
i 1 + s

(0)
i A}i∈H|

(M⊗ I)
[
(w

(0)
1)T · · · (w

(0)
N−T)T

]T

, {w
(0)
i , s

(0)
ik }i∈T ,k∈[T]

)

(151)

= H
(
{w

(0)
i 1 + s

(0)
i A}i∈H|

[
(w

(0)
1)T · · · (w

(0)
N−T)T

]T)

(152)

= H
(
{s

(0)
i A}i∈H|

[
(w

(0)
1)T · · · (w

(0)
N−T)T

]T)
(153)

= H({s
(0)
i }i∈H) (154)

=
d

N − T
(N − T)T log q (155)

which holds since M and A are MDS matrices (invertible)

and that the random vectors are generated independently.

By combining (148) with (149) and (155), we find that,

I({w
(0)
i , s

(0)
ik }i∈T ,k∈[T]; {[w

(0)
i]j}i∈H,j∈T |w

(0)) = 0. (156)

Then, by combining (146) and (156) with (137), we have that,

I({w
(0)
i , s

(0)
ik }i∈T ,k∈[T];w

(0), {[w
(0)
i]j}i∈H,j∈T) = 0 (157)

from which (134) follows. Finally, by combining (120), (129),

(131), and (135) with (119), we find that,

0 ≤ I({Xi,yi}i∈H;M3
T |M

1
T ,M

2
T , {Xi,yi}i∈T ,w

(J))

(158)

= H({[w
(0)
i]j}i∈H,j∈T |M

1
T ,M

2
T , {Xi,yi}i∈T ,w

(J))

−H({[w
(0)
i]j}i∈H,j∈T |M

1
T ,M

2
T , {Xi,yi}i∈[N],w

(J))

+H({w
(0)
i , s

(0)
ik }i∈T ,k∈[T]|{[w

(0)
i]j}i∈H,j∈T ,M

1
T ,M

2
T ,

{Xi,yi}i∈T ,w
(J))−H({w

(0)
i , s

(0)
ik }i∈T ,k∈[T]|

{[w
(0)
i]j}i∈H,j∈T ,M

1
T ,M

2
T , {Xi,yi}i∈[N],w

(J))
(159)

≤ Td log q − Td log q +
(Td

N − T
+

T 2d

N − T

)
log q

−
(Td

N − T
+

T 2d

N − T

)
log q (160)

= 0 (161)

Hence, the third term in (49) satisfies:

I({Xi,yi}i∈H;M3
T |M

1
T ,M

2
T , {Xi,yi}i∈T ,w

(J)) = 0.

(162)

Stage 4: Model Encoding. We next consider the fourth term

in (49), which corresponds to model encoding. We represent

the secret share of r
(t)
i at client j ∈ [N] as,

[r
(t)
i]j = r

(t)
i +

∑

k∈[T]

γk
j g

(t)
ik (163)

for i ∈ [N], where g
(t)
ik is a random vector of size d

N−T
where each element is generated independently and uniformly

at random from Fq, and the coefficients γi for i ∈ [N] are as

defined in (77). Then, for the third term in (49), we observe

that:

I({Xi,yi}i∈H;M4,t
T |M

1
T ,M

2
T ,M

3
T ,∪

t−1
l=0M

4,l
T ,∪t−1

l=0M
5,l
T ,

{Xi,yi}i∈T ,w
(J))

= I({Xi,yi}i∈H; {[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}
, {[ŵ(t)]i}i∈[N]|M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J)) (164)

= H({[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}
, {[ŵ(t)]i}i∈[N]|M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J))

−H({[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}
, {[ŵ(t)]i}i∈[N]|M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈[N],w

(J)) (165)

Without loss of generality, we denote the secret share of the

model w(t) held at client i ∈ [N] at time t as follows:

[w(t)]i = w(t) +
∑

k∈[T]

γk
i s

(t)
k for all i ∈ [N], (166)

where s
(t)
k ∈ F

d
q , and coefficients γi for i ∈ [N] are as defined

in (77). From (25), we find that:

[ŵ(t)]i = [w(t)]i − [r(t)]i (167)

= [w(t)]i − (M⊗ I)
[
([r

(t)
1]i)

T · · · ([r
(t)
N]i)

T

]T

(168)

=

(
w(t) − (M⊗ I)

[
(r

(t)
1)T · · · (r

(t)
N)T

]T
)

+
∑

k∈[T]

γk
i

(
s
(t)
k −(M⊗ I)

[
(g

(t)
1k)T · · · (g

(t)
Nk)T

]T
)

(169)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY 5879

is an evaluation point of a polynomial of degree T .

Since any polynomial of degree T can be uniquely

determined from at least T + 1 evaluation points, there

is a bijective mapping between the set of T + 1
coefficients,

{
w(t) − (M⊗ I)

[
(r

(t)
1)T · · · (r

(t)
N)T

]T

, s
(t)
1

− (M⊗ I)
[
(g

(t)
11)T · · · (g

(t)
N1)

T

]T

,

. . . , s
(t)
T − (M⊗ I)

[
(g

(t)
1T)T · · · (g

(t)
NT)T

]T }
,

and the feasible set of evaluation points {[ŵ(t)]i}i∈[N].

Then, the second term in (165) can be rewritten as

follows:

H({[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}
, {[ŵ(t)]i}i∈[N]|M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈[N],w

(J))

= H

(
{[r

(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}
,w(t)−(M⊗I)

[
(r

(t)
1)T · · · (r

(t)
N)T

]T

,

{
s
(t)
k − (M⊗ I)

[
(g

(t)
1k)T · · · (g

(t)
Nk)T

]T }

k∈[T]

∣∣∣M1
T ,M

2
T ,M

3
T ,∪

t−1
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈[N],w

(J)

)

(170)

= H

(
{[r

(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}
, (M⊗ I)

[
(r

(t)
1)T · · · (r

(t)
N−T)T

]T

,

{
s
(t)
k − (M⊗ I)

[
(g

(t)
1k)T · · · (g

(t)
(N−T)k)T

]T }

k∈[T]

∣∣∣M1
T ,M

2
T ,M

3
T ,∪

t−1
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈[N],w

(J)

)

(171)

= H
(
{r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
, {v

(t)
ik } i∈T

k∈{K+1,...,K+T}

)

+H

(
{[r

(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, (M⊗ I)

[
(r

(t)
1)T · · · (r

(t)
N−T)T

]T

,

{
s
(t)
k − (M⊗ I)

[
(g

(t)
1k)T · · · (g

(t)
(N−T)k)T

]T }

k∈[T]

∣∣∣M1
T ,M

2
T ,M

3
T ,∪

t−1
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈[N],w

(J)

)

(172)

=

(
Td

N − T
+

T 2d

N − T
+

T 2d

N − T

)
log q+H

(
{[r

(t)
i]j , r̃

(t)
ij }i∈H

j∈T
,

(M⊗ I)
[
(r

(t)
1)T · · · (r

(t)
N−T)T

]T

,

{
s
(t)
k − (M⊗ I)

[
(g

(t)
1k)T · · · (g

(t)
(N−T)k)T

]T }

k∈[T]

∣∣∣M1
T ,M

2
T ,M

3
T ,∪

t−1
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈[N],w

(J)

)

(173)

≥
Td

N − T
(1 + 2T) log q +H

(
{[r

(t)
i]j , r̃

(t)
ij }i∈H

j∈T
,

(M⊗ I)
[
(r

(t)
1)T · · · (r

(t)
N−T)T

]T

,

{
s
(t)
k − (M⊗ I)

[
(g

(t)
1k)T · · · (g

(t)
(N−T)k)T

]T }

k∈[T]

∣∣∣∣∣

M1
T ,M

2
T ,M

3
T ,∪

t−1
l=0M

4,l
T ,∪t−1

l=0M
5,l
T ,

{Xi,yi}i∈[N],w
(J), {s

(t)
k }k∈[T]

)
(174)

=
Td

N − T
(1 + 2T) log q +H

(
{[r

(t)
i]j , r̃

(t)
ij }i∈H

j∈T
,

(M⊗ I)
[
(r

(t)
1)T · · · (r

(t)
N−T)T

]T

,
{

(M⊗ I)
[
(g

(t)
1k)T · · · (g

(t)
(N−T)k)T

]T }

k∈[T]

∣∣∣

M1
T ,M

2
T ,M

3
T ,∪

t−1
l=0M

4,l
T ,∪t−1

l=0M
5,l
T ,

{Xi,yi}i∈[N],w
(J), {s

(t)
k }k∈[T]

)
(175)

=
Td

N − T
(1 + 2T) log q +H

(
{[r

(t)
i]j , r̃

(t)
ij }i∈H,

j∈T
,

(M⊗ I)
[
(r

(t)
1)T · · · (r

(t)
N−T)T

]T

,

{
(M⊗ I)

[
(g

(t)
1k)T · · · (g

(t)
(N−T)k)T

]T }

k∈[T]

)
(176)

=
Td

N − T
(1 + 2T) log q +H

(
{[r

(t)
i]j , r̃

(t)
ij }i∈H

j∈T
,

[
(r

(t)
1)T · · · (r

(t)
N−T)T

]T

,

{[
(g

(t)
1k)T · · · (g

(t)
(N−T)k)T

]T }

k∈[T]

)
(177)

=
Td

N − T
(1 + 2T) log q

+H

(
{[r

(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈[N−T], {g

(t)
ik }i∈[N−T],k∈[T]

)

(178)

where (171) follows from H = [N − T], and that w(t) can

be determined from {Xi,yi}i∈[N] and w(J); (172) follows

from the independence of random vectors generated by honest

clients; (173) follows from the entropy of uniform random

variables; (174) holds since conditioning cannot increase

entropy; (176) holds from the independence of generated

random vectors, and (177) follows from the fact that M is

an (N − T) × (N − T) MDS matrix (hence is invertible) as

defined in (86). Using (121), we next rewrite {[r
(t)
i]j}j∈[T] as

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5880 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

follows,
[
[r

(t)
i]N−T+1 · · · [r

(t)
i]N

]

= r
(t)
i

[
1 1 · · · 1

]
︸ ︷︷ ︸

1

+
[
g

(t)
i1 · · · g

(t)
iT

]
A (179)

= r
(t)
i 1 +

[
g

(t)
i1 · · · g

(t)
iT

]
A (180)

where A is the T ×T MDS matrix defined in (91). Similarly,

using (99), we can rewrite {r̃
(t)
ij }j∈T as follows,

[
r̃
(t)
i,N−T+1 · · · r̃

(t)
i,N

]

= r
(t)
i

[∑
k∈[K] ρN−T+1,k · · ·

∑
k∈[K] ρN,k

]

+
[
v

(t)
i,K+1 · · · v

(t)
i,K+T

]
Γ (181)

where Γ is a T ×T MDS matrix (hence invertible) as defined

in (66). By using (180) and (181), we rewrite the second term

in (178) as follows,

H

(
{[r

(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈[N−T], {g

(t)
ik }i∈[N−T],k∈[T]

)

= H

(
{r

(t)
i 1 +

[
g

(t)
i1 · · · g

(t)
iT

]
A}i∈[N−T],

{
r
(t)
i

[∑
k∈[K] ρN−T+1,k · · ·

∑
k∈[K] ρN,k

]

+
[
v

(t)
i,K+1 · · · v

(t)
i,K+T

]
Γ

}

i∈[N−T]

,

{r
(t)
i }i∈[N−T], {g

(t)
ik }i∈[N−T],k∈[T]

)
(182)

= H

(
{r

(t)
i 1 +

[
g

(t)
i1 · · · g

(t)
iT

]
A}i∈[N−T],

{
r
(t)
i

[∑
k∈[K] ρN−T+1,k · · ·

∑
k∈[K] ρN,k

]

+
[
v

(t)
i,K+1 · · · v

(t)
i,K+T

]
Γ

}

i∈[N−T]

,

{g
(t)
ik }i∈[N−T],k∈[T]

∣∣∣{r(t)
i }i∈[N−T]

)
+H({r

(t)
i }i∈[N−T])

(183)

= H
(
{
[
g

(t)
i1 · · · g

(t)
iT

]
A}i∈[N−T],

{ [
v

(t)
i,K+1 · · · v

(t)
i,K+T

]
Γ
}

i∈[N−T]
,

{g
(t)
ik }i∈[N−T],k∈[T]

∣∣∣{r(t)
i }i∈[N−T]

)
+H({r

(t)
i }i∈[N−T])

(184)

= H(
{ [

v
(t)
i,K+1 · · · v

(t)
i,K+T

]
Γ
}

i∈[N−T]
)

+H({g
(t)
ik }i∈[N−T],k∈[T]) +H({r

(t)
i }i∈[N−T]) (185)

= H(
{ [

v
(t)
i,K+1 · · · v

(t)
i,K+T

] }
i∈[N−T]

)

+H({g
(t)
ik }i∈[N−T],k∈[T]) +H({r

(t)
i }i∈[N−T]) (186)

= (N − T)T
d

N − T
log q + (N − T)T

d

N − T
log q

+ (N − T)
d

N − T
log q (187)

= d(1 + 2T) log q (188)

where (183) follows from the chain rule of entropy; (185)

follows from the independence of generated random vectors;

(186) holds since Γ is an MDS matrix (hence invertible); (187)

follows from the entropy of uniform random variables.

By combining (178) with (188), the following holds for the

second term in (165),

H({[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}
, {[ŵ(t)]i}i∈[N]|M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈[N],w

(J))

≥ d(2T + 1)

(
T

N − T
+ 1

)
log q (189)

We next analyze the first term in (165). By utilizing (169),

(180), and (181), we find that:

H({[r
(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik } i∈T

k∈{K+1,...,K+T}
, {[ŵ(t)]i}i∈[N]|M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J))

= H

({
r
(t)
i 1 +

[
g

(t)
i1 · · · g

(t)
iT

]
A
}

i∈H
,

{
r
(t)
i

[∑
k∈[K] ρN−T+1,k · · ·

∑
k∈[K] ρN,k

]

+
[
v

(t)
i,K+1 · · · v

(t)
i,K+T

]
Γ
}

i∈H
, {r

(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
,

{v
(t)
ik} i∈T

k∈{K+1,...,K+T}
,w(t)−(M⊗ I)

[
(r

(t)
1)T · · · (r

(t)
N)T

]T

,

{
s
(t)
k − (M⊗ I)

[
(g

(t)
1k)T · · · (g

(t)
Nk)T

]T
}

k∈[T]

∣∣∣M1
T ,M

2
T ,M

3
T ,∪

t−1
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J))

)

(190)

= H

({
r
(t)
i 1 +

[
g

(t)
i1 · · · g

(t)
iT

]
A
}

i∈H
,

{
r
(t)
i

[∑
k∈[K] ρN−T+1,k · · ·

∑
k∈[K] ρN,k

]

+
[
v

(t)
i,K+1 · · · v

(t)
i,K+T

]
Γ
}

i∈H
, {r

(t)
i }i∈T ,

{g
(t)
ik } i∈T

k∈[T]
, {v

(t)
ik } i∈T

k∈{K+1,...,K+T}
,

w(t) − (M⊗ I)
[
(r

(t)
1)T · · · (r

(t)
(N−T))

T
]T

,
{
s
(t)
k − (M⊗ I)

[
(g

(t)
1k)T · · · (g

(t)
(N−T)k)T

]T }

k∈[T]

∣∣∣M1
T ,M

2
T ,M

3
T ,∪

t−1
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J))

)

(191)

Note that at the beginning of this stage, adversaries

hold secret shares {[w(t)]j}j∈T of the model w(t).

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY 5881

Accordingly, {[w(t)]j}j∈T ∈ M1
T ,M

2
T ,M

3
T ,∪

t−1
l=0M

4,l
T ,

∪t−1
l=0M

5,l
T . Then, by letting,

[
[w(t)]N−T+1 · · · [w(t)]N

]
=w(t)1 +

[
s
(t)
1 · · · s

(t)
T

]
A

(192)

denote the secret shares of the model w(t) held by the

adversaries T = {N − T + 1. . . . , N}, one can observe that,

(
s
(t)
1 −(M⊗ I)

[
(g

(t)
11)T · · · (g

(t)
(N−T)1)

T
]T

, . . . , s
(t)
T

− (M⊗ I)
[
(g

(t)
1T)T · · · (g

(t)
(N−T)T)T

]T
)

=
[
s
(t)
1 · · · s

(t)
T

]
− (M⊗ I)




g
(t)
11 · · · g

(t)
1T

...
. . .

...

g
(t)
(N−T)1 · · · g

(t)
(N−T)T




(193)

=

(
w(t)1 +

[
s
(t)
1 · · · s

(t)
T

]
A

−

(
w(t) − (M⊗ I)

[
(r

(t)
1)T · · · (r

(t)
(N−T))

T
]T
)

1

− (M⊗ I)

[(
r
(t)
1 1 +

[
g

(t)
11 · · · g

(t)
1T

]
A
)T

· · ·

(
r
(t)
(N−T)1 +

[
g

(t)
(N−T)1 · · · g

(t)
(N−T)T

]
A
)T
]T
)

A−1

(194)

From (194), we then observe the following for (191):

H

({
r
(t)
i 1 +

[
g

(t)
i1 · · · g

(t)
iT

]
A
}

i∈H
,

{
r
(t)
i

[∑
k∈[K] ρN−T+1,k · · ·

∑
k∈[K] ρN,k

]

+
[
v

(t)
i,K+1 · · · v

(t)
i,K+T

]
Γ
}

i∈H
, {r

(t)
i }i∈T ,

{g
(t)
ik } i∈T

k∈[T]
, {v

(t)
ik } i∈T

k∈{K+1,...,K+T}
,

w(t)−(M⊗ I)
[
(r

(t)
1)T · · · (r

(t)
(N−T))

T
]T

,
{
s
(t)
k −(M⊗ I)

[
(g

(t)
1k)T · · · (g

(t)
(N−T)k)T

]T }

k∈[T]

∣∣∣M1
T ,M

2
T ,M

3
T ,∪

t−1
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J)

)

= H

({
r
(t)
i 1 +

[
g

(t)
i1 · · · g

(t)
iT

]
A
}

i∈H
,

{
r
(t)
i

[∑
k∈[K] ρN−T+1,k · · ·

∑
k∈[K] ρN,k

]

+
[
v

(t)
i,K+1 · · · v

(t)
i,K+T

]
Γ
}

i∈H
, {r

(t)
i }i∈T ,

{g
(t)
ik } i∈T

k∈[T]
, {v

(t)
ik } i∈T

k∈{K+1,...,K+T}
,

w(t) − (M⊗ I)
[
(r

(t)
1)T · · · (r

(t)
(N−T))

T
]T

|M1
T ,M

2
T ,M

3
T ,∪

t−1
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J)

)

(195)

≤ H

({
r
(t)
i 1 +

[
g

(t)
i1 · · · g

(t)
iT

]T

A
}

i∈H
,

{
r
(t)
i

[∑
k∈[K] ρN−T+1,k · · ·

∑
k∈[K] ρN,k

]

+
[
v

(t)
i,K+1 · · · v

(t)
i,K+T

]
Γ
}

i∈H
, {r

(t)
i }i∈T ,

{g
(t)
ik } i∈T

k∈[T]
, {v

(t)
ik } i∈T

k∈{K+1,...,K+T}
,

w(t) − (M⊗ I)
[
(r

(t)
1)T · · · (r

(t)
(N−T))

T
]T
)

(196)

≤

(
(N − T)T

d

N − T
+ (N − T)T

d

N − T

+ T
d

N − T
+ T 2 d

N − T
+ T 2 d

N − T
+ d

)
log q (197)

= d(2T + 1)

(
T

N − T
+ 1

)
log q (198)

where (195) follows from (194), (196) holds since condition-

ing cannot increase entropy, and (197) holds since entropy

is maximized by uniform distribution. Finally, by combin-

ing (189) and (198) with (165), we find that:

0 ≤ I({Xi,yi}i∈H;M4,t
T |M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J))

≤ d(2T + 1)

(
T

N − T
+ 1

)
log q

− d(2T + 1)

(
T

N − T
+ 1

)
log q (199)

= 0 (200)

Therefore, the fourth term in (49) satisfies the following:

I({Xi,yi}i∈H;M4,t
T |M

1
T ,M

2
T ,M

3
T ,

∪t−1
l=0 M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J)) = 0 (201)

for all t ∈ {0, . . . , J − 1}.
Stage 5: Gradient Computing and Model Update: We next

consider the fifth term in (49), which corresponds to Stage 5

of the proposed framework, i.e., local gradient computation

and model updates. In the following, we define C ≜ (2r +
1)(K +T − 1) + 1. Then, the last term in (49) can be written

as:

I({Xi,yi}i∈H;M5,t
T |M

1
T ,M

2
T ,M

3
T ,

∪t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J))

= I

(
{Xi,yi}i∈H; {ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{X̃T
i ĝ(X̃i × w̃

(t)
i)− ũi}i∈[N], {u

(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]
|M1

T ,

M2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J)

)

(202)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5882 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

Recall that the local computations {X̃T
i ĝ(X̃i×w̃

(t)
i)−ũi}i∈[N]

correspond to evaluations of the polynomial ϕ(α) − φ(α) at

α ∈ {αi}i∈[N]. Next, consider a second set of coefficients βk

for k ∈ [C], where βk is as defined in (29). We know that

polynomial ϕ(α)− φ(α) has degree (2r + 1)(K + T − 1) =
C − 1. Any polynomial of degree C − 1 can be uniquely

determined from any set of at least C evaluation points. As

N ≥ (2r+1)(K+T−1)+1 = C, there is a bijective mapping

from any C evaluation points {ϕ(βk)−φ(βk)}k∈[C] to a valid

set of local computations {X̃T
i ĝ(X̃i × w̃

(t)
i)− ũi}i∈[N]. As a

result, one can rewrite (202) as follows,

I

(
{Xi,yi}i∈H; {ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{X̃T
i ĝ(X̃i × w̃

(t)
i)− ũi}i∈[N], {u

(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]

|M1
T ,M

2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J)

)

= H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{X̃T
i ĝ(X̃i × w̃

(t)
i)− ũi}i∈[N], {u

(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]

|M1
T ,M

2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J)

)

−H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{X̃T
i ĝ(X̃i × w̃

(t)
i)− ũi}i∈[N], {u

(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]

|M1
T ,M

2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈[N],w

(J)

)

= H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{ϕ(βk)− φ(βk)}k∈[C], {u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]

|M1
T ,M

2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J)

)

−H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{ϕ(βk)− φ(βk)}k∈[C], {u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]
|M1

T ,

M2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈[N],w

(J)

)

(203)

= H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{ϕ(βk)− uk}k∈[C], {u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]

|M1
T ,M

2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J)

)

−H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{ϕ(βk)− uk}k∈[C], {u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]
|M1

T ,

M2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈[N],w

(J)

)

(204)

where (204) holds since φ(βk) = uk by definition from (32).

For the second term in (204), we find that,

H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{ϕ(βk)− uk}k∈[C], {u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]

|M1
T ,M

2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T , {Xi,yi}i∈[N],w

(J)

)

≥ H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

, {ϕ(βk)− uk}k∈[C],

{u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]
|M1

T ,M
2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T ,

{Xi,yi}i∈[N],w
(J), {ϕ(βk)}k∈[C]

)
(205)

= H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

, {uk}k∈[C],

{u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]

)
(206)

= H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{
(M⊗ I)

[
uT

1k · · · uT
Nk

]T
}

k∈[C]
, {u

(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]

)

(207)

= H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{
(M⊗ I)

[
uT

1k · · · uT
(N−T)k

]T
}

k∈[C]
,

{u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]

)
(208)

= H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

, {uik} i∈H,
k∈[C]

)

+H

(
{u

(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]

)
(209)

= H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

, {uik} i∈H,
k∈[C]

)

+

(
d

N − T
TC +

d

N − T
T 2

)
log q (210)

where (205) holds since conditioning cannot increase entropy;

(209) holds since M is a (N − T) × (N − T) MDS matrix

(hence invertible), and that the randomness generated by

the honest clients H = [N − T] is independent from the

adversaries. Note that {ũij}j∈T can be perfectly reconstructed

from {uik}k∈[C] using (29). Then, the first term in (210) can

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY 5883

be rewritten as:

H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

, {uik} i∈H,
k∈[C]

)

= H

({[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

, {uik} i∈H,
k∈[C]

)
(211)

=
∑

i∈H

H

({[∑

k∈[K]

uik

]
j

}
j∈T

, {uik}k∈[C]

)
(212)

=
∑

i∈H

H

({ ∑

k∈[K]

uik +
∑

l∈[T]

γl
jzil

}

j∈T

, {uik}k∈[C]

)

(213)

=
∑

i∈H

H

({ ∑

k∈[K]

uik +
∑

l∈[T]

γl
jzil

}

j∈T

|{uik}k∈[C]

)

+
∑

i∈H

H({uik}k∈[C]) (214)

=
∑

i∈H

H

({∑

l∈[T]

γl
jzil

}

j∈T

|{uik}k∈[C]

)
+
∑

i∈H

H({uik}k∈[C])

(215)

=
∑

i∈H

H

({ ∑

l∈[T]

γl
jzil

}

j∈T

)
+
∑

i∈H

H({uik}k∈[C]) (216)

=
∑

i∈H

H((zi1, . . . , ziT)A) +
∑

i∈H

H({uik}k∈[C]) (217)

=
∑

i∈H

H(zi1, . . . , ziT) +
∑

i∈H

H({uik}k∈[C]) (218)

= (N − T)T
d

N − T
log q + (N − T)C

d

N − T
log q (219)

= (T + C)d log q (220)

where (213) follows from (33); (214) follows from the chain

rule of entropy; (216) follows from the independence of

random vectors generated; (217) follows from the definition

of matrix A from (91); (218) holds since A is a T ×T MDS

matrix (hence is invertible); (219) follows from the entropy

of uniform random variables. By combining (220) with (210),

we have the following for the second term in (204),

H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

, {ϕ(βk)− uk}k∈[C],

{u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]
|M1

T ,M
2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T ,

{Xi,yi}i∈[N],w
(J)

)

≥

(
d

N − T
TC +

d

N − T
T 2

)
log q + (T + C)d log q

(221)

= (T + C)d

(
1 +

T

N − T

)
log q (222)

For the first term in (204), we observe that,

H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

, {ϕ(βk)− uk}k∈[C],

{u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]
|M1

T ,M
2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T ,

{Xi,yi}i∈T ,w
(J)

)

= H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{
ϕ(βk)− (M⊗ I)

[
uT

1k · · · uT
Nk

]T

}

k∈[C]

,

{u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]

∣∣∣M1
T ,M

2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T ,

{Xi,yi}i∈T ,w
(J)

)
(223)

= H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{
ϕ(βk)− (M⊗ I)

[
uT

1k · · · uT
(N−T)k

]T

}

k∈[C]

,

{u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]

∣∣∣M1
T ,M

2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T ,

{Xi,yi}i∈T ,w
(J)

)
(224)

Note that X̃T
j ĝ(X̃j × w̃

(t)
j) for any j ∈ T can be perfectly

reconstructed by the adversaries, since the encoded dataset

and model X̃j , w̃
(t)
j ∈ M

1
T ,M

2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T

for j ∈ T is already known from previous stages. In addition,

for any j ∈ T , the following holds,

(M⊗ I)
−1

(
X̃T

j ĝ(X̃j × w̃
(t)
j)−

∑

k∈[C]

(
ϕ(βk)

− (M⊗ I)
[
uT

1k · · · uT
(N−T)k

]T

)
∏

l∈[C]\{k}

αj − βl

βk − βl

)

= (M⊗ I)
−1

(
X̃T

j ĝ(X̃j × w̃
(t)
j)

−
∑

k∈[C]

ϕ(βk)
∏

l∈[C]\{k}

αj − βl

βk − βl

+
∑

k∈[C]

(M⊗ I)
[
uT

1k · · · uT
(N−T)k

]T ∏

l∈[C]\{k}

αj − βl

βk − βl

)

(225)

= (M⊗ I)
−1

(
X̃T

j ĝ(X̃j × w̃
(t)
j)− X̃T

j ĝ(X̃j × w̃
(t)
j)

+
∑

k∈[C]

(M⊗ I)
[
uT

1k · · · uT
(N−T)k

]T ∏

l∈[C]\{k}

αj − βl

βk − βl

)

(226)

=
[∑

k∈[C]

uT
1k

∏

l∈[C]\{k}

αj − βl

βk − βl
· · ·

∑

k∈[C]

uT
(N−T)k

∏

l∈[C]\{k}

αj − βl

βk − βl

]T

(227)

=
[
ũT

1j · · · ũT
(N−T)j

]T
(228)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5884 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

where (226) holds since X̃T
j ĝ(X̃j × w̃

(t)
j) = ϕ(αj) =∑

k∈[C] ϕ(βk)
∏

l∈[C]\{k}
αj−βl

βk−βl
, which can be observed

from polynomial interpolation, hence {ũij}i∈H,j∈T

can be reconstructed from {X̃T
j ĝ(X̃j × w̃

(t)
j)}j∈T and{

ϕ(βk)− (M⊗ I)
[
uT

1k · · · uT
(N−T)k

]T
}

k∈[C]
. Then,

from (228), the following holds for (224),

H

(
{ũij}i∈H

j∈T
,
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{
ϕ(βk)− (M⊗ I)

[
uT

1k · · · uT
(N−T)k

]T
}

k∈[C]

,

{u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]
|M1

T ,M
2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T ,

{Xi,yi}i∈T ,w
(J)

)

= H

(
{ũij}i∈H

j∈T

∣∣∣
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{
ϕ(βk)− (M⊗ I)

[
uT

1k · · · uT
(N−T)k

]T
}

k∈[C]

,

{u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]
,M1

T ,M
2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T ,

{Xi,yi}i∈T ,w
(J)

)

+H(
{[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{
ϕ(βk)− (M⊗ I)

[
uT

1k · · · uT
(N−T)k

]T
}

k∈[C]

,

{u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]
|M1

T ,M
2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T ,

{Xi,yi}i∈T ,w
(J)

)
(229)

= H

({[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{
ϕ(βk)− (M⊗ I)

[
uT

1k · · · uT
(N−T)k

]T
}

k∈[C]

,

{u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]
|M1

T ,M
2
T ,M

3
T ,∪

t
l=0M

4,l
T ,∪t−1

l=0M
5,l
T ,

{Xi,yi}i∈T ,w
(J)

)
(230)

≤ H

({[∑

k∈[K]

uik

]
j

}
i∈H
j∈T

,

{
ϕ(βk)− (M⊗ I)

[
uT

1k · · · uT
(N−T)k

]T
}

k∈[C]

,

{u
(t)
ik , z

(t)
il } i∈T

k∈[C],l∈[T]

)
(231)

≤
(
(N − T)T

d

N − T
+Cd+TC

d

N − T
+T 2 d

N − T

)
log q

(232)

= (T + C)d
(
1 +

T

N − T

)
log q (233)

where (229) follows from the chain rule of entropy; (230)

follows from (228); (231) holds since conditioning cannot

increase entropy, and (232) holds since entropy is maxi-

mized by uniform distribution. By combining (222) and (233),

we find for the last term in (49) that:

0 ≤ I({Xi,yi}i∈H;M5,t
T |M

1
T ,M

2
T ,M

3
T ,∪

t
l=0M

4,l
T ,

∪t−1
l=0 M

5,l
T , {Xi,yi}i∈T ,w

(J))

≤(T+C)d

(
1+

T

N − T

)
log q−(T+C)d

(
1+

T

N − T

)
log q

(234)

= 0 (235)

hence, the fifth term in (49) satisfies:

I({Xi,yi}i∈H;M5,t
T |M

1
T ,M

2
T ,M

3
T ,∪

t
l=0M

4,l
T ,

∪t−1
l=0 M

5,l
T , {Xi,yi}i∈T ,w

(J)) = 0 (236)

for all t ∈ {0, . . . , J − 1}.

A. Final Model Recovery

Finally, we consider the last term in (49), which corresponds

to the recovery of the final model w(J) by collecting the secret

shares {[w(J)]i}i∈I from any set I of size |I| ≥ T + 1.

From (166), the secret share of w(J) at client i ∈ [N] is given

by,

[w(J)]i = w(J) +
∑

k∈[T]

γk
i s

(J)
k for all i ∈ [N], (237)

which can be viewed as an evaluation point of a degree T
polynomial σ(·) where σ(0) = w(J) is the true model and

[w(J)]i is an interpolation point held by client i ∈ [N].
Then, one can rewrite the last term in the mutual information

condition from (49) as,

I({Xi,yi}i∈H;M6
T |M

1
T ,M

2
T ,M

3
T ,∪

J−1
l=0M

4,l
T ,

∪J−1
l=0 M

5,l
T , {Xi,yi}i∈T ,w

(J))

= I({Xi,yi}i∈H; {[w(J)]i}i∈I |M
1
T ,M

2
T ,M

3
T ,∪

J−1
l=0M

4,l
T ,

∪J−1
l=0 M

5,l
T , {Xi,yi}i∈T ,w

(J)) (238)

= I({Xi,yi}i∈H;w(J), {[w(J)]i}i∈T |M
1
T ,M

2
T ,M

3
T ,

∪J−1
l=0 M

4,l
T ,∪J−1

l=0M
5,l
T , {Xi,yi}i∈T ,w

(J)) (239)

= 0 (240)

where (239) holds since any polynomial of degree T can

be uniquely constructed from T + 1 interpolation points.

Hence, there is a bijective mapping between {[w(J)]i}i∈I and

w(J), {[w(J)]i}i∈T . Finally, (240) holds since {[w(J)]i}i∈T ∈
M5,J−1

T .

B. Combining Stages 1-6

By combining (49) with (76), (115), (162), (201), and (236),

we have,

I({Xi,yi}i∈H;MT |{Xi,yi}i∈T ,w
(J)) = 0 (241)

which completes the proof.

□

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY 5885

APPENDIX E

CORRECTNESS

The correctness of the encoding and decoding process

follows from the decodability of the Lagrange interpolation

polynomial [6], in particular, any polynomial ϕ of degree

deg(ϕ) can be uniquely reconstructed from any set of at least

deg(ϕ) + 1 interpolation points. As such, as long as the total

number of clients N satisfy the minimum number identified by

the recovery threshold, i.e., N−D ≥ (2r+1)(K+T −1)+1,

then one can correctly recover the final model w(J) from the

gradient computations performed on the encoded datasets and

models. This completes the correctness for the model update

rule from (40).

We next study the model update rule from (47), and show

that it correctly recovers the target model from (40). For the

theoretical analysis, it is assumed that the finite field size is

sufficiently large to avoid overlap errors. From (47), at the end

of round t, each client holds a secret share [w(t+1)]i of the

updated model,

w(t+1)

= M (r−1)at+1w(t) −

(∑

k∈[K]

ϕ(βk)−MratX
T
y

)
(242)

= M (r−1)at+1w(t) −

(r∑

j=0

θjM
(r−j)atX

T
(X×w(t))j

−MratX
T
y

)
(243)

We next describe a virtual variable w(t)
v , where w(0)

v ≜ w(0),

and

w(t+1)
v ≜w(t)

v −
1

M
X

T
(ĝ(X×w(t)

v)−y) for t∈{0, . . . , J−1},

(244)

which denotes the target model from (40), by letting M =
m/η. Then, one can show that,

w(t)

Mat
= w(t)

v for all t ≥ 1. (245)

Then, the proof follows by induction, by considering the

following steps.

1) (Base Case): For the base case (t = 0), it follows

from (243) that,

w(1) = Mw(0) − (X
T

r∑

j=0

θj(X×w(0))j −X
T
y) (246)

= Mw(0) − (X
T
ĝ(X×w(0))−X

T
y) (247)

hence w
(1)

M = w(1)
v , which validates (245) for the base case.

2) (Induction step): Next, we assume that (245) holds for an

arbitrary t, and show that it also holds for t+ 1. From (243),

we have that,

w(t+1)

= M (r−1)at+1w(t) − (
r∑

j=0

θjM
(r−j)atX

T
(X×w(t))j

−MratX
T
y) (248)

=M (r−1)at+1Matw(t)
v −(

r∑

j=0

θjM
(r−j)atX

T
(X×Matw(t)

v)j

−MratX
T
y) (249)

= Mrat+1w(t)
v − (X

T
r∑

j=0

M (r−j)atθj(X×M
atw(t)

v)j

−MratX
T
y) (250)

= Mrat+1w(t)
v −M

rat(X
T

r∑

j=0

θj(X×w(t)
v)j −X

T
y)

(251)

= Mrat+1w(t)
v −M

rat(X
T
ĝ(X×w(t)

v)−X
T
y) (252)

= Mrat+1
(
w(t)

v −
1

M
(X

T
ĝ(X×w(t)

v)−X
T
y)
)

(253)

= Mat+1w(t+1)
v (254)

where (249) follows from the fact that w(t) = Matw(t)
v

since (245) for round t holds by assumption, (254) follows

from at+1 = rat + 1 by definition, along with (244).

Equation (254) demonstrates that (245) also holds for t + 1,

which completes the proof.

REFERENCES

[1] X. Lu, H. U. Sami, and B. Güler, ªDropout-resilient secure multi-party
collaborative learning with linear communication complexity,º in Proc.

Int. Conf. Artif. Intell. Statist., 2023, pp. 10566±10593.

[2] P. Mohassel and Y. Zhang, ªSecureML: A system for scalable privacy-
preserving machine learning,º in Proc. IEEE Symp. Secur. Privacy (SP),
May 2017, pp. 19±38.

[3] M. Al-Rubaie and J. M. Chang, ªPrivacy-preserving machine learning:
Threats and solutions,º IEEE Secur. Privacy, vol. 17, no. 2, pp. 49±58,
Mar. 2019.

[4] R. Nosowsky and T. J. Giordano, ªThe health insurance portability
and accountability act of 1996 (HIPAA) privacy rule: Implications
for clinical research,º Annu. Rev. Med., vol. 57, no. 1, pp. 575±590,
Feb. 2006.

[5] A. Telenti and X. Jiang, ªTreating medical data as a durable asset,º
Nature Genet., vol. 52, no. 10, pp. 1005±1010, Oct. 2020.

[6] Q. Yu et al., ªLagrange coded computing: Optimal design for resiliency,
security, and privacy,º in Proc. Int. Conf. Artif. Intell. Statist. (AISTATS),
2019, pp. 1215±1225.

[7] J. So, B. Güler, and S. Avestimehr, ªA scalable approach for privacy-
preserving collaborative machine learning,º in Proc. Annu. Conf. Neural

Inf. Process. Syst., 2020, pp. 8054±8066.

[8] J. So, B. Güler, and A. S. Avestimehr, ªCodedPrivateML: A fast and
privacy-preserving framework for distributed machine learning,º IEEE

J. Sel. Areas Inf. Theory, vol. 2, no. 1, pp. 441±451, Mar. 2021.

[9] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statis-

tical Learning: Data Mining, Inference, and Prediction, vol. 2. Berlin,
Germany: Springer, 2009.

[10] A. B. Slavkovic, Y. Nardi, and M. M. Tibbits, ª‘Secure’ logistic regres-
sion of horizontally and vertically partitioned distributed databases,º in
Proc. 7th IEEE Int. Conf. Data Mining Workshops (ICDMW), Oct. 2007,
pp. 723±728.

[11] Y. Aono, T. Hayashi, L. Trieu Phong, and L. Wang, ªScalable and
secure logistic regression via homomorphic encryption,º in Proc. 6th

ACM Conf. Data Appl. Secur. Privacy, Mar. 2016, pp. 142±144.

[12] S. Wu, T. Teruya, J. Kawamoto, J. Sakuma, and H. Kikuchi, ªPrivacy-
preservation for stochastic gradient descent application to secure logistic
regression,º in Proc. 27th Annu. Conf. Jpn. Soc. Artif. Intell., vol. 27,
2013, pp. 1±4.

[13] Z. Beerliova-TrubiniovA and M. Hirt, ªPerfectly-secure MPC with linear
communication complexity,º in Proc. Theory Cryptography Conf. Cham,
Switzerland: Springer, 2008, pp. 213±230.

[14] A. C. Yao, ªProtocols for secure computations,º in Proc. IEEE Symp.

Found. Comput. Sci., Mar. 1982, pp. 160±164.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

5886 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

[15] M. Ben-Or and A. Wigderson, ªCompleteness theorems for non-
cryptographic fault-tolerant distributed computation,º in Proc. 20th

Annu. ACM Symp. Theory Comput., 1988, pp. 1±10.

[16] I. Damgård and J. B. Nielsen, ªScalable and unconditionally secure
multiparty computation,º in Proc. Annu. Int. Cryptol. Conf. Cham,
Switzerland: Springer, 2007, pp. 572±590.

[17] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft, ªPrivacy-preserving ridge regression on hundreds of mil-
lions of records,º in Proc. IEEE Symp. Secur. Privacy, May 2013,
pp. 334±348.

[18] A. Gascón et al., ªPrivacy-preserving distributed linear regression on
high-dimensional data,º Proc. Privacy Enhancing Technol., vol. 2017,
no. 4, pp. 345±364, Oct. 2017.

[19] P. Mohassel and P. Rindal, ªABY 3: A mixed protocol framework for
machine learning,º in Proc. ACM SIGSAC Conf. Comput. Commun.

Secur., Oct. 2018, pp. 35±52.

[20] S. Wagh, D. Gupta, and N. Chandran, ªSecureNN: Efficient and private
neural network training,º Int. Assoc. Cryptol. Res. (IACR), Cryptol.
ePrint Arch., San Diego, CA, USA, Tech. Rep. 442, 2018.

[21] A. Shamir, ªHow to share a secret,º Commun. ACM, vol. 22, no. 11,
pp. 612±613, Nov. 1979.

[22] A. C.-C. Yao, ªHow to generate and exchange secrets,º in Proc. 27th

Annu. Symp. Found. Comput. Sci. (SFCS), Oct. 1986, pp. 162±167.

[23] P. Mohassel and M. Franklin, ªEfficiency tradeoffs for malicious two-
party computation,º in Proc. 9th Int. Conf. Theory Pract. Public-Key

Cryptography, 2006, pp. 458±473.

[24] Y. Lindell and B. Pinkas, ªAn efficient protocol for secure two-
party computation in the presence of malicious adversaries,º in
Advances in CryptologyÐEUROCRYPT. Barcelona, Spain: Springer,
2007, pp. 52±78.

[25] Y. Ishai, E. Kushilevitz, R. Ostrovsky, M. Prabhakaran, and A. Sahai,
ªEfficient non-interactive secure computation,º in Proc. 30th Annu. Int.

Conf. Theory Appl. Cryptograph. Techn., 2011, pp. 406±425.

[26] O. Goldreich, S. Micali, and A. Wigderson, ªHow to play any mental
game, or a completeness theorem for protocols with honest majority,º in
Providing Sound Foundations for Cryptography: On the Work of Shafi

Goldwasser and Silvio Micali. New York, NY, USA: Association for
Computing Machinery, 2019, pp. 307±328.

[27] B. Kreuter, A. Shelat, and C.-H. Shen, ªBillion-gate secure computation
with malicious adversaries,º in Proc. 21st USENIX Secur. Symp., 2012,
pp. 285±300.

[28] A. Shelat and C.-H. Shen, ªFast two-party secure computation with
minimal assumptions,º in Proc. ACM SIGSAC Conf. Comput. Commun.

Secur., 2013, pp. 523±534.

[29] Y. Huang, J. Katz, and D. Evans, ªEfficient secure two-party compu-
tation using symmetric cut-and-choose,º in Proc. Annu. Cryptol. Conf.

Cham, Switzerland: Springer, 2013, pp. 18±35.

[30] Y. Huang, D. Evans, J. Katz, and L. Malka, ªFaster secure two-party
computation using garbled circuits,º in Proc. 20th USENIX Secur. Symp.,
2011, pp. 1±16.

[31] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, ªMultiparty computa-
tion from somewhat homomorphic encryption,º in Proc. Annu. Cryptol.

Conf. Cham, Switzerland: Springer, 2012, pp. 643±662.

[32] M. Keller, ªMP-SPDZ: A versatile framework for multi-party computa-
tion,º in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2020,
pp. 1575±1590.

[33] D. Demmler, T. Schneider, and M. Zohner, ªABYÐA framework for
efficient mixed-protocol secure two-party computation,º in Proc. Netw.

Distrib. Syst. Secur. Symp., 2015, pp. 1±15.

[34] A. Patra, T. Schneider, A. Suresh, and H. Yalame, ªABY2.0: Improved
mixed-protocol secure two-party computation,º in Proc. 30th USENIX

Secur. Symp., 2021, pp. 2165±2182.

[35] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, ªGAZELLE:
A low latency framework for secure neural network inference,º in Proc.

27th USENIX Secur. Symp., 2018, pp. 1651±1669.

[36] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, ªChameleon: A hybrid secure computation frame-
work for machine learning applications,º in Proc. Asia Conf. Comput.

Commun. Secur., May 2018, pp. 707±721.

[37] A. Choudhury, J. Loftus, E. Orsini, A. Patra, and N. P. Smart, ªBetween
a rock and a hard place: Interpolating between MPC and FHE,º in Proc.

Int. Conf. Theory Appl. Cryptol. Inf. Secur. Cham, Switzerland: Springer,
2013, pp. 221±240.

[38] L. K. L. Ng and S. S. M. Chow, ªSoK: Cryptographic neural-network
computation,º in Proc. IEEE Symp. Secur. Privacy (SP), May 2023,
pp. 497±514.

[39] K. Bonawitz et al., ªPractical secure aggregation for privacy-preserving
machine learning,º in Proc. ACM SIGSAC Conf. Comput. Commun.

Secur., Oct. 2017, pp. 1175±1191.

[40] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
ªSecure single-server aggregation with (poly) logarithmic overhead,º
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2020,
pp. 1253±1269.

[41] J. So et al., ªLightSecAgg: A lightweight and versatile design for secure
aggregation in federated learning,º in Proc. Mach. Learn. Syst. (MLSys),
2022, pp. 694±720.

[42] Y. Zhao and H. Sun, ªInformation theoretic secure aggregation with
user dropouts,º in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021,
pp. 1124±1129.

[43] C. Gentry and D. Boneh, A Fully Homomorphic Encryption Scheme,
vol. 20, no. 9. Stanford, CA, USA: Stanford Univ., 2009.

[44] C. Gentry, ªFully homomorphic encryption using ideal lattices,º in Proc.

41st Annu. ACM Symp. Theory Comput., May 2009, pp. 169±178.

[45] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, ªCryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy,º in Proc. Int. Conf. Mach. Learn.,
2016, pp. 201±210.

[46] T. Graepel, K. Lauter, and M. Naehrig, ªML confidential: Machine
learning on encrypted data,º in Proc. Int. Conf. Inf. Secur. Cryptol.

Cham, Switzerland: Springer, 2012, pp. 1±21.

[47] J. Yuan and S. Yu, ªPrivacy preserving back-propagation neural network
learning made practical with cloud computing,º IEEE Trans. Parallel

Distrib. Syst., vol. 25, no. 1, pp. 212±221, Jan. 2014.

[48] H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff,
ªPrivacy-preserving classification on deep neural network,º IACR Cryp-

tol. ePrint Arch., vol. 2017, p. 35, Mar. 2017.

[49] P. Li, J. Li, Z. Huang, C.-Z. Gao, W.-B. Chen, and K. Chen,
ªPrivacy-preserving outsourced classification in cloud computing,º Clus-

ter Comput., vol. 21, no. 1, pp. 277±286, Mar. 2018.

[50] A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon, ªLogistic regression
model training based on the approximate homomorphic encryption,º
BMC Med. Genomics, vol. 11, no. 4, p. 83, Oct. 2018.

[51] Q. Wang et al., ªPrivacy-preserving collaborative model learning:
The case of word vector training,º IEEE Trans. Knowl. Data Eng.,
vol. 30, no. 12, pp. 2381±2393, Dec. 2018.

[52] K. Han, S. Hong, J. H. Cheon, and D. Park, ªLogistic regression on
homomorphic encrypted data at scale,º in Proc. AAAI Conf. Artif. Intell.,
Jul. 2019, vol. 33, no. 1, pp. 9466±9471.

[53] C. Dwork, F. McSherry, K. Nissim, and A. Smith, ªCalibrating noise to
sensitivity in private data analysis,º in Proc. Theory Cryptography Conf.

Cham, Switzerland: Springer, 2006, pp. 265±284.

[54] K. Chaudhuri and C. Monteleoni, ªPrivacy-preserving logistic regres-
sion,º in Proc. Adv. Neural Inf. Proc. Syst., 2009, pp. 1±8.

[55] R. Shokri and V. Shmatikov, ªPrivacy-preserving deep learning,º in
Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Sep. 2015, pp. 909±910.

[56] M. Abadi et al., ªDeep learning with differential privacy,º in Proc. ACM

SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 308±318.

[57] M. Pathak, S. Rane, and B. Raj, ªMultiparty differential privacy via
aggregation of locally trained classifiers,º in Adv. Neural Inf. Process.

Syst., 2010, pp. 1876±1884.

[58] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, ªLearning
differentially private recurrent language models,º in Proc. Int. Conf.

Learn. Represent., 2018, pp. 1±14.

[59] A. Rajkumar and S. Agarwal, ªA differentially private stochastic gradient
descent algorithm for multiparty classification,º in Proc. Int. Conf. Artif.

Intell. Statist. (AISTATS), vol. 22, Apr. 2012, pp. 933±941.

[60] B. Jayaraman, L. Wang, D. Evans, and Q. Gu, ªDistributed learning
without distress: Privacy-preserving empirical risk minimization,º in
Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 6346±6357.

[61] W.-N. Chen, A. Ozgur, and P. Kairouz, ªThe Poisson binomial mecha-
nism for unbiased federated learning with secure aggregation,º in Proc.

Int. Conf. Mach. Learn., 2022, pp. 3490±3506.

[62] W.-N. Chen, C. A. C. Choo, P. Kairouz, and A. T. Suresh, ªThe fun-
damental price of secure aggregation in differentially private federated
learning,º in Proc. Int. Conf. Mach. Learn., 2022, pp. 3056±3089.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: PRIVACY-PRESERVING COLLABORATIVE LEARNING WITH LINEAR COMMUNICATION COMPLEXITY 5887

[63] P. Kairouz, Z. Liu, and T. Steinke, ªThe distributed discrete Gaussian
mechanism for federated learning with secure aggregation,º in Proc. Int.

Conf. Mach. Learn., 2021, pp. 5201±5212.

[64] D. W. Hosmer Jr., S. Lemeshow, and R. X. Sturdivant, Applied Logistic

Regression, vol. 398. Hoboken, NJ, USA: Wiley, 2013.

[65] T. Nguyen and S. Sanner, ªAlgorithms for direct 0±1 loss optimiza-
tion in binary classification,º in Proc. Int. Conf. Mach. Learn., 2013,
pp. 1085±1093.

[66] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, ªConvexity, classi-
fication, and risk bounds,º J. Amer. Stat. Assoc., vol. 101, no. 473,
pp. 138±156, Mar. 2006.

[67] S. Ben-David, N. Eiron, and P. M. Long, ªOn the difficulty of approx-
imately maximizing agreements,º J. Comput. Syst. Sci., vol. 66, no. 3,
pp. 496±514, May 2003.

[68] V. Feldman, V. Guruswami, P. Raghavendra, and Y. Wu, ªAgnostic
learning of monomials by halfspaces is hard,º SIAM J. Comput., vol. 41,
no. 6, pp. 1558±1590, Jan. 2012.

[69] A. Mao, M. Mohri, and Y. Zhong, ªCross-entropy loss functions:
Theoretical analysis and applications,º in Proc. Int. Conf. Mach. Learn.,
2023, pp. 1±26.

[70] Z. Zhang and M. Sabuncu, ªGeneralized cross entropy loss for training
deep neural networks with noisy labels,º in Proc. Adv. neural Inf.

Process. Syst., vol. 31, 2018, pp. 1±11.

[71] M. C. Thomas and A. T. Joy, Elements of Information Theory. Hoboken,
NJ, USA: Wiley, 2006.

[72] X. Lu, H. U. Sami, and B. Güler, ªSCALR: Communication-efficient
secure multi-party logistic regression,º IEEE Trans. Commun., early
access, doi: 10.1109/TCOMM.2023.3308954.

[73] H. U. Sami and B. Güler, ªSecure aggregation for clustered federated
learning,º in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2023,
pp. 186±191.

[74] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to Reliable and

Secure Distributed Programming. Berlin, Germany: Springer, 2011.

[75] M. M. Amiri and D. Gündüz, ªComputation scheduling for distributed
machine learning with straggling workers,º IEEE Trans. Signal Process.,
vol. 67, no. 24, pp. 6270±6284, Dec. 2019.

[76] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ªImageNet classification
with deep convolutional neural networks,º in Proc. Adv. Neural Inf.

Process. Syst., vol. 25, 2012, pp. 1±9.

[77] C. Shorten and T. M. Khoshgoftaar, ªA survey on image data augmenta-
tion for deep learning,º J. Big Data, vol. 6, no. 1, pp. 1±48, Dec. 2019.

[78] N. C. Codella et al., ªSkin lesion analysis toward melanoma detec-
tion: A challenge at the 2017 international symposium on biomedical
imaging,º in Proc. IEEE 15th Int. Symp. Biomed. Imag., Feb. 2018,
pp. 168±172.

[79] J. Brinkhuis and V. Tikhomirov, Optimization: Insights and Applications.
Princeton, NJ, USA: Princeton Univ. Press, 2005.

[80] O. Catrina and A. Saxena, ªSecure computation with fixed-point num-
bers,º in Proc. Int. Conf. Financial Cryptography Data Secur. Cham,
Switzerland: Springer, 2010, pp. 35±50.

[81] A. Krizhevsky et al., ªLearning multiple layers of features from
tiny images,º Univ. Toronto, Toronto, ON, Canada, Apr. 2009.
[Online]. Available: https://www.cs.toronto.edu/~kriz/learning-features-
2009-TR.pdf

[82] Y. LeCun, C. Cortes, and C. Burges. (210). MNIST Handwritten Digit

Database. [Online]. Available: http://yann.lecun.com/exdb/mnist

[83] L. Dalcín, R. Paz, and M. Storti, ªMPI for Python,º J. Parallel Distrib.

Comput., vol. 65, no. 9, pp. 1108±1115, Sep. 2005.

[84] K. S. Kedlaya and C. Umans, ªFast polynomial factorization and
modular composition,º SIAM J. Comput., vol. 40, no. 6, pp. 1767±1802,
Jan. 2011.

Xingyu Lu received the Bachelor of Engineering degree from the Com-
puter Science and Information Technology Department, Zhejiang Gongshang
University, China, in 2019, and the Master of Science degree in robotics
(computer science) from the Khoury College of Computer Science and the
College of Engineering, Northeastern University, Boston, USA, in 2021.
He is currently pursuing the Ph.D. degree with the Electrical and Computer
Engineering Department, University of California at Riverside. His research
interests include private machine learning, distributed learning, and federated
learning.

Hasin Us Sami (Graduate Student Member, IEEE) received the B.Sc. degree
in electrical and electronic engineering from the Bangladesh University of
Engineering and Technology, Dhaka, Bangladesh, in 2019. He is currently
pursuing the Ph.D. degree with the Department of Electrical and Computer
Engineering, University of California at Riverside. His research interests
include federated and distributed machine learning, information theory, secure
and private computing, and wireless networks.

BaËsak Güler (Member, IEEE) received the B.Sc. degree in electrical and
electronics engineering from Middle East Technical University (METU),
Ankara, Turkey, and the Ph.D. degree from the Wireless Communications
and Networking Laboratory, The Pennsylvania State University, in 2017.
From 2018 to 2020, she was a Postdoctoral Scholar with the University
of Southern California. She is currently an Assistant Professor with the
Department of Electrical and Computer Engineering, University of California
at Riverside. Her research interests include information theory, distributed
computing, machine learning, and wireless networks. She has received the
NSF CAREER Award in 2022.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:50:55 UTC from IEEE Xplore. Restrictions apply.

