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Abstract. We propose an efficient, partitioned, scalar auxiliary variable rotational pressure correction backward Euler
(SAV-RPC-BE) ensemble scheme for simulating surface-groundwater flows modeled by the Stokes-Darcy equations. The ro-
tational pressure correction method decouples the Stokes equations into one elliptic equation for the fluid velocity and one
Poisson equation for the pressure at each time step. We incorporate the recently-developed SAV approach and the ensemble
time-stepping method to further decouple the computation of the free flow region and the porous media region. The ensemble
scheme results in only one common coefficient matrix shared by all realizations at each time step. Hence, efficient direct/iterative
block solvers can be used to greatly reduce the computation cost. The stability analysis shows that the SAV-RPC-BE ensemble
scheme is long-time stable under three parameter conditions without any time step constraints. Some numerical experiments
are presented to support the theoretical results and show the effectiveness of the proposed scheme.

1. Introduction. In recent decades, the research on efficient numerical methods for the coupling of
groundwater flows with surface flows (the Stokes-Darcy problem) has been developed a lot. The Stokes-Darcy
model involves free flows governed by the Stokes equations and porous media flows governed by the Darcy
equation. Let Df denote the free flow region and Dp denote the porous media region, where Df , Dp ⊂ Rd

are both open, bounded domains. The two regions lie across each other on the interface I. The Stokes-Darcy
model is: to find the fluid velocity u(x, t), the fluid pressure p(x, t) and the hydraulic head φ(x, t) that satisfy

ut − ν∆u+∇p = ff (x, t),∇ · u = 0, in Df ,

S0φt −∇ · (K(x)∇φ) = fp(x, t), in Dp, (1.1)

φ(x, 0) = φ0(x), in Dp and u(x, 0) = u0(x), in Df ,

φ(x, t) = 0, in ∂Dp\I and u(x, t) = 0, in ∂Df\I.

The Stokes-Darcy model is coupled across the interface by three interface conditions ([1], [19], [36]). The
first is the conservation of mass across I

u · n̂f −K∇φ · n̂p = 0. (1.2)

The second interface condition is the balance of normal force across I

p− ν n̂f · ∇u · n̂f = gφ. (1.3)

The third interface condition is the Beavers-Joseph-Saffman condition on the tangential velocity

−ντ̂i · ∇u · n̂f = αBlS√
τ̂i·Kτ̂i

u · τ̂i. (1.4)

Here, n̂f/p denotes the outward unit normal vector on I associated with Df/p, where n̂f = −n̂p. g is the
gravitational acceleration constant, K is the hydraulic conductivity tensor, ν is the kinematic viscosity, S0

is the specific mass storativity coefficient. The above four coefficients are all positive. K is assumed to be
symmetric positive definite (SPD).

Efficient numerical simulation of the time-dependent Stokes-Darcy model faces two intrinsic difficulties.
The first difficulty arises from the coupling of the viscous flow governed by the Stokes equations and the
porous flow governed by the Darcy equation. There have been numerous research works devoted to accurate
and efficient numerical methods for decoupled schemes of the Stokes-Darcy model, e.g., [34, 37, 47, 48, 49].
However, typical time-stepping methods usually suffer from a restrictive time step condition [16, 25]. The
time step condition usually comes from the decoupling of two subdomain flows and cannot be avoided without
adding stabilizations [24].

The scalar auxiliary variable (SAV) approach was first studied in [52, 53] for gradient flows. The idea
of it is to introduce a new scalar auxiliary variable (SAV) with an explicit treatment of the nonlinear term,
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leading to an unconditional energy-stable scheme. For nonlinear Navier-Stokes equations, this idea has been
realized in [28, 27, 30, 32, 41, 42, 43]. For linear Stokes-Darcy equations, the SAV approach is used to cancel
out the coupling terms, which usually cause time step constraints in the stability analysis. The long-time
stability without any time step conditions for first order and second order schemes was proved in [29, 31].

The second challenge is the incompressibility constraint in the Stokes equations, which couples the fluid
velocity and the pressure. To decouple the fluid velocity and the pressure in incompressible flows, projection
methods have been widely used, following the pioneering works of Chorin [4] and Temam [55] in the late
1960s. Projection methods have generated significant interest among researchers in recent decades, see, for
instance, [6, 11, 12, 50, 51]. A comprehensive review on various projection-type methods can be found in
[10]. This paper focuses specifically on pressure correction methods, which are the most commonly used
projection methods. They usually involve two sub-steps per time step: (i) explicitly treating the pressure
gradient in the momentum equation to solve for an intermediate velocity field and (ii) correcting the pressure
by projecting the intermediate velocity onto the divergence-free space.

Pressure correction methods are typically computationally efficient, as only one elliptic equation for the
velocity and one Poisson equation for the pressure are solved at each time step. However, this efficiency
comes at the cost of degraded pressure approximation due to the artificial Neumann boundary condition not
satisfied by the exact pressure. A modified pressure correction scheme with a divergence term added to the
pressure update was introduced in [54] via a predictor-corrector procedure. This method is often referred
to as the rotational pressure correction (RPC) method in the literature. Both numerical experiments and
error analysis in [13] show that this method improves the pressure approximation. The rotational pressure
correction method is adopted in [9] for the Stokes equations with open boundary conditions. It is presented
in this paper that the RPC scheme plays an important role in approximating the Stokes equations with open
boundary conditions since the standard pressure correction scheme is not well-suited for such scenarios. More
recently, researchers have found that when employing pressure correction schemes, setting only Neumann
boundary condition for pressure may cause some stability issues for interface problems, see [17, 18]. In
[18], the authors studied and analyzed pressure correction schemes for the Fluid-Structure Interaction (FSI)
problem. In this paper, they imposed the Dirichlet boundary condition for the pressure on the interface when
solving the pressure Poisson equation. This is inspired by the similarity between the interface condition of the
FSI model and the open boundary condition of the time-dependent Stokes equations. The idea of imposing
Dirichlet boundary conditions for pressure is also adopted in [38, 39] for pressure correction methods of the
coupled Stokes-Darcy model. In [9], the open boundary condition is described as

pn̂− 1

2
ν∇un̂|I = 0, (1.5)

where n̂ is the unit outward normal of the Stokes model. This is similar to the interface boundary condition
for the balance of force (1.3) of the Stokes-Darcy model described above. If we impose Dirichlet boundary
conditions on the interface, we will have two series of boundary conditions on pressure

∂pn+1

∂n̂f
|∂Df\I =

∂pn

∂n̂f
|∂Df\I = · · · = ∂p1

∂n̂f
|∂Df\I =

∂p0

∂n̂f
|∂Df\I , (1.6)

pn+1|I = pn|I = · · · = p1|I = p0|I . (1.7)

These conditions are usually not satisfied by any exact solutions and will lead to poor pressure approxi-
mation. In this paper, we adopted the rotational pressure correction scheme to improve the bad pressure
approximation due to inconsistent boundary conditions described above. The projection sub-step of the
RPC scheme is described as follows.





un+1 − ũn+1

∆t
+∇zn+1 = 0,

∇ · un+1 = 0,

un+1 · n̂f |∂Df\I = 0, zn+1|I = 0,

∂zn+1

∂n̂f
|∂Df\I = 0,

(1.8)

pn+1 = zn+1 + pn − χν∇ · ũn+1, (1.9)
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where ũn+1 denotes the intermediate velocity and χ is a tunable positive coefficient. The pressure pn+1 is
updated with an additional term χν∇ · ũn+1 compared with the standard pressure correction method.

Our motivation for pursuing efficient simulations arises from the necessity of conducting ensemble sim-
ulations that consider uncertainties in initial conditions and forcing terms within the Navier-Stokes model.
A recent ensemble algorithm was proposed in [20, 23] to address this issue, which simultaneously solves all
realizations, reducing the computational cost of ensemble simulations. The algorithm is characterized by
that all realizations share a common coefficient matrix for different right hand sides (RHSs), which makes
it possible to use efficient block solvers such as block CG to save both the computer storage and the com-
putational time. This ensemble time-stepping idea was further extended to simulate other PDE problems
including the natural convection problem [7, 8, 21], heat equation [7, 44, 45], convection-diffusion equation
[40], MHD flow [2, 3, 26, 46] and turbulent modeling [5, 22]. For the Stokes-Darcy model, uncertainties are
mainly from difficulties in measuring accurate parameters, e.g., the hydraulic conductivity tensor K(x). The
first-order ensemble schemes were studied in [16, 25]. Besides that, some higher-order ensemble schemes were
also studied and proved to be highly efficient and unconditionally stable [24, 33]. In this paper, we consider
the ensemble algorithm to compute an ensemble of J Stokes-Darcy systems corresponding to J different
parameter sets (Kj , u

0
j , φ

0
j , ff,j , fp,j), j = 1, ..., J . The goal is to find J corresponding solutions (uj , pj , φj)

to the Stokes-Darcy model:

uj,t − ν∆uj +∇pj = ff,j(x, t), ∇ · uj = 0, in Df ,

S0φj,t −∇ · (Kj(x)∇φj) = fp,j(x, t), in Dp, (1.10)

φj(x, 0) = φ0j (x), in Dp and uj(x, 0) = u0j (x), in Df .

We extend the study of the first-order ensemble scheme by involving the rotational pressure correction (RPC)
method and the SAV approach to further increase the efficiency of the algorithm. First, we define scalar
auxiliary variables rj(t) by

rj(t) = exp(− t

T
), j = 1, . . . , J. (1.11)

These new unknowns make it possible to cancel out the coupling terms that usually cause time step conditions
in the analysis of partitioned methods. Note that real solutions rj(t) are the same for all realizations, but
discrete solutions rnj are different. We also have

drj
dt

= − 1

T
rj +

1

exp(− tn+1

T )
(cI(uj , φj)− cI(uj , φj)) , (1.12)

where the coupling term cI is an integral defined over the interface,

cI(u, φ) = g

∫

I

φu · n̂f ds.

The discrete form of equation (1.12) plays an important role in decoupling the free flow region and the porous
media region in partitioned methods. Inspired by the idea in [9], we propose the semi-discrete scheme of
our SAV rotational pressure correction (RPC) algorithm based on the backward Euler (BE) time-stepping
as follows.

Algorithm 1.1. (SAV-RPC-BE ensemble scheme) Step 1: Given pnj , u
n
j , ũ

n
j , φ

n
j , find (ũn+1

j , φn+1
j ) ∈

Xf ×Xp and rn+1
j such that ∀(v, ψ) ∈ Xf ×Xp

(
ũn+1
j − unj

∆t
, v

)

f

+ ν(∇ũn+1
j ,∇v)f +

∑

i

∫

I

η̄i(ũ
n+1
j · τ̂i)(v · τ̂i) ds+

rn+1
j

exp(− tn+1

T )
cI(v, φ

n
j )

+
∑

i

∫

I

(ηi,j − η̄i)(ũ
n
j · τ̂i)(v · τ̂i) ds−

(
pnj ,∇ · v

)
f
= (fn+1

f,j , v)f , (1.13)
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gS0

(
φn+1
j − φnj

∆t
, ψ

)

p

+ g
(
K̄∇φn+1

j ,∇ψ
)
p
+ g

(
(Kj − K̄)∇φnj ,∇ψ

)
p
−

rn+1
j

exp(− tn+1

T )
cI(ũ

n
j , ψ)

= g(fn+1
p,j , ψ)p, (1.14)

rn+1
j − rnj

∆t
= − 1

T
rn+1
j +

1

exp(− tn+1

T )

(
cI(ũ

n+1
j , φnj )− cI(ũ

n
j , φ

n+1
j )

)
, (1.15)

where

K̄ =
1

J

J∑

j=1

Kj, ηi,j =
αBJS√
τ̂iKj τ̂i

, η̄i =
1

J

J∑

j=1

ηi,j. (1.16)

Step 2: Given ũn+1
j , find zn+1

j ∈Mf such that ∀q ∈Mf





(∇zn+1
j ,∇q)f = − 1

∆t
(∇ · ũn+1

j , q)f ,

∂zn+1
j

∂n̂f
|∂Df\I = 0.

(1.17)

Update un+1
j ∈ Xf and pn+1

j ∈ Qf by

un+1
j = ũn+1

j −∆t∇zn+1
j , (1.18)

pn+1
j = zn+1

j + pnj − χν∇ · ũn+1
j . (1.19)

Definitions of corresponding spaces will be introduced in the following section.
The remainder of this paper is organized as follows. Section 2 provides some mathematical preliminaries

and defines some notations. Section 3 proves the long-time stability of the SAV-RPC-BE ensemble scheme
under three parameter conditions. Section 4 presents the numerical implementation of the SAV-RPC-BE
ensemble algorithm. Section 5 presents numerical experiments to verify our theoritical results. Section 6
gives a conclusion.

2. Notation and preliminaries. We denote the L2(I) norm by ‖.‖I and the L2(Df/p) norms by
‖.‖f/p; the corresponding inner products are denoted by (., .)f/p. Further, we denote the H

1(Df/p) norm by
‖.‖1,f/p and by (., .)1,f/p the corresponding inner product. Let CP,f and CP,p be the Poincaré constants of
the indicated domains. The following Poincaré inequalities are used in the proof.

‖u‖f ≤ CP,f‖∇u‖f and ‖φ‖p ≤ CP,p‖∇φ‖p

To discretize the Stokes-Darcy problem in space by the finite element method, we choose conforming
velocity, pressure, and hydraulic head spaces:

Xh
f ⊂ Xf = {v ∈

(
H1(Df )

)d
: v = 0 on ∂Df\I},

Qh
f ⊂ Qf = H1(Df ),

Xh
p ⊂ Xp = {ψ ∈ H1(Dp) : ψ = 0 on ∂Dp\I}.

Here we choose Qh
f ⊂ H1(Df ) as suggested in [11] since we are dealing with the projection step as a Poisson

equation. We denote Mh
f ⊂ Mf = {q ∈ Qf : q = 0 on I} as the finite element space of pressure increment.

Xh
f and Xh

p are separate FEM spaces; continuity across the interface I is not assumed. The Stokes velocity-

pressure finite element spaces, (Xh
f , Q

h
f ), are assumed to satisfy the usual discrete inf-sup condition for

stability of the discrete pressure, e.g., [14], [15], [35].
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We propose a partitioned rotational pressure correction (RPC) ensemble scheme based on the SAV
approach for the fast computation of the Stokes-Darcy model. The fully discrete algorithm with the backward
Euler (BE) time-stepping is constructed as follows.

Algorithm 2.1. (SAV-RPC-BE ensemble Method) Step 1: Given pnj,h, u
n
j,h, ũ

n
j,h and φnj,h, find

(ũn+1

j,h , φn+1

j,h ) ∈ Xf ×Xp and rn+1
j such that ∀(vh, ψh) ∈ Xf ×Xp

(
ũn+1

j,h − unj,h
∆t

, vh

)

f

+ ν(∇ũn+1

j,h ,∇vh)f +
∑

i

∫

I

η̄i(ũ
n+1

j,h · τ̂i)(vh · τ̂i) ds+
rn+1
j

exp(− tn+1

T )
cI(vh, φ

n
j,h)

+
∑

i

∫

I

(ηi,j − η̄i)(ũ
n
j,h · τ̂i)(vh · τ̂i) ds−

(
pnj,h,∇ · vh

)
f
= (fn+1

f,j , vh)f , (2.1)

gS0

(
φn+1

j,h − φnj,h
∆t

, ψh

)

p

+ g
(
K̄∇φn+1

j,h ,∇ψh

)
p
+ g

(
(Kj − K̄)∇φnj,h,∇ψh

)
p
−

rn+1
j

exp(− tn+1

T )
cI(ũ

n
j,h, ψh)

= g(fn+1
p,j , ψh)p, (2.2)

rn+1
j − rnj

∆t
= − 1

T
rn+1
j +

1

exp(− tn+1

T )

(
cI(ũ

n+1

j,h , φnj,h)− cI(ũ
n
j,h, φ

n+1

j,h )
)
, (2.3)

where

K̄ =
1

J

J∑

j=1

Kj, ηi,j =
αBJS√
τ̂iKj τ̂i

, η̄i =
1

J

J∑

j=1

ηi,j. (2.4)

Step 2: Given ũn+1

j,h , find zn+1

j,h ∈Mh
f such that ∀qh ∈Mh

f





(∇zn+1

j,h ,∇qh)f = − 1

∆t
(∇ · ũn+1

j,h , qh)f ,

∂zn+1

j,h

∂n̂f
|∂Df\I = 0.

(2.5)

Update un+1

j,h ∈ Xh
f and pn+1

j,h ∈ Qh
f by

un+1

j,h = ũn+1

j,h −∆t∇zn+1

j,h , (2.6)

pn+1

j,h = zn+1

j,h + pnj,h − χν∇ · ũn+1

j,h . (2.7)

The method fully decouples the computation of fluid velocity, pressure and hydraulic head, which greatly
improves the computing efficiency. Moreover, since it is an ensemble algorithm, at each time step, all real-
izations share the same coefficient matrix (for uj , φj , pj respectively). This further reduces the computation
time.

3. Unconditional stability of SAV-RPC-BE ensemble method. Let kj,min(x), k̄min(x) be the
minimum eigenvalues of Kj(x), K̄(x), respectively, and ρ′j(x) be the spectral radius of fluctuation of the

hydraulic conductivity tensor Kj(x) − K̄(x), which means |Kj(x) − K̄(x)|2 = ρ′j(x) since Kj(x), K̄(x) are
symmetric. To obtain the stability of Algorithm 2.1, we define the following notations which will be used in
the proof:

ηmax′

i,j = max
x∈I

|ηi,j(x)− η̄i,j(x)|, ηmax′

i = max
1≤j≤J

ηmax′

i,j , η̄min
i = min

x∈I
η̄i(x),

ρmax′

j = max
x∈Ωp

|Kj(x)− K̄(x)|, ρmax′

= max
1≤j≤J

ρmax′

j , k̄min = min
x∈Ωp

k̄min(x).
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Based on the idea of stability analysis in [17], we introduce a sequence {ξnj,h} ∈ Qh
f defined by

ξn+1

j,h = χν∇ · ũn+1

j,h + ξnj,h with ξ0j,h|I = 0 (3.1)

which will be used in the following stability proof.

Theorem 3.1 (Unconditional stability of Algorithm (2.1)). Taking p0j,h|I = 0, if the following parameter
conditions are satisfied,

ηmax′

i ≤ η̄min
i , ρmax′

< k̄min, χ <
2

d
, (3.2)

where the space dimension d = 2, 3, then for any N > 0, we have

‖uNj,h‖2f +

N−1∑

n=0

‖ũn+1

j,h − unj,h‖2f + (1− dχ

2
)∆tν

N−1∑

n=0

‖∇ũn+1

j,h ‖2f

+ gS0‖φNj,h‖2p + gS0

N−1∑

n=0

‖φn+1

j,h − φnj,h‖2p + g∆tρmax′‖∇φNj,h‖2p + g∆t(k̄min − ρmax′

)

N−1∑

n=0

‖∇φn+1

j,h ‖2p

+∆t
∑

i

η̄min
i

∫

I

(
ũNj,h · τ̂i

)2
ds+∆t2‖∇(zNj,h + pN−1

j,h + ξN−1

j,h )‖2f

+
∆t

χν
‖ξNj,h‖2f + |rNj |2 +

N−1∑

n=0

|rn+1
j − rnj |2 +

2∆t

T

N−1∑

n=0

|rn+1
j |2 (3.3)

≤ ‖u0j,h‖2f + gS0‖φ0j,h‖2p +
∆t

χν
‖ξ0j,h‖2f + |r0j |2

+ g∆tρmax′‖∇φ0j,h‖2p +∆t
∑

i

η̄min
i

∫

I

(
ũ0j,h · τ̂i

)2
ds+∆t2‖∇(p0j,h + ξ0j,h)‖2f

+∆t
N−1∑

n=0

C2
P,f

(1− dχ
2
)ν

‖fn+1

f,j ‖2f +∆t

N−1∑

n=0

gC2
P,p

(k̄min − ρmax′)
‖fn+1

p,j ‖2p.

Proof. First setting vh = ũn+1

j,h , ψh = φn+1

j,h for (2.1)-(2.2) in Step 1, we get

1

2∆t
‖ũn+1

j,h ‖2f − 1

2∆t
‖unj,h‖2f +

1

2∆t
‖ũn+1

j,h − unj,h‖2f + ν‖∇ũn+1

j,h ‖2f

+
∑

i

∫

I

η̄i(ũ
n+1

j,h · τ̂i)2ds+
rn+1
j

exp(− tn+1

T )
cI(ũ

n+1

j,h , φnj,h)−
rn+1
j

exp(− tn+1

T )
cI(ũ

n
j,h, φ

n+1

j,h )

+
gS0

2∆t
‖φn+1

j,h ‖2p −
gS0

2∆t
‖φnj,h‖2p +

gS0

2∆t
‖φn+1

j,h − φnj,h‖2p
+ g(K̄∇φn+1

j,h ,∇φn+1

j,h )p − (pnj,h,∇ · ũn+1

j,h )f (3.4)

= −
∑

i

∫

I

(ηi,j − η̄i)(ũ
n
j,h · τ̂i)(ũn+1

j,h · τ̂i) ds− g((K − K̄)∇φnj,h,∇φn+1

j,h )p

+ (fn+1

f,j , ũn+1

j,h )f + g(fn+1
p,j , φn+1

j,h )p.

Multiplying (2.3) by rn+1
j gives

1

2∆t
|rn+1

j |2 − 1

2∆t
|rnj |2 +

1

2∆t
|rn+1

j − rnj |2 +
1

T
|rn+1

j |2 =
rn+1
j

exp(− tn+1

T )

(
cI(ũ

n+1

j,h , φnj,h)− cI(ũ
n
j,h, φ

n+1

j,h )
)
.

(3.5)
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Next, plugging (2.6) into (2.5) gives

(ũn+1

j,h − un+1

j,h ,∇qh)f = −(∇ · ũn+1

j,h , qh)f , ∀qh ∈Mh
f . (3.6)

Integration by parts yields

(∇ · un+1

j,h −∇ · ũn+1

j,h , qh)f +

∫

Df

(ũn+1

j,h − un+1

j,h ) · n̂fqhds = −(∇ · ũn+1

j,h , qh)f , ∀qh ∈Mh
f . (3.7)

Thanks to ũn+1

j,h |∂Df\I = un+1

j,h |∂Df\I = 0 and qh|I = 0, the above equation reduces to

(∇ · un+1

j,h −∇ · ũn+1

j,h , qh)f = −(∇ · ũn+1

j,h , qh)f , ∀qh ∈Mh
f . (3.8)

Thus, we have

(∇ · un+1

j,h , qh)f = 0, ∀qh ∈Mh
f . (3.9)

Taking advantages of (3.1) and (2.7), we can rewrite (2.6) as

un+1

j,h +∆t∇(pn+1

j,h + ξn+1

j,h ) = ũn+1

j,h +∆t∇(pnj,h + ξnj,h). (3.10)

Since zn+1

j,h |I = 0, we have

(pn+1

j,h − pnj,h + χν∇ · ũn+1

j,h )|I =
(
(pn+1

j,h + ξn+1

j,h )− (pnj,h + ξnj,h)
)
|I = 0. (3.11)

By taking p0j,h|I = ξ0j,h|I = 0, the above equation can be rewritten as

pn+1

j,h + ξn+1

j,h |I = pnj,h + ξnj,h|I = · · · = p0j,h + ξ0j,h|I = 0. (3.12)

Taking inner product with itself of (3.10), due to (3.12) and ũn+1

j,h |∂Df\I = un+1

j,h |∂Df\I = 0 we get

‖un+1

j,h ‖2f +∆t2‖∇(pn+1

j,h + ξn+1

j,h )‖2f − 2∆t(∇ · un+1

j,h , (pn+1

j,h + ξn+1

j,h ))f

= ‖ũn+1

j,h ‖2f +∆t2‖∇(pnj,h + ξnj,h)‖2f − 2∆t(∇ · ũn+1

j,h , (pnj,h + ξnj,h))f . (3.13)

By the definition of Mh
f , (p

n+1

j,h + ξn+1

j,h ) ∈Mh
f . Using (3.9), the above equation reduces to

‖un+1

j,h ‖2f +∆t2‖∇(pn+1

j,h + ξn+1

j,h )‖2f = ‖ũn+1

j,h ‖2f +∆t2‖∇(pnj,h + ξnj,h)‖2f − 2∆t(∇ · ũn+1

j,h , (pnj,h + ξnj,h))f .

(3.14)

Then by (a− b, b) = 1

2
(a2 − b2 − (a− b)2), the last term on the RHS of the above equation can be rewritten

as

−2∆t(∇ · ũn+1

j,h , (pnj,h + ξnj,h))f = −2∆t(∇ · ũn+1

j,h , pnj,h)f − 2∆t(∇ · ũn+1

j,h , ξnj,h)f

= −2∆t(∇ · ũn+1

j,h , pnj,h)f − 2∆t

χν
(ξn+1

j,h − ξnj,h, ξ
n
j,h)f

= −2∆t(∇ · ũn+1

j,h , pnj,h)f − ∆t

χν

[
‖ξn+1

j,h ‖2f − ‖ξnj,h‖2f − ‖ξn+1

j,h − ξnj,h‖2f
]
. (3.15)

Plugging (3.15) back into (3.14) and dividing it by 2∆t, (3.14) can be rewritten as

−(∇ · ũn+1

j,h , pnj,h)f =
1

2∆t

(
‖un+1

j,h ‖2f − ‖ũn+1

j,h ‖2f
)
+

∆t

2

(
‖∇(pn+1

j,h + ξn+1

j,h )‖2f − ‖∇(pnj,h + ξnj,h)‖2f
)

+
1

2χν

(
‖ξn+1

j,h ‖2f − ‖ξnj,h‖2f
)
− χν

2
‖∇ · ũn+1

j,h ‖2f . (3.16)
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Here using the inequality ‖∇ · v‖ ≤
√
d‖∇v‖, the troublesome ‖∇ · ũn+1

j,h ‖2f can be bounded as

‖∇ · ũn+1

j,h ‖2f ≤ d‖∇ũn+1

j,h ‖2f . (3.17)

Based on the above estimate, adding equations (3.4), (3.5) and (3.16) yields

1

2∆t
‖un+1

j,h ‖2f − 1

2∆t
‖unj,h‖2f +

1

2∆t
‖ũn+1

j,h − unj,h‖2f + (ν − dχν

2
)‖∇ũn+1

j,h ‖2f

+
∑

i

∫

I

η̄i(ũ
n+1

j,h · τ̂i)2ds+
gS0

2∆t
‖φn+1

j,h ‖2p −
gS0

2∆t
‖φnj,h‖2p +

gS0

2∆t
‖φn+1

j,h − φnj,h‖2p

+ g(K̄∇φn+1

j,h ,∇φn+1

j,h )p +
∆t

2

(
‖∇(pn+1

j,h + ξn+1

j,h )‖2f − ‖∇(pnj,h + ξnj,h)‖2f
)

+
1

2χν

(
‖ξn+1

j,h ‖2f − ‖ξnj,h‖2f
)

+
1

2∆t
|rn+1

j |2 − 1

2∆t
|rnj |2 +

1

2∆t
|rn+1

j − rnj |2 +
1

T
|rn+1

j |2 (3.18)

≤ −
∑

i

∫

I

(ηi,j − η̄i)(ũ
n
j,h · τ̂i)(ũn+1

j,h · τ̂i) ds− g((K − K̄)∇φnj,h,∇φn+1

j,h )p

+ (fn+1

f,j , ũn+1

j,h )f + g(fn+1
p,j , φn+1

j,h )p.

Applying Cauchy-Schwarz and Young’s inequalities to the source terms, we get for any constant α1 > 0,
β1 > 0,

(fn+1

f,j , ũn+1

j,h )f + g(fn+1
p,j , φn+1

j,h )p

≤ CP,f‖fn+1

f,j ‖f‖∇ũn+1

j,h ‖f + gCP,p‖fn+1
p,j ‖p‖∇φn+1

j,h ‖p

≤
C2

P,f

4α1ν
‖fn+1

f,j ‖2f + α1ν‖∇ũn+1

j,h ‖2f +
gC2

P,p

4β1k̄min
‖fn+1

p,j ‖2p + β1gk̄min‖∇φn+1

j,h ‖2p. (3.19)

Two fluctuations terms are bounded as follows. Using the algebraic inequality ab ≤ 1

2
(a2 + b2),

− g
(
(Kj − K̄)∇φnj,h,∇φn+1

j,h

)
p
≤ g

∫

Ωp

|∇φnj,h|2|Kj − K̄|2|∇φn+1

j,h |2dx

≤ gρmax′

∫

Ωp

|∇φnj,h|2|∇φn+1

j,h |2dx ≤ gρmax′

2

[
‖∇φnj,h‖2p + ‖∇φn+1

j,h ‖2p
]
, (3.20)

−
∑

i

∫

I

(ηi,j − η̄i)
(
ũnj,h · τ̂i

) (
ũn+1

j,h · τ̂i
)
ds ≤

∑

i

∫

I

|ηi,j − η̄i||ũnj,h · τ̂i||ũn+1

j,h · τ̂i|ds

≤
∑

i

ηmax′

i,j

∫

I

|ũnj,h · τ̂i||ũn+1

j,h · τ̂i|ds ≤
∑

i

ηmax′

i

2

[∫

I

(ũnj,h · τ̂i)2ds+
∫

I

(ũn+1

j,h · τ̂i)2ds
]
. (3.21)

Based on above estimates, (3.18) becomes

1

2∆t

(
‖un+1

j,h ‖2f − ‖unj,h‖2f
)
+

1

2∆t
‖ũn+1

j,h − unj,h‖2f + (1− α1 −
dχ

2
)ν‖∇ũn+1

j,h ‖2f

+
gS0

2∆t

(
‖φn+1

j,h ‖2p − ‖φnj,h‖2p
)
+
gS0

2∆t
‖φn+1

j,h − φnj,h‖2p + (1− β1 −
ρmax′

k̄min
)gk̄min‖∇φn+1

j,h ‖2p

+
gρmax′

2

[
‖∇φn+1

j,h ‖2p − ‖∇φnj,h‖2p
]
+
∑

i

[
η̄min
i

2
− ηmax′

i

2
]

∫

I

(
ũn+1

j,h · τ̂i
)2
ds

+
∑

i

η̄min
i

2

[∫

I

(
ũn+1

j,h · τ̂i
)2
ds−

∫

I

(
ũnj,h · τ̂i

)2
ds

]
+
∑

i

[
η̄min
i

2
− ηmax′

i

2
]

∫

I

(
ũnj,h · τ̂i

)2
ds
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+
∆t

2

(
‖∇(pn+1

j,h + ξn+1

j,h )‖2f − ‖∇(pnj,h + ξnj,h)‖2f
)
+

1

2χν

(
‖ξn+1

j,h ‖2f − ‖ξnj,h‖2f
)

(3.22)

+
1

2∆t
|rn+1

j |2 − 1

2∆t
|rnj |2 +

1

2∆t
|rn+1

j − rnj |2 +
1

T
|rn+1

j |2

≤
C2

P,f

4α1ν
‖fn+1

f,j ‖2f +
gC2

P,p

4β1k̄min
‖fn+1

p,j ‖2p.

To obtain stability, the following conditions need to be satisfied.

1− α1 −
dχ

2
≥ 0,

η̄min
i

2
− ηmax′

i

2
≥ 0, (1− β1 −

ρmax′

k̄min
) ≥ 0. (3.23)

Given that χ, ηmax′

i and ρmax′

are all positive, we take the following parameter constraints.

0 < χ <
2

d
, ρmax′

< k̄min, ηmax′

i ≤ η̄min
i . (3.24)

Since α1 and β1 are arbitrary positive constants, we set

α1 =
1

2
(1− dχ

2
), β1 =

1

2
(1− ρmax′

k̄min
). (3.25)

Then the inequality (3.22) reduces to

1

2∆t

(
‖un+1

j,h ‖2f − ‖unj,h‖2f
)
+

1

2∆t
‖ũn+1

j,h − unj,h‖2f +
1

2
(1− dχ

2
)ν‖∇ũn+1

j,h ‖2f

+
gS0

2∆t

(
‖φn+1

j,h ‖2p − ‖φnj,h‖2p
)
+
gS0

2∆t
‖φn+1

j,h − φnj,h‖2p +
1

2
(1− ρmax′

k̄min
)gk̄min‖∇φn+1

j,h ‖2p

+
gρmax′

2

(
‖∇φn+1

j,h ‖2p − ‖∇φnj,h‖2p
)
+
∑

i

η̄min
i

2

[∫

I

(
ũn+1

j,h · τ̂i
)2
ds−

∫

I

(
ũnj,h · τ̂i

)2
ds

]
(3.26)

+
∆t

2

(
‖∇(pn+1

j,h + ξn+1

j,h )‖2f − ‖∇(pnj,h + ξnj,h)‖2f
)
+

1

2χν

(
‖ξn+1

j,h ‖2f − ‖ξnj,h‖2f
)

+
1

2∆t
|rn+1

j |2 − 1

2∆t
|rnj |2 +

1

2∆t
|rn+1

j − rnj |2 +
1

T
|rn+1

j |2

≤
C2

P,f

2(1− dχ
2
)ν

‖fn+1

f,j ‖2f +
gC2

P,p

2(k̄min − ρmax′)
‖fn+1

p,j ‖2p.

Summing up from n = 0, . . . , N − 1, and multiplying by 2∆t, we find for any N > 0,

‖uNj,h‖2f +

N−1∑

n=0

‖ũn+1

j,h − unj,h‖2f + (1− dχ

2
)∆tν

N−1∑

n=0

‖∇ũn+1

j,h ‖2f

+ gS0‖φNj,h‖2p + gS0

N−1∑

n=0

‖φn+1

j,h − φnj,h‖2p + g∆tρmax′‖∇φNj,h‖2p + g∆t(k̄min − ρmax′

)
N−1∑

n=0

‖∇φn+1

j,h ‖2p

+∆t
∑

i

η̄min
i

∫

I

(
ũNj,h · τ̂i

)2
ds+∆t2‖∇(pNj,h + ξNj,h)‖2f

+
∆t

χν
‖ξNj,h‖2f + |rNj |2 +

N−1∑

n=0

|rn+1
j − rnj |2 +

2∆t

T

N−1∑

n=0

|rn+1
j |2 (3.27)

≤ ‖u0j,h‖2f + gS0‖φ0j,h‖2p +
∆t

χν
‖ξ0j,h‖2f + |r0j |2

+ g∆tρmax′‖∇φ0j,h‖2p +∆t
∑

i

η̄min
i

∫

I

(
ũ0j,h · τ̂i

)2
ds+∆t2‖∇(p0j,h + ξ0j,h)‖2f
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+∆t
N−1∑

n=0

C2
P,f

(1− dχ
2
)ν

‖fn+1

f,j ‖2f +∆t
N−1∑

n=0

gC2
P,p

(k̄min − ρmax′)
‖fn+1

p,j ‖2p.

Finally, since ∇(pNj,h + ξNj,h) = ∇zNj,h +∇(pN−1

j,h + ξN−1

j,h ), we obtain the desired result.

4. Numerical implementation. Let

Sn+1
j =

rn+1
j

exp(− tn+1

T )
, ũn+1

j,h = ûn+1

j,h + Sn+1
j ŭn+1

j,h , φn+1

j,h = φ̂n+1

j,h + Sn+1
j φ̆n+1

j,h . (4.1)

Instead of solving the original algorithm, we solve the following four subproblems for ûn+1

j,h , φ̂n+1

j,h ,

ŭn+1

j,h ,φ̆n+1

j,h respectively.

(Sub-problem 1): Find ûn+1

j,h ∈ Xh
f satisfying ∀ vh ∈ Xh

f ,





1

∆t

(
ûn+1

j,h , vh

)
f
+ ν(∇ûn+1

j,h ,∇vh)f +
∑

i

∫

I

η̄i(û
n+1

j,h · τ̂i)(vh · τ̂i) ds

= (fn+1

f,j , vh)f +
1

∆t

(
unj,h, vh

)
f
−
∑

i

∫

I

(ηi,j − η̄i)(ũ
n
j,h · τ̂i)(vh · τ̂i) ds+

(
pnj,h,∇ · vh

)
f
,

ûn+1

j,h |∂Df\I = an+1
j .

(Sub-problem 2): Find φ̂n+1

j,h ∈ Xh
p satisfying ∀ ψh ∈ Xh

p ,





gS0

∆t

(
φ̂n+1

j,h , ψh

)
p
+ g(K̄∇φ̂n+1

j,h ,∇ψh)p

= g(fn+1
p,j , ψh)p +

gS0

∆t

(
φnj,h, ψh

)
p
− g((Kj − K̄)∇φnj,h,∇ψh)p

φ̂n+1

j,h |∂Dp\I = bn+1
j .

(Sub-problem 3): Find ŭn+1

j,h ∈ Xh
f satisfying ∀ vh ∈ Xh

f ,





1

∆t

(
ŭn+1

j,h , vh

)
f
+ ν(∇ŭn+1

j,h ,∇vh)f +
∑

i

∫

I

η̄i(ŭ
n+1

j,h · τ̂i)(vh · τ̂i) ds = −cI(vh, φnj,h),

ŭn+1

j,h |∂Df\I = 0.

(Sub-problem 4): Find φ̆n+1

j,h ∈ Xh
p satisfying ∀ ψh ∈ Xh

p ,





gS0

∆t

(
φ̆n+1

j,h , ψh

)
p
+ g(K̄∇φ̆n+1

j,h ,∇ψh)p = cI(ũ
n
j,h, ψh),

φ̆n+1

j,h |∂Df\I = 0.

Now we need to derive an equation for Sn+1
j .

Sn+1
j =

rn+1
j

exp(− tn+1

T )
, =⇒ rn+1

j = exp(− tn+1

T
)Sn+1

j . (4.2)

Multiplying (2.3) by rn+1
j gives

rn+1
j − rnj

∆t
· rn+1

j +
1

T
|rn+1

j |2 −
rn+1
j

exp(− tn+1

T )

(
cI(ũ

n+1

j,h , φnj,h)− cI(ũ
n
j,h, φ

n+1

j,h )
)
= 0. (4.3)

Plugging (4.2) into (4.3) gives

(
1

∆t
+

1

T
)(rn+1

j )2 − 1

∆t
rnj r

n+1
j − Sn+1

j

(
cI(ũ

n+1

j,h , φnj,h)− cI(ũ
n
j,h, φ

n+1

j,h )
)
= 0,
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=⇒ (
1

∆t
+

1

T
)exp(−2tn+1

T
) (Sn+1

j )2 − 1

∆t
rnj exp(−

tn+1

T
)Sn+1

j

− Sn+1
j

(
cI(û

n+1

j,h + Sn+1
j ŭn+1

j,h , φnj )− cI(ũ
n
j,h, φ̂

n+1

j,h + Sn+1
j φ̆n+1

j,h )
)
= 0.

At last, we obtain the equation for Sn+1
j as

Sn+1
j

(
An+1

j Sn+1
j +Bn+1

j

)
= 0, =⇒ Sn+1

j = −
Bn+1

j

An+1
j

, (4.4)

where

An+1
j = (

1

∆t
+

1

T
)exp(−2tn+1

T
)− cI(ŭ

n+1

j,h , φnj,h) + cI(ũ
n
j,h, φ̆

n+1

j,h ),

Bn+1
j = − 1

∆t
rnj exp(−

tn+1

T
)− cI(û

n+1

j,h , φnj,h) + cI(ũ
n
j,h, φ̂

n+1

j,h ).

After getting ûn+1

j,h , ŭn+1

j,h , φ̂n+1

j,h , φ̆n+1

j,h , Sn+1
j can be computed directly using formula (4.4), and then we have

ũn+1

j,h = ûn+1

j,h + Sn+1
j ŭn+1

j,h , φn+1

j,h = φ̂n+1

j,h + Sn+1
j φ̆n+1

j,h . (4.5)

Given ũn+1

j,h , we can solve the pressure Poisson equation for zn+1

j,h ∈Mh
f ,





(∇zn+1

j,h ,∇qh) = − 1

∆t
(∇ · ũn+1

j,h , qh), ∀qh ∈Mh
f ,

∂zn+1

j,h

∂n̂f
|∂Df\I = 0.

(4.6)

Then (un+1

j,h , pn+1

j,h ) are updated as follows.

un+1

j,h = ũn+1

j,h −∆t∇zn+1

j,h , (4.7)

pn+1

j,h = zn+1

j,h + pnj,h − χν∇ · ũn+1

j,h . (4.8)

5. Numerical experiments.

5.1. Convergence test. We consider testing the convergence of the model on Df = (0, 1) × (1, 2),
Dp = (0, 1)× (0, 1), with interface I = [0, 1]× {1}. We set the physical parameters, g, ν, S0, αBJS, equal to
one, the tunable parameter χ = 0.25. For the hydraulic conductivity tensor, we have

K =

[
kj11 0

0 kj22

]
,

where j = 1, . . . , J. For simplicity in the construction of exact solution, we assume that k11, k22 are positive
independent of spatial coordinates. The exact solution, as described in [33], is constructed as following:

u(x, y, t) = (u1(x, y, t), u2(x, y, t)),

u1(x, y, t) =
(
x2(y − 1)2 + exp(y/

√
k11)

)
cos(t),

u2(x, y, t) =
(2
3
x(1− y)3 + k22(2− π sin(πx)

)
cos(t),

p(x, y, t) = (2− π sin(πx)) sin(0.5πy) cos(t),

φ(x, y, t) = (2− π sin(πx))(1− y − cos(πy)) cos(t).

Initial conditions, boundary conditions and forcing terms are chosen according to the exact solution. To test
the convergence rate, we set time step size T = 5.0 and ∆t = h. The convergence rate is expected to be
O(∆t+ h) = O(h) = O(∆t). This result is verified in Table 5.1.
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Table 5.1: Errors and Convergence rate of SAV-RPC-BE ensemble algorithm for u, p and φ with J = 3,
∆t = h and T = 5.0

h ‖uh − u‖E,1
H1 Rate ‖uh − u‖E,2

H1 Rate ‖uh − u‖E,3
H1 Rate

1/8 2.08× 10−1 - 2.09× 10−1 - 2.11× 10−1 -
1/16 1.02× 10−1 1.02 1.03× 10−2 1.03 1.03× 10−1 1.03
1/32 4.98× 10−2 1.04 4.99× 10−2 1.04 5.00× 10−2 1.05
1/64 2.47× 10−2 1.01 2.47× 10−2 1.01 2.47× 10−2 1.02

h ‖ph − p‖E,1
L2 Rate ‖ph − p‖E,2

L2 Rate ‖ph − p‖E,3
L2 Rate

1/8 1.29× 10−1 - 1.28× 10−1 - 1.28× 10−1 -
1/16 5.88× 10−2 1.13 5.71× 10−2 1.17 5.61× 10−2 1.19
1/32 3.03× 10−2 0.96 2.90× 10−2 0.98 2.81× 10−2 1.00
1/64 1.60× 10−2 0.92 1.54× 10−2 0.91 1.50× 10−2 0.90

h ‖φh − φ‖E,1
H1 Rate ‖φh − φ‖E,2

H1 Rate ‖φh − φ‖E,3
H1 Rate

1/8 6.90× 10−2 - 3.79× 10−2 - 4.43× 10−2 -
1/16 3.57× 10−2 0.95 1.97× 10−2 0.94 2.20× 10−2 1.00
1/32 1.81× 10−2 0.98 1.00× 10−2 0.98 1.10× 10−2 1.00
1/64 9.01× 10−3 1.00 4.95× 10−3 1.00 5.49× 10−3 1.00

Table 5.2: CPU time and mean error of φ at final time T = 1 with h = 1/64,∆t = 1/64

SAV-RPC-BE ensemble SAV-RPC-BE non-ensemble

J ‖E[φh − φ]‖H1 CPU time ‖E[φh − φ]‖H1 CPU time

1 5.70× 10−3 34.5 s 5.70× 10−3 40.1 s
10 5.45× 10−3 151.4 s 5.82× 10−3 389.8 s
100 5.00× 10−3 692.4 s 5.68× 10−3 4232.7 s

5.2. Efficiency test. We then test the efficiency of the SAV-RPC-BE ensemble method and compare
it with the corresponding non-ensemble method. For efficiency tests in this section, we still use the exact
solutions and parameters stated in the previous section. The varying hydraulic conductivity tensor values
kj11 and kj22 are uniformly distributed in the interval [1, 2]. We set h = 1/64, ∆t = 1/64 and the final time
T = 1.0. CG solver is used to solve the non-ensemble algorithm since the coefficient matrix is symmetric
positive definite while block CG solver is used to solve the ensemble algorithm. We list the results of SAV-
RPC-BE ensemble method and the results of SAV-RPC-BE non-ensemble method under same conditions
except for varying numbers of samples: J = 1, 10, 100. As illustrated in Table 5.2 and 5.3, both algorithms
reach the same level of accuracy for u and φ respectively while huge differences exist in the computation
time. The CPU time of the SAV-RPC-BE ensemble method is around 86.0%, 38.8% and 16.4% of the CPU
time of the SAV-RPC-BE non-ensemble method when J is 1, 10 and 100 respectively. The advantage of
the ensemble scheme is obvious compared with the non-ensemble one when J is large. This is because the
ensemble scheme shares a common coefficient matrix for all the realizations and the associated system with
different right hand sizes (RHSs) can be solved simultaneously by the block CG solver.

5.3. Stochastic example. Next, we consider the stochastic Stokes-Darcy model with random hy-
draulic conductivity tensor K(x, y, ω), which is a correlation function constructed as follows

K(x, y, ω) =

[
k11(x, y, ω) 0

0 k22(x, y, ω)

]
,
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Table 5.3: Mean error of u and p at final time T = 1 with h = 1/64,∆t = 1/64.

SAV-RPC-BE ensemble SAV-RPC-BE non-ensemble

J ‖E[uh − u]‖H1 ‖E[ph − p]‖L2
‖E[uh − u]‖H1 ‖E[ph − p]‖L2

1 2.21× 10−2 1.39× 10−2 2.22× 10−2 1.39× 10−2

10 2.21× 10−2 1.40× 10−2 2.21× 10−2 1.40× 10−2

100 2.21× 10−2 1.39× 10−2 2.21× 10−2 1.39× 10−2

Table 5.4: CPU time for sparse-grid method with J = 241 collocation points, T = 1.0, h = 1/64, ∆t = 1/100.

SAV-RPC-BE ensemble SAV-RPC-BE non-ensemble

CPU time 3125.5 s 12906.0 s
Percentage 24.2% 100%

k11(x, y, ω) = k22(x, y, ω) = a0 + σ
√
λ0Y0(ω) +

nf∑

i=1

σ
√
λi[Yi(ω) cos(iπx) + Ynf+i(ω) sin(iπx))],

where λ0 =
√
πLc

2
, λi =

√
πLce

− (iπLc)
2

4 for i = 1, · · · , nf . Y0, · · · , Y2nf
are independent and identically

uniformly distributed in the interval [−
√
3,
√
3], so they have zero mean and unit variance. In the above KL

expansion of random variables k11(x, y, ω), k22(x, y, ω), we take nf = 2, so there are totally 5 uncorrelated
variables Y0, Y1, · · · , Y4. The other values are taken as Lc = 0.25, a0 = 1, σ = 0.15. We set Dirichlet
boundary condition and initial condition by

u(x, y, t, ω) = (u1(x, y, t, ω), u2(x, y, t, ω)),

u1(x, y, t, ω) = Y0(ω)(y
2 − 2y + 1)cos(t),

u2(x, y, t, ω) = Y1(ω)(x
2 − x)cos(t),

φ(x, y, t, ω) = Y2(ω)ycos(t).

The problem is associated with the forcing terms

ff = (Y3(ω)xy, Y3(ω)xy), fp = Y4(ω)xy.

The SAV-RPC-BE ensemble method in this test is incorporated with the multi-grid method to approximate
the stochastic Stokes-Darcy model. Sample points are selected by the sparse grid collocation method utilizing
the Smolyak formula and Gaussian quadrature rule. The construction of sparse grids follows open source
sparse grid codes found in:http://www.sparse-grids.de. We set h = 1/64 and dt = 1/100, J = 241
collocation points at accuracy level 4. The simulation at time T = 1.0 is shown in Figure 5.1. It shows that
the ensemble scheme and the non-ensemble scheme obtain almost the same simulation results. The results
of the computation time of corresponding simulations are listed in Table 5.4

5.4. Realistic example. Next, we apply the proposed method to a more realistic simulation of sub-
surface flows in a karst aquifer, inspired by test 5.3 in [16]. As shown in Figure 5.2, the free flow region
Df is a Y-shape conduit that has a curvy interface with the porous media region Dp. The closed curvy
boundary of Df is ABCDEFGH with A = (0, 0.8), B = (0, 0.55), C = (0.5, 0.4), D = (0.6, 0), E = (0.85, 0),
F = (0.75, 0.45), G = (1, 0.5), and H = (1, 0.7).

Let interface I = D̄p ∩ D̄f . Physical parameters are chosen the same as the convergence test. Set source
terms to be zero and φ = 0 on ∂Dp\I. Inflow/outflow boundary conditions of u are

u =





u1 = s1, u2 = 0, on AB
u1 = 0, u2 = s2, on DE
u1 = s3, u2 = 0, on GH
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SAV-RPC-BE ensemble SAV-RPC-BE non-ensemble

Fig. 5.1: Simulation at T = 1.0 , with h = 1/64,∆t = 1/100 by SAV-RPC-BE ensemble (left), SAV-RPC-
BE non-ensemble (right) with J = 241 collocation points. Count from left to right: figures 1 and 3 are
streamlines of expectations of flow velocity u and v = −K∇φ, figures 2 and 4 are expectations of pressure p
and hydraulic head φ.

Fig. 5.2: curvy domain for simulating the karst aquifer

where s1, s2 and s3 are constants. In numerical experiments, we take time step t = 0.005, space steps
h = 0.022, and the simulation solutions are computed at T = 1.0.

Set boundary conditions s1 > 0, s2 < 0, and s3 > 0 so that the subsurface fluid flows in through AB
and out through DE and GH. Figure 5.3 and 5.4 plot expectations of fluid flow velocity E[u], porous media
flow velocity E[v], pressure E[p] and hydraulic head E[φ] computed under different boundary conditions or
magnitude of hydraulic conductivity. In Figure 5.3, We keep the same outflow velocity s2 = −1, s3 = 1 while
varying the inflow velocity s1 = 1, 2 and 3. One can see that compared with the balanced inflow/outflow
rate in Figure 5.3 (middle), less inflow rate in Figure 5.3 (left) causes more water to be pushed into the
conduit from the porous media region, which happens during a dry season; more inflow rate in Figure 5.3
(right) causes more water to be pushed into the porous media from the conduit, which happens during a
rainy season.

We also consider setting small values for hydraulic conductivity K and specific mass storativity coefficient
S0, which is more meaningful to better align with realistic cases. We set S0 = 10−5 and αBJS = 0.1. We
compare the effect of different K. See K = 100 ∗ I in Figure 5.4 (top), K = 10−2 ∗ I in Figure 5.4 (middle)
and K = 10−4 ∗ I in Figure 5.4 (bottom). The simulations basically follow the same pattern but slower flow
speeds in the Darcy domain are observed as expected when hydraulic conductivity decreases.
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Fig. 5.3: Left: expectations of the fluid flow velocity E[u] and porous media flow velocity E[v]. Right:
expectations of pressure E[p] and hydraulic head E[φ]. SAV-RPC-BE ensemble algorithm with inflow velocity
s1 = 1 (top line), s1 = 2 (middle line), s3 = 3 (bottom line), fixed s2 = −1, s3 = 1, and fixed hydraulic
conductivity K = 1.0 ∗ I.

6. Conclusion. We constructed a first-order rotational pressure correction ensemble scheme using
the idea of SAV for efficiently computing the Stokes-Darcy model. The SAV-RPC-BE ensemble scheme is
extremely efficient due to two reasons: i) the fully decoupled computation of velocity, pressure, and hydraulic
head resulting in smaller linear systems; ii) all ensemble members share the same coefficient matrix. The
algorithm is proved to be long-time stable under three parameter conditions without any time step conditions.
The numerical experiments show that the algorithm is first order as expected. The superiority of the ensemble
algorithm over the non-ensemble algorithm is also demonstrated in numerical tests. Realistic examples on a
curvy geometric domain simulating the karst aquifer is also presented.
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Archive for Rational Mechanics and Analysis, 33 (1969), pp.377-385.

18


