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Abstract
With the help of Generalized Estimating Equations, we identify locally D-
optimal crossover designs for generalized linear models. We adopt the vari-
ance of parameters of interest as the objective function, which is minimized
using constrained optimization to obtain optimal crossover designs. In this
case, the traditional general equivalence theorem could not be used directly
to check the optimality of obtained designs. In this manuscript, we derive a
corresponding general equivalence theorem for crossover designs under gen-
eralized linear models.
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1 Introduction

Crossover designs, also known as change-over or repeated measurement
designs, are widely used in many industrial, medical, and agricultural
research. In crossover experiments, the effect of treatments is carried over
in the periods following the period of their direct application. Crossover
designs have been extensively studied in literature (Bailey and Kunert, 2006,
Hedayat and Yang, 2005, Jones and Kenward, 2014).

Crossover designs have recently been used to address problems outside
of medical and agriculture research. In recent years, most corporate offices
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and organizations have adopted open office spaces over traditional cubical
office spaces. Booking.com conducted an experiment to assess different office
spacing efficiency and the case study was first reported in Pitchforth et al.
(2020). In the absence of literature on optimal cross-over designs for gener-
alized linear models (GLMs), traditional uniform designs are used. Uniform
design is optimal under a linear model but they are no longer a good choice
for non-Gaussian responses.

Over the years optimal crossover designs for normal responses have been
widely studied in the literature, however, there are several examples in real
life where responses are not normal and described by GLMs. Recently, Jankar
et al. (2020) provided an algorithm to search locally D-optimal crossover
designs in case of non-normal response, and showed that optimal designs
obtained for normal responses can be quite inefficient in the case of GLMs.
But, there was no guarantee that the designs obtained by their algorithm
were indeed optimal. In this manuscript, we derive a general equivalence
theorem specifically for crossover designs under GLMs, which can be used
to verify the optimality of proposed designs. Moreover, it provides an alter-
native that is faster and numerically more stable than the general algorithm
proposed in Jankar et al. (2020).

The General Equivalence Theorem is an important tool in optimum
experimental designs, which has been widely used for checking for the opti-
mality of designs in terms of the Fisher information matrix (Atkinson et al.,
2007, Fedorov, 1971, 1972, Fedorov and Leonov, 2014, Fedorov and Malyu-
tov, 1972, Kiefer and Wolfowitz, 1960, Whittle and Malyutov, 1973). Never-
theless, the traditional equivalence theorem does not apply to check the opti-
mality of obtained crossover designs. The optimal crossover designs under
GLMs discussed (Jankar et al. 2020) are identified using generalized estimat-
ing equations (GEEs) and are based on the variance matrix of the parameters
of interest. Since the variance matrix is asymptotically connected with the
inverse of the Fisher information matrix, it is natural to derive a condition
that can be used to check the optimality of designs (see Remark 1 for more
details).

For illustration purposes, we consider two real-life motivating examples.
First, we consider an experiment conducted at Booking.com to determine
the optimal office design. In the supplementary material, we discuss another
motivating example, an experiment conducted to investigate the effects of
various dietary starch levels on milk production. Kenward and Jones (1992)
discussed this dietary example along with the data set used for analysis
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(for more details see Jones and Kenward (2014)). The design used in both
these examples is a 4 × 4 Latin Square design with four periods and four
treatments.

The paper is organized as follows. To set ideas we describe notation and
definitions for crossover designs in Section 2. In Section 3 we propose and
derive two different versions of the general equivalence theorem for crossover
designs. More specifically, in Section 3.1 we use the variance of all parameter
estimates as an objective function, and in Section 3.2 we use the variance of
treatment effects as an objective function to derive two versions of the theo-
rem. We present illustration in Section 3.3 and real-life motivating examples
in Section 4.

2 Notation and Preliminaries

Consider a crossover trial with t treatments, n subjects, and p periods. The
responses obtained from these n subjects are denoted as Y1, . . . ,Yn , where
the response from the jth subject is Yj = (Y1j , . . . , Ypj)′. Let μij denote the
mean of a response Yij . To fix ideas, first, consider the following model (see,
Eq. (4.1) in Wu and Hamada (2009) and Bose and Dey (2009) for linear
model), which models the marginal mean μij for crossover trial as

g(μij) = ηij = λ + βi + τd(i,j) + ρd(i−1,j), (1)

where i = 1, . . . , p; j = 1, . . . , n; λ is the overall mean, βi represents the
effect of the ith period, τs is the direct effect due to treatment s and ρs is
the carryover effect due to treatment s, where s = 1, . . . , t and g is the link
function.

In matrix notation, under baseline constraints β1 = τ1 = ρ1 = 0 we have
β = (β2, . . . , βp)′ ,τ = (τ2, . . . , τt)′ and ρ = (ρ2, . . . , ρt)′, which defines the
parameter vector θ = (λ, β′, τ ′, ρ′)′. The linear predictor corresponding to
the jth subject, ηj = (η1j , . . . , ηpj)′, can be written as

ηj = Xjθ.

The corresponding design matrix Xj can be written as Xj = [1p, Pj , Tj ,
Fj ], where Pj is p× (p−1) such that Pj = [0(p−1)1, Ip−1]′; Tj is a p× (t−1)
matrix with its (i, s − 1)th entry equal to 1 if subject j receives the direct
effect of the treatment s (≥ 2) in the ith period and zero otherwise; Fj is a
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p× (t−1) matrix with its (i, s−1)th entry equal to 1 if subject j receives the
carryover effect of the treatment s (≥ 2) in the ith period and zero otherwise.

If the number of subjects n and the number of periods p are fixed, then
the goal is to determine the number of subjects assigned to different treat-
ment sequences through some optimality criterion. As the number of peri-
ods p is fixed, each treatment sequence will be of length p and a typical
sequence can be written as ω = (t1, . . . , tp)′ where ti ∈ {1, . . . , t}. Now let
Ω be the set of all such sequences and nω denote the number of subjects
assigned to sequence ω. Then the total number of subjects n can be writ-
ten as n = Σω∈Ωnω, nω ≥ 0. A crossover design ξ in approximate theory is
specified by the set {pω, ω ∈ Ω}, where pω = nω/n is the proportion of sub-
jects assigned to treatment sequence ω. As denoted by Silvey (1980), such a
crossover design ξ can be written as follows:

ξ =
{

ω1 ω2 . . . ωk

p1 p2 . . . pk

}
, (2)

where k is the number of treatment sequences involved, ωi is the ith treat-
ment sequence and pi is the corresponding proportion of units allocated to
that support point, such that

∑k
i=1 pi = 1, for i = 1, . . . , k. Note Jankar

et al. (2020) observed that, in the case of non-uniform allocations, only
a few sequences have non-zero proportions. Hence in our illustrations, we
consider Ω to be the collection of only those sequences that have non-zero
allocations.

Generalized estimating equations are quasi-likelihood equations that
allow us to estimate quasi-likelihood estimators (Prentice, 1988, Zeger et al.,
1988). In crossover trials, it is typical to make an assumption that the obser-
vations from the same subject are correlated while the observations from
different subjects are independent (Jones and Kenward 2014). This depen-
dency among repeated observations from the same subject can be modeled
by the “working correlation” matrix Cα, which is a function of correlation
coefficient α. If Cα is the true correlation matrix of Yj , then from the defi-
nition of covariance we can write

Cov(Yj) = Dj
1/2CαDj

1/2,

where Dj = diag
(
V ar(Y1j), . . . , V ar(Ypj)

)
. Let us denote Cov(Yj) by Wj .

In Zeger et al. (1988) (equation (3.1)) it was shown that for repeated
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measurement models, the generalized estimating equations (GEE) are
defined to be

n∑
j=1

∂μj
′

∂θ
Wj

−1 (Yj − μj) = 0,

where μj = (μ1j , . . . , μpj)
′ and the asymptotic variance for the GEE estima-

tor θ̂ (see Zeger et al. (1988), equation (3.2)) is

Var(θ̂) =

⎡
⎣ k∑

j=1

npj
∂μj

′

∂θ
Wj

−1 ∂μj

∂θ

⎤
⎦

−1

= M−1, (3)

where ∂μj
′

∂θ = Xj
′diag

{
(g−1)′(η1j), . . . , (g−1)′(ηpj)

}
and j stands for the jth

treatment sequence. In Section 3, we will define M explicitly for crossover
designs. Later, we consider the situation where direct treatment effects are
studied specifically.

Remark 1 Note that the subject effect term is not included in the model
(1). In this work, GLM is used to describe the response and hence the Fisher
information matrix depends on the model parameters. Since we are consider-
ing the local optimality approach, an educated guess for the subject effect, if
included, will be needed. But, from a design point of view, the subject effect
has to be treated random. In model (1), the link function is used to model
only the mean response and hence we are free to choose a variance-covariance
matrix. So, instead of including a random subject effect in the model, we
choose a working variance-covariance matrix through GEE to capture the
effect of a subject (see Appendix A.3 in Stroup et al. (2018), Fitzmaurice
et al. (2011), Jankar et al. (2020) and references therein).

Remark 2 The general equivalence theorem describes the optimality cri-
teria in terms of the Fisher information matrix. The information matrix
for optimal crossover designs under GLMs is defined as the inverse of the
variance-covariance matrix of parameters of interest through GEE, which is
easier to obtain and works similarly to the Fisher information matrix. Here
we assume that the responses from a particular subject are mutually corre-
lated, while the responses from different subjects are uncorrelated. According
to Jankar et al. (2020), the obtained optimal designs are robust to the choices
of such working correlation matrices.
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As mentioned in Atkinson et al. (2007), the general equivalence theo-
rem can be viewed as a consequence of the result that the derivative of
a smooth function over an unconstrained region is zero at its minimum.
In this manuscript, we derive the general equivalence theorem for crossover
designs by calculating the directional derivative of an objective function Φ(ξ)
expressed in terms of M(ξ). Consider ξ̄i to be the design that puts unit mass
at the point xi, i.e., the design supported only at xi, where i = 1, 2, . . . , k.
Let ξ′

i = (1 − h)ξ + hξ̄i. Then the derivative of Φ(ξ) in the direction ξ̄i or xi

in case of D-optimal criterion is

φ(xi, ξ) = lim
h→0+

1
h

[Φ(ξ′
i) − Φ(ξi)] = − lim

h→0+

1
h

[ln det(M(ξ′
i)) − ln det(M(ξi))],

and ξ is D-optimal if and only if miniφ(xi, ξ) = 0 and φ(xi, ξ) = 0 if pωi
> 0,

where this minimum is occurring at the points of support of design.
In the case of crossover designs and estimates using generalized estimat-

ing equations, a different approach compared to the one mentioned above is
needed as the design points are finite and pre-specified for crossover designs.
We use the technique used in the supplement materials of Yang et al. (2016).
Instead of using ξ′

i = (1 − h)ξ + hξ̄i = ξ + h(ξ̄i − ξ), they used pr + uδ
(r)
i ,

where pr and δ
(r)
i are defined below. Therefore, the directional derivative

φ(u, pr) of the objective function is equal to ∂Φ(pr +uδ
(r )
i )

∂u

∣∣∣
u=0

.

Here is the outline of the general equivalence theorem in the case of
crossover designs. Note that 0 ≤ pi < 1 for i = 1, . . . , k, and since∑k

i=1 pi = 1 we may assume without any loss of generality that pk > 0. Define
pr = (p1, . . . , pk−1)′, and Φ(pr) = − ln det(M(p1, . . . , pk−1, 1 − ∑k−1

i=1 pi)).
Let δ

(r)
i = (−p1, . . . ,−pi−1, 1−pi, −pi+1, . . . ,−pk−1)′ for i = 1, . . . , k−1. δ

(r)
i

are defined in such a way that the determinant |(δ(r)
1 , . . . , δ

(r)
k−1)| = pk �= 0.

Hence, δ
(r)
1 , . . . , δ

(r)
k−1 are linearly independent and thus can serve as the new

basis of

Sr = {(p1, . . . , pk−1)′|
k−1∑
i=1

pi < 1, and pi ≥ 0, i = 1, . . . , k − 1}.
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Note that negative ln det is a convex function on a set of positive definite
matrices. Hence, pr minimizes Φ(pr) if and only if along each direction δr

i ,

∂Φ(pr + uδ
(r)
i )

∂u

∣∣∣∣∣
u=0

{
= 0 if pi > 0
≥ 0 if pi = 0

3 Equivalence Theorems for Crossover Designs

As defined earlier, Cα is the “working correlation” matrix and hence is a
positive definite and symmetric. So, there exists a square matrix R such that
Cα

−1 = RT R. Then the inverse of the variance of the parameter estimates
through GEEs is as follows:

M =
k∑

j=1

npj
∂μj

′

∂θ
Wj

−1 ∂μj

∂θ
=

k∑
j=1

npjXj
T GjDj

− 1
2 Cα

−1Dj
− 1

2 GjXj (4)

,where Gj = diag
{
(g−1)′(η1j), . . . , (g−1)′(ηpj)

}
. Equation 4 can be further

simplified as,

M =
k∑

j=1

npj(Xj
∗)T (Xj

∗),

where Xj
∗ = RDj

− 1
2 GjXj .

3.1 Equivalence Theorem when Objective Function is Variance of
Parameter Estimates In this section, we present the equivalence theorem
for crossover design when the objective function is a determinant of the vari-
ance of parameter estimates. We also present a special case of the theorem
when there are only two treatment sequences involved in the design.

Theorem 1 (General Equivalence Theorem for Crossover Design
when the objective function is |V ar(θ̂)|):Consider the design ξ with k
treatment sequences as defined in (2). Then, (a) The set of optimal designs
is convex.

(b) The design ξ is D-optimal if and only if

trace
(
Xi

∗M(ξ)−1Xi
∗T

){
= m if pi > 0
≤ m if pi = 0

,
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for each pi ∈ [0, 1], where pi is the allocation corresponding to point ωi of
design ξ for all i = 1, 2, . . . , k, and m is the number of parameters in θ.

Proof of Theorem 3.1:
Let k be the number of treatment sequences involved in the experiment

and ξ be any design, then Φ(M(ξ)) = − ln det(M(ξ)).
Proof of (a):

Let ξ∗
1 and ξ∗

2 be optimal designs i.e.,

Φ[M(ξ∗
1)] = Φ[M(ξ∗

2)] = minξΦ[M(ξ)]

and let ξ∗ = (1 − γ)ξ∗
1 + γξ∗

2 , for 0 ≤ γ ≤ 1. Φ[M(ξ)] = − ln det(M(ξ)) is
convex on set of positive definite matrices (Boyd and Vandenberghe, 2004).
Therefore,

Φ[M(ξ∗)] ≤ (1 − γ)Φ[M(ξ∗
1)] + γΦ[M(ξ∗

2)] = minξΦ[M(ξ)],

which proves the optimality of ξ∗.
Proof of (b):

We have pr = (p1, p2, . . . , pk−1)′ and δ
(r)
1 = (1 − p1, −p2, . . . ,−pk−1)′,

δ
(r)
2 = (−p1, 1 − p2, . . . ,−pk−1)

′
, . . . , δ

(r)
k−1 = (−p1, −p2, . . . , 1 − pk−1)′.

Hence, pr + uδ
(r)
1 = (p1 + u(1 − p1), (1 − u)p2, . . . , (1 − u)pk−1)

′ ,
pr + uδ

(r)
2 = ((1 − u)p1, p2 + u(1 − p2), . . . , (1 − u)pk−1)

′ , . . . ,
pr + uδ

(r)
k−1 = ((1 − u)p1, (1 − u)p2, . . . , pk−1 + u(1 − pk−1))

′ .

The determinant of (δ(r)
1 ,· · ·, δ(r)

k−1) is equal to 1−(p1+ p2+ · · ·+ pk−1)=pk.
Then for design with k treatment sequences we can write M as,

M(pr)=
k∑

j=1

npj(Xj
∗)T (Xj

∗)=np1(X1
∗)T (X1

∗) + np2(X2
∗)T (X2

∗) + · · ·

+npk−1(Xk−1
∗)T (Xk−1

∗)+n (1 −(p1+ p2 +· · · + pk−1)) (Xk
∗)T (Xk

∗)

For illustration purpose consider the direction δ
(r)
1 , and calculations for other

directions can be done similarly,

Φ(pr + uδ
(r )
1 ) = − ln det

[
M

({p1 + u(1 − p1), (1 − u)p2, . . . , (1 − u)pk−1}′) ]

= − ln det
[
n {p1 + u(1 − p1)} (X1

∗)T (X1
∗)

+ n {(1−u)p2} (X2
∗)T (X2

∗)+· · · +n {(1−u)pk−1} (Xk−1
∗)T (Xk−1

∗)
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+ n(1 − u) {1 − (p1 + p2 + · · · + pk−1)} (Xk
∗)T (Xk

∗)
]

= −m ln n − ln det[M (u, pr )] = −m ln n + Φ(r)(u),

where M(u, pr) = M (pr +uδ
(r )
1 )

n , and Φ(r)(u) = − ln det[M(u, pr)].
The directional derivative of the above objective function along one specific
direction for a design with k treatment sequences can be calculated as follows:

φ(u, pr ) =
∂Φ(pr + uδ

(r )
1 )

∂u
= lim

h→0

1

h

[
Φ(r)(u + h) − Φ(r)(u)

]

= − lim
h→0

1

h

{
ln det [M (u + h, pr )] − ln det [M (u, pr )]

}

= − lim
h→0

1

h

{
ln det

[
M (u, pr ) + h(1 − p1)X1

∗TX1
∗ − hp2X2

∗TX2
∗ − · · ·

− hpk−1Xk−1
∗TXk−1

∗ − h (1 − (p1 · · · + pk−1)) Xk
∗TXk

∗]
detM (u, pr )−1}

= − lim
h→0

1

h

{
ln det

[
M (u, pr )M (u, pr )−1 + h

{
X1

∗TX1
∗ − M (pr )

}
M (u, pr )−1]}

= − lim
h→0

1

h

{
ln det

[
Ip + h

{
X1

∗TX1
∗ − M (pr )

}
M (u, pr )−1]}

Using the approximation of determinant det(I+hA) = 1+htrace(A)+O(h2)
(Bornemann 2010) we get,

= −limh→0
1
h

{
ln

(
1+htrace

[{
X1

∗T X1
∗−M(pr)

}
M(u, pr)−1

]
+O(h2)

) }

And using ln(1 + t) = t + O(t2) we get,

= − lim
h→0

1

h

{
htrace

[
(X1

∗TX1
∗ − M (pr ))M (u, pr )−1

]
+ O(h2)

}

= −trace
[
(X1

∗TX1
∗ − M (pr ))M (u, pr )−1]

= trace
(
M (pr )M (u, pr )−1

)
− trace

(
X1

∗M (u, pr )−1X1
∗T

)

∂Φ(pr + uδ
(r )
1 )

∂u

∣
∣
∣
∣
∣
u=0

= m − trace
(
X1

∗M (pr )−1X1
∗T

)
(5)

The proof follows by equating the above expression in (5) to zero.

3.2 Equivalence Theorem when Objective Function is Variance of Treat-
ment Effect Estimates As the main interest usually lies in estimating the
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direct treatment effect contrasts, instead of working with the full variance-
covariance matrix of parameters estimate, in this section, we concentrate
only on the variance of the estimator of treatment effects Var(τ̂ ) given as

Var(τ̂ ) = HVar(θ̂)H ′, (6)

where H is a (t−1)×m matrix given by [0(t−1)1,0(t−1)(p−1), It−1,0(t−1)(t−1)]
and m = p+2t−2 is the total number of parameters in θ. Below, we present
the equivalence theorem for crossover design when the objective function is
a determinant of the variance of treatment effects estimate i.e., the determi-
nant of dispersion matrix.

Lemma 1 Consider function f : R
n
>0 → R>0, such that f(x) = 1∏n

i=1 xi

where x = (x1, x2, . . . , xn)′ ∈ R
n
>0. Then f(x) is a strictly convex function.

Proof of Lemma 1:
Let H be the Hessian matrix, i.e., the matrix of second-order partial

derivatives.

Then H = f(x)(D + qq′), where D is the diagonal matrix with ele-
ments 1/(x1)2, . . . , 1/(xn)2 and q is the column vector with elements
1/(x1), . . . , 1/(xn).
The lemma follows as H is positive definite. An alternative proof is provided
in the supplementary material.

Theorem 2 General Equivalence Theorem for Crossover Design
when objective function is |V ar(τ̂)| : Consider the design ξ with k
treatment sequences as defined in (2). Then, (a) The set of optimal designs
is convex. (b) The design ξ is D-optimal if and only if

trace
{
A(Xi

∗)T (Xi
∗)

} {
= t − 1 if pi > 0
≤ t − 1 if pi = 0

for each pi ∈ [0, 1], where A = M−1H ′ (HM−1H ′)−1
HM−1, pi is the

allocation corresponding to point ωi of design ξ for all i = 1, 2, . . . , k, and t
is number of treatments.

Proof of Theorem 3.2: Let k be the number of treatment sequences involved
in the experiment and ξ be any design, then Φ(M(ξ))=ln det(HM(ξ)−1H ′).
Proof of (a): Let ξ∗

1 and ξ∗
2 be optimal designs i.e.,

Φ[M(ξ∗
1)] = Φ[M(ξ∗

2)] = minξΦ[M(ξ)]
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and let ξ∗ = (1 − γ)ξ∗
1 + γξ∗

2 , for 0 ≤ γ ≤ 1.
Since we are using the D-optimality criterion, we prove the following Eq. 7
to prove the optimality of ξ∗.

|HM(ξ∗)−1H ′| ≤ (1 − γ)|HM(ξ∗
1)−1H ′| + γ|HM(ξ∗

2)−1H ′|. (7)

Since both M(ξ∗
1) and M(ξ∗

2) are positive definite, we can find a non-singular
matrix O−1 such that M(ξ∗

1) = OOT and M(ξ∗
2) = OΛOT , where Λ =

diag{λ1, . . . , λm} is a m×m diagonal matrix (see page 41 Rao 1973). In this
situation, M(ξ∗) = O((1 − γ)I + γΛ)OT . Then (7) is equivalent to

|G((1 − γ)I + γΛ)−1GT | ≤ (1 − γ)|GGT | + γ|GΛ−1GT |, (8)

where G = H(OT )−1. According to Theorem 1.1.2 in Fedorov (1972),

|G((1 − γ)I + γΛ)−1GT | =
∑

1≤i1<···<iq≤m

|GT [i1, . . . , iq]|2
q∏

l=1

1
(1 − γ) + γλil

,

where GT [i1, . . . , iq] is the q × q sub-matrix of GT consisting of the i1, . . . , iq
rows of GT . Similarly,

(1−γ)|GGT |+γ|GΛ−1GT |=
∑

1≤i1<···<iq≤m

|GT [i1,. . ., iq]|2
(
1−γ+γ

q∏
l=1

1
λil

)
.

Then (8) is true if

q∏
l=1

1
(1 − γ) + γλil

≤ 1 − γ + γ

q∏
l=1

1
λil

. (9)

Since f(x) = 1∏q
i=1 xi

is convex function (from Lemma 1), we have
f ((1 − γ)1 + γλ) ≤ (1−γ)f(1)+γf(λ), where λ = (λi1 , · · · , λiq) and hence
the result follows. Proof of (b):

M (pr ) = np1(X1
∗)T (X1

∗) + np2(X2
∗)T (X2

∗) + · · · + npk−1(Xk−1
∗)T (Xk−1

∗)

+ n (1 − (p1 + p2 · · · + pk−1)) (Xk
∗)T (Xk−1

∗).

Φ(pr + uδ
(r )
1 ) = Φ

({p1 + u(1 − p1), (1 − u)p2, . . . , (1 − u)pk−1}′)

= ln det
[
H

{
M

({p1 + u(1 − p1), (1 − u)p2, . . . , (1 − u)pk−1}′) }−1
H ′]

= −(t − 1) ln n + ln det

[
H

{
{p1 + u(1 − p1)} (X1

∗)T (X1
∗)
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+ {(1 − u)p2} (X2
∗)T (X2

∗) + · · · + {(1 − u)pk−1} (Xk−1
∗)T (Xk−1

∗)

+ (1 − u) {1 − (p1 + p2 + · · · + pk−1)} (Xk
∗)T (Xk

∗)
}−1

H ′
]

= −(t − 1) ln n + ln det
[
HM (u, pr )−1H ′

]
= −(t − 1) ln n + Φ(r)(u),

where now Φ(r)(u) = ln det
[
HM(u, pr)−1H ′].

Consider direction δ
(r)
1 , then the directional derivative of the above objective

function for a design with k treatment sequences can be calculated as follows:

φ(u, pr ) =
∂Φ(pr + uδ

(r )
1 )

∂u
= lim

h→0

1

h

[
Φ(r)(u + h) − Φ(r)(u)

]

= lim
h→0

1

h

{
ln det

[
HM (u + h, pr )−1H ′

]
− ln det

[
HM (u, pr )−1H ′

]}

= lim
h→0

1

h

{
ln det

[
H

{
(1 − μ − h)M (pr ) + (μ + h)(X1

∗)T (X1
∗)

}−1

H ′
]

− ln det
[
HM (μ, pr )−1H ′

] }

= lim
h→0

1

h

{
ln det

[
H

{
M (u, pr ) − h

(
M (pr ) − (X1

∗)T (X1
∗)

)}−1

H ′
]

− ln det
[
HM (u, pr )−1H ′

]}

= lim
h→0

1

h

{
ln det

[
H

{
[M (u, pr )]

[
I − hM (u, pr )−1

(
M (pr ) − (X1

∗)T (X1
∗)

)]}−1

H ′
]

× det
[
HM (u, pr )−1H ′

]−1
}

= lim
h→0

1

h

{
ln det

[
H

{[
I−hM (u, pr )−1

(
M (pr )−(X1

∗)T (X1
∗)

)]−1

[M (u, pr )]−1

}
H ′

]

× det
[
HM (u, pr )−1H ′

]−1
}

Assuming h is sufficiently small we use the binomial series expansion (I +
hX)−1 =

∑∞
i=0(−tX)i to obtain,

φ(u, pr) = lim
h→0

1
h

{
ln det

[
I + hB + O(h2)

]}
,

B=HM(u, pr)−1
[
M(pr) − (X1

∗)T (X1
∗)

]
M(u, pr)−1H ′ [HM(u, pr)−1

H ′]−1
.
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Using ln det
[
I + hB + O(h2)

]
= htrace(B) + O(h2) (Withers and Nadara-

jah 2010),

φ(u, pr ) = trace
{
HM (u, pr )−1

[
M (pr ) − (X1

∗)T (X1
∗)

]
M (u, pr )−1H ′

× [
HM (u, pr )−1H ′]−1 }

φ(u, pr )|u=0 = trace
{
HM (pr )−1

[
M (pr ) − (X1

∗)T (X1
∗)

]
M (pr )−1H ′

× [
HM (pr )−1H ′]−1 }

= trace

{
I(t−1) − HM (pr )−1(X1

∗)T (X1
∗)M (pr )−1H ′

× [
HM (pr )−1H ′]−1

}

= (t − 1) −trace

{
HM (pr )−1(X1

∗)T (X1
∗)M (pr )−1H ′ (

HM (pr )−1H ′)−1
}

= (t − 1) −trace

{[
M −1H ′ (

HM −1H ′)−1
HM −1

]
(X1

∗)T (X1
∗)

}
(10)

The proof follows by equating the above expression in (10) to zero.

3.3 Illustration To illustrate the results of the above general equiv-
alence theorems, we consider a design space {AB, BA} has k = 2, p = 2.
Since we are considering a local optimality approach, for illustration pur-
poses we assume that the parameter values are θ = (λ, β2, τB, ρB)′ =
(0.5, −1.0, 4.0, −2.0)′. Note that we need to assume parameter values before
calculating the optimal proportions. Considering the AR(1) correlation
structure with α = 0.1, i.e.,

Cα =
(
α|i−i′|

)
=

(
1 α
α 1

)
,

for the assumed parameter values the optimal proportions are p1 = p2 =
0.5. The graph of the objective function, Φ(p1) = − ln det(M(p1)) and its
directional derivative trace

(
X1

∗M(p1)−1X1
∗T

) − m w.r.t p1 ∈ [0, 1] are
shown in Fig. 1.

Graphs in Fig. 1 verify that the minimum of the objective function is
located at p1 = 0.5 and directional derivative is zero at p1 = 0.5. Using
Theorem 1, we conclude that for assumed values of parameters, design

ξ =
{

AB BA
0.5 0.5

}
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is the D-optimal design when the objective function is V ar(θ̂).
Considering V ar(τ̂ ) as the objective function, the graph of the objec-

tive function, Φ(p1) = ln det[HM(p1)−1H
′
] and it’s directional derivative

trace
{
A(X1

∗)T (X1
∗)

} − (t − 1) w.r.t p1 ∈ [0, 1] are shown in Fig. 2.
Graphs in Fig. 2 verify that the minimum of the objective function is

located at p1 = 0.177 and directional derivative is zero at p1 = 0.177. Using
Theorem 2, we conclude that for assumed values of parameters, design

ξ =
{

AB BA
0.177 0.823

}

is the D-optimal design when the objective function is V ar(τ̂ ).

4 Real Example

In this section, we look at the application of the above equivalence theorems
to a real-life example discussed earlier. We obtain the D-optimal designs
by solving a system of equations given by the general equivalence theorems
when the objective functions are V ar(θ̂) and V ar(τ̂ ), respectively.

4.1 Work Environment Experiment Consider the data obtained from
the work environment experiment conducted at Booking.com (Pitchforth
et al. 2020). In recent years, many corporate offices and organizations
have adopted open office spaces over traditional cubical office spaces. Since
there were no previous studies to examine the effects of office designs in
workspaces, Booking.com conducted an experiment to assess different office
spacing efficiency.

In this experiment, there were a total of n = 288 participants. Partici-
pants were divided into four groups G1, G2, G3, G4 with each group having
an equal number of 72 individual participants. It is essentially a uniform
crossover design with p = 4 periods and t = 4 treatments. Periods were
named Wave 1, Wave 2, Wave 3, and Wave 4, where each Wave had a dura-
tion of 2 weeks. The four treatments involved in this experiment are office
designs named A (Activity-Based), B (Open Plan), C (Team Offices), and
D (Zoned Open Plan), as shown in the Fig. 3. During the experiment, each
group is exposed to different treatments over different periods depending on
its treatment sequence. At a particular given period, there was no interac-
tion between subjects from different groups. A Latin square design (see, for
example, Wu and Hamada (2009)) of order four has been used to determine
the sequence of exposure so that no group was exposed to the conditions in
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B) OPENA) ACT

C) TEAM D) ZONE.

Figure 3: The four office designs involved in Work Environment Experiment

the same order as any other group. The design is shown below in Table 1. A
total of m = 23 covariates was involved in the experiment, but we consider
only the most important ones in our fitted model.

The images are reproduced from the manuscript (Pitchforth et al., 2020),
under Creative Commons Attribution license (https://creativecommons.
org/licenses/by/4.0/).

For illustration purposes, consider the response commit count to illus-
trate the optimal crossover design for the Poisson response. The commit
count is the number of commits submitted to the main git repository by
each subject. In the fitted model, we examine three primary predictors: area,
wave, and carryover. Here, area represents the direct treatment effect, wave
denotes the period effect, and carryover represents the effect of the treat-
ment from the previous period. To illustrate the local optimality approach,
we assume specific parameter values θ = (2.0, 0.3, 0.8, −0.1, −2.0, 0.40,

Table 1: Latin square design
Groups ⇒ G1 G2 G3 G4

Period ⇓ (BADC) (CDAB) (DBCA) (ACBD)
Wave 1 OPEN TEAM ZONE ACT
Wave 2 ACT ZONE OPEN TEAM
Wave 3 ZONE ACT TEAM OPEN
Wave 4 TEAM OPEN ACT ZONE
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−2.0, −1.0, 0.3, −1.0)′, which lead to non-uniform allocations using the log
link function and AR(1) correlation structure with α = 0.1.

According to Theorem 3.1, the D-optimal design, i.e., the optimal propor-
tions, can be obtained by solving the following system of equations instead
of performing constrained optimization:

trace
(
Xi

∗M(pr)−1Xi
∗T

)
= 10,

for i = 1, 2, 3, 4. The resulting D-optimal design is the same as the one
obtained through constrained optimization, indicating that the design is
given by:

ξ =
{

BADC CDAB DBCA ACBD
0.2375 0.2894 0.2246 0.2485

}

is the D-optimal design when the objective function is V ar(θ̂).
Similarly, according to Theorem 3.2, for the objective function V ar(τ̂ ),

the D-optimal design can be obtained by solving the following system of
equations:

trace
{[

M(pr)−1H ′
(
HM(pr)−1H

′
)−1

HM(pr)−1

]
(Xi

∗)T (Xi
∗)

}
= 3,

for i = 1, 2, 3, 4. Again, the resulting D-optimal design is the same as the
one obtained through constrained optimization, indicating that the design
is given by:

ξ =
{

BADC CDAB DBCA ACBD
0.2900 0.2963 0.1734 0.2403

}

is the D-optimal design.

Remark 3 In Jankar et al. (2020), we study the effect of misspecification
of working correlation structures on optimal design. We calculate optimal
designs under two choices of unknown parameters for a misspecified work-
ing correlation structure. Then we calculate relative D-efficiency under two
parameter choices. The relative D-efficiency under two parameter choices
suggests that the effect of variance misspecification on the local optimal
designs is minimal. We also study the performance of proposed locally opti-
mal designs via sensitivity study in terms of relative loss of efficiency for
choosing assumed parameter values instead of true parameter values. The
relative loss of efficiency increases as we move away from true parameter
values. However, Fig 6. in Jankar et al. (2020) suggest that this loss of effi-
ciency does not go beyond 2%. We also calculate the optimal designs with
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all 24 sequences, by considering AR (1) correlation structure and different
values of α. We observe that in the case of non-uniform allocations, the opti-
mal design has more zeros than non-zero proportions; and these allocations
do not vary a lot as α changes, particularly for the sequences where we have
zero allocations.

5 Summary and Conclusion

In many experiments in real life, uniform designs are typically used. Uniform
designs are optimal in the case of a linear model i.e., when the response
is normally distributed. However, in situations where responses are non-
normal, the obtained optimal proportions are not necessarily uniform. In
this manuscript, we derive an expression for the general equivalence the-
orem to check for the optimality of identified locally D-optimal crossover
designs for generalized linear models. The equivalence theorem provides us
with a system of equations that can calculate optimal proportions without
performing constrained optimization of the objective function. We derive two
different versions of the general equivalence theorem, one with the objective
function V ar(θ̂) and the other with the objective function V ar(τ̂ ). We illus-
trate the application of these equivalence theorems on two real-life examples
and obtain the same set of optimal proportions by solving the system of
equations as obtained by performing constrained optimization. In our future
work, we plan to use the Bayesian approach to avoid guessing the values of
unknown parameters.
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