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Two aspects of hydrogel mechanics have been studied separately in the past. The first is the swelling
and deswelling of gels in a quiescent solvent bath triggered by an environmental stimulus such as a
change in temperature or pH, and the second is the solvent flow around and into a gel domain, driven
by an external pressure gradient or moving boundary. The former neglects convection due to external
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flow, whereas the latter neglects solvent diffusion driven by a gradient in chemical potential. Motivated
by engineering and biomedical applications where both aspects coexist and potentially interact with
each other, this work presents a poroelasticity model that integrates these two aspects into a single
framework, and demonstrates how the coupling between the two gives rise to novel physics in relatively
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1 Introduction

Hydrogels are typically crosslinked polymer networks swollen
by an aqueous solvent. They play increasingly important roles
in engineering and biomedical applications, ranging from
smart sensors and actuators” to organ-on-chip devices.*”
These applications take advantage of unique properties of
hydrogels, including their biocompatibility, softness, perme-
ability to solvent and biochemical factors, and sensitivity to
changes of ambient conditions. For example, hydrogels can
swell or shrink in response to changes in ambient temperature,
pH levels, light, electric field or ionic strength,®™® with novel
applications in autonomous flow control,'*"'* wearable sensors
and actuators™ and soft electronics."*"> They are also used
extensively in in vitro assays as a supporting matrix or scaffold
for growing and differentiating cells, and as a medium
for administering growth factors or chemoattractants to the
cells.'®"®

Mechanical modeling of hydrogels has largely been focused
on their swelling and deswelling behavior in response to
changes in the environment, e.g., in temperature or ionic
strength. The gel is typically surrounded by a stationary solvent,
with no externally induced flow. The environmental stimulus
disrupts the chemical equilibrium between the gel and the
surrounding medium, and a gradient of chemical potential
then drives the solvent into the polymer network (swelling)
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simple one-dimensional and two-dimensional flows.

against the elasticity of the network or out (deswelling). This
process has been elegantly modeled by Hong et al.,'® and the
same theoretical framework has been applied to explain how
gels respond to various environmental stimuli.'®**° In this
context, one notes two equivalent descriptions of the solvent
transport. The diffusive description adopts Fick’s law, making
the solvent flux proportional to the spatial gradient of a
chemical potential, with a diffusivity coefficient.’®** The alter-
native description uses Darcy’s law, making the flux propor-
tional to the spatial gradient of an osmotic pressure, with a
permeability coefficient.>****°*> Insofar as the chemical
potential and the osmotic pressure are essentially synonymous,
and the diffusivity and permeability are both phenomeno-
logical material properties on the continuum level, these two
descriptions are equivalent.'® Note, however, that such a Dar-
cian description does not represent the Darcy flow in the
classical sense, driven by an external pressure gradient. As in
the diffusive description, there is no momentum balance for
the solvent inside the gel, and the solid momentum equation,
V.65 = 0, allows no influence from the solvent.'®*° Therefore,
nomenclature notwithstanding, this series of studies has
focused on diffusive solvent transport only.

Complementary to the above, convective solvent transport
takes place owing to an external flow driven by a pressure
gradient or boundary motion as in classical fluid mechanics.
This process has been a mainstay in the mechanics of porous
media,** > but has received relatively little attention for
hydrogels.>® Part of the reason is the difficulty in posing
boundary conditions (BCs) on the interface between the hydro-
gel and the clear liquid, which play a central role in mediating
the solvent transports inside the gel and outside.’”*° Using
irreversible thermodynamics, we have proposed such BCs and
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tested them in relatively simple flows involving a solvent-gel
interface.*’** These results clearly suggest the importance of
convection as a distinct mode of solvent transport, which
may give rise to novel phenomena. For example, as the flow
compresses the gel in a capillary, the solvent flux may vary non-
monotonically with the pressure drop.** Flow-induced gel
compression and expansion have also been implicated in
kidney disease.*’

Is there value in integrating the diffusive and convective
mechanisms of solvent transport into a single unified theory?
There are emerging applications in which both act simulta-
neously, and potentially interact with each other. A prominent
example is hydrogel-based actuators in microfluidic chips.
The gel component swells or shrinks in response to changes
in the surrounding fluid, e.g.,, in pH or temperature, thus
effecting autonomous flow control by closing or opening micro-
111246748 Another notable application is wet-spinning of
hydrogels of nanocellulose and nanochitin into filaments.*>°
The gel is stretched and pulled through a bath of coagulant or
antisolvent, which extracts the solvent from the gel to produce a
solid fiber. In such processes, both chemically driven diffusion
and mechanically driven external flow play critical roles.

There has been little effort at integrating these two comple-
mentary mechanisms of solvent transport. Bacca and
McMeeking®" developed a viscoelastic model for gels by adding
a viscous stress due to the solvent to the elastic stress due to the
polymer network. But the solvent is assumed to deform affinely
with the solid network, and thus no interstitial flow is allowed.
More recently, Celora et al.>® presented a comprehensive model
for the swelling of polyelectrolyte gels with multicomponent
diffusion of ions. In the solvent bath surrounding the gel
domain, a viscous stress tensor is written out, formally allowing
an external flow. Inside the gel, however, the solvent transport
is entirely by Fickian diffusion. In the end, the model is applied
to a polyelectrolyte gel swelling in a stationary solvent bath.

In this paper, we seek to integrate convective and diffusive
solvent transport into a single theory, and then use it to explore
dynamics of hydrogels in which both play active roles. A
cornerstone of our model is a generalized Maxwell-Stefan
equation that expresses the total flux as the sum of a convective
flux and a diffusive flux. Only the former contributes to the
Darcy drag in the momentum equations. Another novelty is the
boundary conditions for the interface between the gel and
the solvent bath. From a thermodynamic argument, we derive
BCs that relate the velocity jumps across the interface to jumps
in the traction and the chemical potential. The model will be
applied to one- and two-dimensional (1D and 2D) problems to
demonstrate its utility and probe the interplay between the two
mechanisms of solvent transport.

valves.

2 Model formulation

We consider a hydrogel immersed in a flowing solvent, where it
swells or deswells by absorbing or exuding fluid while also
deforming due to the external flow of the solvent. Thus, the
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dynamics of the hydrogel is affected by both diffusion and
convection of the solvent. We account for the former by Fickian
diffusion driven by the gradient of the chemical potential, and
the latter as interstitial flow governed by poroelastic mechanics.
The hydrogel is composed of a solid and a fluid phase, with
volume fractions ¢ and ¢y, respectively, such that ¢¢ + ¢s = 1.
¢ is also commonly called the porosity. The external flow is
governed by the Stokes equations, with inertia neglected.
On the interface between the hydrogel and the external fluid,
we adopt a novel boundary condition on the solvent flux.

2.1 Chemical potential and Fickian flux
The formulation below follows mostly Hong et al.’s'® model for
hydrogel swelling in a quiescent solvent bath. The starting

point is a free energy for the solvent and polymer mixture:

1 X
Wm—fm{vCln<1+E>+1+VC], (1)

where m indicates the magnitude of the free energy, v is the
volume of the solvent molecule, and C is the solvent number
concentration per unit volume of the dry polymer. Thus, the
solvent volume fraction is ¢¢ = vC/(1 + vC). The first term inside
the brackets represents the entropy of mixing, and the second
term represents the enthalpy of mixing, where y is a dimen-
sionless parameter representing the hydrophilicity of the poly-
mer network. The enthalpy of the hydrogel promotes solvent
absorption if y < 0, and desorption if y > 0. We define the
chemical potential as u,(C) = 0W,,,/0C, and rewrite it in terms of

o
tm(¢e) = mv[In g + (1 — ¢g) + 2(1 — ¢¢)°]. (2)

In the original Flory-Huggins mixing energy,'>*>>* the para-

meter m = kgT/v, with kg being the Boltzmann constant and T
the absolute temperature. In reality, T may affect the gel in
multiple ways, including via m, y and the rigidity of the polymer
network. For simplicity, we will disregard the specific physical
mechanisms by which an environmental stimulus may affect
the chemical potential u,,. Instead, we will treat m as a generic
measure of p,, and vary m as the simplest way of effecting
changes in u,. Note, however, that pH changes cannot be
accommodated by the above free energy; the ionic transport
and electrostatic interactions must be included explicitly.>’

Following Hong et al.,'® we write Fick’s law for the number
of solvent molecules crossing a unit area per unit time as

CD 1 D
j—-Llg,, - Lo

— v 3
oy 7V i = Vi 3)

where D is a constant diffusivity, J = det(F) is the Jacobian of
solid deformation, F :I—i—VAuS being the solid deformation
gradient tensor, with the gradient V differentiating the solid
displacement ug in the Lagrangian frame attached to the solid
phase.*? Thus, J = 1/¢; is the gel volume expansion relative to
the dry-polymer reference state, which has zero strain and zero
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stress. Now the volume flux of the solvent is

. . ¢¢D
=yj = vy, 4
i = vi; oy ¥ Hm (4)

Using the chemical potential p,,(¢y) of eqn (2), we rewrite the
Fickian flux as

jr=—D(1 — ¢g(1 — 21 Vr. (5)

If we consider the prefactors multiplied onto V¢¢ to be
a “diffusivity”, then that diffusivity is non-constant for a
constant D.

Here we note a departure from Hong et al.’s nomenclature.®
To enforce “molecular incompressibility” of the solid and
liquid, Hong et al. introduced an osmotic pressure II as a
Lagrange multiplier, and appended it to the chemical potential
um of eqn (2). Since we will add solvent convection into the
model, the continuity equation will also require a hydrody-
namic pressure as Lagrange multiplier. Thus, we have left IT
out of p,,,, and will include it into a single p that contains both
hydrodynamic and osmotic pressures. This will become clearer
when we introduce the generalized Maxwell-Stefan equation next.

2.2 The generalized Maxwell-Stefan equation

Conceptually, the task of integrating convective and diffusive
solvent fluxes appears straightforward. The total solvent flux
should consist of a convective component determined by the
mechanics of the external flow, and a diffusive component
given by Fick’s law. A complication arises as diffusion of matter
generates “flow” or ‘“convection”, and the Fickian flux is
traditionally written as relative to an average velocity between
the two diffusing species.”*® There is much ambiguity in
choosing such an average velocity in general,>*® and the issue
is further complicated by an externally driven convection.

As a starting point, let us review the classical formulation of
Fickian diffusion in the absence of an externally driven flow.>*
For the solvent and solid network of the gel, we denote their
respective intrinsic phase-averaged velocity by v¢ and v, each
defined by averaging over a sufficiently small volume that
contains only the fluid or the solid.>® Then an average velocity
can be defined as v = ¢gvs + v, and the flux of each species is
written as

qr = P = P 1 g, (6)

qs = PsVs = PV +js: (7)

with jr = —js being the diffusive flux according to Fick’s law.
It appears difficult to adapt this textbook formulation to
accommodate an external flow. The average velocity v repre-
sents the movement of the center of volume of both species,
and cannot reflect the motion of the solvent relative to the
solid network. This can be seen more clearly by eliminating v
between eqn (6) and (7) to arrive at the Maxwell-Stefan equation:>*

N
v % ¢f¢s. (8)
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In the formulation of eqn (6) and (7), therefore, the relative
motion between the two phases can only be due to Fickian
diffusion j¢, and cannot be externally driven.

The conceptually opposite “convective limit” is where no
diffusion exists (js = 0) and the interstitial flow (v¢ — v) is driven
by a pressure gradient —Vp according to Darcy’s law:

Belvi —vs) = —fw, )

where u is the solvent viscosity, and k is the classical Darcy
permeability, which is a function of the porosity and pore
geometry. As hydrogels typically have high porosity,**>*>®
one may compute k from Stokes flows through a dilute array

of spherical particles of radius 7:°>%°
21 ¢

This permeability will be used in the rest of the paper.
To unify the two limits of pure diffusion and pure convec-
tion, we postulate the following on the basis of eqn (8) and (9):

v kg, (11)

brps  ude
which may be called the generalized Maxwell-Stefan equation.
It will replace Darcy’s law as the momentum equation for the
interstitial fluid in our unified model.

We should note that eqn (11) is not completely new; it has
appeared in somewhat different forms in other contexts. In
reverse osmosis and ultrafiltration, for example, Cussler®
derived a similar relationship by formulating the Fickian flux
of each phase relative to the solvent velocity. In concentrated
suspensions that undergo flow and diffusion, Peppin et al®
argued for an equivalency between Darcy’s law and Fick’s law,
recasting both into a “modified Darcy’s law” of a similar form.
Hennessy et al.>® added a “mechanical pressure” to the osmotic
pressure in the chemical gradient, thus arriving at a solvent flux
that resembles eqn (11).

2.3 Governing equations

The solvent and solid fluxes, ¢ and ¢pgvs, each implicitly
contain a convective and a diffusive contribution, but these
do not appear explicitly in the continuity equations:

-

8(/? + V- (gpvr) =0, (12)
g _

o " V- (¢gvs) = 0. (13)

The sum of the two equations gives a divergence-free condition
for the average velocity: V-(¢vs + dgvs) = 0.

As in prior poroelastic models,******%> the momentum
equations are essentially statements of force balance in the
absence of inertia. For the solvent phase, we ignore the Brink-
man term as scaling arguments show that the viscous stress can
be dropped in favor of the Darcy drag.®® This is commonly done
in poroelastic models.>**® Thus, the solvent executes Darcy
flow. But Darcy’s law must be replaced in our context by the
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generalized Maxwell-Stefan equation:
(14)

In place of the solid-phase momentum equation, we adopt the

total force balance for both phases:**%?

v'((bsas - pI) =0,

where 6 is the solid stress tensor, and ¢s6s is Terzaghi’s
effective stress.”® The solid velocity v, is related to the solid
displacement ug by vg = dug/dt. For the solid stress a5, we adopt
the neo-Hookean elasticity model:

05 = ﬂs.ﬁl(F'FT =D+ A - 1),

where u and g are the Lamé constants of the solid network
phase. The neo-Hookean model is more general than the linear
or weakly nonlinear models of earlier studies, e.g. ref. 19, 31
and 64. Note also that ¢, contributes to the overall force balance
of the gel via the Terzaghi stress ¢¢0, whereas prior models
often adopted an elastic stress tensor for the entire gel as a
continuum.

(15)

(16)

The external flow is treated as inertialess Stokes flow:

VV=0, (17)

V-(E - PI) = 0, (18)

where V and P denote the velocity and pressure of the external
fluid, and X = y[VV + (VV)"] is the viscous stress tensor with the
fluid viscosity u.

2.4 Boundary conditions

Two general BCs come from the continuity of fluid flow and
total traction balance on the interface between the hydrogel
and the solvent outside:

n(V — vg) = pm-(vg — vy),
n-(E - PI) = n'(d)sds - pl);

where n is the outward normal vector on the hydrogel surface.
Eqn (19) ensures volume conservation of fluid flowing through
the interface. Eqn (20) represents the balance of the tractions
on both sides of the interface, where we have neglected the
surface tension and the Brinkman viscous stress. However,
additional boundary conditions are needed as both the fluid
and solid phases in the gel have their own momentum
equation.

In the convective limit (jz = 0), Young et al.*>*"** used the
principle of positive entropy production to derive the
following BCs:

(19)

(20)

UV — vn = pn-En — P+ p), (21)

UV — vg)t = fnXt, (22)

where t is the tangential vector along the interface, and the
positive coefficients 1 and S are the interfacial penetration
length and slip length, respectively. These conditions corre-
spond to BC2 of ref. 41 and 43, with some notational
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simplifications as explained in Appendix A. For the current
purpose, we follow a similar procedure to extend eqn (21) to
account for diffusive flux across the gel-solvent interface (see
Appendix A for details). The new BC thus derived is:

,u(V—vS)-n:r/(m)}n—P—o—p—o—HTm).

(23)

Now eqn (19), (20), (22) and (23) form the complete set of BCs.
The ‘“interfacial penetration” BC of eqn (23) states explicitly
that the solvent flux across the interface depends on the jump
in the fluid normal stress as well as the jump in chemical
potential. During swelling of the hydrogel, the solvent diffuses
into the gel where the chemical potential is lower (i, < 0).
Meanwhile, an externally imposed normal stress may inject the
solvent into the gel. The solvent flux is the sum of both effects,
with u/n representing the resistance to the interfacial transport.

2.5 Comparison with previous models

In the above, we have formulated a model that integrates
solvent convection and diffusion in hydrogels via the governing
equations and the new boundary condition. It may be interest-
ing to point out some connections to and distinctions from
prior poromechanical models.

In the governing equations, the key difference is the inclu-
sion of the fluid mechanics for the interstitial flow inside the
gel. This necessitates a separate momentum equation for the
pore fluid, and an explicit account of the solvent flux as the sum
of a diffusive and a convective part (eqn (11)). If we neglect the
interstitial fluid mechanics and set the flow outside the gel to
nil, we recover the gel-swelling models in a quiescent solvent
bath.">'®** The generalized Maxwell-Stefan equation is algeb-
raically similar to the expression for the diffusive flux in
swelling models, e.g. ref. 19, 65 and 66. Typically, these models
add an osmotic pressure IT to the chemical potential of our
eqn (2), such that the solvent flux equals our eqn (4) plus an
extra term proportional to VII. Insofar as II and our p are both
Lagrange multipliers to enforce volume conservation, the two
formulations are algebraically equivalent. One subtle distinc-
tion is that in prior swelling models, the coefficients before the
Vim and VIT terms are related (see eqn (22) of Drozdov et al.®®).
There is essentially one coefficient, which allows the flux to be
interpreted as either Fickian or Darcian. In our eqn (11),
however, the diffusivity D and hydraulic permeability k are
two independent parameters. This provides a means to distin-
guish the two kinds of fluxes unequivocally, even with simulta-
neous external flow and solvent diffusion.

The BCs on the gel-solvent interface is another essential element
of our model, and such interfacial transport is especially important
when solvent convection is included.”® Most studies of gel swelling
due to solvent diffusion, e.g. ref. 19, 25, 28 and 29, have imposed
continuity of chemical potential as a boundary condition on the
surface of the gel. In our notation, their BC amounts to

P—p-tr—o,

> (24)

signifying instantaneous equilibration between the pressure jump
and the chemical potential jump. An exception is the BC of
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Liu et al,”

1
‘ul:_in'vf?

P=p- v m°

(25)
which makes the solvent flux proportional to the interfacial jumps
in pressure and the chemical potential. It is interesting to compare
the BCs above with the diffusion-only limit of our interfacial
penetration BC of eqn (23), which can be realized by setting V
and X to 0 (no external flow). Using the volume conservation of
eqn (19), we reduce eqn (23) to

(26)

The diffusion limit of our BC, therefore, is essentially the BC of
eqn (25) but differs from the commonly used eqn (24); the latter
can be recovered by taking the additional limit of large interfacial
penetration § — 0.

Incidentally, eqn (24) incurs a singularity when applied to
gel swelling after a sudden change in the environment. This
implies a sudden change in y,, and, via eqn (24), a sudden
change in the pressure drop P — p across the interface. From
the interfacial traction balance (eqn (20)), this implies in turn a
sudden change in the solid normal stress: ¢s0snn = —im/v. This
would require an instantaneous strain in the solid, with solid
velocity v¢ — oo. In previous studies, one usually avoids
the initial singularity by starting the modeling with a pre-
established solid stress.’®'®** Our new BC of eqn (23), and
its diffusion-only limit of eqn (26), do not suffer from such a
singularity, nor does eqn (25).

2.6 Scaling

The permeability function of eqn (10) invokes the pore size r,
which is not explicitly accounted for in a homogenized theory
such as poroelasticity. Therefore, we take the characteristic
permeability k* = 2r%/9 as a phenomenological constant of
the porous medium. Then our problem has 10 physical para-
meters, k*, u, s, A5, 4, B, %, D, m and ¢y, and at least 1
geometric parameter L,. The initial porosity ¢y, sets a uniform
level of the chemical potential inside the gel, in equilibrium
with the exterior. After a sudden change in ambient condition,
Um jumps to a new value inside the gel to prompt swelling or
deswelling. The physical setup may be such that we prescribe
either a pressure drop P, or a far-field velocity V,. For the time
being, let us take V, as a prescribed parameter. Thus, we expect
9 dimensionless groups from the 12 parameters. Adopting L, as
the characteristic length, V. = usk*/(uL,) as the characteristic
velocity, and the network modulus pg as the characteristic
stress, we scale the variables as follows to render the governing
equations and BCs dimensionless:

(X‘,f) = (x,}‘)/L(),

us = u.v/L07 (O'S,Z,P,ﬁ) = (55727 P,p)/,us,

(V7V57vf) = (V7VS7Vf)/VC7 lT: IVC/L(M

(27)

where the overbar denotes the dimensionless variables. The
characteristic velocity V. is based on the ratio between the
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network rigidity and the Darcy drag. We prefer V. to the more
obvious choices, the convection velocity V, and diffusion velo-
city D/Ly, as these cannot accommodate the diffusion-only and
convection-only limits in a unified formulation. For conveni-
ence in parametric studies, we choose the following 9 dimen-
sionless groups:

(11, B) = (1. B)us/ (nVe),
A=D/(LoVe), K=Kk/Li, 1, ¢

Some combinations of the groups have familiar physical meanings.
For instance, Vo/4 = LV,/D forms a Péclet number, representing the
ratio of the convective solvent flux to the diffusive solvent flux of
eqn (5). VoK = uVo/(usLo) is the ratio between the viscous stress in
the fluid and the elastic stress in the solid network, and can be
viewed as an effective capillary number. Finally, 77 = yLo/k* is the
ratio between the interfacial penetration to the bulk permeability.
This will be a key parameter to solvent transport.

In discussing the results, we use only dimensionless quan-
tities and thus will omit the overbar hereafter. Substituting i,
(eqn (2)), jr (eqn (5)) and k = k*¢¢/¢s (eqn (10)) into the fluid
momentum equation, we summarize the dimensionless gov-
erning equations as follows:

As = ;“S/:uw m= rn/:usa

] (28)
Vo= Vo/Ve,

0

2 v () =0, (29)

99, _
ot +V- (¢sVs) =0, (30)
Vo= gy —v) - 422Gy

£
v'(¢sas - PI) =0, (32)
o= ¢ (F-F' —1) + AS%I, (33)
VV=0, (34)
VP = KV>V. (35)

The boundary conditions on the gel-fluid interface are:
n(V — vg) = ¢pm-(vg — vg), (36)
n'(E - PI) = n'(¢sas - pl)’ (37)
n(V—vy)=ynXn—P+p+minds+ ds+ X¢sz)]7

(38)
t-(V — vg) = fn-Xt. (39)

The far-field velocity V, serves as a BC for the external Stokes
flow (eqn (35)).

It is worthwhile to ponder a scheme of tuning the para-
meters to recover the diffusion-only and convection-only limits.
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In those limits, we should reproduce respectively the solutions
for quiescent swelling'®"'® and for flow through hydrogels.*>**
This is one way to demonstrate how our model unifies the two
aspects that have been previously studied separately. Toward
the diffusion-only limit, we need only reduce V, toward O.
Toward the convection-only limit, we need two conditions:
m — 0 and 4 — 0. The first removes the impetus for diffusion
across the interface. The second puts the Fickian flux j¢ of
eqn (5) to zero even though a gradient V¢¢ may arise from flow-
induced gel compression. As m is independent of 4, the Péclet
number V,/4 will not serve as a single ““dial”” that could push
our solution toward either of the two limits.

3 Results and discussion

The main objective of this paper is to present our new and
unified model. The three examples of this section serve to
validate the model against previous solutions in limiting cases,
and to illustrate interesting solutions inaccessible to previous
models.

3.1 Swelling and flow compression of hydrogel layer

Fig. 1 shows a gel layer of initial thickness L, under the
simultaneous action of two antagonistic mechanisms: com-
pression by a uniform flow of velocity V,, perpendicular to the
gel surface, and swelling due to an abruptly imposed chemical
potential jump across the interface. One can imagine this as the
result of a change in ambient temperature. Because of the small
spatial dimensions of microfluidic chips that employ hydro-
gels, the thermal equilibration occurs on a time scale much
shorter than that for gel swelling. Thus, for simplicity, one
typically imposes an abrupt and spatially uniform change in
ambient condition.'®?° The right side of the gel is held fixed by
a rigid but permeable mesh so that no displacement of the gel
skeleton is allowed: ug = 0. In such a 1D setup, no flow,
deformation, or spatial variation occurs along the y- or z-
direction. By simplifying the governing equations (eqn (29)-
(33)) and boundary conditions (eqn (36)-(38)) into their 1D
form, the system can be solved by the finite-difference method,
with the interface being tracked by Lagrangian mesh points.
Details are given in Appendix B. In the absence of flow, the 1D
swelling of hydrogel in a quiescent solvent has been studied
by Hong et al.'® and Yoon et al.** More recently, Xu et al.***>

| v Compression Swelling

Solvent

o
WL

Fig.1 The setup for a hydrogel layer undergoing simultaneous flow-
induced compression and thermodynamically-induced swelling.
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have obtained the solution for flow-compression without sol-
vent diffusion or swelling. The current model accounts for both
convection and diffusion of the solvent, and recovers the two
limiting cases under suitable conditions.

3.1.1 Swelling without external flow. We first consider
the limiting case of quiescent swelling without external flow
(Vo = 0). This is mostly because Yoon et al.®* have reported
experimental data for the process, which we can use to bench-
mark our model. Even in this limit, our model differs from
previous models'®®* in our new boundary condition (eqn (38)).
Thus, the diffusion limit provides a simplified setting for
exploring the role of the interfacial penetration 7 in the swelling
of the gel.

We adopt the geometric setup of Yoon et al.’s experiment,
with a planar gel layer attached to an impermeable solid
substrate on one face, and exposed to a solvent on the other
face (Fig. 1, except that the right boundary of the gel layer is
now impermeable). The substrate prohibits displacement in its
plane, and only allows swelling normal to the gel layer. Of the 9
dimensionless groups, V, = 0 for lack of an external flow, and K
also vanishes. Besides, the tangential slip coefficient  does not
appear in the current setup. Of the remaining 6 dimensionless
parameters, 5 can be evaluated based on experimental
evidence® (Table 1 and Appendix C). The only remaining
parameter is the interfacial penetration #. It is new to our
model and has never been reported experimentally before.
Thus, it will be treated as a free parameter in fitting
experimental data.

The interfacial penetration n governs the ease with which
the solvent crosses the interface of hydrogel, and is thus
important to the swelling kinetics. Fig. 2 depicts the displace-
ment of the gel surface ug; as a function of time for three #
values. As expected, higher 5 values correspond to faster swel-
ling, owing to enhanced solvent infiltration. However, the effect
quickly saturates; the swelling curve for n = 10 is already rather
close to the asymptotic limit of n — oo.

We also compare our ug; with Yoon et al.’s experimental data
gathered from gel layers of several initial thicknesses.
To normalize their results for various gel thicknesses, Yoon
et al. scaled time t in a way that is equivalent to rescaling our
dimensionless time as tA in our notation. Our model prediction
at # = 10 runs through the band of the experimental data,
offering a satisfactory fit given the degree of scatter in the data.
The value 5 = 10, according to earlier estimations,®® is repre-
sentative of the low-porosity hydrogels in the experiment.
Therefore, in the limit of no external flow, our model captures
the swelling dynamics of a gel layer in a quiescent solvent.
Note, however, that the data are also reasonably well fitted by
the curve for n — o0. In fact, Drozdov et al.®® have previously

Table 1 Five dimensionless model parameters for the swelling of a gel
layer in a quiescent solvent, estimated in Appendix C

s % m 4 b0
17.2

1.94 0.2 8.0 0.01

This journal is © The Royal Society of Chemistry 2024
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Fig. 2 Model predictions of the evolution of the interfacial displacement
us for a gel layer swelling in a quiescent solvent, for three 5 values, and
comparison with experimental data from Yoon et al.%

fitted Yoon et al’s data using the BC of eqn (24) based on
continuity of the chemical potential. This suggests that after
the initial moment, the swelling behavior quickly becomes
insensitive to the interfacial resistance to solvent penetration
represented by a finite . The latter effect must be sought in the
initial fast kinetics of swelling, where eqn (24) would have
encountered a singularity.

The swelling process can also be appreciated from the
temporal evolution of the ¢¢(x) profiles in Fig. 3, for n = 1
and 5 = 10. The horizontal dashed line indicates the low
porosity at the start of the simulation. Upon contact with the
external solvent, the jump in chemical potential across the
interface immediately pumps the solvent into the gel, via
the boundary condition of eqn (38) to raise the porosity inside
the gel layer, while the gel expands simultaneously (see the
t = 0.001 profile in panel a). In time, the high porosity extends
further into the depth of the gel layer, as ¢¢(x) approaches a
uniform steady-state profile, ¢¢,, = 0.44 for the current para-
meters. This value is determined by balancing the solid stress
and the interfacial jump of the chemical potential, ¢ o5 +
m(In ¢¢ + ¢ + xds>) = 0, based on eqn (37) and (38). At a larger
1, the interfacial equilibration occurs more quickly (Fig. 3b).
But the diffusion into the bulk of the gel takes time. The
equilibrium porosity ¢¢,, does not depend on #.

Even in this “pure diffusion” limit, both terms of the
generalized Maxwell-Stefan equation (eqn (11)) are at work.
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As the solvent enters the gel, it expands the polymer network
and creates an inhomogeneous solid stress field o5, and con-
sequently a gradient in the (osmotic) pressure p via the force
balance of eqn (32). The gradient of this pressure and the
gradient of the chemical potential both contribute to the
solvent flux, via the generalized Maxwell-Stefan equation.
In principle, therefore, one may identify a convective part and
a diffusive part in the solvent flux. This division will be further
explored in the following subsection.

3.1.2 Compression by external flow. After the hydrogel
swells to its equilibrium state, we turn on the external normal
flow of Fig. 1, and explore the interplay between the flow and
the swollen hydrogel. The temporal evolution of the porosity
profile is shown in Fig. 4. The normal flow compresses the
hydrogel, and the compression initiates from the downstream
boundary (x = 1) and is the most severe there. This is because
the Darcy drag accumulates downstream and the downstream
interface is fixed (us = 0). Eventually, the system reaches a
steady state at ¢ ~ 1, indicated by the black line in Fig. 4, with
the porosity ¢ decreasing monotonically downstream. This
behavior closely resembles our previous simulations of 1D

compression without the swelling effect.*>*?

However, a major
distinction is that in the current unified model, the chemical
potential gradient drives a diffusion flux, which is absent from
the earlier studies. Moreover, the chemical potential modifies
the pressure jump across the boundary via eqn (38). As a result,
the pressure p inside the hydrogel may be higher than the
external solvent pressure P thanks to the jump in chemical
potential. This contrasts the purely hydrodynamic scenario,****
where P must exceed p to drive the solvent into the hydrogel.
The competition between solvent convection and diffusion
can be probed by a parametric study. With increasing V,,
Fig. 5(a) shows progressively more severe compression of the
gel layer, with the greatest reduction in ¢ at the immobile
downstream boundary x = 1. Conversely, increasing the diffu-
sivity A results in less compression and a more uniform
porosity profile ¢ (Fig. 5b), as can be expected from the
diffusive flux of eqn (5). Interestingly, even in the limit of
4 — oo, the flat ¢(x) profile is still below the initial profile.
This is because the external flow produces an interfacial pres-
sure drop according to our boundary condition in eqn (38). This
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Fig. 3 The evolving porosity profile with (a) # = 1, and (b) 5 = 10, plotted at different times: t = 0.001, 0.01, 0.1, 0.5, 1. The vertical grey dashed line marks
the initial location of the interface, and the horizontal dashed line the initial ¢¢ profile.
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Fig. 4 The porosity profiles of a swollen hydrogel compressed by a
uniform flow at t = 0.01, 0.1, 0.2 and 1 (from pink to black lines) with
Vo = 0.2 and 5 = 1. The vertical dotted line marks the upstream surface of
the swollen gel before the external flow starts (t = 0), and the horizontal
dashed line indicates the uniform porosity at t = 0.

pressure drop in turn causes an interfacial compression, visible
in the ¢ = 0.01 profile of Fig. 4, that is inversely proportional to
the interfacial penetration #.** This effect cannot be compen-
sated for by strong diffusion, and as a result, the Péclet number
Pe = Vy/4 is of limited utility in the current context.

In steady state (v = 0), we can separate the solvent flux
explicitly into a convective and a diffusive component. Using
the generalized Maxwell-Stefan equation (eqn (31)) and the
solvent continuity across the interface (eqn (36)), we write V; as
the sum of a diffusive flux V4 and a convective V.

0 0,
Vo = ¢evr = —A(1 *2X¢f)%*%£= Va+Ve.
S

(40)
Even for a fixed Vj, its two parts V4 and V, vary through the
depth of the gel layer, their relative importance being con-
trolled by the porosity ¢¢. A high porosity, at light compression,
favors V. whereas severe compression favors Vy.

Fig. 6 plots the steady-state profiles of V4/V, for a range of V,
and 4 values. As Vy4/V, + V./V, = 1, the vertical distance from the
curve up to the gray dashed line at 1 represents the fraction of
the convective flux V,./V,. At the fixed 4 = 17.2, V4 is dominant as
diffusion accounts for more than 85% of the solvent flux
(Fig. 6a). For each of the V| values, V4 increases with x. This
is because the porosity ¢ declines downstream (Fig. 5a), and as
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Fig. 5
values (0.25, 0.5, 1, 2, 10, 100) and a fixed Vo = 0.2.
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a result V4 becomes more important relative to V. according to
eqn (40). Perhaps surprisingly, Fig. 6(a) shows that a stronger
external flow V, raises the proportion of diffusion relative to
convection. This is similarly because V, compresses the gel
layer to reduce ¢y. Another interesting feature is that the curve
becomes flat for small V,, implying a constant V4/V. ratio
throughout the gel. The overall momentum balance (eqn (32))
implies Op/0x oc O¢¢/Ox in this 1D case, as the solid stress o5 is a
function of the local strain, which in turn depends on ¢¢only. A
vanishing V, causes weak compression and a nearly constant
¢¢(x), and thus a nearly constant V,4/V, ratio. On the other hand,
if we keep V, constant and increase 4 (Fig. 6b), the proportion
of diffusion flux increases continuously toward 1, implying
domination by diffusion, as one may expect. Note that in
Fig. 6, V, and 4 have similar effects in favoring the diffusive
flux over the convective one. Thus, a naive application of the
Péclet number Pe = V,/4 would not be appropriate in this
analysis.

To sum up this section, the swelling of a gel layer in a
quiescent solvent bath can be accurately captured by our
unified model. Even in the absence of external flow, a con-
vective flux acts alongside a diffusive one. If an external flow is
imposed, the relative importance of the two mechanisms are
controlled by the dimensionless parameters V, and 4. Because
of the complication of gel compression that varies spatially
inside the gel, the interplay between solvent convection and
diffusion cannot be encapsulated by a Péclet number.

3.2 Dynamics of a spherical shell of hydrogel

Another well-studied problem is the swelling and deswelling of
a gel sphere.’®?***31:32 I the following, we consider the
somewhat more complex geometry of a spherical shell of
hydrogel (called the “gel shell” hereafter; Fig. 7). This is
motivated by recent experiments that aimed to manufacture
capsules from hydrogels.®®”® But our immediate goal is to use
this problem to demonstrate the coupling between solvent
diffusion and convection in a curvilinear geometry.

We first consider the swelling of a gel shell after a sudden
change in ambient condition in a quiescent solvent bath. Then
we study the simultaneous action of a sudden ambient change
and an expanding gas bubble at the center, which may arise
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(a) The steady-state porosity profiles for a series of Vg values (0.05, 0.2, 0.4, 1, 2) and a fixed 4 = 17.2; (b) the steady-state profiles for different 4
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Fig. 6 The steady-state profiles of the relative diffusive flux V4/V, for (a) increasing Vo values (Vo = 0.05, 0.2, 0.4, 1, 2) and a fixed 4 = 17.2; (b) increasing 4

values (4 = 0.25, 0.5, 1, 2, 10, 100) and a fixed Vo = 0.2.

Swelling

Hydrogel shell in iy
initial equilibrium ey, Wty
'3[1611 *

Swelling + Bubble growing

Fig. 7 Deformation of a spherical shell of hydrogel driven by swelling due
to an ambient stimulus, or by the simultaneous action of the ambient
stimulus and an expanding bubble inside the shell.

from chemical reaction®””° or nucleation following a tempera-

ture change. The first is a “pure diffusion” process, whereas the
second couples convection and diffusion. In this section, the
following parameters are fixed: A, =1.94, 7 =10, 4 =1 and y =
0.2. The parameter 4 = 1 is chosen to allow an evenly matched
competition between diffusion and convection.
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3.2.1 Swelling of a spherical shell in quiescent bath.
In keeping with convention,'® the dry-polymer state is taken
to be the reference state of zero solid stress. The dry shell has
an outer radius twice its inner radius, and the dry shell
thickness L, is used as the characteristic length. Put into
contact with a solvent at m = 4, the shell swells initially to
reach chemical and mechanical equilibrium with the solvent
inside and outside, with an initial inner radius a; = 1.19, outer
radius a, = 2.38 and uniform porosity ¢g = 0.408. This initial
equilibrium state is determined by balancing the osmotic
pressure p with the chemical potential on the one hand
(eqn (38)), and with the elastic tensile stress in the swollen
network on the other (eqn (37)). Now we impose a sudden
change of m from 4 to 6. This disrupts the chemical balance so
the solvent diffuses into the shell from both the inside and the
outside surface. There is no external flow, so V,, = 0. Similar to
the planar gel layer of Section 3.1, the 1D swelling of the gel
shell is solved by finite difference. See Appendix B for details.

Starting from the initial condition specified above, our
model predicts the subsequent swelling of the shell in the
quiescent solvent bath, eventually approaching a new chemical
and mechanical equilibrium. Fig. 8(a) illustrates this process
via the porosity ¢¢(r) profiles. As time progresses, the color of
the lines darkens from pink to black. For ease of description,
we divide the whole process roughly into three stages: (i)
interfacial swelling (blue arrows), (ii) bulk swelling (red arrows),
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Fig. 8 Swelling of the gel shell. (a) Temporal evolution of the ¢«(r) profile, with darkening colors indicating time progression: t = 0.01, 0.05, 0.1, 0.2, 0.5, 1,
2, 4. The blue, red and green arrows mark the 3 stages of swelling. The initial state is indicated by the lower horizontal grey dashed line, while the final
equilibrium by the upper one. (b) Non-monotonic evolution of the thickness of the hydrogel shell L (black line) and the inner radius a; (red dashed line).
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and (iii) solvent transportation from outside the shell to inside
(green arrows).

In the first stage, both surfaces of the gel absorbs solvent to
raise the local osmotic pressure, driven by the BC of eqn (26).
Toward the end of stage (i), the gel approaches the interfacial
balance represented by eqn (24). At the relatively large inter-
facial penetration n = 10, the interfacial swelling occurs quickly,
and is nearly complete by ¢ = 0.01; see the first pink profile in
Fig. 8(a).

In the second stage, roughly from ¢ ~ 0.01 to 0.2, the
interfacial regions swollen in the first stage at both surfaces
widen and spread toward the interior of the gel shell. The
interfacial swelling has produced higher pressure and chemical
potential locally, and both the pressure and the chemical
potential gradients drive the solvent transport into the interior
of the gel. This raises the porosity in the interior of the shell to
yield a relatively flat ¢¢(r) profile at the end of stage (ii). The
swelling of the bulk pushes the outer surface outward and the
inner surface inward, further shrinking the inner radius a; in
stage (ii) (Fig. 8b). Owing to the spherical geometry of the shell,
the decrease in g; incurs a tangential compression of the gel at
the inner surface, which for a time reduces the local ¢,
indicated by the small red arrow in Fig. 8(a). The end of stage
(ii) corresponds roughly to the ¢¢(r) profile becoming flat at the
inner surface.

At the start of stage (iii), the inner surface experiences an
inversion in the gradient 0¢¢/0r so that the ¢¢(r) profile assumes
a uniformly positive gradient; see the ¢ = 0.5 curve in Fig. 8(a).
Stage (iii) is thus dominated by a solvent flux from the outside
to the inside of the shell, driven by the gradients of pressure p
and chemical potential y,,. As a result, the inner radius g; starts
to increase, and this trend persists throughout stage (iii). The
thickness of the shell L increases until ¢ = 0.32, when the
exuding flux at the inner surface equals the absorbing one at
the outer surface and L peaks at Ly, = 1.29 (Fig. 8b). As both
the p and p,, gradients subside in time, ¢ becomes more
uniform in space. In the end, ¢¢(r) approaches a uniform
equilibrium profile dictated by a new chemical and mechanical
balance. In this equilibrium, the gel swelling has to be spatially
uniform. Thus, the shell maintains the same spatial proportion
as in the initial state, and indeed as in its dry state.
In particular, L = a;, even though the shell thickness and inner
radius are both greater than in the initial state.

In swelling of the planar gel layer (Fig. 3) and the gel shell
(Fig. 8), the “diffusive flux” driven by the gradient V¢¢ and the
“convective flux” driven by the gradient Vp often seem to act in
concert. In particular, eqn (40) shows the diffusive and con-
vective fluxes to be proportional to each other under weak flow
compression of a planar gel layer. Such proportionality and
synchronization may have contributed to the common practice
of writing the total flux either as Fick’s law'® or as Darcy’s law"°
in 1D quiescent swelling. For the gel shell, the curved geometry
complicates the situation as non-zero strains arise in both the
radial and azimuthal directions. Such 2D strains disrupt
the proportionality between Vp and V¢y. Consequently, the
diffusive and convective fluxes no longer synchronize perfectly
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Fig. 9 Temporal evolution of the diffusive flux Vq (solid line) and the
convective flux V. (red dashed line) at the inner surface.

(Fig. 9), with the diffusive flux V4 following the variation of the
convective flux V. with a slight delay.

3.2.2 Deformation of a spherical shell driven by a gas
bubble. We now consider the dynamics of the gel shell subject
to the simultaneous action of two processes: the swelling
studied in the above, triggered by a sudden environmental
stimulus, and the nucleation and growth of a gas bubble in
the center of the shell, which may be triggered by the same
stimulus (Fig. 7). The expanding bubble drives a radially out-
ward flow of the solvent, thus setting up a situation where
solvent diffusion and externally driven convection coexist.

According to the classical Epstein-Plesset model for
diffusion-driven bubble growth, the bubble radius changes in
time as r, = A+/1, where the material constant 4 is determined
by the gas concentration and diffusivity in the liquid and gas
density inside the bubble.”"”*> This affects the gel shell
by imposing a radial solvent velocity at its inner surface (of
radius a):

A3

V=-—
ZaP

Vi (41)

which enters the boundary conditions of eqn (36) and (38).
Since V changes in time, it is awkward to define a “‘far-field”
velocity scale V, in this case. The dimensionless V serves in its

place, with the constant A assigned a moderate value of

3/2/5 2 0.737. Besides, the viscous normal stress X of the
solvent flow is negligible in comparison to the Darcy drag
inside the gel. Thus we set K = 0 in eqn (35) and omit X from
the BCs of eqn (37) and (38). All the other dimensionless
parameters are the same as in the preceding subsection.

The expansion of the gel shell is depicted in Fig. 10. Similar
to the quiescent swelling of the previous subsection, the
temporal evolution of the ¢(r) profile also exhibits three stages,
indicated by the blue, red and green arrows in Fig. 10(a). The
first two stages resemble their counterparts in Fig. 8(a); the
bubble expands slowly at the start (eqn (41)) and has not yet
imparted much effect on the gel. In the third stage, the bubble
manifests itself in several distinct features of ¢(r). First, the
azimuthal stretching elevates ¢¢ quickly, especially at the inner
surface of the shell, such that the previous equilibrium state of
Fig. 8 (grey dashed horizontal line at ¢¢., = 0.464) is surpassed
at ¢ = 1. Second, later profiles for ¢ > 1 assume a downward

This journal is © The Royal Society of Chemistry 2024
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Fig. 10 Dynamics of the gel shell driven by swelling and an expanding bubble. (a) Temporal evolution of the ¢«(r) profile, with darkening colors marking
time progression: t = 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 4, and the blue, red and green arrows indicating the 3 stages of gel deformation. (b) Temporal evolution
of the diffusive flux V4 (solid line) and the convective flux V. (red dashed line) at the inner surface.

slope, with the porosity decreasing monotonically from the
inner surface to the outer surface. This is reminiscent of
the 1D compression of the planar gel layer (Fig. 5), where the
cumulating Darcy drag produces more severe solid compres-
sion further downstream. As a consequence, the diffusive flux
turns positive (radially outward) in the third stage (Fig. 10b).
Finally, as the bubble continues to expand, so does the gel
shell, causing a continual rise of ¢y as the gel is stretched. The
shell thickness, not shown in Fig. 10, reaches a maximum of
Lmax = 1.28 at t = 0.24, comparable to Fig. 8(b), and then
continues to decrease while the shell expands and stretches.
We end the simulation at ¢ = 4, when the bubble interface
reaches the shell’s inner surface, initiating complex gas-gel
interactions beyond the scope of this study.

It is interesting to contrast the convection and diffusion
velocities of Fig. 10(b) with their counterparts in the 1D planar
geometry (Fig. 6a). In the spherical shell, the growing domi-
nance of the convective flux V. in time is evidently due to the
increasing velocity of the expanding bubble (eqn (41)).
In contrast, increasing V, in Fig. 6(a) produces more severe
compression of the 1D gel layer, thus elevating the ¢¢ gradient
and favoring V4 over V.. One reason for this difference is that
the planar gel layer is constrained by the solid substrate,
whereas the gel shell is free to expand outward. Another is
the azimuthal stress gy in the shell geometry, which helps to
counterbalance the Darcy drag and to relieve the ¢ gradient.
Thus, in Fig. 10(b), the diffusive flux V4 does not experience a
substantial increase as V. does, underscoring how the curvi-
linear geometry may disrupt the coordination between Vp and
V¢ Such disruption has already been noted for the quiescent
swelling of Fig. 9, albeit at a much reduced magnitude.

3.3 Flow around a gel cylinder

Going beyond the 1D planar and spherical geometries above,
we now consider a 2D problem with flow around a gel cylinder.
It is motivated by experiments that used a row of gel cylinders,
placed abreast facing the flow, as pH-sensitive throttle values in
a microfluidic device."' Assuming symmetry between neigh-
boring cylinders, we adopt the computational domain of Fig. 11
with symmetry conditions on the top and bottom boundaries.
As in the experiment, the gel forms a concentric “jacket”

This journal is © The Royal Society of Chemistry 2024

Fig. 11 Computational setup of the flow around a gel cylinder. The grey
area denotes the solid cylinder and the surrounding blue layer is the
hydrogel. The flow with velocity V, goes from the left to the right, with
symmetry conditions imposed on the top and bottom boundary.

around a rigid post. A uniform flow of velocity V, enters the
domain from the left, carrying high-pH fluids that causes the
gel to expand.

In this example, the reference state for measuring the elastic
strain and stress is not the dry-polymer state as used in the
preceding examples and in the literature,'® but is a uniform gel
at porosity ¢ = 0.2 and chemical potential m = 0 in equilibrium
with the environment. This is because in the experiment,'* the
gelation happens in situ by photopolymerization of a precursor
solution. The solid constitutive equation (eqn (33)) is modified
slightly by setting J = (1 — ¢)/¢s, in place of J = 1/¢, in
eqn (16). To initiate the swelling, we impose a sudden and
uniform change of the parameter m from 0 to 4 throughout the
gel at the start of the simulation. The initial outer radius of the
hydrogel is taken as the characteristic length: a,|~o = 1, and the
radius of the inner solid cylinder is g; = 0.5. The computation
domain has a height H = 2 and a length of 3H (Fig. 11).
A uniform velocity V, = 0.5 is imposed on the left boundary
and a stress-free boundary condition applies on the right
boundary. For such entry and exit BCs, channel flow computa-
tions normally require a longer length. But our poroelastic gel
with a small K= 0.01 is insensitive to the external flow. Realistic
values of K ~ (r/L,)* are likely to be even smaller. Numerical
experimentation shows negligible changes to the gel displace-
ment when the channel is lengthened. On the top and bottom
boundaries, symmetry conditions prevail. At the surface of the
solid cylinder, no displacement of the solid skeleton of the gel
is allowed, and there is no fluid penetration. Since we adopt
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Fig. 12 (a) The fluid velocity field shortly after the start of flow (t = 0.058).
(b) Streamlines in the steady state (t = 2.45). In both plots, the dashed cyan
line delineates the initial gel surface. The color of the graph represents the
pressure. The red and blue dots mark the front and rear “stagnation points”
where gel deformation will be compared. The material parameters are /s =
194,n=1=14=1 K=0.01and y = 0.2. The initial porosity ¢ = 0.2.
At t = O, the flow starts with V5 = 0.5 and m changes from 0 to 4.

Darcy flow for the fluid, with no Brinkman stress, there is no
need to specify the tangential fluid velocity. The governing
equations are solved in the 2D domain by finite elements, with
a fixed-mesh arbitrary Lagrangian-Eulerian method to track
the moving gel surface. Algorithmic details can be found in Li
et al.*> Mesh and time-step refinements have been carried out
to ensure adequate spatial and temporal resolution. A typical
grid has about 900 cells, each a quadrilateral Q3 element with 4
nodes per edge, and the finest mesh size Ax ~ 0.008a,. The
time step is shortest At =10~ ° at the start of the simulation, and
increases to 10~ after the initial rapid swelling.

A typical solution is depicted in Fig. 12. In the early times,
the external flow field quickly establishes itself. But the most
interesting feature is the rapid swelling of the gel, reflected by
the interstitial fluid velocity v¢ in Fig. 12(a). As the gel expands
radially outward, the solvent is driven inward to fill the
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increasing porosity. Thus, the v¢ field by itself does not satisfy
volume conservation as expected for single-phase flows.
At oncoming velocity V, = 0.5, the flow-induced gel deformation
is weak at this stage, but v exhibits an asymmetry caused by the
external flow. By ¢ = 2.45, the solution approaches a steady state
(Fig. 12b), the gel thickness having grown by roughly 30%.
Because of the external flow, there remains a steady v; inside
the gel, indicated by the streamlines of Fig. 12(b). Conse-
quently, ¢¢ and o remain non-uniform in space, and a small
diffusive flux persists as well.

To further examine the effect of the external flow in gel
deformation, we plot in Fig. 13(a) the temporal evolution of the
gel displacement at the upstream “‘stagnation point” (the red
dot in Fig. 12b) and the downstream stagnation point (the blue
dot). The upstream side of the gel is compressed by the flow,
and its radial expansion is reduced relative to that without the
flow (the dashed curve). In contrast, the downstream side of the
gel experiences greater expansion due to the low pressure at
the back of the cylinder. The top region of the cylinder has
expanded upward by roughly the same amount as in quiescent
swelling, while the flow sweeps the top downstream by about
0.1. Fig. 13(b) shows the evolution of the ¢¢ profile along the
x-axis, the coordinate x,, being the distance to the wall of the
solid cylinder. At the initial stage (¢ = 0.058), the profile is
approximately symmetric between the upstream (x,, < 0) and
downstream (x,, > 0) portions. This reflects the initial domina-
tion of swelling over the external flow. As the swelling weakens
in time, the external flow manifests itself more clearly by
compressing the upstream region of the gel while expanding its
downstream region. Thus, the ¢¢ profile becomes increasingly
asymmetric, with lower porosity upstream than downstream.

4 Conclusion

We have formulated a poroelasticity model to explicitly inte-
grate two modes of solvent transport through a hydrogel:
convection driven by an external pressure gradient, and diffu-
sion driven by the gradient of a chemical potential inside the
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(a) Temporal evolution of the gel displacement at the upstream and downstream stagnation points marked by the red and blue dots in Fig. 12(b).

The dashed curve represents the interfacial displacement without external flow. (b) Temporal evolution of the porosity profiles ¢¢(x,,) along the center
line y = 0, at different times t = 0, 0.058, 0.18, 0.43 and 2.45 (essentially the steady state). The x-axis x,, is the distance to the wall of the solid cylinder.
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hydrogel. To accomplish this seemingly straightforward goal,
we have had to resolve two complications.

The first is the current usage of two parallel systems of
nomenclature and formulation in modeling hydrogel swelling
or deswelling in a quiescent solvent bath, one expressing the
solvent flux as a diffusive Fickian flux, and the other as a
convective Darcian flux. The ambiguity seems to stem from
inconsistent definitions for the chemical potential u,, and the
osmotic pressure 1. Between certain models, the same entity
has been called by one or the other name.'®'® While the chemical-
potential gradient Vu,, fits naturally in the framework of Fickian
diffusion, the pressure gradient VII evokes Darcy’s law. Fortu-
nately, the algebraic similarity between Fick’s law and Darcy’s law
has enabled both formalisms to produce essentially the same
predictions. Therefore, insofar as the diffusivity and permeability
are treated as phenomenological constants, the two systems differ
in notations but not in substance when applied to quiescent
swelling problems. In our integrated model, however, we have to
clearly distinguish the two modes of solvent transport, and use
Fick’s law or Darcy’s law accordingly. Algebraically, this is facili-
tated by combining the osmotic pressure and the hydrodynamic
pressure into a single Lagrange multiplier p.

The second issue is more substantive. In its standard
formulation, Fick’s law is expressed as fluxes relative to an
average velocity, and this average velocity is ambiguous if an
externally driven flow passes through a hydrogel. Our solution
to this problem is to generalize the Maxwell-Stefan form of the
diffusive flux, so as to obviate the need for an average velocity.
Thus, the solvent flux is expressed as the sum of a diffusive flux
Va o¢ (—Vum) and a convective flux V, oc (—Vp). This forms the
basis for our unified model.

Another key feature of our model is a penetration boundary
condition, derived from the requirement of positive entropy
production on the gel-solvent interface. Thus, in place of
previous assumption of instantaneous interfacial equilibration,
our boundary condition stipulates a normal solvent flux pro-
portional to the interfacial imbalance between the jumps in
normal stress and in chemical potential. This remedies a
singularity suffered by the previous boundary condition: upon
abrupt change of an ambient condition, the gel must deform
instantaneously to develop a finite strain and stress.

Applied to 1D and 2D calculations, our model reveals inter-
esting scenarios where the diffusive and convective modes of
solvent transport interact to yield novel physical outcomes. The
main results can be summarized as follows:

(a) The model is capable of describing swelling experiments
of a planar layer of hydrogel submerged in a quiescent solvent
bath. This is no surprise, as the unified model encompasses
quiescent swelling as a component.

(b) Even in this “diffusion-only” limit, the (osmotic) pres-
sure gradient induces a ‘“convective flux” V., which reinforces
the diffusive flux V4 in the 1D planar geometry.

(c) In the curvilinear geometry of a spherical shell of hydro-
gel, the swelling exhibits distinct stages dominated by different
physical mechanisms, with non-monotonic changes in the
shell thickness and inner radius.
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(d) Interesting interaction between V. and Vq4 arises in
curvilinear and two-dimensional geometries, where multiple
strain components may compress or extend the local solid
network. During the swelling of the spherical shell, for exam-
ple, V. and V4 are no longer synchronized as they are in planar
1D geometry with a single strain component.

(e) When an external flow is imposed on a swelling hydrogel,
it directly affects the convective flux V. in the gel and the
coupling between V. and Vg4. This coupling depends on the
geometry of the problem, and is not well represented by a Péclet
number in general.

(f) The 2D flow around a gel cylinder demonstrates the
potential of the model in multi-dimensional applications.

The flow problems presented here are relatively simple, and
serve to illustrate the capability of the unified model to describe
physical processes that involve simultaneous actions of solvent
convection and diffusion. Nevertheless, this work offers a theore-
tical framework and numerical tool for simulating and analyzing
a class of emerging technological problems, e.g., the function of
gel-based microfluidic actuators, the wet-spinning of fibers by
passing and stretching hydrogel filaments in a coagulant bath,
and the design of gel-based lab-on-chip devices.

Data availability

The computational methods for generating the
dimensional results of Sections 3.1 and 3.2 are described in
Appendix B of the manuscript. The evaluation of the model
parameters is described in Appendix C. The two-dimensional
solutions of Section 3.3 are computed using a finite-element
code based on the library deal.II, which can be found at https://
github.com/dealii/dealii. Version 9.5 of the code has been

employed in this study.
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Appendices
A Interfacial boundary conditions

In this Appendix, we temporarily revert to the use of dimen-
sional variables in discussing the boundary conditions. The
boundary conditions of eqn (21) and (22) correspond to the so-
called BC2 derived by Young et al.,*"** but differ somewhat in
notations. In its original form, BC2 consists of the following

three boundary conditions:*"*?
(V—v)n=yn[Z - PI) — (6s — p)ln, (A1)
(V= vt =fnZt, (A2)
¢s(vs — vt = —fn-ost. (A.3)

Using the interfacial fluid continuity and traction balance
(eqn (19) and (20)), we transform eqn (A.1) to

(V- v)n = n(dd¢/mEn — P+p).  (A4)
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As we only consider Darcy flows in the current work, we no
longer need a BC on the tangential v¢t. Eliminating v¢ from
eqn (A.2) and (A.3), Xu et al.*® showed that in Darcy flows, the
two tangential BCs should be replaced by

(V- vyt =B(1+ ¢ *n-Xt. (A.5)

eqn (A.4) and (A.5) are the basis for the boundary conditions of
eqn (21) and (22).

Furthermore, there are two notational changes in the defini-
tion of n and f. First, we add the solvent viscosity 1 on the left
hand side of eqn (A.4). This reflects the expectation that the
stresses inside and outside the gel vary linearly with u. In the
current form, therefore, # no longer depends on wu. It has
the dimension of length and depends solely on the geometric
features of the interface. Similarly, u is added to the left hand
side of eqn (A.5) to make f a length. Our penetration length
and slip length f can be likened, respectively, to the “transpira-
tion length” and the Navier slip length.”® Second, the factor
(ps/ds)* in eqn (A.4) is now absorbed into # to simplify the
notation, giving rise to eqn (21). Similarly, we absorb (1 + ¢~ )
into f in eqn (A.5) to arrive at eqn (22). In principle, n and f§ are
functions of ¢; and Feng and Young®' have explored their
limits at ¢y — 0 and ¢¢ — 1. Their general function forms
require a detailed pore-scale study.®® In this paper, we take 7
and f to be constants in eqn (21) and (22) for simplicity.

To extend eqn (21) to account for solvent diffusion across
the interface, we start by considering the diffusion-only limit
without convection. Following Hong et al.,'® we require that the
total free energy not increase in time during the diffusion, and
as sufficient conditions, that neither the elastic energy nor the
mixing energy increase in time. As the gel domain deforms in
time, it is convenient to write the volume integral of the mixing
energy in the time-invariant Lagrangian frame, indicated by a
hat "

d o[ OWndC .\ s
Y war=| Emeyp ~V-j)dV <0, (A
dlL}W av JQ oV ngm< v J,>d <0, (A6)

where @ is the domain of the gel, and the number flux of the
solvent j; is related to C by dC/dt+V -j, = 0. Applying the
divergence theorem and transforming back to the Eulerian
frame (without the hat "), we have:

| V307 = | (8- na
JQ r
(A7)
— | T ia¥ = | (e ima <o
Q r

where I' is the surface of the gel domain @, and the transforma-
tion to the Eulerian frame is based on dV =JdV and eqn (27)-(29)
of Hong et al.'® Fick’s law (eqn (3)) ensures that the volume
integral on the right-hand-side be non-positive. Linking j; to the
relative velocity v¢ — v, via eqn (8), we propose a new BC such that
the surface integral stays non-negative:

n'(vf - Vs) = Ofm, (A'S)
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where the positive coefficient o represents a kind of interfacial
permeability, i.e., the ease with which the interfacial jump in
chemical potential u,, drives the solvent across the gel inter-
face. Note that by definition (eqn (2)), um = 0 in the solvent bath
(¢¢=1).
In the general case, the total solvent flux across the interface
I' is the sum of a convective and a diffusive component. This
suggests combining eqn (21) and (A.8) additively. Again using
the solvent continuity of eqn (19), we arrive at eqn (23):
,u(vas)~n:n(nAE~an+p+M7m>, (A.9)
which amounts to choosing « = n/(uvéy¢). This is partly for
dimensional uniformity. More importantly, having p,,,/v added
to the pressure p maintains consistency with existing formal-
isms for the diffusion-only limit (cf. eqn (18) of Hong et al.™®).

B One-dimensional solutions

In the planar 1D geometry of the gel layer of Section 3.1, we
simplify the dimensionless governing equations into the
following form:

Od; | O(vigy)
E + T = 0, (B.l)
vf¢f + vs(/bs = V07 (B.Z)
19) 1 -2y 0
8—’; +y(on —v,) + 2202200 - ) % =0, (B.3)
O¢sos  Op
o x 0, (B.4)
ovzlfd)s;_‘_l*(rbsz [BS]
o T b '

where og is a shorthand for the normal stress component
Osxxy and the last equation has come from eqn (33) for 1D
strain Ou,/0% and solid expansion J = 1 + 0uy/0X = 1/¢s. From
eqn (B.2)-(B.4), we eliminate vs and p and express the fluid
velocity v¢ in terms of the porosity ¢y

bs(1 = 27¢) | 9¢¢

Vf:VU+ O'S+Q')SG;*A ¢ o’
f

(B.6)

where o, = dos/d¢, is a known function of .. Substituting this
into eqn (B.1) and noting ¢s =1 — ¢y, we end up with a second-
order partial differential equation (PDE) for ¢¢(x, t), which we
will not write out explicitly for its algebraic complexity.

To solve the PDE for ¢y, we need the initial condition ¢¢= ¢gy
and two boundary conditions. The downstream boundary of
the gel layer is fixed in space: vs = 0 at x = 1. At the upstream
boundary x = x{¢), the interfacial condition eqn (38) is
simplified to

V() — Vs = _77[@550_5 + m(ln d)f + ¢S + Xd)sz)] (B‘7)
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Through eqn (B.2) and (B.6), these two condition can be
converted to BCs for ¢g:
¢ ' o
atx = I:Lbfas+¢fas —A(1 = 2y¢y) aixf: Vo, (B.8)
atx = x; |:ﬁos + ¢f‘7; —4(1 - 2X¢f)]%
s Ox (B.9)

+ 1[0 + m(In g + b + 2¢.7)] = 0.

To discretize the PDE using finite difference over the
deforming interval x € [x,(t), 1], we adopt a Lagrangian grid
that uniformly divides the reference state of the solid network,
i.e., the dry polymer, and moves with the local velocity v of the
solid network. Thus, the grid size can be updated dynamically
according to the local solid expansion J = 1/¢. Another notable
feature is that the time derivative d/d¢ in the Lagrangian frame
is a material derivative, and eqn (B.1) must be transformed to
the following for solution:

dor |, 99

. Opeve
dt * Ox ox

=0. (B.10)

We use the Crank-Nicolson method to solve eqn (B.6), (B.8)-
(B.10). Convergence with respect to the grid size and time step
has been confirmed by numerical experiments.

For the spherical hydrogel shell in Section 3.2, the curvi-
linear geometry complicates the mathematical formulation
somewhat because the strain and stress tensors now have two
nontrivial diagonal components, in the radial and azimuthal
directions. First, let us simplify the continuity and momentum
equations for the spherical symmetry:

o0, 1 2

o e Y (B11)
(veps + vspg) = 2 (B.12)
f ST 4mr?’
ap ~ bo(1 = 21) Oy
gy T s —vs) + 4 Py 5 =0 (B.13)
ad)so—r Or — 0g 8]) _
5 + 2¢, — 0, (B.14)

where Q(1) = 4na’V(f) = 2n43\/1 is the flux at the inner sur-
face of the gel shell (see eqn (41)), and g, and oy are the radial
and azimuthal normal stress components.

The neo-Hookean constitutive equation reduces to

1
o = j(erz =+ 2€r) + j-S(J - 1)7 (B.15)

1 )
op = j(egz +2e9) + A5(J — 1), (B.16)
with the strain components e, = 0u,/07 and ey = u,/7, and the
Jacobian J = 1/¢¢. Compared to the 1D planar formulation, the
solid stresses are function of ¢ the displacement u, and
the coordinate r. Therefore, we need one more equation
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du,/dt = vg to complete the system. On both surfaces of the
gel shell, we impose the same BC of eqn (B.7).

Similarly to the planar 1D case, we eliminate v, and p from
eqn (B.12)—(B.14) to obtain the radial fluid velocity

v _iiad)so—fi d)s(] _2X¢f)%
YT am? T or o¢ or

From vy, one easily obtains vg from eqn (B.12), and in turn the
solid displacement u,. Furthermore, we transform the solvent
continuity eqn (B.11) to a Lagrangian form suitable for the
finite-difference grid fixed on the solid network:

abs_ o 1 2(don”)
dr Sor 2 or

O—HfA

20" - . (B.17)

=0. (B.18)
By substituting eqn (B.17) into eqn (B.18), we obtain a second-
order PDE for ¢¢(r,t), which is solved together with the BC of
eqn (B.7) by the Crank-Nicolson method. The only difference
from the 1D planar case is that the grid size can no longer be
updated according to the local ¢s. Instead, the grid movement
must be explicitly computed according to the solid displace-
ment u,.

C Parameter estimation for swelling of gel layer

In presenting results in the main text, we have omitted the
overbar for dimensionless groups since the discussion does not
concern dimensional parameters. In this appendix, however,
both types are present. Thus, we revert temporarily to using
an overbar to distinguish dimensionless parameters from
dimensional ones.

The dimensionless model parameters of Table 1 can be
chosen on the basis of the experiment of Yoon et al®* and
previous modeling of Hong et al.*® First, we choose /s = 1.94 to
match the Poisson ratio of 0.33 given by Yoon et al.°* Then we
select y = 0.2 as a value for typical gels with large swelling
ratios."® The parameter 7 = 8.0, representing the chemical
potential jump that triggers the swelling, is fitted to the
equilibrium interfacial displacement iy = 0.8 in the experi-
ment of Yoon et al.®*

For the parameter 4 = uD/(usk*), the viscosity of the solvent
(water) and the modulus of the polymer network can be taken
directly from Yoon et al.:** =107 Pa s, us = 10° Pa. From the
average pore size r = 4.8 nm,** we have k* = 2r%/9 = 5.12 x
10~'® m®. The diffusivity D, however, cannot be taken directly
from the value Dy suggested by Yoon et al.,** for the following
differences between the two studies:

e Yoon et al. did not include the mixing energy W, in our
eqn (1) and in Hong et al.'® Their “chemical potential” is
essentially Hong et al.’s osmotic pressure.

e Yoon et al. adopted a linear elastic model for the stress of
the whole gel, whereas we have the neo-Hookean model for the
stress o of the polymer network, which contributes to the gel
mechanics in the form of the Terzaghi stress (eqn (15)).

Thus, Yoon et al.’s diffusivity Dy appears in the following
unsteady diffusion equation, which has been converted from
their eqn (11) in the undeformed reference frame to the current
deformed frame, and rendered in our notation to facilitate
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comparison:
0 Dy & 3Dy (9¢r\’
O Dy 00, 3Dy 3( ¢f). 1)
O (1—¢y)” 0¥ (1 —¢y)’\Ox
On the other hand, our formalism leads to
¢, Pg; dDe(dy) (09r\
20— Dy (pp)k 4 T2 ) 2
a0~ DGa s \ax (€2)

where the effective diffusivity D.(¢¢) depends not only on the
Fickian diffusivity D of eqn (5), but also on the permeability
k(¢pf) = K*¢pe/(1 — ¢¢) (eqn (10)) and the two Lamé constants /g
and ps of the neo-Hookean model (eqn (16)):

Deldy) = S[As + 21— gp)](1 — )

+ D(1 = 2y¢5)(1 = o). (C.3)
It is thus impossible to link our D to Dy generally. In the
following, we establish a rough linkage by using parameter
values and solutions in Section 3.1 of the main paper.

The solutions of Fig. 3 show ¢(x) profiles at different times,
from which we can estimate representative magnitudes of 3¢/
0x* and (0¢¢/0x)*. Plugging these values into eqn (C.1) and (C.2)
and equating their right-hand sides, we can estimate D in our
model from Dy of Yoon et al®* More specifically, the fluid
fraction ¢¢ increases from the initial ¢g¢ = 0.01 to the equili-
brium value of ¢¢., = 0.44 in time, while the thickness of the gel
layer swells from L, to 1.8L, (Fig. 3). Taking the ‘“mid-points”
of these ranges, we use ¢¢ = 0.22 as a representation porosity,
and d¢¢ = 0.22 as the variation of ¢ over a thickness of 1.4L,
such that 0¢g/0x ~ d¢¢/(1.4L,), O*pe/Ox> ~ S¢p/(1.4Lo)%. Insert-
ing these into eqn (C.1) and (C.2), and using the following
parameters: u = 10 > Pa s, As = 1.94 x 10° Pa, us = 10° Pa,
k*=5.12 x 107 m? Dy =1.5 x 107" m* s™* (all from Yoon
et al.’s experiment®®), and y = 0.2 (from Hong et al.’s model'®),
we have D=8.8 x 10 "' m®s™ !, and in turn 4 = uD/(usk*) = 17.2.

By convention, the solid strain is measured relative to a
reference state corresponding to the dry polymers.'® But Yoon
et al. did not state explicitly whether their displacement was
relative to a dry polymer layer or a pre-swelled gel layer. We
have taken the initial state to be a dense gel with initial uniform
porosity ¢ = 0.01, close to the dry state. This corresponds to an
initial 72 = 1.15 x 10, and the swelling is triggered by abruptly
raising m to 8.
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