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Estimating the interfacial permeability for flow
into a poroelastic medium

Zelai Xu, a Pengtao Yue b and James J. Feng *ac

Boundary conditions between a porous solid and a fluid has been a

long-standing problem in modeling porous media. For deformable

poroelastic materials such as hydrogels, the question is further com-

plicated by the elastic stress from the solid network. Recently, an

interfacial permeability condition has been developed from the prin-

ciple of positive energy dissipation on the hydrogel–fluid interface.

Although this boundary condition has been used in flow computations

and yielded reasonable predictions, it contains an interfacial perme-

ability g as a phenomenological parameter. In this work, we use pore-

scale models of flow into a periodic array of solid cylinders or parallel

holes to determine g as a function of the pore size and porosity. This

provides a means to evaluate the interfacial permeability for a wide

range of poroelastic materials, including hydrogels, foams and biolo-

gical tissues, to enable realistic flow simulations.

Introduction

Flow through a deformable porous medium can be described by a
poroelasticity model. This is essentially a mixture model that views
the solid and the fluid as interpenetrating continua, each phase
being described by its own volume fraction, velocity and stress that
obey continuity and momentum equations for each phase.1–3 Since
the model erases all pore-scale geometric information about the
fluid-solid boundaries, and instead poses momentum equations for
both phases over the entire porous medium, additional boundary
conditions (BCs) must be supplied to make the problem solvable.4,5

This issue arises in soft porous media such as hydrogels, foams,
flocculated fiber suspensions and biological tissues. For brevity, we
will refer to our media only as ‘‘hydrogels’’ or ‘‘gels’’ hereafter. Even
for rigid porous media, where the solid stress becomes indetermi-
nate, a similar question arises, albeit in a different form.6,7

The mathematical structure of the problem can be appre-
ciated from a simplified one-dimensional (1D) flow (Fig. 1). The
general vectorial forms of the governing equations and BCs can
be found in Xu et al.8 A uniform flow of a solvent of viscosity m
encounters a layer of hydrogel whose downstream surface is
fixed in space. On the upstream interface, the fluid experiences
a contraction flow into the pores. Inside the gel layer, the fluid
exerts a Darcy drag on the solid, and compresses the gel layer
into a steady state. The poroelastic model for this steady state
can be reduced to the following 1D form:8

(ffvf)0 = 0, (1)

p0 ¼ �m
k
ffvf þ

1

ff

ffsfð Þ
0
, (2)

p0 = (ffsf + fsss)0, (3)

where the prime indicates the spatial derivative d/dx, ff and
fs = 1 � ff are the fluid and solid volume fractions, p is the
pressure inside the gel, shared by the fluid and the solid
phases, vf is the fluid pore velocity, and sf and ss are respec-
tively the fluid and solid normal stresses in the x direction.
Eqn (1) is the fluid continuity equation. Eqn (2) is the Brinkman
extension of Darcy’s law for the fluid flow. The permeability k is
a function of the local porosity, a commonly used form being

Fig. 1 A one-dimensional (1D) flow into a hydrogel for illustrating the
interfacial permeability boundary condition of eqn (6).
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the Kozeny–Carman model.3,9 Finally, eqn (3) is the total
momentum balance on the two phases. For the viscous solvent,
sf ¼ 2mv0f . For the solid, ss is given by a linearly elastic or
hyperelastic constitutive equation.8

On the upstream interface, volume conservation and trac-
tion balance give us two BCs:

ffvf = V0, (4)

p � ffsf � fsss = P, (5)

where V0 and P are the uniform velocity and pressure upstream
of the interface. For a hydrogel, an additional BC is required, and
Young et al.8,10,11 have derived the following based on the
principle of positive energy dissipation on the fluid–gel interface:

V0 � vf = Z(P � p + ss), (6)

with Z 4 0 being the interfacial permeability. At the downstream
interface, we impose zero solid displacement (us = 0) and zero
fluid stress. The permeability BC of eqn (6) is intuitive with the
normal velocity jump proportional to the normal stress jump
across the interface. It has also produced reasonable results
in flow computations through hydrogels.5,8,12 Nevertheless, Z
remains a phenomenological coefficient that has never been
measured experimentally. For realistic flow simulations, it will
be desirable to know its value for specific poroelastic media.

Pore-scale models

To estimate Z, we adopt an idea from pore-scale models for rigid
porous media. Many authors have calculated the bulk perme-
ability of rigid porous media by the tube-bundle model9,13,14 or by
flow around periodic arrays of solid cylinders or spheres.9,15–18

The solid-array representation has also been used to explore the
interfacial conditions.6,7,16,17,19–21 We can use such a rigid pore
model to estimate Z for our poroelastic medium insofar as we seek
a constitutive relation for Z as a function of the steady-state local
porosity ff and pore size r. The compression that has produced
such a steady state and the fact that ff and rmay vary in the bulk
of the medium are of no immediate import to our purpose.

Another issue is that the BC of eqn (6) involves the solid stress
ss, which is undefined for rigid solids. We bypass this obstacle by
eliminating ss using the total traction balance of eqn (5). Further-
more, we eliminate vf in favor of V0 by the volume conservation of
eqn (4) to arrive at the following interfacial permeability BC:

V0 ¼ Z
ff

2

fs
2
P� pþ sfð Þ ¼ ~Z

m
P� pþ sfð Þ � ~Z

m
ðP� pÞ; (7)

where we have simplified the notation by introducing the pene-
tration length ~Z = Zmff

2/fs
2. This removes the viscosity depen-

dence and leaves ~Z a geometric parameter, akin to the Navier slip
length or the ‘‘transpiration length’’.7 We have further dropped
the viscous normal stress sf as it is typically much smaller than
the friction that gives rise to the Darcy drag and the entry pressure
drop P � p.22,23 Now we can use a pore model to compute the
entry pressure drop and back out the interfacial penetration
length ~Z and the interfacial permeability Z.

It is interesting to note the similarity between the perme-
ability BC of eqn (7) and the pressure jump BCs for rigid porous
media.6,7,20 For example, Lācis et al.7 proposed the following
form (in our notation):

V0 ¼ �1

f
P� pþ sfð Þ; (8)

where the ‘‘resistance coefficient’’ f represents the friction force
against the solvent passing through the interface. Although
eqn (7) and (8) have come from different physical arguments,
they are algebraically similar, and both recognize the need for an
interfacial pressure drop to overcome the resistance to the fluid
entering the pores. This idea deviates from the long-standing
assumption of traction continuity or pressure continuity at the
interface.21,22,24–26 Lācis et al.7 further used numerical computa-
tion in a periodic pore model to evaluate f, and we will be able to
compare our result quantitatively with theirs.

We use four geometric representations for the porous material
(Fig. 2a): semi-infinite arrays of circular and square cylinders
aligned in the flow direction, and parallel circular and square
holes in a semi-infinite solid. In either case, the cylinders or holes
are arranged in a periodic square lattice on the cross-section of
the medium. Thus, the solvent coming from the left of Fig. 1
experiences a contraction flow to enter the ‘‘pores’’.

These geometries are inspired by prior models for porous
medium, e.g. ref. 15–19, but with one important difference.
Prior models specify a periodicity along the depth of the porous
medium (i.e., the x-axis of Fig. 1). Then ambiguities arise as to
where to place the interface, and how many periods to use for
spatial averaging. Depending on whether the nominal interface
cuts through the solid objects,15,16 stays tangential to their apex
in the top foremost row,19,27 or is placed further in the bulk
fluid,7,17 the continuum-level result may differ greatly. Further-
more, James and Davis19 demonstrated that a shear flow
penetrates only the first row of cylinders. This challenges the
scale-separation assumption underlying the continuum Brink-
man or Darcy model.7 Our setups avoid both difficulties; the
semi-infinite cylinders or holes present a clear-cut interface,
and they have ‘‘pre-averaged’’ the spatial variations in the depth
direction. Experimentally, Tachie et al.28,29 tested brush models
that resemble our setup, although they only considered shear
flows past the top of the transverse posts. Our results will turn
out to be largely insensitive to the geometric details of the
model (Fig. 3 below), and thus we will not consider other solid
shapes or other spatial arrangements.15,19

Numerical and theoretical results

Taking advantage of spatial periodicity and symmetry, we
solve the 3D Stokes flow in a computational domain that
corresponds to a quarter of a single pore; Fig. 2(b) shows an
example for the square cylinder. The 3D pore-scale flow will be
processed to yield the interfacial penetration of the 1D setup on
the continuum level (Fig. 1). We impose no-slip conditions on
the solid surfaces and symmetry conditions on all fluid bound-
aries. The upstream boundary has a uniform incoming flow at
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velocity V0 and the downstream boundary has stress-free condi-
tions. The finite-element code is based on the open-source finite-
element library deal.II. Mesh refinement has confirmed ade-
quate numerical resolution. The up- and downstream bound-
aries are each 4r away from the opening of the pore so they have
negligible effect on the contraction flow and the final result.

To compute the interfacial pressure drop P� p of eqn (7), we
identify P with the upstream pressure P0 in our pore model, and

p with the averaged pore pressure at the opening of the pore:
pf ¼

Ð
Ac
pdA

�
r2ff

� �
, where Ac is the cross-section of the inter-

face excluding the solid portion (the shaded area of Fig. 2b).
Dimensional analysis dictates

V0 ¼
r P0 � pfð Þ

m
cðffÞ; (9)

where c(ff) is a dimensionless function that we have
determined numerically and plotted in Fig. 3. As expected, c
decreases toward zero as ff - 0 and increases with ff.
Furthermore, c differs little among the four geometries tested,
suggesting that they are all robust and realistic representations
of the interfacial property of a porous medium. On the con-
tinuum level, therefore, ff is the main geometric parameter
that matters. The numerical data in Fig. 3 embody the idea that
an interfacial pressure drop is needed to propel the fluid into
the pores; it is essentially the excess pressure in entry flow.30

To complement the numerical results, we can estimate
theoretically the viscous dissipation of the entry flow, under
the following two assumptions:

� The dissipation mostly occurs in an entry region O
extending a distance of r upstream from the interface, based
on the perturbed flow field of Fig. 2(b).

� The dissipation is mostly attributable to vx, the
x-component of the velocity.

The longitudinal velocity accelerates from V0 at the
upstream surface of O to V0/ff at the interface, suggesting a
strain rate qvx/qx B (V0/ff � V0)/r = V0fs/(rff). To account for
the 3D nature of the flow, we introduce a fitting parameter C
such that qvx/qx = CV0fs/(rff). Similarly, we estimate the shear
rates using the averaged velocity V0/ff divided by the pore size r:
qvx/qy = qvx/qz = CV0/(ffr). Therefore, the total viscous dissipa-
tion inside O is

Iv ¼ mO 2
@vx
@x

� �2

þ @vx
@y

� �2

þ @vx
@z

� �2
" #( )

¼ 2C2mV0
2r

fs
2 þ 1

ff
2

� �
:

(10)

Meanwhile, the pressure work on the entrance of O is PV0r
2,

and that on the exit of O is �pf(V0/ff)(r
2ff). Equating the total

work (P � pf)V0r
2 to the viscous dissipation, we have

V0 ¼
r P� pfð Þ
2C2m

ff
2

fs
2 þ 1

; (11)

and in turn the following approximation to the c(ff) function
of eqn (9):

c1 ffð Þ ¼ 1

2C2

ff
2

fs
2 þ 1

; (12)

C ¼ 1
� ffiffiffi

2
p

� 0:707 gives a good fit to the numerical data of
Fig. 3. Considering the simplicity of the estimation, the semi-
analytical c1(ff) captures the numerical data well. The greatest
discrepancy appears at the dilute limit ff - 1; some numerical
data turn upward whereas the formula remains concave.

Fig. 2 (a) The interface for four pore geometries, with periodic arrays of
circular and square cylinders and circular and square holes. The grey and
white areas represent the solid and pore space, the latter occupying an
area fraction that equals ff. The dashed squares, of edge length r,
represent the cross-sections of our computational domain. (b) The com-
putational domain for Stokes flow entering a pore between square
cylinders, with its cross-section at the interface corresponding to the
dashed square above. The flow is depicted by velocity vectors.

Fig. 3 The function c(ff) obtained by computing the Stokes flow into the
model porous medium of Fig. 2 with different geometries. The solid curve
represents the c1(ff) function of eqn (12), while the dashed curve c2(ff) of
eqn (13).
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This discrepancy can be understood as an effect of the pore
geometry in the limit of ff - 1, in an exception to our earlier
statement on the insensitivity to pore geometry. For flow along
a cylinder, the cross-sectionally averaged shear stress vanishes
as the cylinder becomes thinner. This explains the upturn in
the numerical data for cylinders in Fig. 3. Conversely, for flow
in a hole, the average shear stress stays finite when the wall
become thinner. This difference is noticeable among the
numerical data of Fig. 3. Our estimation of the shear rates
qvx/qy = qvx/qz = CV0/(ffr) remains finite as ff - 1. Thus, it
reflects internal flow in holes, not external flow along cylinders.

As an alternative, we can estimate the average shear rate in
the external axial flow along an infinite circular cylinder, with
its analytical logarithmic velocity profile. Recalculating the
viscous dissipation in O, we arrive at the following formula:

c2 ffð Þ ¼ 1

2C2

ff
2

fs
2 þ ff

2q2=2
;

with

q fsð Þ ¼
8

ffiffiffi
p

p ffiffiffiffiffi
fs

p
� 1

� �2 ffiffiffiffiffi
fs

p
þ 2

� �
3 2 lnfs � 4fs þ fs

2 þ 3ð Þ :

(13)

This c2(ff) function is plotted as the dashed line in Fig. 3 by

taking the same fitting parameter C ¼ 1=
ffiffiffi
2

p
. It accurately

captures the numerical results for the cylinder setup, including
the sharp increase near the limit ff - 1. But for lower
porosities, it underpredicts the data for the hole setup. Either
c1(ff) or c2(ff) serves as an adequate representation of the
interfacial permeability. They are counterparts of the two for-
mulas for the bulk permeability k, the Kozeny–Carman formula
based on flow in conduits, and the Brinkman formula on
external flow around solid objects.9 As a further test, we have
numerically computed the viscous dissipation incurred by the
contraction flow, and the c function thus obtained agrees with
the numerical data of Fig. 3 to within the difference among the
pore geometries.

From c we can estimate the interfacial penetration length of
eqn (7),

~Z = c(ff)r, (14)

and in turn the interfacial permeability Z. Thus, c = ~Z/r is the
dimensionless interfacial penetration length scaled by the pore
size. A slightly different scaling, ~Z=

ffiffiffi
k

p
, can be interpreted as the

ratio between the interfacial permeability and the bulk perme-
ability. We can now use eqn (14) and Fig. 3 to estimate ~Z for real
materials. Most hydrogels have small pores (nm to micron
scale)31–33 and high porosity ff 4 0.9.33–36 Thus, ~Z can range
from r up to 4r. For low-swelling-ratio gels,37 biological
tissues,38 larger-scale porous media such as foam39 and packed
beds of soft particles,40 ff can be as low as 0.5, and ~Z will be on
the order of 0.1r.

Lācis et al.7 computed the f factor in eqn (8) numerically in a
lid-driven flow over a model porous medium. A direct compar-
ison can thus be made with our c of Fig. 3. For ff = 0.75, they
reported f = �5.215m/r for a square array of circular cylinders

aligned in the vortex direction of the flow outside. This
translates to a penetration length ~Z/r = 0.192, smaller than
our c(ff = 0.75) = 0.367, but on the same order of magnitude.
The quantitative discrepancy may have been due to differences
in the geometric and flow setup. For example, theirs was a
planar 2D flow around the cross-sections of cylinders, while
ours is a 3D axial flow. Their interface was placed in the bulk of
the clear fluid, 0.2r outside the plane tangential to the first row
of cylinders, whereas our interface is flush with the ends of the
semi-infinite cylinders and holes. Their pressure difference was
volume-averaged, going 4 periodic cells into the depth of the
porous medium, while our pf is surface-averaged on the inter-
face. Finally, their lid-driven flow is 2D on the continuum level,
with variations along the interface, whereas our setup mimics
the simpler 1D compression of Fig. 1. Such differences not-
withstanding, both studies support the argument for an inter-
facial pressure drop. The numerical and semi-analytical results
of Fig. 3 can be used to determine the interfacial penetration ~Z
and interfacial permeability Z for a wide range of porous
materials, deformable and rigid alike.

Data availability

The numerical data of this work have been generated by finite-
element computations using an open-source library deal.II,
which can be found at https://github.com/dealii/dealii. The
version of the code employed for this study is version 9.5.
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