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ABSTRACT

Kaolinite is formed by weathering of continental crustal rocks and is also found in marine sediments in the
tropical region. Kaolinite and other layered hydrous silicate minerals are likely to play a vital role in transporting
water into the Earth’s interior via subducting slabs. Recent studies have experimentally documented the
expansion of the interlayer region by intercalation of water molecules at high pressures i.e., pressure-induced
hydration. This is counter-intuitive since the interlayer region in the layered silicates is quite compressible, so
it is important to understand the underlying mechanism that causes intercalation and expansion of the interlayer
region.

To address this, we explore the high-pressure behavior of natural kaolinite from Keokuk, Iowa. This sample is
free of anatase impurities and thus helps to examine both low-energy (0-1200 cm ™) and high-energy hydroxyl
(3000-4000 cm™!) regions using Raman spectroscopy and synchrotron-based powder X-ray diffraction.

Our results show that the pressure dependence of the hydroxyl modes exhibits discontinuities at ~3 GPa and
~ 6.5 GPa. This is related to the polytypic transformation of Kaolinite from K-1 to K-II and K-II to K-III phase.
Several low-energy Raman modes’ pressure dependence also exhibits similar discontinuous behavior. The
synchrotron-based powder X-ray diffraction results also indicate discontinuous behavior in the pressure
dependence of the unit-cell volume and lattice parameters. The analysis of the bulk and the linear compressibility
reveals that kaolinite is extremely anisotropic and is likely to aid its geophysical detectability in subduction zone
settings. The K-I to K-II polytypic transition is marked by the snapping of hydrogen bonds, thus at conditions
relevant to the Earth’s interior, water molecules intercalate in the interlayer region and stabilize the crystal
structure and help form the super-hydrated kaolinite which can transport significantly more water into the

Earth’s interior.

1. Introduction

Kaolinite [Al;SizOs5(OH)4] is a naturally occurring clay mineral often
produced by weathering of continental crustal rocks. It is quite likely
that a minor amount of common aluminosilicate clays such as kaolinite
might have been produced in the acidic environment of ancient active
volcanoes on the earliest anoxic protocontinents in the Hadean Earth
(<4.55 Ga) (Hazen et al., 2013). Following the moon-forming impact, i.
e., post-Hadean Earth the alteration of granite is likely to have led to the
first significant production of several dioctahedral aluminosilicate clays
including kaolinite. This possibility of forming aluminosilicate clays
including kaolinite in the Earth’s early history is further supported by
their presence in the ancient heavily cratered Noachian terrains (Bishop
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et al., 2008; Ehlmann et al., 2011). The presence of kaolinite on the
Martian surface is likely to have formed in an open system with a high
water-to-rock ratio (Ehlmann et al., 2011). In the context of the planet
Earth, oxidative weathering probably became more likely after the Great
Oxidation Event which assisted in clay formation (Lyons et al., 2009).
Once formed, kaolinite might have played a vital role in absorbing and
transporting phosphorus from the continents to the marine environment
making the phosphorus bioavailable to phytoplankton, thus linking the
Great Oxidation and the Lomagundi events (Hao et al., 2021). The
abundance of kaolinite shows a positive correlation with the availability
of oxygen in Russian platforms (Lisitzin and Rodolfo, 1972). In modern
oceans, the distribution of kaolinite is correlated with climate, i.e.,
temperature and rainfall correlate positively with the latitudinal
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abundance of kaolinite (Lisitzin and Rodolfo, 1972).

Aluminosilicate clays such as smectites and kaolinite are valuable
industrial minerals and are often used in the synthesis of clay-polymer
nanocomposites. Such industrial use is often related to the capacity of
clay minerals to swell and exchange cations in the interlayer region.
Although the cation exchange capacity of kaolinite is extremely low
owing to the hydrogen-bonded interlayer region, it is now known that if
the hydrogen bonding is weakened, kaolinite does participate in cation
exchange reactions with several organic molecules including acetamide,
dimethyl sulphoxide (DMSO), dimethyl acetamide, dimethyl form-
amide, formamide, hydrazine, N methyl acetamide, N methyl form-
amide, pyridine N oxide, and urea (Johnston, 2010). In a recent study,
intercalation of water has been reported in kaolinite at high pressures
and temperatures, a phenomenon referred to as pressure-induced hy-
dration (PIH) (Hwang et al., 2017, 2019; Basu and Mookherjee, 2021). It
is speculated that such pressure-induced hydration is likely to transport
significantly more water into the Earth’s interior. It is expected that at
higher pressures the interlayer hydrogen bonding is likely to strengthen,
and thus intercalation at high pressures, which requires breaking of
hydrogen bonding, is counterintuitive. A key question is what structural
changes does kaolinite undergo to facilitate such intercalation at high
pressures? So far only a few studies examined the structural changes of
kaolinite and its structural polytypes at high pressures (Johnston et al.,
2002; Dera et al., 2003; Welch and Crichton, 2010; Welch et al., 2012;
Hwang et al., 2017; Michalski et al., 2017; Basu and Mookherjee, 2021;
Hong et al., 2022). The high-pressure studies based on X-ray diffraction
have proposed polytypic transformations (Dera et al., 2003; Welch and
Crichton, 2010). The high-pressure studies based on Raman and infrared
spectroscopy have proposed changes in the hydrogen-bonded environ-
ment (Johnston et al., 2002; Welch et al., 2012; Basu and Mookherjee,
2021; Hong et al., 2022). However, we note that the naturally occurring
kaolinites found in weathered deposits often occur together with trace
amounts of (~5%) dispersed anatase (TiO2) and iron oxides primarily
due to the insolubility of Ti*' and Fe3* (Railsback, 2003). The trace
quantities of minor phases are unlikely to affect the X-ray diffraction
pattern, however, it is very likely to affect the low-energy region of the
vibrational spectra. Also, naturally occurring kaolinites vary in crystal-
linity which significantly influences the proton environment and the
hydroxyl region of the vibrational spectra. It is not known how crys-
tallinity affects the high-pressure behavior of the crystal structure of
kaolinite.

In this study, we want to build on these previous high-pressure-based
studies and compare and/or contrast our results with existing literature.
Our study is intended to shed insight into the high-pressure behavior of
naturally occurring crystalline kaolinite with no traceable impurity
phases. In this study, we use synchrotron-based X-ray diffraction and
both low energy and hydroxyl region using Raman spectroscopy to
explore the high-pressure behavior of highly crystalline kaolinite from
Keokuk, Iowa.

2. Methods

Raman Scattering and X-ray diffraction has been successfully used to
gain insight into a wide variety of hydrogen-bonded minerals and
inorganic compounds at high pressures (Auzende et al., 2004; Basu
et al., 2012; Basu and Mookherjee, 2021; Basu et al., 2023; Comodi
et al., 2007; Dera et al., 2003; Duffy et al., 1995; Gonzales-Platas et al.,
2019; Holtz et al., 1993; Huang et al., 1996; Hwang et al., 2019;
Johnston et al., 2002; Kleppe et al., 2001; Koch-Miiller et al., 2005;
Meade and Jeanloz, 1990; Mookherjee et al., 2015; Welch and Crichton,
2010; Ye et al., 2013). Thus, in this study, we explore the high-pressure
behavior of kaolinite using Raman scattering and X-ray diffraction.

At ambient conditions, we examined three distinct naturally occur-
ring polycrystalline kaolinite using X-ray diffraction- (a) commercially
obtained from Sigma Aldrich (SA), (b) from Warren County, West
Georgia (KGa-I, obtained from Source Clays Repository, The Clay
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Minerals Society, often referred to as low defect kaolinite (LD)), and (c)
from Keokuk, Iowa, USA (Keokuk). In a recent study, we examined SA
and LD kaolinite (Basu and Mookherjee, 2021) and hence, at ambient
conditions, we only examined Keokuk Kaolinite using Raman scattering.

For the X-ray diffraction and Raman scattering data at high pres-
sures, we used Keokuk kaolinite owing to its high crystallinity. For the
high-pressure X-ray diffraction and Raman scattering study, we used a
symmetric diamond anvil cell (DAC). In the symmetric DAC, we used
two low-fluorescence type-I diamonds with a culet size of 300 pm. We
used a 150 pm thick stainless gasket. We pre-indented the gasket to 50
pm and drilled a 100 pm center hole using an Almax-Boehler p-driller.
We used a 4:1 methanol-ethanol mixture which is hydrostatic up to ~10
GPa, as a pressure media for both the XRD and Raman scattering mea-
surements (Angel et al., 2007; Klotz et al., 2009). We carried out the
high-pressure Raman and XRD measurements to ~8 GPa. This is well
within the hydrostatic limit of the methanol-ethanol mixture (Angel
et al., 2007; Klotz et al., 2009). For the Raman measurements, we used
ruby fluorescence for the pressure calibration (Mao et al., 1986). The
typical error associated in pressure measurements associated with ruby
fluorescence method is around < +0.1 GPa.

We have used a synchrotron-based powder X-ray diffraction (XRD) at
the Advanced Photon Source, Argonne National Laboratory, Illinois,
USA to characterize these three samples. We used beamline 13 ID-D of
the GSECARS where the primary white beam from the wiggler source
was focused on the cryo-cooled Si (111) crystal to produce a mono-
chromatic X-ray with a wavelength of 0.3344 A. The images from the
Pilatus 1 M CdTe detector were corrected and integrated into 20 versus
intensity profiles using DIOPTAS (Prescher and Prakapenka, 2015). The
high crystalline quality of all three samples was confirmed by the
presence of sharp and well-defined (110), and (111) reflections (Sup-
plementary Materials). The X-ray diffraction pattern is an average of
multiple crystals with random orientations. We collected our X-ray
diffraction patterns by rotating the symmetric DAC around the omega
axis. During each of the data collection, the sample/symmetric DAC was
constantly rotated over 70° with a total exposure time of ~280 s. This
allowed us to sample a large portion of the reciprocal space. We carried
out LeBail refinement of the lattice parameters using the GSAS-II (Toby
and Von Dreele, 2013). The refined lattice parameters of the three ka-
olinites are in excellent agreement with the previous report (Welch and
Crichton, 2010) (Supplementary Materials). We used the gold equation
of state to determine pressures in the high-pressure X-ray diffraction
study. The typical uncertainties in the pressures associated with the
equation of state of gold is <+0.1 GPa (Heinz and Jeanloz, 1984).

We collected the Raman spectra of the kaolinite samples at ambient
conditions. We used a Horiba Jobin-Yvon LabRam HR Evolution spec-
trometer equipped with a thermoelectrically cooled CCD detector. We
used a frequency-doubled Nd-YAG laser (A=532 nm) with a maximum
300 mW output power at the source. For measurement at the ambient
conditions, we focused the laser through a 100x magnification objec-
tive. The Raman spectrometer setup involves an 1800 lines/mm grating,
setting the spectral resolution at 2 cm™!. We optimized the laser power
to obtain the best possible spectra and eliminate the likelihood of local
heating and damage to the sample by the laser (Basu and Mookherjee,
2021).

For the three kaolinite samples, we explored the high-energy region
(3550-3750 cm™!) that is sensitive to the hydroxyl (O-H) stretching
vibrations. Natural kaolinite samples often occur together with the
anatase (TiO,) mineral phase (Murad, 1997; Schroeder and Shiflet,
2000; Schroeder et al., 2003). Among the three kaolinite samples
explored in this study, Keokuk is free from the effects of the anatase.
Therefore, considering the crystallinity from the XRD measurements and
the quality of the ambient Raman spectrum we explored the high-
pressure behavior of Keokuk kaolinite using static compression. To
improve the signal-to-noise ratio, we collected the Raman spectra for 20
s and averaged over 15 accumulations.



A. Basu et al.

3. Results
3.1. Raman spectroscopy

The Raman spectroscopic data is well understood in terms of the
crystal structure of kaolinite that has a layered crystal structure con-
sisting of one tetrahedral (T) sheet attached to one octahedral (O) sheet,
i.e., T:O has a 1:1 ratio. These T:O units are attached to an adjacent T-O
unit with weak hydrogen bonds (O-H....O). The tetrahedral layers are
composed of an infinite sheet of di-trigonal rings with a fundamental
repeat unit of (Siy0s)?". Overall, kaolinite stoichiometry is intimately
related to fundamental units- (SiOs)*~ and AI(OH)s connected to form
[03Si, O (OH)' Al (OH)51, the superscript ‘b’ refers to bridging oxygen
ions or the basal oxygen ions, ‘nb’ refers to non-bridging oxygen ions or
the apical oxygen ions that are attached to octahedral layers, superscript
“I” refers to “inner hydroxyl”, and “IS” refers to “inner surface” or
“outer” hydroxyls. The octahedral layer has a stoichiometry of gibbsite
(AZ(OH)3 ), and consists of two trivalent aluminum ions (Al3+), i.e., di-
octahedral (Pauling, 1930; Brindley and Robinson, 1946; Bish, 1993;
Neder et al., 1999). Kaolinite crystal structure has triclinic C1 space
group symmetry with 17 atoms in the primitive unit cell (Welch and
Crichton, 2010). This translates to a total of 51 vibrational modesi.e. I'=
51 A. Among these, 51 A, 3 A modes are acoustic, i.e., I'geousic = 3 A and
the remaining 48 A modes are both Raman and infrared active, i.e., I'opric
= 48 A. However, in layered silicates such as kaolinite, the vibrational
modes can be understood in terms of an ideal hexagonal lattice with

[05Si,0%] units with Cg,(6mm) point group symmetry, Al(OH)3
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octahedral units with Sg(3) point group symmetry, and the OH ion that
forms an isosceles triangular unit O-H-O with Cy,(2mm) point group
symmetry where the two oxygen ions are the two nearest non-bridged
oxygen from the di-trigonal ring formed by the SiO,4 units (Loh, 1973).
For this ideal Ce,(6mm) symmetry for the [05Si,O%] units, factor group
analysis predictions are for three modes at 127, 130, and 285 em ™! (Ishii
et al., 1967). However, the [05Si;O%] units are often distorted to a di-
trigonal arrangement with a Cs,(3m) point group symmetry. The
lowering symmetry from the Cg, is not much and can readily account for
the observed modes in Keokuk kaolinite at ~120 cm ™! (1/11‘“), 130 cm !
(V4at) and 133 em™! (14) with 14 being the most intense and /%' being
the second most prominent mode at ambient condition (Table 1, Fig. 1).
The /& is thought to be related to the Al-O octahedral deformation
(Kloprogge, 2017).

We note that the naturally occurring well-ordered LD and SA
kaolinite samples have an intense mode at ~142-144 cm ! (Table 1).
These kaolinites contain anatase (TiOz) mineral phase (Murad, 1997;
Schroeder and Shiflet, 2000; Schroeder et al., 2003) which has a very
intense band ~143-144 cm! (E?OZ) attributed to the symmetric
bending mode of O-Ti-O. In addition, anatase (TiO3) also exhibits
intense modes at 397 ¢cm ! (BlT;OZ), 515 cm ™! (AlT;O2 + BlTéOZ), 639 cm !
(EgiOZ), and an additional less intense mode at 197 cm ™! (E?O2) (Table 1)
(Sekiya et al., 2001). It is also known that E?OZ stiffens upon compres-
sion (Balachandran and Eror, 1982; Ohsaka et al., 1979; Sekiya et al.,
2001), and thus it has been speculated that the variation of the ~144
cm ! modes observed in kaolinite minerals is indicative of the stress

Table 1
Deconvoluted Raman mode frequencies of three kaolinites (Keokuk, SA, and LD) collected at ambient conditions.
This study W1979 J1985 M1986 MH22 TSO01 EM97 RRUFF
Keokuk, Iowa SA LD (KGa-I) Keokuk KGa-I Mesa Alta Nanshu Anatase
123 oV 123 oV 123 oV 123 123 123 123 123 123 123
vl 0-Si-0 symm bend 119.7 0.1 118.5 0.2 117.8 0.5 120.0
v2 0-Si-O symm bend 129.9 0.0 129.9 0.1 129.9 0.1 130.0 130.0
V3 Si,05 out of plane 133.0 0.1 132.0
va(e) AlOg/Eg (TiO2) 142.2 0.0 143.9 0.0 141.0 143.0 146.8 144.5 146.0 143.0
v4 Aqg(v1) AlOg 196.7 0.4 196.6 0.3 197.4 0.3 200.0 201.0 197.0 197.2 199.0 197.3
V5 207.2 1.1 215.0
v6 By(v3) O-H-O triangle 2449 0.2 244.4 0.2 243.7 0.3 248.0 244.0 245.0
v7 270.7 0.2 272.4 0.3 273.7 0.2 272.0 271.0 270.0
v8 278.1 1.0
9 A;(v;) O-H-O triangle 336.7 0.2 336.0 0.2 336.0 0.2 338.0 335.0 336.0 337.8
va(€) SiO4/Eq (TiO2) 394.6 0.4 395.2 0.2 397.0 394.0 402.4 396.6 397.0 396.7
10 vo(e) SiO4 415.0 0.3 416.1 0.4 420.0 418.0
vll va(e) SiO4 433.1 0.2 430.2 0.4 429.9 0.5 434.0 431 431
vl2 v4(f2) SiO4 459.6 0.2 462.7 0.3 462.8 0.9 461.0 461.0 463.0
v13 v4(fy) SiO4 476.5 0.3 475.9 0.2 475.7 0.5 473.6
vl4 v4(f2) SiO4 507.2 0.5 512.7 0.3 515.8 0.2 512.0 516.0 517.2 515.3 514.0 518.0
528.7 2.2
Si-O-Al translation 637.1 0.1 637.6 0.1 637.0 638.0 644.2 638.6 638.0 638.5
vl5 Si-O-Al translation 711.1 1.5 707.7 0.4 706.9 1.2 700.0 710.0 710.9
vlée 748.1 0.2 750.6 0.2 751.0 0.5 749.0 750.0 751.0 759.9
17 OH translation 790.3 0.2 790.6 0.2 790.6 0.5 791.0 790.0 790.0
vl8 Al,OH; libration 913.4 0.2 913.2 0.2 914.4 0.6 916.0 915.0 915.0 914.3
v1l9 Al,OHj, libration 928.1 1.8 933.4 1.3 935.0 940.0 938.0
1010.0 1.1
A;(np) Si-O 1041.8 1.2 1048.0
A;(v»p) Si-O 1109.9 1.3 1105.0
v20 1128.3 2.1 1118.9 1.2 1122.7 0.9
121 3620.5 0.0 3620.8 0.1 3621.1 0.1 3620.0 3621.0 3620.0 3622.0
v22 3652.3 0.1 3654.0 0.0 3654.6 0.7 3650.0 3652.0 3651.0 3659.9
v23 3668.8 0.1 3669.7 0.4 3669.8 0.9 3668.0 3668.0 3669.0 3670.0
v24 3684.4 0.0 3690.2 1.1 3690.1 0.5 3682.0 3688.0 3684.0
25 3694.2 0.1 3699.1 0.2 3698.0 0.3 3692.0 3695.0 3695.0 3701.8

Note: Natural kaolinite samples for this study - Keokuk: Keokuk, Iowa; SA: Sigma Aldrich (Switzerland); LD- Low defect, Warren County, Georgia. MH22 (Hong et al.,
2022) and kaolinite sample from Nanshu Diggings in Suzhou city, Jiangsu province, China. TS01 (Sekiya et al., 2001); EM97 (Murad, 1997). Raman modes, v;, and

errors, ov;, are in units cm~*. Errors represent 16 uncertainties.
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Fig. 1. Raman spectra of Keokuk, LD, SA, and anatase in the low wavenumber
region from 100 cm™! to 1200 cm ™. The spectra were collected at ambient
conditions on a glass slide with 100 x objective. The red dash lines indicate the
vibrational modes of anatase impurities. The intense mode of anatase at ~144
cm! (Egmb) attributed to the symmetric bending mode of O-Ti-O was observed
in LD and SA kaolinites. The ~144 cm ™! (EgiOZ) is absent in Keokuk kaolinite.
The inset shows the zoomed in region to highlight the relatively less intense
modes i.e., 397 cm ™! (BlT;OZ), 515 cm ™ ? (Aﬁ;o2 + BlT;OZ), 639 cm™? (EgTiOZ) be-
tween wavenumber ~200 cm ™! and 1200 cm ™! for LD and SA kaolinite sam-
ples. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

state or tension (Frost, 1995). Similar to the LD and SA kaolinite sam-
ples, an intense mode at ~147 cm ™! has been recently reported from the
kaolinite sample from Nanshu Diggings in Suzhou City, Jiangsu prov-
ince, China (Hong et al., 2022). The observed intense mode at ~147
em™! of Nanshu kaolinite is likely related to the Ej%and has been
incorrectly characterized as O-Al-O symmetric bending mode (Hong

et al., 2022). In addition, modes at 397 em! (B{;Oz), 515 cm ! (A{igo2 +

BﬂOZ); and 639 cm! (E?OZ) are observed in SA, LD, and Nanshu
kaolinite samples (Table 1). Thus, it is likely that additional modes due
to anatase may have been incorrectly identified as kaolinite vibrational
modes (Hong et al., 2022) and further characterization of Nanshu
kaolinite is necessary before high-pressure vibrational data could be
interpreted and/or compared with high-pressure vibrational data of the
Keokuk kaolinite from this study.

Upon compressing the sample, ~120 em ™! (17), 130 em ™! (1), and
133 ecm™! (v3) exhibit discontinuous pressure dependence at ~3.1 GPa.
Upon slight compression, an additional mode in the high energy side of
11 mode and ~ 122 cm™! (v10) is also observed. Both these modes are
broad and upon compression, these modes become untraceable above
~2.3 GPa. The pressure dependence of modes can be explained by a
polynomial expression

2
vi= % (P—P,) +%<P -P,) @)
where, P, is the transition pressure. The v; mode exhibits modest
pressure dependence with %v_;~ 0.12 cm '/GPa. However, upon
compression to ~3.1 GPa, there is an order of magnitude increase in the

pressure dependence of v, mode, i.e., ‘f,”—g—v 1.81 cm~!/GPa. This

discontinuous change in the pressure dependence of v, mode, i.e., %&,

coincides with the polytypic transition of kaolinite from the low pressure
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(K-I) to intermediate pressure (K-II) phase (Basu and Mookherjee, 2021;
Welch and Crichton, 2010; Welch et al., 2012). The v3 exhibits discon-
tinuous behavior across K-I to K-II transition and splits into two modes.
And beyond ~6.2 GPa, which coincides with the intermediate pressure
phase (K-II) to high-pressure phase (K-III), the v3 mode also exhibits
discontinuous changes in its pressure dependence, (g—g (Fig. 2, Table 2).

The vibrational modes observed at 197 cm ™! (v4) and 210 em ! (vs)
(Fig. 1, Table 1, Supplementary Materials) at ambient conditions can be
attributed either due to the translational motion of the structural hy-
droxyl ions or due to the [04Si20%°] units with a reduced Cs,(3m) point-
group symmetry and is also seen (Michaelian, 1986). In some samples of
kaolinite, the 197 cm ™! (v4) is observed around ~200 cm™! and is also
assigned to the vy(e) vibrational mode of the AlO¢ octahedral units
(Frost and van der Gaast, 1997). We note that the observed mode 197
em™! (v4) coincides with the Egim anatase which is often present as
impurities in natural kaolinite. Does this mean that our Keokuk kaolinite
sample also has impurities that we are unable to assess due to the
overlapping modes of Keokuk kaolinite and anatase impurity? Three
lines of evidence indicate that our sample does not have anatase im-
purity (a) the absence of intense mode between ~143-154 cm ™! (E:g”OZ)
as reported in many other natural kaolinites; (b) at ambient condition,
the EgTiO2 mode in anatase is sharp but extremely weak, in contrast, the
observed mode at 197 cm ™ (v4) is relatively strong and well-defined, (c)

upon compression the v4 mode stiffens, i.e., %L; > 0, in contrast, the E;iOZ

TiO:
mode in anatase is known to soften upon compression, i.e., gpz <0
(Sekiya et al., 2001) (Fig. 3).

The vibrational mode observed at 245 cm ™ (ve) (Fig. 1, Table 1,
Supplementary Materials) at ambient conditions can be attributed to a
mixture of silicon-oxygen deformation and hydroxyl libration
(Michaelian, 1986). The vibrational modes observed at 271 em™! (v7)
and 278 cm™! (vg) have been attributed to mixed silicon-oxygen
deformation and octahedral sheet vibrations (Michaelian, 1986).

The vibrational modes observed at 337 cm ™! (v9), 417 em™! (v10),
433 cm™! (v11), 460 cm ! (v12), 477 cm? (v13), and 509 cm ! (v14) are
attributed to the combination of Si-O deformation and vibrations asso-
ciated with the octahedral sheet (Michaelian, 1986) (Fig. 1, Table 1,
Supplementary Materials). We note that close to the 509 cm ! (v14),

a b 160 o —
AN |
S .
W/LZéGPa 150+ i i ¢
) 6.9 GPa | i
E 6.2GPa — |
iMJwJ\\:g-ggga 5 R
g 12GPa 140 o eo®
E 3.7 GPa g é§ e :
L E Vi !
S 31GPa § 3 6 ! ‘
?J\-wz.mpa £ | oo° 3
2 20GPa 3 130f00 awo ®0 1 i
£ = v, i !
£ 1.5GPa v o 1
1.2GPa la_o® | ;
1.0 GPa e ;
08GPa 120e ; : 4
0.3 GPa <3 ! !
ambient Vl ! :
KI Kl Kl
‘ : ‘ ol W
20 140 160 _ 180 01 2 3 4 5 6 7 8

Wavenumber [cm™] Pressure [GPa]

Fig. 2. (a) Raman spectra in the low energy region between 100 cm ! and 180
em ™}, collected at different pressures are stacked with an offset in the abscissa.
(b) Deconvoluted vibrational modes in the the low energy region between 100
em ! and 180 cm ™! vs. pressure reveals discontinuous behavior across K-I to K-
II and K-II to K-III phase. The red dashed line represents the pressure evolution
of the EgiOZ mode, attributed to the symmetric bending of O-Ti-O unit of
anatase. The pink shaded region represents a & 1o uncertainty.



Table 2
Pressure dependence of the low wavenumber modes in Keokuk kaolinite and coefficients of polynomial expansions.
KI KII KIII

i R e i o B i i B y y
1 119.9 0.1 —4.43 1.41 2.18 1.50 131.3 0.0 1.81 0.83 —0.13 1.29 140.3 0.0 0.39 0.89 1.56 0.70
la 122.4 0.3 -1.25 0.54 1.13 0.20 136.4 0.1 2.34 0.11 —0.36 0.03 145.7 0.1 4.05 0.25 0.06 0.19
2 129.9 0.0 —0.26 0.01 0.23 0.00 144.9 1.1 —2.24 0.87 0.86 0.17 195.8 0.7 6.50 2.24 -1.51 1.46
3 133.0 0.1 0.12 0.09 1.14 0.06 169.5 2.8 8.08 5.74 —2.36 2.04 220.1 0.4 14.35 3.84 -1.70 2.90
4 196.7 0.4 1.01 0.16 —0.04 0.07 197.7 0.2 6.54 0.30 0.27 0.10 248.7 0.3 9.72 0.79 —0.04 0.44
5 210.4 0.5 1.36 0.71 —0.53 0.18 221.8 0.5 5.46 0.48 —0.56 0.13 271.1 0.1 3.99 0.47 —0.82 0.34
6 244.9 0.2 0.27 0.41 —0.02 0.16 244.4 0.5 1.68 0.79 —0.06 0.23 288.9 0.1 6.80 0.28 —0.81 0.22
7 248.7 0.3 3.79 0.42 —0.38 0.12 257.4 0.2 5.14 0.24 —0.28 0.06 311.9 0.1 5.01 0.24 -0.49 0.17
8 270.7 0.2 5.58 0.04 -0.74 0.02 280.4 0.1 2.18 0.19 0.18 0.06 350.7 0.2 —0.02 0.42 1.02 0.23
9 278.1 1.0 9.43 0.10 -1.99 0.04 288.9 0.1 12.53 0.12 —1.68 0.03 429.2 - 4.18 - —3.33 -
10 319.2 2.2 3.58 2.18 —0.64 0.50 342.2 0.0 —0.13 0.28 0.91 0.10 444.5 - —0.49 - 0.49 -
11 336.7 0.2 2.56 0.03 -0.20 0.01 353.2 0.6 3.62 0.86 —-0.41 0.27 492.3 - —6.51 - 6.73 -
12 336.8 3.8 13.28 3.80 —2.65 0.89 420.4 1.2 6.05 1.86 -1.11 0.58 529.8 - -3.13 - 4.43 -
13 417.3 0.4 1.38 0.54 —0.19 0.17 431.9 0.3 5.86 0.47 —0.60 0.15 656.6 1.7 0.46 5.43 0.42 3.32
14 433.1 0.2 —-1.24 0.81 0.25 0.33 466.2 1.2 10.65 1.86 —2.28 0.58 689.3 3.1 —4.89 7.45 5.29 4.29
15 459.6 0.2 2.82 1.00 —0.06 0.41 485.7 0.8 16.29 1.23 —4.56 0.38 720.1 1.2 —2.23 3.21 0.93 1.87
16 476.5 0.3 6.13 1.31 —1.00 0.54 518.1 1.2 7.75 1.79 -1.36 0.56 769.8 0.1 0.33 0.19 1.43 0.11
17 509.4 0.8 3.86 1.16 —0.39 0.36 656.0 1.0 —10.82 2.26 5.23 0.90 828.0 1.0 6.49 2.59 —-1.08 1.49
18 704.0 0.7 6.95 0.89 -0.87 0.25 717.4 0.5 1.61 0.97 0.46 0.38 833.1 5.0 3.30 0.68 - -
19 748.1 0.2 4.92 0.05 —0.12 0.02 756.9 0.1 7.58 0.16 -1.10 0.04 908.2 0.7 1.73 2.43 1.49 1.76
20 790.3 0.2 1.53 0.05 1.02 0.02 802.4 0.6 7.81 0.64 -1.25 0.16 926.7 0.2 4.51 0.72 —0.80 0.49
21 800.4 1.2 —0.89 1.38 1.66 0.35 824.6 4.1 1.29 3.80 0.01 0.85 1031.5 1.0 5.88 7.24 —8.82 5.07
22 880.4 0.4 4.69 0.51 -0.10 0.15 894.4 0.3 2.86 0.69 0.57 0.23 1053.2 0.2 —1.34 1.00 0.36 0.70
23 913.4 0.2 1.89 0.14 0.26 0.06 922.3 0.3 -3.98 0.33 1.77 0.10 1101.7 1.0 —19.06 7.57 9.77 5.41
24 928.1 0.2 12.55 2.73 —4.11 2.04 1002.1 1.8 4.61 3.01 —-1.56 1.03 1138.8 11.9 —4.81 30.70 3.85 19.60
25 1010.0 1.1 2.52 0.74 0.95 0.27 1041.6 1.0 —6.25 2.04 0.97 0.60

26 1028.7 0.9 0.91 1.23 1.13 0.36 1058.8 0.5 —0.38 0.61 —0.45 0.16

27 1041.8 1.2 8.53 0.31 —-0.95 0.14 1113.3 0.7 —9.42 1.08 2.05 0.35

28 1092.4 1.6 —2.61 2.07 1.21 0.57 1164.1 196.0 —8.82 245.00 1.82 69.90

29 1102.9 0.7 8.55 0.98 -1.51 0.28 1096.2 1.2 -4.77 3.96 11.09 3.24

30 1128.3 2.1 —0.65 0.62 1.21 0.23

* 939.4 4.2 38.44 19.40 —16.33 14.70

Note: Subscript “i” refers to the vibrational modes for K-I, K-II, and K-III. The pressure dependence of the modes is described by a polynomial expansion of the form v; (Pref) + u/i (P - P,ef) + y; (P - P,.ef) 2, where v; [cm’l} is

the hydroxyl mode frequency at the reference pressure, v; [cm~!/GPa] and v;[cm~' /GPa?] refers to the first derivative

dIJi

a@a

and second derivative,

conditions, i.e., 1 bar or 1 x 10~* GPa for K-I, Py refers to ~3.1 GPa for K-II, and Py refers to ~6.2 GPa for K-III. Errors represent 1¢ uncertainties.

d?y;
2

E‘, respectively. The reference pressure, Py, refers to ambient
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Fig. 3. (a) The plot shows the Raman Spectra in the low energy region between 180 cm™! and 370 cm ™Y, collected at different pressures are stacked with an offset in
the abscissa. (b) Deconvoluted vibrational modes in the the low energy region between 180 cm ™! and 270 cm ™! vs. pressure reveals discontinuous behavior across K-I

to K-II and K-II to K-II phase. The red dashed line represents the pressure evolution of the ~197 cm ™! Egio? mode, attributed to anatase, with distinct

TiO:
O, 2
5 <0

(Sekiya et al., 2001) compared to the pressure dependence of the low energy mode 5;—; > 0 of Keokuk kaolinite. (¢) Deconvoluted vibrational modes in the the low
energy region between 260 and 380 cm ™! vs. pressure reveals discontinuous behavior across K-I to K-II and K-II to K-III phase. The pink shaded region represents a +

1o uncertainty.

anatase also has a vibrational mode 515 cm ™! (AlrcfzOz + BEOZ), but there
remains a clear distinction between the v14 and the A{;OZ + B{;OZ.

The vibrational modes observed at 711 cm ™ (v15), 748 em! (v16),
and 790 cm™! (v17), are attributed to the combination of Si-O-Al vi-
brations and associated translations of the OH groups (Michaelian,
1986; Frost and Kloprogge, 1999) (Table 1). The vibrational modes
observed at 913 cm ! (v18) and 928 cm ! (v19) are attributed to the in-
plane bending motions (éAlz(OH)I ) and (5A12(OH)IS >, where super-

script “I” and “IS” refers to the inner hydroxyl and inner surface hy-
droxyl respectively (Farmer 1974). We observed vibrational modes at

1010 cm ™! (v20), 1042 cm! (v21), and 1128 em ! (v22). These modes
are extremely weak and are observed at ambient conditions within the
diamond anvil cells. Upon slight compression, the modes become more
distinct. These modes are attributed to the Si-O stretching, i.e., v (Si-O-
Si).

The crystal structure of kaolinite has four proton sites: H1, H2, H3,
and H4, that form distinct hydrogen-bonded environments (Bish, 1993).
The H1 proton forms an “inner hydroxyl” group [Ohl-H1] that is
approximately parallel to the (001) plane. The H1 proton is located
within the cavity in the di-octahedral layer. The H2, H3, and H4 protons
form the “inner surface” or “outer” hydroxyl groups [Oh2-H2], [Oh2-
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Fig. 4. Raman spectra of the hydroxyl stretching region between 3550 cm ! and 3750 cm™! collected at ambient condition on a glass slide. The spectra were
collected with a 100x magnification objective. (a) Keokuk: kaolinite from Iowa, USA, (b) LD: low defect kaolinite from Warren County, Georgia, USA, and (c) SA:
naturally occurring kaolinite obtained from Sigma Aldrich. The laser power used for the Raman measurements for all the three samples was 15 mW at the source.
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H2], and [Oh2-H2] and are near vertical to the (001) plane (Bish, 1993).
In the energy region between 3550 cm™' and 3750 cm ™! we find five
distinct modes at ~3621 cm ™ - 9§, 3652 cm ! @91, 3669 cm ! @§H),
3685 cm ™! (19H), and 3695 cm™! (1H) (Fig. 4, Table 1). The hydroxyl
modes observed for Keokuk kaolinite are in good agreement with the LD
and SA kaolinite with slight differences observed for the v and 12, but
the differences are Av < 5 cm™!. These slight differences in the energy of
the hydroxyl modes may be attributed to slight differences in the crys-
tallinity/crystal structure and the hydrogen bonding environment.
Infrared spectra of kaolinite often exhibit four distinct O-H stretching
modes (Farmer and Russell, 1964; Ledoux and White, 1966), the lowest
energy mode v{# corresponds to the Ohl1-H1 i.e., the ‘inner hydroxyl’
mode. The higher energy O-H stretching modes (197, 1", 19" and 12H),
are related to the three hydroxyl groups i.e., Oh2-H2, Oh3-H3, and Oh4-
H4 attached to an Al octahedral site. In an idealized crystal structure of
kaolinite, these three O-H would be related by a three-fold symmetry
and would result in two O-H modes: one would be due to an in-phase
stretching mode where all the three Oh2-H2, Oh3-H3, and Oh4-H4
would vibrate in phase and perpendicular to the (001) layer and the
other mode would be an out-of-phase vibration of the Oh2-H2, Oh3-H3,
and Oh4-H4 modes (Farmer, 1964; Farmer and Russell, 1964; Farmer,
1974). However, the kaolinite crystal structure has lower symmetry than
the ideal three-fold, and the out-of-phase vibrational mode is split into
two modes (W97, V9H) (Farmer and Russell, 1964; Farmer, 1974). Most
infrared spectroscopic studies on kaolinite have characterized the OH
stretching region into these four vibrational modes (Welch et al., 2012)
and are consistent with theoretical predictions (Balan et al., 2001;
Tosoni et al., 2006). However, an additional mode (v$¥) has been
observed in most kaolinite Raman spectra (Johnston, 1985; Michaelian,
1986; Frost and van der Gaast, 1997; Frost and Kloprogge, 1999; Basu
and Mookherjee, 2021). The origin of the v¢¥ in naturally occurring
kaolinite samples or related to the LO-TO splitting due to the trans-
lational motion of the Oh2-H2 hydroxyls (Johnston, 1985). The reason
that the 19" mode is not seen in the infrared spectra but observed in the
Raman spectra is often attributed to the presence of an inversion center
i.e. if the outer hydroxyls groups are attached to the adjacent tetrahedral
layer such that Al-O-H...O-Si forms a linear geometric configuration,
then such a configuration and the associated hydroxyl vibration could
account for the v$¥ mode (Frost and van der Gaast, 1997).

Upon compression, the crystallographic environment of the proton is
significantly altered. This is revealed in the changes in the OH-stretching
modes. Similar to the low energy modes (100-1200 em™), the pressure
evolution of the inner hydroxyl, 1%¥ and the inner surface hydroxyl, 5,
v§H, V98, and V27 of Keokuk kaolinite also exhibits a transition from K-I
to K-II at 3 GPa and K-II to K-III at 6 GPa and the pressure evolution can
be adequately described by

OH

—pr (P—Pu)’ 2

OH 2
on _ Y d°v

. P-P,
i 4P ( )+

where, P, is the transition pressure. The pressure evolution of the modes
is in good agreement with other kaolinite samples LD and SA (Basu and
Mookherjee, 2021) (Fig. 5, Table 3).

Upon compression, we observe softening of all the 1% modes i.e.,

d%ﬂ < 0 (Fig. 5). This is interpreted as the strengthening of the O-H....O,
hydrogen bonds, and is consistent with prior observations on other
kaolinite varieties (Basu and Mookherjee, 2021). Upon compression >3
GPa, i.e., in the intermediate phase of kaolinite (K-II), the 19, 1§¥, and
v§" modes stiffen. This compression-induced stiffening is in agreement
with the previous study on other kaolinite varieties (Basu and Moo-
kherjee, 2021). Upon further compression, i.e., beyond 6 GPa, the hy-
droxyl stretching modes show significant changes owing to the
densification of the kaolinite structure to the K-III polymorph (Welch

and Crichton, 2010; Welch et al., 2012). Four distinct modes are
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Fig. 5. (a) Raman Spectra in the hydroxyl region between 3550 cm ' and

3750 cm™?, collected at different pressures are stacked with an offset in the
abscissa. (b) Deconvoluted vibrational modes in the hydroxyl stretching region
between 3550 cm ™! and 3750 cm ! vs. pressure reveals discontinuous behavior
across K-I to K-II and K-II to K-III phase. Results from this study are in good
agreement with prior study that explored pressure dependence of hydroxyl
modes of LD and SA (Basu and Mookherjee, 2021). The pink shaded region
represents a + 1o uncertainty (Table 3). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of
this article.)

observed in the high-pressure polymorph (K-III) of kaolinite. This is
consistent with prior studies (Basu and Mookherjee, 2021).

3.2. Synchrotron X-ray powder diffraction

The pressure-dependent synchrotron powder X-ray diffraction data
of Keokuk kaolinite exhibit distinct changes around ~3.5 GPa i.e., the
transformation from the low-pressure K-I phase to intermediate pressure
K-II phase and at ~6.5 GPa indicating transformation from the inter-
mediate pressure K-II phase to the high-pressure K-III phase (Fig. 6). Our
observation is in good agreement with a prior static compression of the
X-Ray diffraction studies (Welch and Crichton, 2010) (Supplementary
Materials). Our finite strain analysis for bulk and linear compressibility
(Angel, 2000; Birch, 1978, Davies, 1974; Gonzalez-Platas et al., 2016;
Weaver, 1976; Supplementary Materials) of the X-ray diffraction data up
to 3 GPa, i.e., K—I phase yields Ko~66.39 (£5.5) GPa, Kj~1.24
(+4.28), K,~396.01 (+18.1) GPa, K,~288.07 (+18.8) GPa, and
K.~107.29 (+14.4) GPa. When we combine data from our study and
prior study (Welch and Crichton, 2010), finite strain analysis of the K—I
phase yields Ko~62.14 (£3.68) GPa, K¢~2.26 (£2.98), K,~389.80
(£12.8) GPa, K;~251.35 (£11.7) GPa, and K~117.21 (+£8.94) GPa.
We find that Kg: Kp: K. is 3.33:2.14:1.00. While our bulk modulus is in
good agreement with the prior estimate of Ky~59.07 (+0.70) GPa, the
linear moduli are quite distinct i.e., K,~88.60 (+3.5) GPa, K;~85.40
(£2.8) GPa, and K.-~34.6 (£0.50) (Welch and Crichton, 2010). The
likely difference between our estimates and that of the prior study
(Welch and Crichton, 2010) is the formalism used in the prior study
where the lattice parameters were cubed to obtain a fictitious volume,
and a bulk finite strain formalism was used to determine linear
compressibility. The bulk modulus determined in this study using the
linear compressibility is ~65.29 GPa i.e., within ~1.7% of the bulk
modulus determined using the pressure-volume relationship using
formalism (Supplementary Materials). In contrast, the bulk modulus
determined from prior estimates (Welch and Crichton, 2010) using the
linear compressibility is ~19.26 GPa i.e., ~68% discrepancy between
the bulk modulus determined using the Birch Murnaghan finite strain
formalism for volume. The linear compressibility can also be determined
using the full elastic constant tensor and its compliance (Nye, 1985;
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Fig. 6. Equation of state and linear compressibility of the Keokuk kaolinite from synchrotron powder X-ray diffraction measurements at high-pressures (Supple-
mentary Materials). Pressure dependence of (a) unit-cell volume, (b) lattice parameter a, (c) lattice parameter b, (d) lattice parameter c, reveals discontinuous
behavior across K-I to K-II and K-II to K-III phase. Inset in (c) shows the pressure dependence of lattice parameters, «, 8, and y. The discontinuous behavior across K-I
to K-II and K-II to K-III phase is indicated by dark grey gradational shading. The equation of state of K-I phase is constrained by finite strain formalism eq. (3-8) in the
main text. (e) Finite strain (f,) vs. normalized pressure (F,) plot. Linear normalized pressure (f;) vs. linear normalized pressure (F;) plot for the lattice parameters (f) a
(g) b and (h) c respectively. The results are in good agreement with prior study (Welch and Crichton, 2010). The shading represents +1¢ uncertainty related to finite
strain analysis with results from this study (pink) and combining results from this study and prior study (grey) (Welch and Crichton, 2010). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

is of high crystallinity and is free from anatase impurities that is likely to
complicate the interpretation of the pressure dependence of the Raman
modes in the low energy region. We compressed Keokuk kaolinite and
found that the pressure dependence of the hydroxyl modes v was very
similar to that have been examined in prior studies with discontinuities
at ~3 and ~ 6 GPa. This is related to the polytypic transformation of
Kaolinite from K-I to K-II and K-II to K-III phase. Several low-energy
Raman modes’ pressure dependence also exhibits similar discontin-
uous behavior. The synchrotron-based powder X-ray diffraction results
also indicate discontinuous behavior in the pressure dependence of the
unit-cell volume and lattice parameters. The analysis of the bulk and the
linear compressibility reveals that kaolinite is extremely anisotropic.
Such elastic anisotropy is likely to manifest in unique sets of geophysical
signatures, thus likely to be useful in aiding in its detectability. The K-I to
K-II polytypic transition is marked by the snapping of hydrogen bonds,
thus at conditions relevant to the Earth’s interior, aqueous fluid

intercalation in the interlayer is likely to stabilize the crystal structure
and help form the super-hydrated kaolinite which can transport signif-
icantly more water into the Earth’s interior.
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