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SYMMETRY AND ASYMMETRY BETWEEN POSITIVE AND NEGATIVE SQUARE
ENERGIES OF GRAPHS*

CLIVE ELPHICK' AND WILLIAM LINZ}

Abstract. The positive and negative square energies of a graph, st (G) and s~ (G), are the sums of squares of the positive
and negative eigenvalues of the adjacency matrix, respectively. The first results on square energies revealed symmetry between
st(G) and s~ (G). This paper reviews examples of asymmetry between these parameters, for example using large random
graphs and the ratios st /s~ and s~ /st as well as new examples of symmetry. Some questions previously asked about st and
s~ are answered and several further avenues of research are suggested.
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1. Introduction. Let G be a connected graph with n vertices and m edges and let A denote the
adjacency matrix of G, where p1 > ... > p, denote the eigenvalues of A. Let x(G) denote the chromatic

number of G and let:
st = Zuf and s~ = Z,u?

>0 i <0

Note that:

ZN? =tr(A*) =2m =s" +5".
i=1

Elphick et al. [6] formulated the following conjecture, which was placed 1°¢ in a wide ranging review of
unsolved problems in spectral graph theory by Liu and Ning [10]:

CONJECTURE 1.1. For any connected graph:

min (sT,57) >n — 1.

Elphick et al. proved this result for various classes of graphs, including regular graphs.

Note that for trees, sT = s~ = m = n — 1 and that for complete graphs s~ = n — 1. This conjecture
provides an example of symmetry between s (G) and s~ (G), in that the same lower bound is tight for both
st and s~. Abiad et al. [1] gave the name positive and negative square energies to s™ and s~, and made
some progress toward proving Conjecture 1.1 by developing new tools.
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419 Symmetry and asymmetry between positive and negative square energies of graphs

As another example of symmetry, Ando and Lin [2] proved a conjecture due to Wocjan and Elphick [18]

that:
sT(G) s7(G)

1+ max <s—(a)’ S+(G)> <X(G).

Coutinho and Spier [5] have recently strengthened this bound by proving a conjecture due to Wocjan,
Elphick and Anekstein [19] that:

sHG) s7(G)
1+maX<s(G)’s+(G)> < x0(G) < x(G),

where x,(G) denotes the vector chromatic number.

Because Conjecture 1.1 seems surprisingly difficult, it is useful to develop a more thorough understanding
of positive and negative square energies. In this paper, we answer some questions asked by Abiad et al. [1],
suggest several new avenues for research on s and s~, and make some initial progress on addressing several
of these avenues. We have organised our paper in survey form, centring around different examples demon-
strating symmetry or asymmetry between s and s~. By asymmetry, we mean any inequality, statement or
expression which holds for s*, but not s~, or vice versa. Typically, asymmetry results from contributions
of the square of the principal eigenvalue u; to sT. We hope that the questions and results we present here
will spur further study into positive and negative square energies.

Sections 2 to 6 investigate examples of asymmetry between st and s~. In Section 2, we determine s™
and s~ for almost all graphs, addressing a question asked by Abiad et al. [1]. Our result is the following,.

THEOREM 1.2. Let G be a graph on n vertices. Then, with probability tending to 1,

sHG) = (2 + 0(1)> n?,

and

s~(G) = <é + 0(1)) n2.

In Sections 3 and 4, we investigate graphs for which s~ is much larger than s*. In Section 3, we study
the ratios of square energies s* /s~ and s~ /s™ and construct examples of generalised quadrangles where the
latter ratio is large. In Section 4, we introduce and study squared spreads of graphs st — s~, in analogy
to the well-studied notion of the spread of a graph [8]. In particular, we construct examples of graphs with
very negative squared spread.

In Section 5, we consider s and s~ for maximal planar graphs. In Section 6, we consider upper bounds
for s~ that are not upper bounds for sT.

Sections 7 to 9 provide further examples of symmetry between s* and s~. In Section 7, we identify
an infinite number of nonbipartite graphs with s* = s~ answering a question of Abiad et al. [1]. Our
constructions are certain infinite families of Kneser graphs.

THEOREM 1.3. Let k > 2. Then, the Kneser graph K (2k + 2j,k) has s = s~ for every 1 < j < k.

In Section 8, we prove a weaker lower bound than Conjecture 1.1, and in Section 9, we consider dis-
connected graphs and propose a weaker conjecture than Conjecture 1.1, but for all graphs. We conclude in
Section 10 and make some remarks on Conjecture 1.1.
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2. Average square energies.

2.1. Introduction. Theorem 2.5 in [1] proves that if H = G — e (where e is an edge in G), then

sT(G) > sT(H) — 02 and s~ (G) > s (H) — 62,

where 6, > ... > 6,, are the eigenvalues of A(H).

However, an increase in sT due to edge deletion is rare, as discussed in Section 2.2 of [1], while an increase
in s~ due to edge deletion is common, because connected graphs with the minimum number of edges (trees)
and with the maximum number of edges (K, ) both have s~ = n — 1. Note that s~ is maximised for regular
complete bipartite graphs, with s~ = m = n?/4 [6], while sT = (n — 1)? is maximised for complete graphs.
This provides an example of asymmetry in square energies.

This implies that as the number of edges increases, s~ initially increases but reaches a maximum and
then decreases. To quantify this intuition, we define a new parameter s~ (n,m) to be the average value of s~
for all non-isomorphic graphs with n vertices and m edges and define s (n,m) similarly. These parameters
are termed average square energies. Clearly:

sT(n,m) + s~ (n,m) = 2m.

We computed s (n,m) and s~ (n,m) for n < 9. For example with n = 9, s7(n,m) monotonically
increases with m but s~ (n, m) monotonically increases until m = 24 and then monotonically decreases.

2.2. Average square energies for random graphs. We computed average square energies for sam-
ples of random graphs using the Wolfram Mathematica function RandomGraph[n,p], with n = 100. The
results are in Figure 1, with s~ in red and sT in blue. It can be seen that s monotonically increases with
increasing p while s~ reaches a maximum value of ~ 0.14n? at p ~ 0.5.
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FIGURE 1. Average square energies for random graphs with n = 100.
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To prove results about average square energies, we use the Erds-Rényi model G(n,p) where n is the
number of vertices and p is the independent probability of each edge being present.

Nikiforov [12] investigated Schatten p-norms of random graphs and proved that these norms behave
differently for p < 2, p = 2 and p > 2. Square energies correspond to p = 2. Nikiforov established that
Schatten p-norms of almost all graphs can be reduced to finding the Schatten p-norms of the random graph
G(n,1/2). We adapt Nikiforov’s approach and notation in the following analysis, with a.s. meaning “with
probability tending to 1.”

We determine the positive and negative square energies of almost all graphs by finding s*(G(n, 3)) and

s (G(n, 3)) as. Our argument follows a similar line of argumentation as Nikiforov [12, Theorem 5] for

determining the Schatten p-norm of almost all graphs and determining the energy [11] of almost all graphs.

Proof of Theorem 1.2. First, observe that since > | u? = 2m, it follows that a.s.

(2.1) >l g)) = (5 + otn)) .

It is standard that the adjacency matrix A(G(n, %)) is a random symmetric matrix with zero diagonal
entries and independent entries a;; satisfying Ela;;] = 3, Var[a?;] = . Then, a result of Fiiredi and

Komlés [7, Theorem 1] implies

(2.2) i = <i + 0(1)> n? a.s. and pz < (1+0(1))n as.

Using Wigner’s [17] semicircle law in the form given by Arnold [3] (with appropriate normalisation):

2n2 0
s*:—/ 22\ 1 — 22 da;
T J-1
on? !
3+—,uf=—/ 2?1 — 22 dx.
0

™

These integrals are both 7/16, so a.s. s~ = st — 2. Therefore, using the formulae in (2.1) and (2.2),

173 1/1
+_ (2 2 N 2
S 2 (4 + 0(1)> n- a.s. and s~ = 3 ( + 0(1)> n” a.s.

This asymmetry between st and s~ for large random graphs is due to the largest eigenvalue.

Question 4.1 in [1] asks whether the percentage of graphs with s~ > st tends to zero as n — o00?
Theorem 1.2 shows the answer is yes.

It would be interesting to calculate the expected value of the positive and negative square energies of
the random graph G(n,p). We believe that similarly to Theorem 1.2,

st = %(p(p+ 1) +o(1))n” as. and s~ = %(p(l —p)+o(1))n® as.
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3. Ratios between positive and negative square energies. How large can the ratios s™/s~ and
s~ /sT be? For complete graphs, s* /s~ =n — 1.

It is challenging to construct a family of graphs on n vertices such that s~/s* > a,, where a,, — 0o as
n — 00. We present such constructions using generalised quadrangles.

THEOREM 3.1. There is a family of graphs on n vertices with s~ /sT = ©(ni) as n — co.

Proof. The collinearity graph of a generalised quadrangle of order (s, t) is a strongly regular graph (see [4,
Proposition 2.2.18]) with (s + 1)(st + 1) vertices and spectrum k'rfa?, where

s(s+ Dtt+1) s2(st+1)
k=st+1),r=s—1,a=—-t—1, f= — _
3( + )7T S ?a’ 7f S+t 79 S+t

For any prime power g, there is a generalised quadrangle of order (q,q?). Using the parameters specified
above, the collinearity graph of this generalised quadrangle has n =~ ¢* vertices, positive square energy
st =~ ¢® and negative square energy s~ ~ ¢” (here we suppress all lower order terms). Therefore, st ~ n/4,
s~ &~ n"/*, and the result follows. a

Another infinite family of graphs with s~ /s™ — oo as n — oo are the collinearity graphs of generalised
quadrangles of order (g%, ¢®) for a prime power ¢. Using the parameters given in the proof of Theorem 3.1,
we find n ~ ¢7, s7 ~ ¢! and s~ ~ ¢'2. While the ratio s~ /s ~ n'/7 is not as good as the ratio given by the
generalised quadrangles of order (g, ¢%), we note that the collinearity graphs of the generalised quadrangles of
order (g2, ¢>) have the following remarkable property: not only do we have sT = o(s7), but in fact u? ~ ¢'°,
so we also have p? = o(s™)!

We leave it as an open question to determine the maximum size of the ratio s=/s™.

QUESTION 3.2. What is the maximum ratio that s~ /st can achieve as n — oco? In particular, is there
a family of graphs on m vertices with n — oo such that s~ /st = O(n)?

4. Squared spread of graphs. The spread of G is defined to be pu; — py, [8]. Analogously, we define
the squared spread of a graph G to be st — s™.

The complete graph K,, has squared spread s™ — s~ = (n —1)? — (n — 1) = (n — 1)(n — 2). We can
readily deduce that this is nearly the best possible.

PROPOSITION 4.1. For any graph G on n vertices, s* — s~ = O(n?). Furthermore, if Conjecture 1.1 is
true, then st — s~ < (n—1)(n —2).

Proof. We have st — s~ < st < 2m = O(n?). If G is disconnected, then sT — s~ < st < 2m < (n —
1)(n—2). Otherwise, if Conjecture 1.1 is true, then s~ > n—1,s0s7—s~ < (n—1)2—(n—1) = (n—1)(n—2)0

We can ask the complementary question: how negative can the squared spread be? Perhaps somewhat
surprisingly, there are examples of graphs with very negative squared spread.

THEOREM 4.2. For any € > 0, there is a graph G on n vertices with
st —s7 =-Q(n*).

Proof. We first find an infinite family of graphs where the squared spread s™ — s~ is superlinearly
negative. We use a family of strongly regular graphs defined by Taylor [15, 16]. For any odd prime power g,
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there is a strongly regular graph T}, on n = ¢> vertices with spectrum [13, Section 5.3] k'rfs9 where:

k= %(q— D(@®+1),r= %(q— 1), s = —%(q2 +1), f=(g-1)(*+1), g=aqlg—1).

It is straightforward to compute from these parameters that the squared spread of T is st — s~ = —¢*/2 +

/2 — /2 +q/2 = —O(n*/?).

We now consider the t-blowups Tq[t] of the Taylor graphs. The t-blowup of a graph G is a graph G
obtained by replacing each vertex of G with a set of ¢ independent vertices and replacing each edge of G by
a complete bipartite graph Ky ;. If G has eigenvalues Ay, ..., Ay, then G has eigenvalues t\, ..., t\, along
with (¢ — 1)n additional Os [13].

The t-blowup Tq[t] is a graph on ¢t vertices with squared spread —©(q*t?). Setting ¢t = ¢ for some
integer a > 0, the graph Tq[t] has n = ¢t
—0(n?~2/(3+)) " Choosing a sufficiently large gives an infinite family of graphs with squared spread —Q(n?~¢)

vertices and squared spread st — 57 = 7®(n(4+2a)/(3+a)) —

for any € > 0. O

The blowup construction used in the proof of Theorem 4.2 works for any family of graphs G with negative
superlinear squared spread, so in particular it also works for the families of generalised quadrangles used in
Section 3.

With our current knowledge, the situation for squared spread is therefore not quite symmetric between
sT and s~. It would be interesting to know if there is a family of graphs on n vertices with n — oo such
that st — s~ = —©(n?). Unfortunately, graph blowups do not seem to yield such a family.

QUESTION 4.3. Is there a family of graphs on n vertices with n — oo such that

sT—s57 = —-0(n?%)?

5. Square energies of maximal planar graphs. Several authors have investigated upper bounds
for the spectral radius of planar graphs. It is of interest to investigate similar bounds for the square energies
of planar graphs, in part to see whether this reveals asymmetry between s (G) and s~ (G).

Following Hong [9], if Conjecture 1.1 is true then for any connected planar graph:

max (s7,57) <2m —n+1<5n—11;

since a planar graph has at most 3n — 6 edges.

A maximal planar graph, for n > 3, has m = 3(n — 2) and consequently has st + s~ = 2m = 6(n — 2).
Ando and Lin [2] proved that:
sT(G) s7(G)
1 < x(G).
o (=G 35@) <x©)

Using the four colour theorem, it follows that for planar graphs s*(G) < 35 (G) and s~ (G) < 3sT(G).
K, provides an example of a connected maximal planar graph for which s = 3s~. We can however find
no example of a connected maximal planar graph for which s~ > s* using the Wolfram database of graphs
with up to 100 vertices. (There are planar graphs with s~ > sT.)

This suggests the following question:
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QUESTION 5.1. Is it true that for any connected mazximal planar graph G, with n > 3, we have sT(G) >
3(n—2) and s < 3(n—2)?

In addition to this potential upper bound for s~ (G), we can also prove the following lower bound as

follows: .
2 -2
42X(G)21+§_:L”ZM.

So s7(G) > 1.5(n — 2) and s (G) < 4.5(n — 2) for connected maximal planar graphs.

To summarise, is it the case that for connected maximal planar graphs:

3(n—2) <st(G) <4.5(n—2)and 1.5(n —2) < s~ (G) < 3(n —2)?

6. Upper bounds for s (G). Conjecture 1.1 is equivalent to the statement that for any connected
graph:
s (G) <2m —n+ 1, with equality for trees.

Elphick et al [6] proved that for all graphs s~ (G) < n?/4, with equality for complete regular bipartite
graphs. This bound is not an upper bound for s7(G), so it provides an example of asymmetry. We note the
bound s~ (G) < n?/4 can be strengthened as follows.

THEOREM 6.1. For any graph G,

4m? n?
(G)<2m— — < —.
s7(G) < 2m n2 — 4

Proof. The lower bound py > 27’" and the equality sT + s~ = 2m give the upper bound

4m?
s_:2m—s+§2m——2.
n

4m?
n2

The inequality 2m — < "72 is equivalent to

Theorem 6.1 is exact for regular complete bipartite graphs. These three upper bounds for s~ (G) are
illustrated in Figure 2, which is the same as Figure 1 with n = 100 except that we have replaced probability
with edges on the x axis. The blue line is average negative square energy for random graphs; the green line
is s~ = 2m — n + 1; the red line is s~ = n?/4; and the brown line is s~ = 2m — 4m?/n? = d(n — d), where
d denotes average degree.

The bound from Theorem 6.1 reflects the symmetry around p = 1/2 that is observed in the experimental
results for large enough random graphs.

7. Families of non-bipartite graphs with s = s~. All bipartite graphs have equal positive and
negative square energy. It was asked by Abiad et al. [1] whether there are non-bipartite graphs with equal
positive and negative square energy. The first author provided the example of the Kneser graph K(6,2).
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FIGURE 2. Upper bounds for s~ and average values of s~ with n = 100

Recall that the Kneser graph K(n, k) is a graph with vertex set ([Z]), the k-element subsets of the set
[n] :=={1,2,...,n}, and with an edge AB € K(n, k) if and only if AN B = 0.

We extend the example of K(6,2) to give an infinite family of Kneser graphs with equal positive and
negative square energy. We then indicate how to extend this infinite family further to prove Theorem 1.3.

Recall that the eigenvalues of the Kneser graph K (n, k) are

=0 (" 5T,

with 0 < ¢ < k and corresponding multiplicities
n n
1 i—1)’

THEOREM 7.1. The Kneser graph K (2k + 2,k) has st = s~ for every k > 2.

with the convention (fbl) =0.

Note the example of K(6,2) is the special case of Theorem 7.1 when k = 2.

We recall the following identity proved by Ruiz [14].

THEOREM 7.2 (Ruiz). For all integers n > 1 and all real numbers x,
(7.3) zn:(—w V(@ - =nl
— 1

We need the following corollary, also proved by Ruiz [14], which is obtained by differentiating (7.3) j

times.
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COROLLARY 7.3 (Ruiz). For all integers n > 1, for all real numbers x and for an integer j with
1 <5 <n,

(7.4) ;(—1)i (7;) (z — )"0 = 0.

Proof of Theorem 7.1. If n =2k + 2, then for 0 < ¢ < k we have

M_(_l)i<k;€rzii) _(_1)i<k+22i)'

Therefore, the positive and negative square energies are given by

L5]

SRR -G)

J

(VB

®
Il

Lk—l

ce (- ()

Jj=0

After rearranging and grouping by binomial coefficients of the form (2kj+2)

suffices to show that

o S () () (1)) o

Note that for any integer a

<a>2 n (a— 1>2 _(ala— 1)+ ((a— 1)(a - 2)?

, in order to prove sT = s7, it

2 2 4
_ (a—1)*(a®+ (a—2)?)
4
_(a=1) (a2_2a+2) :%((a—1)4+(a—1)2)'

Therefore, after simplifying the sums of squares, (7.5) can be rewritten as
i (2k+2
S0 () (-t - 57) o
— J
7=0
Observe that if j =k + 1, then (**7%) ((k+1—4)*+ (k+1—j)%) =0, and if k + 1 < j < 2k + 2, then,

2k +2

7 () (-t - g = (e (P2

J

)((j—k—1>4+<j—k—1>2>,

so that

k 2k+2
S (1) (”“j 2) (41— 1% = 3 (1 (ij*2) (k41— 1k +1— %),

=0 j=k+2
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Hence, it suffices to show that

2k+2
76) S0 () (-t e 57) o
=0

But now Corollary 7.3 implies (with z = k + 1) that

3 1y G (R

=0 J
and N
> -0 (F w12 o
=0 J
o (7.6) holds and s™ (K (2k + 2,k)) = s~ (K (2k + 2, k)). 0

Theorem 1.3 can be proved similarly to Theorem 7.1. The main technical difference is encapsulated in
the following lemma.

LEMMA 7.4. For a positive integer j, consider the function P(a) = (9)2 + (ail)Q. Then, the polynomial

25 27
P(a) satisfies the following properties.

1. Pla)=0 fora=1,...,25 — 1. '
2. P(a) = Q(a —j), where Q(a — j) = frz o Cm(a — 7)™ is a polynomial of degree 4j in the variable
a — j with ¢, =0 when m is odd.

Proof of Lemma 7.4. Note that for any integer a

() 7+ (3 -

]) ala— 1) (a— 2+ D)’ + ((a— D(a—2)- - (a—2))7)

1) (a—1) -+ (a—2j +1)(a> + (a— 2)?)

(
i

2
((1) ((a=1)---(a—2) +1)2((a =) + ).

We need to prove two facts about P(a):

1. Pla)=0fora=1,...,2j — 1. ‘
2. P(a) = Q(a — j), where Q(a — j) = i{ o Cm(a — 7)™ is a polynomial of degree 45 in the variable
a — j with ¢, = 0 when m is odd.

The first of these statements is clear since a—1,a—2, ..., a—2j+1 are factors of P(a). The second follows from
the following observation: for any integer m with 1 < m < j—1, we have (a—j+m)(a—j—m) = (a—j)*—m?2.
Hence, in the expression (@ — 1)---(a — 25 + 1), we may pair off the factors (a — j + m)(a — j — m) for
1<m < j—1,so that

2 Jj—1
P =3 () @97+ [ s =t

m
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Expanding the product leaves a polynomial of degree 2j in the variable z = (a — j)? or equivalently a
polynomial of degree 4j in the variable y = a — j where the coefficients of odd power terms are zero. O

The proof of Theorem 1.3 follows the same line of argumentation as Theorem 7.1, with the polynomial
Q(a — j) from Lemma 7.4 used in place of the polynomial (3)2 + (3 =1 ((a—D*+ (a—1)?).

Proof of Theorem 1.3. If n =2k + 23, then for 0 < ¢ < k we have

ui:(_l)i<k—;2—ji—i) :(_1)i<k+22jj.'—i>'

Therefore, the positive and negative square energies are given by

kE
5+_§ k42— 20\ [ (2k+27\  [(2k+2))
_7,:0 2j 2 2 —1 '

L5532

i) (k+2] 2z+1)) <<2§Ziij)<2k;2j>)

J

After rearranging and grouping by binomial coefficients of the form (Qkiﬁ), in order to prove st = s7, it

suffices to show that
) zk:(—ni 2% + 25\ ((k+2j—i 2+ k4 (25 — 1) — i\ o
' Pt i 2j 2j o

. . 2
By Lemma 7.4, the sum of squares (k+22;72)2 + (kHQJz;l)ﬂ) can be expressed as a polynomial Q(k+j—i) =

Zfrz o Cm(k 47 —1)™ with ¢,, = 0 whenever m is odd. Therefore, (7.7) can be rewritten as

i(—l)i(% ; 2‘7)@(1@ Ljoi) =0

Observe that if k+1 < i < k+2j — 1, then (%TQ)Q(IC +j — i) = 0, by Property 1 of Lemma 7.4, and if
k425 <i <2k + 2j, then by Property 2 of Lemma 7.4,

(—1)i<2k ;L Qj)Q(k +j—i)= (—1)2’“+2j‘i< bt .2{ Z.)Q(k - (2k+2j — 1)),

2k +2j

so that .

k +2j

2k +2 . 2k +2 o

S (e i =3 o () aki -0

i=0 i=k+2j
Hence, it suffices to show that

2k+2j .
2k + 25 .

. -1) —1) =0.
(78) ;< )( . )Q(k+3 i) =0

But now Corollary 7.3 implies (7.8) (with = k+ j) for each term ¢,,(k+j —4)™ of Q(k+j — i) (note that
k > j implies 2k + 2j > 4j) so that s™ (K (2k + 2j,k)) = s~ (K (2k + 23, k)). 0
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The number of positive, zero and negative eigenvalues of K (n, k) is as follows [6]:

L n—1 0 A n—1
n —( 2 ),n =0;n _(kl)'

Note that:

SH(K(n, k) + 5~ (K (n, k) = 2m = (’;) (” )

so Theorems 7.1 and 1.3 imply that for k > j > 1,

STK (2K +24,k)) = s~ (K(2k + 2j.k)) = ;(2"7 ’ 2j> <k +ij>'

This raises the question:

QUESTION 7.5. Are there closed-form formulae for s™ and s~ for any Kneser graph?

8. A weaker lower bound for square energies. Given the difficulty in proving Conjecture 1.1, it
is worthwhile to seek weaker lower bounds for square energies, such as the following.

THEOREM 8.1. For any connected graph G with n > 3:
min (s (G),sT(G)) > vn.

Proof. We know using Ando and Lin’s [2] lower bound for the chromatic number and Hong’s [9] upper
bound for the spectral radius that:

min (s7(G), s (G)) > 2m 2m 2m

> > > .
X(G) T 1+p " 1+V2m—n+1
We therefore are seeking to prove that:

2m

> \/n.
1+vV2m—n+1 _\/>

This is equivalent to:
(2m —v/n)? > (2m —n 4+ 1)n;

which simplifies to:

(8.9) 4m? — 2m(2y/n +n) +n? > 0.

Since G is connected, m > n — 1, and if m = n — 1, then G is a tree with sT = s~ =n—1 > /n for
n > 3. We can therefore assume m > n.
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If m = n, then (8.9) becomes:
4an? — dnv/n — 2n2 +n? = 3n® — dny/n > 0 for n > 3.

The left-hand side of (8.9) monotonically increases with m, so if m > n then (8.9) remains true. This
completes the proof. ]

9. Disconnected graphs. Conjecture 1.1 is stated for connected graphs because it is false, for example,
for 2K, /5. We can however prove the following result for regular graphs.

THEOREM 9.1. Let G be a d—regular disconnected graph with no complete component. Then:

min (sT(G),s (G)) >n — 1.
Proof. Case 1: No component of G is an odd cycle

We follow the approach in [6]. Brooks’ Theorem from 1941 proves that any connected graph other than
a complete graph or an odd cycle has x(G) < A, where A is the largest vertex degree. This theorem can
therefore be applied to each component of a graph, provided no component is complete or an odd cycle.
As discussed in the Introduction, Ando and Lin proved that sT(G) > 2m/x(G) and s~ (G) > 2m/x(G).
Therefore:

2m 2m  2m
in(s™ - >——>-—="-=n,
min(s™(G), s (G)) > G A pi n 0
Case 2: A component of G is an odd cycle
Since G is 2-regular it follows that all components are cycles. The even cycles have s = s~ = m = n.

Abiad et al. [1] proved that all odd cycles satisfy Conjecture 1.1. Therefore G satisfies Conjecture 1.1.

This result raises questions. Will a proof of Conjecture 1.1 need to have connectedness at its heart, or
can Conjecture 1.1 be generalised to any graph subject to a limited number of exclusions, which include
isolated vertices and complete components? Can Conjecture 1.1 be generalised for all graphs (apart from
isolated vertices) for s but not for s=?

Let G be any graph for which s™ =n —eor s~ =n —¢, where 0 < € < 1. It then follows that if we take
a sufficiently large number of copies of G, then this disconnected graph will not satisfy Conjecture 1.1 for
st or s~ respectively. There are numerous non-bipartite connected graphs which have st < n or s~ < n.

Consequently, it seems implausible that Conjecture 1.1 could be proved for disconnected irregular graphs
for s or s~ with only a limited number of exclusions. This provides evidence that connectedness will be
central to a proof of Conjecture 1.1 for s™ and s~, which provides another example of symmetry between
sT and s™.

If connectedness is central to a proof of Conjecture 1.1, then the following weaker conjecture may be
more tractable. Let n*,n% and n~ denote the number of positive, zero and negative eigenvalues, respectively,
where nt +n° +n~ =n.

0

CONJECTURE 9.2. For any graph G with inertia (n™,n% n™):

min (s7(G), s (G)) > max (n",n").
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10. Initial ideas for a proof of Conjecture 1.1. This paper has extended the early symmetric
results on square energies to consider asymmetry. For example, we have determined st and s~ a.s. for
almost all graphs. The results in Section 9 seem to be most relevant to a potential proof of Conjecture 1.1.

As discussed in [6], Conjecture 1.1 relates to irreducible, symmetric, binary, zero-trace matrices. The
difficulty of proving the conjecture appears to be due to the need for graph connectedness, which is equivalent
to matrix irreducibility, to be central to a proof. So perhaps a proof can be expected to use a spectral
resolution of A as follows, where vy, ..., v, are the column unit eigenvectors corresponding to g1, ..., ft, and
vl denotes the transpose of v;:

n
A= Z,uiviviT; B = Z uiviv;r; C = Z (—ui)vin-T-
i=1

1i>0 n; <0
It is then the case that:

A=B—C;s" =Tr(B%);s” =Tr(C?) and PAP™' # (g g) ,

where P is a permutation matrix and F and G are square matrices of size > 1. These formulae for st
and s~ are used in [18], where it is noted that B and C are both positive semidefinite.

QUESTION 10.1. Does the irreducibility of A imply that B and C are both irreducible?

If the answer to Question 10.1 is yes, then a proof could use that:

PBP #(0 G) and PCP 7&(0 G)’

or an alternative property of irreducible, positive semidefinite matrices.

Perhaps it is possible to generalise the conjecture, for example by replacing A with a weighted adjacency
matrix with positive weights. Such a generalisation would suggest that the conjecture may relate not only
to graphs but could be applicable to broader classes of matrices.
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