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SYMMETRY AND ASYMMETRY BETWEEN POSITIVE AND NEGATIVE SQUARE

ENERGIES OF GRAPHS∗

CLIVE ELPHICK† AND WILLIAM LINZ‡

Abstract. The positive and negative square energies of a graph, s+(G) and s−(G), are the sums of squares of the positive

and negative eigenvalues of the adjacency matrix, respectively. The first results on square energies revealed symmetry between

s+(G) and s−(G). This paper reviews examples of asymmetry between these parameters, for example using large random

graphs and the ratios s+/s− and s−/s+, as well as new examples of symmetry. Some questions previously asked about s+ and

s− are answered and several further avenues of research are suggested.
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1. Introduction. Let G be a connected graph with n vertices and m edges and let A denote the

adjacency matrix of G, where µ1 ≥ . . . ≥ µn denote the eigenvalues of A. Let χ(G) denote the chromatic

number of G and let:

s+ =
∑
µi>0

µ2
i and s− =

∑
µi<0

µ2
i .

Note that:
n∑
i=1

µ2
i = tr(A2) = 2m = s+ + s−.

Elphick et al. [6] formulated the following conjecture, which was placed 1st in a wide ranging review of

unsolved problems in spectral graph theory by Liu and Ning [10]:

Conjecture 1.1. For any connected graph:

min (s+, s−) ≥ n− 1.

Elphick et al. proved this result for various classes of graphs, including regular graphs.

Note that for trees, s+ = s− = m = n − 1 and that for complete graphs s− = n − 1. This conjecture

provides an example of symmetry between s+(G) and s−(G), in that the same lower bound is tight for both

s+ and s−. Abiad et al. [1] gave the name positive and negative square energies to s+ and s−, and made

some progress toward proving Conjecture 1.1 by developing new tools.
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As another example of symmetry, Ando and Lin [2] proved a conjecture due to Wocjan and Elphick [18]

that:

1 + max

(
s+(G)

s−(G)
,
s−(G)

s+(G)

)
≤ χ(G).

Coutinho and Spier [5] have recently strengthened this bound by proving a conjecture due to Wocjan,

Elphick and Anekstein [19] that:

1 + max

(
s+(G)

s−(G)
,
s−(G)

s+(G)

)
≤ χv(G) ≤ χ(G),

where χv(G) denotes the vector chromatic number.

Because Conjecture 1.1 seems surprisingly difficult, it is useful to develop a more thorough understanding

of positive and negative square energies. In this paper, we answer some questions asked by Abiad et al. [1],

suggest several new avenues for research on s+ and s−, and make some initial progress on addressing several

of these avenues. We have organised our paper in survey form, centring around different examples demon-

strating symmetry or asymmetry between s+ and s−. By asymmetry, we mean any inequality, statement or

expression which holds for s+, but not s−, or vice versa. Typically, asymmetry results from contributions

of the square of the principal eigenvalue µ1 to s+. We hope that the questions and results we present here

will spur further study into positive and negative square energies.

Sections 2 to 6 investigate examples of asymmetry between s+ and s−. In Section 2, we determine s+

and s− for almost all graphs, addressing a question asked by Abiad et al. [1]. Our result is the following.

Theorem 1.2. Let G be a graph on n vertices. Then, with probability tending to 1,

s+(G) =

(
3

8
+ o(1)

)
n2,

and

s−(G) =

(
1

8
+ o(1)

)
n2.

In Sections 3 and 4, we investigate graphs for which s− is much larger than s+. In Section 3, we study

the ratios of square energies s+/s− and s−/s+ and construct examples of generalised quadrangles where the

latter ratio is large. In Section 4, we introduce and study squared spreads of graphs s+ − s−, in analogy

to the well-studied notion of the spread of a graph [8]. In particular, we construct examples of graphs with

very negative squared spread.

In Section 5, we consider s+ and s− for maximal planar graphs. In Section 6, we consider upper bounds

for s− that are not upper bounds for s+.

Sections 7 to 9 provide further examples of symmetry between s+ and s−. In Section 7, we identify

an infinite number of nonbipartite graphs with s+ = s−, answering a question of Abiad et al. [1]. Our

constructions are certain infinite families of Kneser graphs.

Theorem 1.3. Let k ≥ 2. Then, the Kneser graph K(2k + 2j, k) has s+ = s− for every 1 ≤ j < k.

In Section 8, we prove a weaker lower bound than Conjecture 1.1, and in Section 9, we consider dis-

connected graphs and propose a weaker conjecture than Conjecture 1.1, but for all graphs. We conclude in

Section 10 and make some remarks on Conjecture 1.1.
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2. Average square energies.

2.1. Introduction. Theorem 2.5 in [1] proves that if H = G− e (where e is an edge in G), then

s+(G) ≥ s+(H)− θ22 and s−(G) ≥ s−(H)− θ2n,

where θ1 ≥ ... ≥ θn are the eigenvalues of A(H).

However, an increase in s+ due to edge deletion is rare, as discussed in Section 2.2 of [1], while an increase

in s− due to edge deletion is common, because connected graphs with the minimum number of edges (trees)

and with the maximum number of edges (Kn) both have s− = n− 1. Note that s− is maximised for regular

complete bipartite graphs, with s− = m = n2/4 [6], while s+ = (n− 1)2 is maximised for complete graphs.

This provides an example of asymmetry in square energies.

This implies that as the number of edges increases, s− initially increases but reaches a maximum and

then decreases. To quantify this intuition, we define a new parameter s−(n,m) to be the average value of s−

for all non-isomorphic graphs with n vertices and m edges and define s+(n,m) similarly. These parameters

are termed average square energies. Clearly:

s+(n,m) + s−(n,m) = 2m.

We computed s+(n,m) and s−(n,m) for n ≤ 9. For example with n = 9, s+(n,m) monotonically

increases with m but s−(n,m) monotonically increases until m = 24 and then monotonically decreases.

2.2. Average square energies for random graphs. We computed average square energies for sam-

ples of random graphs using the Wolfram Mathematica function RandomGraph[n,p], with n = 100. The

results are in Figure 1, with s− in red and s+ in blue. It can be seen that s+ monotonically increases with

increasing p while s− reaches a maximum value of ≈ 0.14n2 at p ≈ 0.5.
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Figure 1. Average square energies for random graphs with n = 100.
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To prove results about average square energies, we use the Erdős-Rényi model G(n, p) where n is the

number of vertices and p is the independent probability of each edge being present.

Nikiforov [12] investigated Schatten p-norms of random graphs and proved that these norms behave

differently for p < 2, p = 2 and p > 2. Square energies correspond to p = 2. Nikiforov established that

Schatten p-norms of almost all graphs can be reduced to finding the Schatten p-norms of the random graph

G(n, 1/2). We adapt Nikiforov’s approach and notation in the following analysis, with a.s. meaning “with

probability tending to 1.”

We determine the positive and negative square energies of almost all graphs by finding s+(G(n, 12 )) and

s−(G(n, 12 )) a.s. Our argument follows a similar line of argumentation as Nikiforov [12, Theorem 5] for

determining the Schatten p-norm of almost all graphs and determining the energy [11] of almost all graphs.

Proof of Theorem 1.2. First, observe that since
∑n
i=1 µ

2
i = 2m, it follows that a.s.

(2.1)

n∑
i=1

µ2
i (G(n,

1

2
)) =

(
1

2
+ o(1)

)
n2.

It is standard that the adjacency matrix A(G(n, 12 )) is a random symmetric matrix with zero diagonal

entries and independent entries aij satisfying E[aij ] = 1
2 , Var[a2ij ] = 1

4 . Then, a result of Füredi and

Komlós [7, Theorem 1] implies

(2.2) µ2
1 =

(
1

4
+ o(1)

)
n2 a.s. and µ2

2 ≤ (1 + o(1))n a.s.

Using Wigner’s [17] semicircle law in the form given by Arnold [3] (with appropriate normalisation):

s− =
2n2

π

∫ 0

−1
x2
√

1− x2 dx;

s+ − µ2
1 =

2n2

π

∫ 1

0

x2
√

1− x2 dx.

These integrals are both π/16, so a.s. s− = s+ − µ2
1. Therefore, using the formulae in (2.1) and (2.2),

s+ =
1

2

(
3

4
+ o(1)

)
n2 a.s. and s− =

1

2

(
1

4
+ o(1)

)
n2 a.s.

This asymmetry between s+ and s− for large random graphs is due to the largest eigenvalue.

Question 4.1 in [1] asks whether the percentage of graphs with s− > s+ tends to zero as n → ∞?

Theorem 1.2 shows the answer is yes.

It would be interesting to calculate the expected value of the positive and negative square energies of

the random graph G(n, p). We believe that similarly to Theorem 1.2,

s+ =
1

2
(p(p+ 1) + o(1))n2 a.s. and s− =

1

2
(p(1− p) + o(1))n2 a.s.
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3. Ratios between positive and negative square energies. How large can the ratios s+/s− and

s−/s+ be? For complete graphs, s+/s− = n− 1.

It is challenging to construct a family of graphs on n vertices such that s−/s+ ≥ an where an → ∞ as

n→∞. We present such constructions using generalised quadrangles.

Theorem 3.1. There is a family of graphs on n vertices with s−/s+ = Θ(n
1
4 ) as n→∞.

Proof. The collinearity graph of a generalised quadrangle of order (s, t) is a strongly regular graph (see [4,

Proposition 2.2.18]) with (s+ 1)(st+ 1) vertices and spectrum k1rfag, where

k = s(t+ 1), r = s− 1, a = −t− 1, f =
s(s+ 1)t(t+ 1)

s+ t
, g =

s2(st+ 1)

s+ t
.

For any prime power q, there is a generalised quadrangle of order (q, q2). Using the parameters specified

above, the collinearity graph of this generalised quadrangle has n ≈ q4 vertices, positive square energy

s+ ≈ q6 and negative square energy s− ≈ q7 (here we suppress all lower order terms). Therefore, s+ ≈ n6/4,

s− ≈ n7/4, and the result follows.

Another infinite family of graphs with s−/s+ →∞ as n→∞ are the collinearity graphs of generalised

quadrangles of order (q2, q3) for a prime power q. Using the parameters given in the proof of Theorem 3.1,

we find n ≈ q7, s+ ≈ q11 and s− ≈ q12. While the ratio s−/s+ ≈ n1/7 is not as good as the ratio given by the

generalised quadrangles of order (q, q2), we note that the collinearity graphs of the generalised quadrangles of

order (q2, q3) have the following remarkable property: not only do we have s+ = o(s−), but in fact µ2
1 ≈ q10,

so we also have µ2
1 = o(s+)!

We leave it as an open question to determine the maximum size of the ratio s−/s+.

Question 3.2. What is the maximum ratio that s−/s+ can achieve as n → ∞? In particular, is there

a family of graphs on n vertices with n→∞ such that s−/s+ = Θ(n)?

4. Squared spread of graphs. The spread of G is defined to be µ1 − µn [8]. Analogously, we define

the squared spread of a graph G to be s+ − s−.

The complete graph Kn has squared spread s+ − s− = (n − 1)2 − (n − 1) = (n − 1)(n − 2). We can

readily deduce that this is nearly the best possible.

Proposition 4.1. For any graph G on n vertices, s+ − s− = O(n2). Furthermore, if Conjecture 1.1 is

true, then s+ − s− ≤ (n− 1)(n− 2).

Proof. We have s+ − s− ≤ s+ ≤ 2m = O(n2). If G is disconnected, then s+ − s− ≤ s+ ≤ 2m ≤ (n −
1)(n−2). Otherwise, if Conjecture 1.1 is true, then s− ≥ n−1, so s+−s− ≤ (n−1)2−(n−1) = (n−1)(n−2).

We can ask the complementary question: how negative can the squared spread be? Perhaps somewhat

surprisingly, there are examples of graphs with very negative squared spread.

Theorem 4.2. For any ε > 0, there is a graph G on n vertices with

s+ − s− = −Ω(n2−ε).

Proof. We first find an infinite family of graphs where the squared spread s+ − s− is superlinearly

negative. We use a family of strongly regular graphs defined by Taylor [15, 16]. For any odd prime power q,
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there is a strongly regular graph Tq on n = q3 vertices with spectrum [13, Section 5.3] k1rfsg where:

k =
1

2
(q − 1)(q2 + 1), r =

1

2
(q − 1), s = −1

2
(q2 + 1), f = (q − 1)(q2 + 1), g = q(q − 1).

It is straightforward to compute from these parameters that the squared spread of Tq is s+ − s− = −q4/2 +

q3/2− q2/2 + q/2 = −Θ(n4/3).

We now consider the t-blowups T
[t]
q of the Taylor graphs. The t-blowup of a graph G is a graph G[t]

obtained by replacing each vertex of G with a set of t independent vertices and replacing each edge of G by

a complete bipartite graph Kt,t. If G has eigenvalues λ1, . . . , λn, then G[t] has eigenvalues tλ1, . . . , tλn along

with (t− 1)n additional 0s [13].

The t-blowup T
[t]
q is a graph on q3t vertices with squared spread −Θ(q4t2). Setting t = qa for some

integer a > 0, the graph T
[t]
q has n = q3+a vertices and squared spread s+ − s− = −Θ(n(4+2a)/(3+a)) =

−Θ(n2−2/(3+a)). Choosing a sufficiently large gives an infinite family of graphs with squared spread −Ω(n2−ε)

for any ε > 0.

The blowup construction used in the proof of Theorem 4.2 works for any family of graphs G with negative

superlinear squared spread, so in particular it also works for the families of generalised quadrangles used in

Section 3.

With our current knowledge, the situation for squared spread is therefore not quite symmetric between

s+ and s−. It would be interesting to know if there is a family of graphs on n vertices with n → ∞ such

that s+ − s− = −Θ(n2). Unfortunately, graph blowups do not seem to yield such a family.

Question 4.3. Is there a family of graphs on n vertices with n→∞ such that

s+ − s− = −Θ(n2)?

5. Square energies of maximal planar graphs. Several authors have investigated upper bounds

for the spectral radius of planar graphs. It is of interest to investigate similar bounds for the square energies

of planar graphs, in part to see whether this reveals asymmetry between s+(G) and s−(G).

Following Hong [9], if Conjecture 1.1 is true then for any connected planar graph:

max (s+, s−) ≤ 2m− n+ 1 ≤ 5n− 11;

since a planar graph has at most 3n− 6 edges.

A maximal planar graph, for n ≥ 3, has m = 3(n− 2) and consequently has s+ + s− = 2m = 6(n− 2).

Ando and Lin [2] proved that:

1 + max

(
s+(G)

s−(G)
,
s−(G)

s+(G)

)
≤ χ(G).

Using the four colour theorem, it follows that for planar graphs s+(G) ≤ 3s−(G) and s−(G) ≤ 3s+(G).

K4 provides an example of a connected maximal planar graph for which s+ = 3s−. We can however find

no example of a connected maximal planar graph for which s− > s+ using the Wolfram database of graphs

with up to 100 vertices. (There are planar graphs with s− > s+.)

This suggests the following question:
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Question 5.1. Is it true that for any connected maximal planar graph G, with n ≥ 3, we have s+(G) ≥
3(n− 2) and s− ≤ 3(n− 2)?

In addition to this potential upper bound for s−(G), we can also prove the following lower bound as

follows:

4 ≥ χ(G) ≥ 1 +
s+

s−
=

2m

s−
=

6(n− 2)

s−
.

So s−(G) ≥ 1.5(n− 2) and s+(G) ≤ 4.5(n− 2) for connected maximal planar graphs.

To summarise, is it the case that for connected maximal planar graphs:

3(n− 2) ≤ s+(G) ≤ 4.5(n− 2) and 1.5(n− 2) ≤ s−(G) ≤ 3(n− 2)?

6. Upper bounds for s−(G). Conjecture 1.1 is equivalent to the statement that for any connected

graph:

s−(G) ≤ 2m− n+ 1, with equality for trees.

Elphick et al [6] proved that for all graphs s−(G) ≤ n2/4, with equality for complete regular bipartite

graphs. This bound is not an upper bound for s+(G), so it provides an example of asymmetry. We note the

bound s−(G) ≤ n2/4 can be strengthened as follows.

Theorem 6.1. For any graph G,

s−(G) ≤ 2m− 4m2

n2
≤ n2

4
.

Proof. The lower bound µ1 ≥ 2m
n and the equality s+ + s− = 2m give the upper bound

s− = 2m− s+ ≤ 2m− 4m2

n2
.

The inequality 2m− 4m2

n2 ≤ n2

4 is equivalent to(
n

2
− 2m

n

)2

≥ 0.

Theorem 6.1 is exact for regular complete bipartite graphs. These three upper bounds for s−(G) are

illustrated in Figure 2, which is the same as Figure 1 with n = 100 except that we have replaced probability

with edges on the x axis. The blue line is average negative square energy for random graphs; the green line

is s− = 2m− n+ 1; the red line is s− = n2/4; and the brown line is s− = 2m− 4m2/n2 = d(n− d), where

d denotes average degree.

The bound from Theorem 6.1 reflects the symmetry around p = 1/2 that is observed in the experimental

results for large enough random graphs.

7. Families of non-bipartite graphs with s+ = s−. All bipartite graphs have equal positive and

negative square energy. It was asked by Abiad et al. [1] whether there are non-bipartite graphs with equal

positive and negative square energy. The first author provided the example of the Kneser graph K(6, 2).
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Figure 2. Upper bounds for s− and average values of s− with n = 100

Recall that the Kneser graph K(n, k) is a graph with vertex set
(
[n]
k

)
, the k-element subsets of the set

[n] := {1, 2, . . . , n}, and with an edge AB ∈ K(n, k) if and only if A ∩B = ∅.

We extend the example of K(6, 2) to give an infinite family of Kneser graphs with equal positive and

negative square energy. We then indicate how to extend this infinite family further to prove Theorem 1.3.

Recall that the eigenvalues of the Kneser graph K(n, k) are

µi = (−1)i
(
n− k − i
k − i

)
,

with 0 ≤ i ≤ k and corresponding multiplicities(
n

i

)
−
(

n

i− 1

)
,

with the convention
(
n
−1
)

= 0.

Theorem 7.1. The Kneser graph K(2k + 2, k) has s+ = s− for every k ≥ 2.

Note the example of K(6, 2) is the special case of Theorem 7.1 when k = 2.

We recall the following identity proved by Ruiz [14].

Theorem 7.2 (Ruiz). For all integers n ≥ 1 and all real numbers x,

(7.3)
n∑
i=0

(−1)i
(
n

i

)
(x− i)n = n!.

We need the following corollary, also proved by Ruiz [14], which is obtained by differentiating (7.3) j

times.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 40, pp. 418-432, May 2024.

C. Elphick and W. Linz 426

Corollary 7.3 (Ruiz). For all integers n ≥ 1, for all real numbers x and for an integer j with

1 ≤ j ≤ n,

(7.4)
n∑
i=0

(−1)i
(
n

i

)
(x− i)n−j = 0.

Proof of Theorem 7.1. If n = 2k + 2, then for 0 ≤ i ≤ k we have

µi = (−1)i
(
k + 2− i
k − i

)
= (−1)i

(
k + 2− i

2

)
.

Therefore, the positive and negative square energies are given by

s+ =

b k2 c∑
j=0

(
k + 2− 2j

2

)2((
2k + 2

2j

)
−
(

2k + 2

2j − 1

))
;

s− =

b k−1
2 c∑
j=0

(
k + 2− (2j + 1)

2

)2((
2k + 2

2j + 1

)
−
(

2k + 2

2j

))
.

After rearranging and grouping by binomial coefficients of the form
(
2k+2
j

)
, in order to prove s+ = s−, it

suffices to show that

(7.5)

k∑
j=0

(−1)j
(

2k + 2

j

)((
k + 2− j

2

)2

+

(
k + 1− j

2

)2
)

= 0.

Note that for any integer a(
a

2

)2

+

(
a− 1

2

)2

=
(a(a− 1))2 + ((a− 1)(a− 2))2

4

=
(a− 1)2(a2 + (a− 2)2)

4

=
(a− 1)2(a2 − 2a+ 2)

2
=

1

2

(
(a− 1)4 + (a− 1)2

)
.

Therefore, after simplifying the sums of squares, (7.5) can be rewritten as

k∑
j=0

(−1)j
(

2k + 2

j

)(
(k + 1− j)4 + (k + 1− j)2

)
= 0.

Observe that if j = k + 1, then
(
2k+2
j

) (
(k + 1− j)4 + (k + 1− j)2

)
= 0, and if k + 1 < j ≤ 2k + 2, then,

(−1)j
(

2k + 2

j

)(
(k + 1− j)4 + (k + 1− j)2

)
= (−1)2k+2−j

(
2k + 2

2k + 2− j

)(
(j − k − 1)4 + (j − k − 1)2

)
,

so that

k∑
j=0

(−1)j
(

2k + 2

j

)(
(k + 1− j)4 + (k + 1− j)2

)
=

2k+2∑
j=k+2

(−1)j
(

2k + 2

j

)(
(k + 1− j)4 + (k + 1− j)2 ).
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Hence, it suffices to show that

(7.6)
2k+2∑
j=0

(−1)j
(

2k + 2

j

)(
(k + 1− j)4 + (k + 1− j)2

)
= 0.

But now Corollary 7.3 implies (with x = k + 1) that

2k+2∑
j=0

(−1)j
(

2k + 2

j

)
(k + 1− j)4 = 0,

and
2k+2∑
j=0

(−1)j
(

2k + 2

j

)
(k + 1− j)2 = 0,

so (7.6) holds and s+(K(2k + 2, k)) = s−(K(2k + 2, k)).

Theorem 1.3 can be proved similarly to Theorem 7.1. The main technical difference is encapsulated in

the following lemma.

Lemma 7.4. For a positive integer j, consider the function P (a) =
(
a
2j

)2
+
(
a−1
2j

)2
. Then, the polynomial

P (a) satisfies the following properties.

1. P (a) = 0 for a = 1, . . . , 2j − 1.

2. P (a) = Q(a − j), where Q(a − j) =
∑4j
m=0 cm(a − j)m is a polynomial of degree 4j in the variable

a− j with cm = 0 when m is odd.

Proof of Lemma 7.4. Note that for any integer a(
a

2j

)2

+

(
a− 1

2j

)2

=

(
1

(2j)!

)2 (
(a(a− 1) · · · (a− 2j + 1))2 + ((a− 1)(a− 2) · · · (a− 2j))2

)
=

(
1

(2j)!

)2

((a− 1) · · · (a− 2j + 1))2(a2 + (a− 2j)2)

=
1

2

(
1

(2j)!

)2

((a− 1) · · · (a− 2j + 1))2((a− j)2 + j2).

We need to prove two facts about P (a):

1. P (a) = 0 for a = 1, . . . , 2j − 1.

2. P (a) = Q(a − j), where Q(a − j) =
∑4j
m=0 cm(a − j)m is a polynomial of degree 4j in the variable

a− j with cm = 0 when m is odd.

The first of these statements is clear since a−1, a−2, . . . , a−2j+1 are factors of P (a). The second follows from

the following observation: for any integer m with 1 ≤ m ≤ j−1, we have (a−j+m)(a−j−m) = (a−j)2−m2.

Hence, in the expression (a − 1) · · · (a − 2j + 1), we may pair off the factors (a − j + m)(a − j − m) for

1 ≤ m ≤ j − 1, so that

P (a) =
1

2

(
1

(2j)!

)2

(a− j)2((a− j)2 + j2)

j−1∏
m=1

((a− j)2 −m2)2.
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Expanding the product leaves a polynomial of degree 2j in the variable x = (a − j)2 or equivalently a

polynomial of degree 4j in the variable y = a− j where the coefficients of odd power terms are zero.

The proof of Theorem 1.3 follows the same line of argumentation as Theorem 7.1, with the polynomial

Q(a− j) from Lemma 7.4 used in place of the polynomial
(
a
2

)2
+
(
a−1
2

)2
= 1

2

(
(a− 1)4 + (a− 1)2

)
.

Proof of Theorem 1.3. If n = 2k + 2j, then for 0 ≤ i ≤ k we have

µi = (−1)i
(
k + 2j − i
k − i

)
= (−1)i

(
k + 2j − i

2j

)
.

Therefore, the positive and negative square energies are given by

s+ =

b k2 c∑
i=0

(
k + 2j − 2i

2j

)2((
2k + 2j

2i

)
−
(

2k + 2j

2i− 1

))
;

s− =

b k−1
2 c∑
j=0

(
k + 2j − (2i+ 1)

2j

)2((
2k + 2j

2i+ 1

)
−
(

2k + 2j

2i

))
.

After rearranging and grouping by binomial coefficients of the form
(
2k+2
i

)
, in order to prove s+ = s−, it

suffices to show that

(7.7)
k∑
i=0

(−1)i
(

2k + 2j

i

)((
k + 2j − i

2j

)2

+

(
k + (2j − 1)− i

2j

)2
)

= 0.

By Lemma 7.4, the sum of squares
(
k+2j−i

2j

)2
+
(
k+(2j−1)−i

2j

)2
can be expressed as a polynomial Q(k+j− i) =∑4j

m=0 cm(k + j − i)m with cm = 0 whenever m is odd. Therefore, (7.7) can be rewritten as

k∑
i=0

(−1)i
(

2k + 2j

i

)
Q(k + j − i) = 0.

Observe that if k + 1 ≤ i ≤ k + 2j − 1, then
(
2k+2
i

)
Q(k + j − i) = 0, by Property 1 of Lemma 7.4, and if

k + 2j ≤ i ≤ 2k + 2j, then by Property 2 of Lemma 7.4,

(−1)i
(

2k + 2j

i

)
Q(k + j − i) = (−1)2k+2j−i

(
2k + 2j

2k + 2j − i

)
Q(k + j − (2k + 2j − i)),

so that
k∑
i=0

(−1)i
(

2k + 2

i

)
Q(k + j − i) =

2k+2j∑
i=k+2j

(−1)i
(

2k + 2

i

)
Q(k + j − i).

Hence, it suffices to show that

(7.8)

2k+2j∑
i=0

(−1)i
(

2k + 2j

i

)
Q(k + j − i) = 0.

But now Corollary 7.3 implies (7.8) (with x = k+ j) for each term cm(k+ j − i)m of Q(k+ j − i) (note that

k > j implies 2k + 2j > 4j) so that s+(K(2k + 2j, k)) = s−(K(2k + 2j, k)).
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The number of positive, zero and negative eigenvalues of K(n, k) is as follows [6]:

n+ =

(
n− 1

k

)
; n0 = 0 ; n− =

(
n− 1

k − 1

)
.

Note that:

s+(K(n, k)) + s−(K(n, k)) = 2m =

(
n

k

)(
n− k
k

)
,

so Theorems 7.1 and 1.3 imply that for k > j ≥ 1,

s+(K(2k + 2j, k)) = s−(K(2k + 2j, k)) =
1

2

(
2k + 2j

k

)(
k + 2j

k

)
.

This raises the question:

Question 7.5. Are there closed-form formulae for s+ and s− for any Kneser graph?

8. A weaker lower bound for square energies. Given the difficulty in proving Conjecture 1.1, it

is worthwhile to seek weaker lower bounds for square energies, such as the following.

Theorem 8.1. For any connected graph G with n ≥ 3:

min (s−(G), s+(G)) ≥
√
n.

Proof. We know using Ando and Lin’s [2] lower bound for the chromatic number and Hong’s [9] upper

bound for the spectral radius that:

min (s+(G), s−(G)) ≥ 2m

χ(G)
≥ 2m

1 + µ
≥ 2m

1 +
√

2m− n+ 1
.

We therefore are seeking to prove that:

2m

1 +
√

2m− n+ 1
≥
√
n.

This is equivalent to:

(2m−
√
n)2 ≥ (2m− n+ 1)n;

which simplifies to:

(8.9) 4m2 − 2m(2
√
n+ n) + n2 ≥ 0.

Since G is connected, m ≥ n − 1, and if m = n − 1, then G is a tree with s+ = s− = n − 1 ≥
√
n for

n ≥ 3. We can therefore assume m ≥ n.
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If m = n, then (8.9) becomes:

4n2 − 4n
√
n− 2n2 + n2 = 3n2 − 4n

√
n ≥ 0 for n ≥ 3.

The left-hand side of (8.9) monotonically increases with m, so if m > n then (8.9) remains true. This

completes the proof.

9. Disconnected graphs. Conjecture 1.1 is stated for connected graphs because it is false, for example,

for 2Kn/2. We can however prove the following result for regular graphs.

Theorem 9.1. Let G be a d−regular disconnected graph with no complete component. Then:

min (s+(G), s−(G)) ≥ n− 1.

Proof. Case 1: No component of G is an odd cycle

We follow the approach in [6]. Brooks’ Theorem from 1941 proves that any connected graph other than

a complete graph or an odd cycle has χ(G) ≤ ∆, where ∆ is the largest vertex degree. This theorem can

therefore be applied to each component of a graph, provided no component is complete or an odd cycle.

As discussed in the Introduction, Ando and Lin proved that s+(G) ≥ 2m/χ(G) and s−(G) ≥ 2m/χ(G).

Therefore:

min(s+(G), s−(G)) ≥ 2m

χ(G)
≥ 2m

∆
=

2m

d
= n.

Case 2: A component of G is an odd cycle

Since G is 2-regular it follows that all components are cycles. The even cycles have s+ = s− = m = n.

Abiad et al. [1] proved that all odd cycles satisfy Conjecture 1.1. Therefore G satisfies Conjecture 1.1.

This result raises questions. Will a proof of Conjecture 1.1 need to have connectedness at its heart, or

can Conjecture 1.1 be generalised to any graph subject to a limited number of exclusions, which include

isolated vertices and complete components? Can Conjecture 1.1 be generalised for all graphs (apart from

isolated vertices) for s+ but not for s−?

Let G be any graph for which s+ = n− ε or s− = n− ε, where 0 < ε ≤ 1. It then follows that if we take

a sufficiently large number of copies of G, then this disconnected graph will not satisfy Conjecture 1.1 for

s+ or s− respectively. There are numerous non-bipartite connected graphs which have s+ < n or s− < n.

Consequently, it seems implausible that Conjecture 1.1 could be proved for disconnected irregular graphs

for s+ or s− with only a limited number of exclusions. This provides evidence that connectedness will be

central to a proof of Conjecture 1.1 for s+ and s−, which provides another example of symmetry between

s+ and s−.

If connectedness is central to a proof of Conjecture 1.1, then the following weaker conjecture may be

more tractable. Let n+, n0 and n− denote the number of positive, zero and negative eigenvalues, respectively,

where n+ + n0 + n− = n.

Conjecture 9.2. For any graph G with inertia (n+, n0, n−):

min (s+(G), s−(G)) ≥ max (n+, n−).
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10. Initial ideas for a proof of Conjecture 1.1. This paper has extended the early symmetric

results on square energies to consider asymmetry. For example, we have determined s+ and s− a.s. for

almost all graphs. The results in Section 9 seem to be most relevant to a potential proof of Conjecture 1.1.

As discussed in [6], Conjecture 1.1 relates to irreducible, symmetric, binary, zero-trace matrices. The

difficulty of proving the conjecture appears to be due to the need for graph connectedness, which is equivalent

to matrix irreducibility, to be central to a proof. So perhaps a proof can be expected to use a spectral

resolution of A as follows, where v1, ..., vn are the column unit eigenvectors corresponding to µ1, ..., µn and

vTi denotes the transpose of vi:

A =
n∑
i=1

µiviv
T
i ; B =

∑
µi>0

µiviv
T
i ; C =

∑
µi<0

(−µi)vivTi .

It is then the case that:

A = B − C; s+ = Tr(B2); s− = Tr(C2) and PAP−1 6=
(
E F

0 G

)
,

where P is a permutation matrix and E and G are square matrices of size ≥ 1. These formulae for s+

and s− are used in [18], where it is noted that B and C are both positive semidefinite.

Question 10.1. Does the irreducibility of A imply that B and C are both irreducible?

If the answer to Question 10.1 is yes, then a proof could use that:

PBP−1 6=
(
E F

0 G

)
and PCP−1 6=

(
E F

0 G

)
,

,

or an alternative property of irreducible, positive semidefinite matrices.

Perhaps it is possible to generalise the conjecture, for example by replacing A with a weighted adjacency

matrix with positive weights. Such a generalisation would suggest that the conjecture may relate not only

to graphs but could be applicable to broader classes of matrices.
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