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Tests of general relativity with gravitational-wave observations from merging compact binaries continue
to confirm Einstein’s theory of gravity with increasing precision. However, these tests have so far been
applied only to signals that were first confidently detected by matched-filter searches assuming general
relativity templates. This raises the question of selection biases: What is the largest deviation from general
relativity that current searches can detect, and are current constraints on such deviations necessarily narrow
because they are based on signals that were detected by templated searches in the first place? In this paper,
we estimate the impact of selection effects for tests of the inspiral phase evolution of compact binary signals
with a simplified version of the GSTLAL search pipeline. We find that selection biases affect the search for
very large values of the deviation parameters, much larger than the constraints implied by the detected
signals. Therefore, combined population constraints from confidently detected events are mostly unaffected
by selection biases, with the largest effect being a broadening at the ~10% level for the —1 PN term. These
findings suggest that current population constraints on the inspiral phase are robust without factoring in
selection biases. Our study does not rule out a disjoint, undetectable binary population with large deviations

from general relativity or stronger selection effects in other tests or search procedures.

DOI: 10.1103/PhysRevD.109.023014

I. INTRODUCTION

Gravitational-wave (GW) signals detected by LIGO [1]
and Virgo [2] have provided otherwise-inaccessible con-
straints on deviations from general relativity (GR) in the
dynamical and strong-field regimes [3—7]. When consid-
ered in aggregate, the set of detected binary black hole
(BBH) signals is fully consistent with the null hypothesis of
quasicircular mergers in vacuum GR. However, existing
constraints apply only to signals that have been confidently
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detected and identified as compact binaries by pipelines
based on GR. Even though generic searches exist [8—12],
all current BBH signals have been detected with search
pipelines that are based on templates produced within
Einstein’s theory. It remains possible that there exist
binaries whose signals depart from GR but have been
selected against by searches [13—15]. This raises two
interrelated questions: (i) What is the largest deviation
from GR that current searches can detect? (ii) Are current
constraints on deviations from GR artificially narrow
because they are based on signals that were detected in
the first place?

Answering these questions amounts to quantifying the
selection biases that modulate the probability of signal
detection as a function of its parameters. The impact of
regular binary parameters within GR—such as black hole
(BH) masses or spins—can be approximated through their
influence on the expected signal-to-noise ratio (SNR) of a
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given signal [16,17] or, more robustly, by assessing the
performance of the search pipeline on simulated signals [18].
The resulting selection function is an indispensable ingre-
dient in inferring the astrophysical distributions of the
detected events [16—18]. While this effect is well under-
stood for GR parameters, the selection on beyond-GR
parameters is currently largely unknown and generally
unquantified. Nevertheless, studies under specific models
suggest searches have non-negligible selection for suffi-
ciently large deviations [13-15].

In the absence of a quantified selection function for tests
of GR, current constraints are restricted to assessing agree-
ment of the population properties of detected events with
GR. Such an analysis can be performed without reference to
any specific alternative theory of gravity by inferring the
general shape of the population of deviations using hierar-
chical inference [19-22]. This procedure can detect anoma-
lies in a collection of signals even if the deviation manifests
differently for each individual event [23-25]. However,
without selection effects, this procedure does not infer the
intrinsic population of deviations, which could contain
undetectable signals [6,7,24]. Furthermore, if selection
biases are strong, these population constraints do not
formally correspond to the detected population either on
account of detector noise [26]. This concern also extends to
cases in which events can be combined by simply multi-
plying likelihoods for a shared deviation parameter.

In this paper, we study the selection function within
template-based search pipelines for parameterized tests of
the inspiral phasing parameters [27-30]. Among the wide
array of possible GR tests, we focus on post-Newtonian
(PN) modifications to the waveform phasing, ¢(f), due to
anomalous dynamics [30-42], which could arise from
corrections to the theory or due to exotic sources following
other nonstandard physics, such as BH mimickers. We use
the deviation parameters &¢;, where i/2 denotes the
associated PN order. We focus on PN modifications as
they are one of the flagship tests of GR with LIGO, Virgo,
and KAGRA [43], and their effect is to modify the full
inspiral, which dominates the detectability of all but the
most massive systems. The latter can more easily be
detected by theory-agnostic burst pipelines, potentially
reducing the expected impact of selection biases induced
by deviations from GR.

We generate simulated signals (also called injections)
and recover them with a simplified version of the GSTLAL
pipeline [44-47] in Sec. II. Rather than evaluating the
computationally expensive likelihood ratio that would
normally be computed by GSTLAL as a detection statistic,
we approximate detection efficiency with a proxy ranking
statistic based on the recovered SNR and an autocorrela-
tion-based consistency check. In Sec. Il we find that, under
these circumstances, selection biases affect the detectability
of signals only for very large values of the deviation
parameters. These values are significantly higher than

the precision achieved by current tests; we therefore expect
that incorporating selection effects in population inference
will have a minimal impact on the resulting constraints.

Armed with the results from our injection campaign, we
confirm this expectation by enhancing existing hierarchical
tests of GR [7] with a selection factor and compute the
resulting astrophysical distribution of deviation parameters
in Sec. IV. We parametrize the deviation population with a
Gaussian and infer its mean and standard deviation while
taking into account selection effects. Following [48], we
simultaneously model the astrophysical distribution of the
binary component masses. For most phase deviation terms
we consider, the inferred astrophysical distributions for
beyond-GR parameters are identical to those obtained by
ignoring the GR selection effects. We recover the strongest
impact for the —1 PN term, where incorporating selection
effects widens the inferred population distribution by 10%.
We therefore conclude that the quantitative impact of
ignoring selection effects in tests of GR with GW inspirals
is small.

This conclusion may be surprising given the crucial role
of selection effects in estimating, for example, the mass
distribution of BBHs. The crucial difference between
deviation parameters and BBH masses is that the former
population is inferred to be intrinsically very narrow as all
events are consistent with a vanishing deviation. Indeed,
after a dozen high-significance BBHs, the population for
all deviation parameters inferred from LIGO-Virgo data is
already narrower than the impact of selection effects. As
more events are detected (and assuming they remain
consistent with GR), the inferred deviation population
will continue to narrow, making selection effects even less
relevant. In other words, selection effects do exist in the
population, but their impact is only appreciable for
deviation values that are already ruled out. Other pop-
ulation distributions, such as those for the mass and spin,
are not inherently narrow and selection effects remain
important no matter how many events are detected. These
considerations suggest that our conclusions only apply
under the assumption that all events come from a narrow,
unimodal population of deviation parameters. They do
not rule out a disjoint population with deviations
large enough to remain hidden to searches; such extreme
non-GR signals can only be ruled out with a dedicated
search [13—15]. We further this argument in our conclud-
ing remarks, Sec. V.

II. ESTIMATING THE MATCHED-FILTER
SELECTION FUNCTION FOR SIGNALS
WITH GR DEVIATIONS

In this section, we describe the procedure for quantifying
the effect of GR deviations on the GW selection function.
In summary, we follow the standard practice of estimating
detection efficiency by simulating a large set of signals
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(Sec. IT'A), analyzing them with a detection pipeline
(Sec. 11 B), and determining which signals are detectable
(Sec. 11 B).

A. Injection set

We start with the publicly available set of 156878 BBH
injections associated with GWTC-3, which target only GR
parameters [49]; we leave detailed explorations of binary
neutron stars and neutron-star—black-hole binaries to
future work. In this injection set, the primary and secon-
dary binary masses are distributed as p(m;) o m7*** and
p(my|m;) « m, and bounded, in the source frame, such
that 2M o < my < m; < 100My; the BH spins are iso-
tropically distributed with uniformly distributed magni-
tudes |y;,| <0.998. Further specifics of the within-GR
population are described in Table XII of [50]. The
simulations are generated using a baseline IMRPHENOMPV2
waveform approximant [51-53], which includes the effects
of spins misaligned with the orbital angular momentum.
We implement deviations from GR using the TIGER
framework [28-30], as in [7].

To reduce the computational burden on the original
GWTC-3 analysis [50], these injections have already been
selected against a minimum optimal network SNR thresh-
old of 6. The network SNR was calculated by adding the
LIGO Livingston and LIGO Hanford SNRs in quadrature.
Systems with a lower optimal network SNR are consid-
ered “hopeless” for detection. To further enhance com-
putational efficiency, we only consider BBHs that have
optimal LIGO Livingston SNRs > 6 and redshifted total
masses below 300M . For our purposes, restricting the
total mass injected has negligible effect due to the addi-
tional inspiral SNR selection criterion typically applied in
PN tests of GR [7,48]; we return to this in Sec. IV. These
initial cuts result in 84119 injections.

To measure the selection bias against beyond-GR
populations, we perturb the inspiral phasing of the
injections and recover them with an approximation of
the GSTLAL-based inspiral pipeline described in Sec. II B.
Following the standard parametrized post-Einsteinian
test [27], we perturb each PN order and repeat the analysis
separately. Each simulation is assigned a random frac-
tional' deviation drawn from a uniform distribution with
bounds £0.1, +1, £5, £3, £2, £15, £5, £10, £50, and
130 for the 6¢_,, 6o, 691, 62, 693, 64, 6951, 56, O¢g1,
and 6¢, respectively, where the “/” subscript denotes the
logarithmic phase terms. The bounds are chosen such that
the inferred deviations from individual events are entirely
covered by the selection. We only vary one coefficient at a
time to match the analysis usually applied to actual data
[7]. This procedure results in one BBH injection set per

'In GR, the coefficients corresponding to the —1PN and 0.5PN
terms are exactly zero. d¢_, and ¢, therefore represent absolute
deviations.

PN order, each containing the same number of BBHs with
identical GR parameters, differing only in the order and
strength of the random GR deviations. After specifying
injection parameters, we generate a corresponding wave-
form using the IMRPHENOMPV2 approximant and add it
to the data stream of a single detector. We space the
simulated signals 7 s apart through a single stretch of data
collected in the LIGO Livingston detector during April of
2019 with global-positioning-system times in the range
[1239641219 s, 1240334066 s] [54].

B. Detection criterion and efficiency

We analyze the injection sets with a simplified infra-
structure based on GSTLAL, one of the matched-filter-based
search pipelines presently used to search for GWs from
compact binaries [44,45,47,55-64]. Matched-filter-based
search pipelines discretely sample the GR-based signal
manifold to create template banks of possible signals. The
discretization results in a 1%-3% loss of SNR over the
parameter space covered by the bank [65,66]. Pipelines
presently restrict their searches to emission from sources
with spin angular momenta aligned with the orbital angular
momenta and, therefore, neglect the impact of precession or
higher-order angular modes; the signal loss incurred for
these systems is, therefore, larger. We specifically consider
the GSTLAL-based matched-filtering pipeline for its signal
consistency check and because it most densely sampled the
signal space in LIGO-Virgo’s third observing run (O3) and,
thus, had the minimum expected SNR loss from discrete-
ness. For BBHs, the GSTLAL bank used an effective-one-
body model of the GW emission, SEOBNRv4_ROM [67].
The specific structure and maximum SNR loss of GSTLAL’s
template bank is described in Table II of the GWTC-2
publication [68].

Pipelines correlate waveforms from the template
bank with the data collected in each detector to produce
an SNR time series. Peaks in the SNR time series, called
triggers, are checked for coincidence across detectors and
are then ranked according to the pipeline’s detection
statistic. GSTLAL’s ranking statistic is the likelihood ratio
L, defined in [47,69], which relates the probability of
observing a set of parameters under the signal hypothesis to
that of the instrumental-noise hypothesis. This quantity is a
function of a number of factors: the set of instruments
participating in a detection, the matched-filter SNR, a
signal-based-veto parameter, the event time and phase in
the frame of each detector, and the masses and spins of the
identifying template. In general, it is computationally
expensive to accurately estimate the background of the
search and recover simulated signals via L. Since no
background for O3 is publicly available, and to minimize
the analysis cost, we instead employ an approximate
detection statistic p that weights the measured SNR by a
signal consistency check [70,71], namely,
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where p is the matched-filler SNR and &> is a signal
consistency test defined from the autocorrelation as

i 0) =5 O)R, 1)
5 228,07 @)

where z; and R; denote the complex SNR and autocorre-
lation of template j, respectively, and the integrand in the
denominator is the expectation value in Gaussian noise [44].
We compute a value of £ for each trigger by integrating
Eq. (2) over a small window of time £6¢, centered about the
trigger. We use 6t = 0.17 s (6t = 0.34 s) for templates with
chirp masses greater (less) than 15M ,, which was also done
in production by the full GSTLAL pipeline. When the
observed strain data closely match the template j, then
p = p. For each BBH injection, we compute the matched-
filter SNR p and £ value against the GSTLAL template bank.
Since signals generally match with multiple templates in a
bank, we perform the same data reduction clustering as the
GSTLAL pipeline does in GWTC-3. We discard triggers
within 0.1 s of other triggers with a larger p value, breaking
ties by p.

Since we consider the response in only a single detector,
we conservatively set a detection threshold of p > 10. This
choice is motivated by the fact that significant candidates
from GWTC-2 and GWTC-3 were identified for network
SNR p.e 2 10, which typically corresponded to events
with single detector SNRs py ~ p;. ~ 7. As we only filter a
single detector, we assert that a signal in a single detector
with p = 10 will have approximately the same significance
as a signal observed in multiple detectors with p,. = 10.
We further assert that our proxy detection statistic threshold
is approximately equivalent to the false-alarm-rate (FAR)
threshold of O(1072/yr) adopted in past tests of GR [5-7].
This choice is conservative for our study in that a weaker
detection criterion could only reduce the detection bias; i.e.,
it could only increase the fraction of signals that are
detected by the pipeline.

Although we use an abbreviated version of the detection
pipeline, we argue that the resulting selection function is a
good approximation for the full selection effect for the
following reasons.

(1) The threshold of p > 10 selects triggers that are
disjoint from the background typically collected by
the search. Triggers that meet this criterion exist in
the shaded contour shown in Fig. 1, which is cleanly
off a representative background observed by the
search. In other words, p > 10 implies vanishing
support from the background.

(2) In addition to the background, £ contains a signal
term that we do not explicitly take into account here.

In P(p, €/ p* noise)

10t 102
P

FIG. 1. A representative background distribution for BBHs
collected for the LIGO Livingston detector. The background is
parametrized in £2/p? vs p space. Regions with high In P indicate
where noise is most likely (brighter color). The shaded contour
enclosed by a white edge corresponds to our detection criterion,
p > 10. This region is largely separate from the collected back-
ground.

This is justified because, in the p > 10 region, the
noise distribution varies significantly more rapidly
than the signal distribution (see Figs. 9 and 10
in [44]). Therefore, the contribution of the signal
term to £ is approximately constant over this region,
and the FAR is mostly determined by the noise
distribution.

(3) Finally, although £ depends on parameters beyond p
and &, namely, the event time, phase, mass, and spin,
those should be minimally affected by the kinds of
GR deviations that we consider here. Since the
polarizations are unaffected by phasing corrections
and the signals still propagate at the speed of light,
the expected distribution of time delays and phase
differences across detectors will remain the same.
Regarding masses and spins, it is possible for non-
GR signals to be identified by GR templates with
masses and spins that differ from the source. Though
this would change the population model’s contribu-
tion, the model itself is broad (see Sec. IV B of the
GWTC-2 publication [68]) and contributes weakly
to the overall value of L.

These three reasons justify our p criterion as a proxy for
detecting signals with high significance.

III. IMPACT ON DETECTION EFFICIENCY

To develop intuition for how deviations in the PN
parameters affect the detection statistic, p in Eq. (1),
Fig. 2 shows the SNR and autocorrelation time series with
(right) and without (left) a deviation applied to the —1PN
coefficient, d¢_,, for a high (top) and low (bottom) injected
SNR. We examine these two ingredients of the total
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FIG. 2. The response of a single search template to a 30-30M , BBH without (left) and with (right) deviations to d¢_, for SNR ~ 24
(top) and ~15 (bottom) injections in Gaussian noise colored to O3 sensitivities. The injections that deviate from GR use 6¢p_, = —0.1.
The black line shows the measured SNR time series for a single template waveform, with the gray band denoting the 10 measurement
uncertainty. The beyond-GR phasing results in an SNR loss of ~40% between the left and right columns. Additionally, there is a
mismatch between the measured SNR time series and the SNR scaled autocorrelation that weakens the signal consistency test, &2. Both
effects lead to a reduction of our detection statistic p, Eq. (1), and thus a loss in sensitivity.

detection statistic p for a characteristic BBH with redshifted
masses 30-30M, in the detector frame. The two compo-
nents of p, p and &, are represented in these plots by,
respectively, the peak of the SNR time series (black) and
the integrated area between it and the scaled autocorrelation
time series (blue). Mismatches between a signal and the
template bank induced by a GR deviation will impact
detection efficiency due to both a loss in the recovered SNR
p (reduction in the peak height) and increase in the signal
consistency check value & (increased disagreement
between blue and black curves).

Indeed, the beyond-GR deviation causes a reduction in
the recovered SNR, seen through a reduced peak between
the left and right panels of Fig. 2, thus directly affecting p.
Moreover, the introduction of beyond-GR effects creates
secondary peaks in the SNR time series obtained from
filtering with a GR waveform. The oscillations in SNR
further reduce the signal consistency check, E2—that is, the
square difference between the measured SNR and the
scaled autocorrelation, per Eq. (2). These oscillations

become harder to discern from the Gaussian background
with decreasing SNR, thus minimizing the effect of &2 on
the detectability of the signal. Figure 2 is helpful in
understanding the interplay between p and & in the
presence of a deviation from GR. However, it is not
sufficient to determine the degree of selection bias against
beyond-GR signals, as it only shows the effect of a single
injection relative to the corresponding GR template with the
same parameters. In an actual search, we compare a
beyond-GR injection against the entire bank, and the
detection statistic is based on the best match.

To quantify the actual impact of GR deviations on the
detection efficiency, we study the distribution of parameters
of the signals that made it through our simplified detection
pipeline, i.e., those that returned a value of p > 10 when
compared against any template in the GR bank. This
amounts to measuring the detectable fraction:

A

E(n) = / d0pae(60)2(6]A). (3)
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Histograms of recovered injections with deviations from GR in the —1PN (6¢_,, left) and 0.5PN (6¢,, right) coefficients.

Although the initial injection set was assigned deviations from a uniform distribution (dotted black), the pipeline selects against large
negative values of the deviation parameters, as indicated by the dearth of detections in the leftmost bins (gray histograms). Besides the
total set of injections, we show subdistributions corresponding to different injected mass bins in the detector frame (colored histograms).
The distributions of recovered injections are largely flat over the span of values allowed by the analysis of the 12 events considered in
Sec. IV (which are ~4x broader than GWTC-3 constraints [7]; vertical gray band, median and 90% credible level), suggesting that the
selection bias is not strong enough to affect the population constraints.

where A is the set of hyperparameters that describe the
underlying population distribution, z(0|A), and pg.(0) is
the selection function that describes the probability of
detecting a system with parameters 6. Figure 3 shows the
marginal selection function, pg.(6¢), for the —1PN coef-
ficient (0@_,, left) and the 0.5PN coefficient (¢, right),
over the whole mass space (gray) as well as subsections for
different BBH mass bins (colors). For both parameters, the
distribution of detected signals departs from the uniform
intrinsic distribution that we injected (black): There is a
dearth of detected signals with large negative values of the
deviation parameters, indicating that such signals are
selected against. This can be explained by the fact that a
negative value for these parameters will shorten the
inspiral, which in turn reduces the SNR of the signal.
This effect is more pronounced for the —1PN coefficient,
which is consistent with the intuition that this coefficient
should have a larger impact on the GW phase than the
0.5PN coefficient over the duration of an inspiral because it
is associated with a correction entering at a lower power of
the frequency. The drop in detection efficiency is also
sharper for lower masses, as expected given the scaling of
the inspiral length with the BBH mass.

In spite of the drop in sensitivity observed at the edges of
the histograms in Fig. 3, the recovered distributions are
generally flat in the region that is allowed by the population
constraints from GWTC-3 (gray band). Lower detector-
frame masses demonstrate a larger gradient across these
regions [e.g., M(1 + z) < 10M; purple]. However, the

observed events considered here do not reside in this region
of the mass parameter space. Since there is no gradient in
the region allowed by the observations, there is no
preference for any particular value of the deviation param-
eter in the range still consistent with current data. This
suggests that the selection bias is not strong enough to
affect the population constraints, which are more sensitive
to GR deviations than the detection pipeline. We confirm
this below by repeating catalog analysis of GR deviations
with and without the selection effects.

IV. UPDATED POPULATION ESTIMATES

We incorporate the selection function computed from
Sec. III into population-level inference for inspiral tests of
GR. By computing the astrophysical distribution of
beyond-GR parameters, we can now make statements
about the types of GR deviations consistent with an
observed set of detections. In practice, computing the
astrophysical distribution requires incorporating knowl-
edge of the detection efficiency over parameter space to
deconvolve the instrument’s selection function from the set
of observed measurements.

We evaluate the consistency of a set of observations with
GR through a hierarchical analysis without imposing strong
assumptions about the nature of the deviation across events.
As a null test, we follow [7,24,25,48] in parametrizing the
intrinsic distribution of individual-event values for some
deviation parameter ¢ as a Gaussian ¢ ~ N (u, 6). This
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model targets the mean y and variance 62 of GR deviations,
regardless of the true shape of the underlying distribution.
Beyond-GR parameters are typically defined to vanish in
GR, so that the null hypothesis that GR is valid for all
events predicts 4 = o = 0. If GR is not correct, then the
deviation parameters may take different (nonzero) values as
a function of source parameters, resulting in nonvanishing
u or 0. We apply the approach in [48] to simultaneously
model the distribution of astrophysical parameters.

Existing implementations of this hierarchical analysis
characterize the set of observed events but do not inform
about possible intrinsic deviation distributions that predict
events with such large deviations that are undetectable. To
factor this in, we use the result of Sec. III following the
techniques used in the context of astrophysical inference to
study the astrophysical distribution of within-GR param-
eters, such as masses and spins. The key additional step is
to incorporate the detection efficiency into the hierarchical
likelihood through a term that can be approximated as the
Monte Carlo sum population weights over a set of m
detected injections with parameters 6, [72-74]:

1 “ T 9k|A
- (4)
Mzk:p( 0y |draw)’

where M is the total number of drawn injections (out
of which m were detected) and p(6;|draw) is the
probability of drawing parameters 6, from the population
adopted in the injection campaign, with A = {u,c}, in
addition to the parameters describing the astrophysical
population of GR quantities (like masses and spins). The
hierarchical likelihood, p({d}|A), governing the inferred
astrophysical population from N observations with dataset

{d} is

p({d}A) = do; p(d;|0;)x(6;|A),  (5)

where p(d;|0;) are the individual event likelihoods. The
selection function influences the inferred hyperparameters
through its inclusion in Eq. (5).

In order to include an injection in the “detected” sum of
Eq. (4), besides GSTLAL’s detection threshold of p > 10
from Sec. II B, we additionally require that the measured
SNR in the inspiral satisfy pj,y, > 6. The latter corresponds
to the selection criterion for estimating the inspiral PN
coefficients in [5-7]. In order to avoid computing the
inspiral SNR for each injection in the set, we approximate
the fraction of SNR in the inspiral as a linear function of the
detector frame total mass as in [48].

In addition to hierarchically modeling the beyond-GR
astrophysical distribution, we incorporate population mod-
els for the within-GR population distributions. Due to a
lower number of recovered injections than the standard set

0.010 — —=!
Without d¢ selection effects ‘
I With 6 selection effects ‘
0.008 - I
0.006 I
° |
0.004 - [ -
‘\
0.002 | - ll
0.000 .
—0.010 —0.005 0.000 0.005 0.010
n
FIG. 4. Inference on the mean and standard deviation of

the —1PN coefficient, d¢_,. The orange contours show the
result of the hierarchical analysis without accounting for selection
effects, while the purple contours show the result when the
selection function is included. The two results are consistent
with each other, with the selection function widening the
population only slightly. We find no difference in the coupling
between u and o and the parameters controlling the mass
distribution either (not shown).

of injections used in population studies [74], we only infer
the primary mass and mass ratio distributions jointly with
the beyond-GR population, using the models outlined in
Ref. [48]. We fix the spin distribution to be uniform in spin
magnitude and isotropic about all possible spin orienta-
tions; the redshift distribution is consistent with the
maximum a posteriori power law found in Ref. [18].

With the setup described above, we repeat the hierar-
chical analysis in [6,7,24,48] applied to 12 events in O3a,
to be consistent with times over which the selection
function is estimated. A list of the included events can be
found in Table I of Ref. [48]. Figure 4 shows the resulting
inference on y and o for the —IPN coefficient, d¢p_,,
compared to the result that does not account for selection
biases in the beyond-GR parameters. Although this was
the coefficient with the strongest detection bias as
evaluated in the previous section (Fig. 3), this effect is
very small, and the two results, with and without
selection, are consistent with each other up to a slight
widening of the population when selection is factored in.
This is consistent with the expectation from Fig. 3, which
suggested the impact of selection should be minimal in
light of the accuracy of the constraint from parameter
estimation. Figure 5 shows that this is the case for all
coefficients, none of which show significant differences
between the two results.

023014-7



RYAN MAGEE et al.

PHYS. REV. D 109, 023014 (2024)

Without dp selection effects

—1PN OPN 0.5PN 1PN 1.5PN
0.02 T 1.0 T T T
0.01f 0.5f h
,g‘ 0.00 0.0 F F
—0.01f —0.5f
—0.02 ' —1.0 ' ' ' '
P-2 ®o ®1 ©2 ©3
FIG. 5.

BN With d¢p selection effects

2PN 2.5PN() 3PN 3PN 35PN

Wiy

—_

0
—_ot
—1t
—4f
-2 ' —6 '

Y4 ¥51 ¥e6 P61 w7

Posterior predictive distributions (also known as the population-marginalized expectation) for deviations at all PN orders we
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selection: The d@_, displays the strongest effect, with a slight broadening of the inferred distribution at the level of ~10%.

V. CONCLUSIONS

In this study, we revisited tests of GR from the inspiral
GW phase by accounting for the selection effect of
templated searches against signals with GR deviations.
We estimated the selection function by considering the
performance of a simplified version of the GSTLAL search
pipeline against simulated signals with beyond-GR effects
affecting the PN evolution of a BBH inspiral. Since GSTLAL
detects signals by comparing them to a template bank
constructed with GR waveforms, its detection efficiency
decreases under sufficiently large deviations from GR.
However, we found that this threshold for deviations is
less stringent than the precision of GWTC-3 constraints,
suggesting that population inference on the inspiral
deviation parameters is minimally affected by selection
effects. In other words, existing constraints are already a
very good approximation to the full astrophysical popula-
tion of deviation parameters, apart from the possibility of a
disconnected subpopulation of sources with very high
deviations.

This finding can be understood by noting that the
sensitivity of parameter estimation to deviations from
GR scales inversely with the SNR of the signal, while
the detection threshold imposed by the search pipelines is
best represented as a hard SNR cutoff. A deviation d¢ that
induces a mismatch M relative to the best-fitting GR
template will result in an SNR loss of order p — Mp;
accordingly, the measurement precision in parameter esti-
mation will scale as A(6¢) ~ 1/p. For a given SNR, the
mismatch tolerated by the search pipeline will be much
higher than the sensitivity of the parameter estimation.
Therefore, signals that incur an SNR penalty would still be

detectable as long as they remain above the search’s
threshold; meanwhile, given a GR signal in the data,
parameter estimation will constrain the magnitude of a
deviation tightly around zero, with much better precision
than would be directly associated with the pipeline’s
detection threshold.

In other words, the tolerance for detection is much larger
than the tolerance for parameter estimation, and the latter is
what determines the population constraints. Since the
population of observed deviations is extremely narrow
(a delta function at zero if GR is correct), the hierarchical
measurement is minimally affected by selection effects, as
we have shown in Fig. 5. This argument does not apply to
other parameters, such as the BH masses, since their
distribution is intrinsically broad.

Our main conclusion is that the deviation population is
already narrower than the extent of the selection effects, and
thus the latter do not impact the former. However, this
assumes that deviations form a single, compact population
whose mean and standard deviation we constrain. Since no
observed events are inconsistent with GR, the inferred width
of this population grows smaller as the catalog increases. We
are therefore not considering, and thus not ruling out,
disjoint populations with a subset of events that have
extremely large (and potentially undetectable) deviations
or a mass-dependent deviation population model. It remains
conceivable that a subpopulation of signals with extremely
high deviations could exist and remain hidden from GR-
based pipelines, motivating dedicated searches [13-15].
However, that does not translate into selection biases for
the components of the population that are already con-
strained by the existing catalog.
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This distinction also suggests that there is no contra-
diction between our results and those of Refs. [13—15]: We
both find appreciable selection effects for sufficiently large
values of the deviation parameters; cf. Fig. 3. Our study,
however, highlights that under the assumption of a single,
unimodal population distribution of the deviation param-
eters, such large values of the deviation parameters are
already ruled out.

As Essick and Fishbach [26] recently pointed out, the
existence of prominent selection biases would complicate
the interpretation of hierarchical constraints that do not
factor in selection effects, as the inferred population would
not be strictly representative of neither the true astrophysi-
cal distribution nor the observed distribution of parameters.
However, in the absence of strong selection effects,
hierarchical inference without a selection term remains a
valid tool to constrain the population of beyond-GR
parameters, as we have shown here for PN tests of the
BBH inspiral. This, of course, may not be the case for other
tests or implementations.

Our results are subject to a number of caveats, and
selection effects might be stronger for different GR tests or
population models. First, to mitigate computational costs,
we have used an approximate ranking statistic that only
incorporates information from a single detector. We impose
a detection threshold of p > p > 10 to maximize purity in
accordance with the FAR threshold adopted in past GR
tests [5-7]. We do not expect a full injection campaign
utilizing the complete ranking statistic described in [47]
would yield more precise results at this threshold and for
the inspiral deviation test considered here. However, our
results do not obviate the need for a full injection campaign
for other tests of GR or other pipelines.

Besides the adopted threshold, the p ranking statistic
differs from the full likelihood ratio also on the information
it considers. The latter also includes information about the
phase and time of the signal in different detectors. Though
we do not expect those terms to be important for the inspiral
deviation parameters we consider here, they could become
important for other tests of GR, such as those considering
propagation effects or the signal polarization. Quantifying
selection effects for such tests would require a full multi-
detector and likelihood ratio calculation.

We produce injected signals with GR deviations using
standard infrastructure [28-30,51-53] and choose param-
eter ranges consistent with priors used in LIGO-Virgo-
KAGRA publications. However, for some of these extreme
values, the resulting waveform could become patholo-
gical [75] and may not represent a physically meaningful
configuration [76]. Although this might affect the overall
applicability and physical interpretation of the tests, it does
not affect the interpretation of our results that relate to the
selection effects of the tests as formulated. Reformulations
of the inspiral tests to ensure the GW phase calculation
remains in the convergent series expansion regime [76,77]

would likely be affected by selection effects even less, as
they restrict the allowed range of possible deviations.

Among the compact-binary pipelines, we restrict to
a simplified version of GSTLAL. We expect the impact of
this assumption to be small, as we only consider the
most confidently detected BBHs with single detector
SNRs 2 10, all of which are detectable by GSTLAL. If
we decreased the SNR threshold, we might encounter
events detected by other compact-binary pipelines, in
which case we would need to quantify their selection
effects. However, we expect that relaxing SNR or FAR
thresholds should only make pipelines more tolerant to
signals beyond GR.

Extending beyond matched-filter pipelines, we expect
weakly modeled search methods [8,9] to surpass template-
based ones for sufficiently large GR deviations. However, it
is the case that both all events we consider here and all events
that have been detected in general are detected significantly
by at least one template-based search. Ultimately, the
sensitivity of weakly modeled searches should also be
quantified and taken into account, though some have started
to explore the biases this would introduce [15].

As the sensitivity of GW detectors improves, so does the
number and quality of detections, leading to increasing
sensitivity to both subtle deviations from GR and system-
atics in our models. While here we have focused on tests of
GR based on GW inspiral phases and single-Gaussian
populations, exploring the effect of selection biases in other
tests or under other population models will also become
important. As both our detectors and techniques evolve,
future studies need to evaluate this and other potential
systematics.
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