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ARTICLE INFO ABSTRACT

Keywords: During machining, kinetic energy is imparted to a workpiece to remove material. The integrity of the machined
Machining surface, which depends on the energy transfer, affects the quality and performance of the product, therefore
Sensor fusion needs to be quantified. Prior studies have indicated the potential of using machining power, or the power
Process signature . . consumption at the tool-chip interface, as a process signature for predicting machined surface integrity. How-
Interpretable machine learning . . . . aits . .

Acoustic signals ever, direct measurement of machining power is constrained by the availability of special equipment and the
associated cost. To address this gap, this paper presents a machine learning-based method for machining power
prediction through multi-sensor fusion and sequence-to-sequence translation from acoustic and vibration signals,
which represent portions of the in-situ kinetic energy dissipation, to the machining power signal as a process
signature. Specifically, a neural network architecture is developed to separately translate the acoustic and vi-
bration signals to corresponding machining power signals. The two predicted power signals are subsequently
fused to arrive at a unified power signal prediction. To check for spurious decision logic, the sensor fusion model
is interpreted using integrated gradients to reveal temporal regions of the input data which have the most in-
fluence on the machining power prediction accuracy of the fusion model. Systematic cutting experiments per-
formed on a lathe using 1018 steel have shown that the developed sensor fusion method for process signature
prediction can successfully map machine acoustics to power consumption with 5.6% error, tool vibration to
power consumption with 8.2% error, and acoustics and vibration, jointly, to power with 2.5% error. Model
parameter interpretation reveals that the vibration signal is more influential on the machining power prediction
result than the acoustic signal, but that overall model accuracy is diminished if only the vibration signal is used.

The benefit is earlier detection and correction of noncompliant product
[6,7,8].

Introduction In the case of machining, recent studies have proposed machining
power as a process signature since it represents, by definition, all energy

Commensurate with the rise of integrated sensing and industrial imparted to the workpiece [9,10]. For example, Sealy et al. observed

machine learning (ML), process signatures have emerged as valuable asymptotic relationships between the spindle specific energy and sur-
tools for manufacturing process monitoring and quality assurance [1,2, face roughness, microhardness, and residual stress, indicating that the
3]. Defined as the embodiment of all mechanical, thermal, and chemical spindle specific energy embodies these product characteristics [11]. Zhu
energies imparted to the workpiece during a manufacturing process, a et al. identified an exponential relationship between specific cutting
process signature comprehensively encodes the surface and subsurface energy and undeformed chip thickness, which has a direct influence on
conditions of a part caused by in-process energy transfer [4,5]. As such, the machined surface roughness [12]. Bustillo et al. used a radial basis
process signatures have been shown to predict machined surface function network to analyze average machining power readings and
integrity characteristics and tool conditions with higher accuracy than subsequently predict machined surface flatness deviations with 3 um
process parameter-only models (e.g., speed, feed, depth of cut, etc.) or mean absolute error [13]. Cooper et al. modeled the relationship

single process quantity-based approaches (e.g., acoustic, vibration, etc.).
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Nomenclature

c Baseline specific cutting force

d Depth of cut

E, Energy

f Cutting feed

g Multi-sensor machining power prediction model
& Decision fusion model, part of g
hy Fully connected neural network
IG Integrated gradient

J Jacobian

ki Convolutional kernel

< Power prediction model loss

L, Number of hidden layers

I 1-D convolutional kernel length
MRR Material removal rate

p, Power

PN* Predicted power

pp Process parameters
qx Multichannel 1-D convolutional neural network
Src Specific cutting force

t Time

t. Chip thickness

TC Tool condition

v Cutting speed

Wy Proportion of power

Y Integrated gradient input interpolator
€ Power fluctuations

Co Rake angle

[ Model parameters

0" Optimal model parameters
b, Activation function

(1]l Vector length

1, Ones vector of length x

between energy consumption and surface roughness by passing
time-frequency representations of machining power signals to a 2-D
convolutional neural network (CNN) to predict machined surface
roughness with 9% error [6].

Several studies have also used machining power to predict tool
condition and remaining useful life, which have direct effects on the
surface integrity [14,15]. Drouillet et al. used measured machining
power as an input to an artificial neural network (ANN) to predict tool
remaining useful life and achieved approximately 5% error [16]. Like-
wise, Corne et al. predicted tool wear in real time using the instanta-
neous machining power as input to an ANN, yielding as little as 1% error
[17]. Wang et al. predicted tool wear by fusing recurrent neural network
(RNN) representations of machining power signals with CNN-based
representations of surface images, with about 12% error [18].
Moliner-Heredia et al. fit a polynomial model to determine tool change
points as a function of machining power and observed reduced tool
consumption and lower numbers of rejected parts compared to
non-power-based approaches [19]. Recent power-based tool condition
monitoring approaches and associated ML techniques are further
reviewed in [20,21].

Unfortunately, acquisition of machining power data is oftentimes
impractical and/or financially infeasible. High-quality power meters are
cost prohibitive and their installation impedes production [22,23].
Considering these limitations, it is desired to infer the machining power
process signature using readily available process quantities that are
indicative of the power signal. Literature has explored three such
quantities: acoustics, vibration, and thermal signals emanating from the
tool-chip interface. The sum of these three sensing modes is considered
to fully characterize the energy transfer into the workpiece and can thus
be used to infer the machining power process signature. Among the
three sensing modalities, acoustic-based and vibration-based monitoring
have been widely used due to their availability and ease in installation.

Ragai et al. previously demonstrated that the principal component
coefficients of acoustic signals acquired during turning processes were
sufficient to achieve 99% cutting parameter classification accuracy
using deep ML techniques, suggesting that machining acoustic data
contains information unique to the cutting conditions [24]. Since cutting
conditions have a predominant influence on machining power, it is
hypothesized that the machining acoustics can also be used to predict
the power signal while remaining responsive to in-machine conditions
[25]. This hypothesis is supported by previous studies which used
machining acoustics and ML to infer the tool and cutting conditions,
which also determine the machining power [8,26,27,28]. Thus, the
machining acoustic signature is considered to reflect the compound
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effect of process parameters and tool condition on the machining power
consumption, and, as a result, represents an appropriate candidate for
consideration for machining power process signature prediction.

In the field of vibration-based machining power prediction, several
studies have developed mechanistic models to predict machining power
as a function of tool vibration [29,30,31,32]. One limitation is that these
approaches require the use of 3-D dynamometers, which may not be as
easily accessible for the same reasons as a power meter, as discussed
earlier. Alternatively, Kim et al. developed a transfer learning ML model
for machining power prediction as a function of spindle position and
cutting parameters, and demonstrated qualitatively good results under a
limited data condition in the target domain [33]. Xu et al. applied
improved case-based reasoning to leverage knowledge distilled from
previous prediction queries and more accurately predicted average
machining power based on the vibration signal, achieving a mean ab-
solute percentage error (MAPE) of 8%. The method requires explicit
knowledge of the tool wear condition [34]. These studies suggest that
information on the machining power process signature is embedded in
the tool vibration signal.

While information on the machining power is embedded in the
acoustic and vibration signals, few published studies have directly pre-
dicted the time-varying machining power signals. Recent studies have
elucidated the effectiveness of trend-seasonality decomposition for time
series prediction [35], though this approach is yet to be seen in the
manufacturing literature. Additionally, an acoustic to machining power
prediction model has yet to be reported in literature. A consequence of
this is that a joint acoustic-vibration sensor fusion model has not been
realized, which is expected to have improved power prediction accuracy
over single-sensor approaches [36]. Previous data-driven machining
power prediction models have also yet to be interpreted to reveal their
decision logic, making them black boxes with inherently opaque
decision-making rules and potentially spurious behavior when pro-
cessing never-before-seen data [37,38]. This study closes these research
gaps by developing a multi-sensor fusion machining power signal pre-
diction method using ML, comparing the machining power prediction
accuracy of the fusion model against single sensing modality
acoustic-only and vibration-only models, and observing the learned
power prediction logic by assessing the sensitivity of the predicted
power signal to the acoustic and vibration inputs. An overview of the
proposed methodology is shown in Fig. 1.

Specifically, an ML architecture is designed to independently process
raw acoustic and vibration signals and achieve sensor-specific pre-
dictions of the machining power signal as functions of time. Following
from the current time series prediction literature, data from each sensor
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2. Sensor-Specific Machining Power Prediction
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Fig. 1. Multi-sensor data fusion for machining power prediction and decision logic interpretation.

is decomposed into trend and seasonal components, which are trans-
formed by separate ANNs into the corresponding trend and seasonal
components of the power data, then recombined to yield a sensor-
specific machining power signal estimate. A convolutional merging al-
gorithm is then used to combine the predicted power signals from each
sensor and arrive at a final unified machining power signal prediction,
which considers the acoustic and vibration data simultaneously. Inte-
grated gradients are calculated for the power signal predictions to
identify which temporal regions of the acoustic and vibration signals
have the greatest influence on the power signal predictions, as well as to
identify any spurious logic. The contributions of this study are summa-
rized as follows:

1) Developed a data fusion technique for machining acoustic and vi-
bration signals, which extracts and integrates the signal-underlying
information to predict the machining power process signature,
using only raw in-process data as input.

2) Developed an interpretation method for the data fusion model using
integrated gradients to reveal acoustic and vibration input patterns,
which correspond to machining power signal features and elucidate
the model’s prediction logic for greater model transparency.

3) Quantitatively compared the performance of the fusion model with
acoustic-only and vibration-only methods of machining power
prediction.

The remainder of the paper is organized as follows: in Section 2 the
background on the machining power process signature and multi-sensor
fusion is provided. Section 3 presents the proposed power prediction
model and model interpretation method based on integrated gradients.
Section 4 describes the experiment performed to validate the sensor
fusion method and model training. Section 5 presents the power signal
prediction results using single-sensor and multi-sensor approaches and
interprets the model to elucidate its prediction logic. Finally in Section
6, conclusions and future work are summarized.

Background of machining and multi-sensor fusion

The energy transferred into the workpiece during machining induces
material removal as well as surface and subsurface transformations,
which ultimately determine surface integrity. Thus, knowledge of the
energy transfer in the form of machining power is paramount for the
comprehensive characterization of post-machining product quality. In
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the absence of direct machining power measurement, prediction tech-
niques must be developed to estimate the machining power signal using
all available process observations. This section assesses the process
physics embodied in the machining power and provides an overview of
sensor fusion techniques to combine machining acoustic and tool vi-
bration signals for prediction of the time-varying machining power.

Machining power as a process signature

Machining is a material removal process wherein a cutting edge
imparts kinetic energy to a small region of the workpiece surface and
subsurface as shown in Fig. 2. The source of this energy is the machine
spindle, which rotates the tool during milling and rotates the workpiece
during turning. The resulting shear deformation within the energy-
affected region causes material displacement in the form of a chip,
which grows until it breaks off or is manually removed. However, the
input kinetic energy is simultaneously dissipated in several ways in
addition to constituting the shear stress, namely acoustically, vibra-
tionally, and thermally. Thus, the instantaneous energy balance can be
written as follows:

dEm dEOll[

Gm _ CBou 1
dt dt M

P,=P,+P,+P,+Py 2

where E,, and P,, are machining energy and power, respectively, E,y; is
energy dissipated into the workpiece and environment, P, is shear
power, P, is acoustic power, P, is vibrational power, and P}, is thermal
power. Since the sum of dissipated power cannot exceed P;, each dissi-
pation mode can be represented as dissipating a fraction of Py,:

Process Parameters (PP)
Speed, feed, depth of cut

Tool Condition (TC)

Flank wear, nose radius

Material Properties (MP) .

Hardness, strength

Workpiece |Pr+F, +F +Py

Fig. 2. Machining power determinants in machining energy dissipation.

Machining .
o

Thermomechanical/A \Shear
energy dissipation zone
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Py = WPy +WoPm +W,Ppy + WiPp, 3)
where w, is fraction of P,, dissipated by the dissipation mode listed in
the subscript and Y w, =1.

Previous work has shown that the machining power demanded can
also be modeled in terms of material removal:

P,, = MRR(PP)-Sgc(PP, TC) + ¢(t, TC, MP) ©)]
where MRR is the material removal rate (mm®/min) as a function of
process parameters (PP), Sy is the specific cutting force (N/mmz) asa
function of PP and tool condition (TC), and & denotes power fluctuations
caused by regenerative vibration, etc., which are dependent on time (t),
TC, and material properties (MP) [39]. In turning, MRR and Sgc are
defined as:

MRR = vfd %)

SFC = Ck;c/tt (1 (6)

o
~100)
where v is the cutting speed (m/min), f is the feed rate (mm/rev), d is
depth of cut (mm), k. is an experimental measurement of Spc at 0° rake
angle (N/mmz), t, is chip thickness (mm), and ¢, is the rake angle (deg)
[40].

Combining (1)-(4), the following relationship between power dissi-
pation and process physics is derived:

Py = W.P; + WP, + WP, +w,P, = MRR(PP)-Syc(PP, TC) + £(t, TC, MP)
@)

Eq. (7) suggests that information on process parameters, tool con-
ditions, and material property is encoded in the input power signal and
its dissipation mechanisms. As a result, these power readings reflect the
in-process physics caused by these physical properties. Previous work
has shown that P; in particular is an effective process signature for
surface integrity quantification due to its embodiment of in-process
disturbances not accounted for by parameter-only models [6]. Howev-
er, few quantities in (7) are feasible to measure directly during
machining and thus observation and inference of P,, are both difficult.
Direct in-situ measurement of P,,, P,, P, and Sy is expensive due to the
cost of equipment and its installation, i.e., power meters, thermal
cameras, and dynamometers. Additionally, there are not yet models to
estimate the w, terms in (7). MRR cannot be used to infer P,, without
accurate readings of Spc, which is infeasible for the reasons discussed
above. Recent literature as reviewed herein suggests that acoustics and
vibration are powerful predictors of machining power, although they are
typically used individually [24,33]. This indicates that acoustic power,
P,, and vibrational power, P,, are feasible means of estimating P,,.

Acoustic power and vibrational power are measured using micro-
phones and force sensors, respectively, and the output of each of these
sensors is directly proportional to P, [24]. A larger machining power
generally corresponds to greater spindle torque, higher spindle speed,
increased tool wear, and/or more aggressive process parameters, which
are prone to induce more prominent acoustic artifacts and more
aggressive vibrations (vice versa for a lower machining power). These
changes in the physical behavior of the system will be reflected in the
amplitude of the microphone and vibration sensor readings, thus
encoding Py, in the P, and P, signals.

Previous studies have successfully used vibration power as a pre-
dictor of machining power. However, these models do not account for all
energy dissipation modes in machining and do not fully characterize the
process, resulting in suboptimal machining power predictions [33,34]. A
mapping from acoustic power to machining power has yet to be estab-
lished despite evidence suggesting that the mapping is likely to be
feasible [8,24,26,27,28]. This research gap has also limited the consid-
eration of acoustic and vibration data simultaneously by way of sensor
fusion, which is hypothesized to provide better machining power
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prediction capabilities than acoustics or vibration alone [36]. To fill this
gap, the study presented herein considers previous vibration to
machining power mappings, develops an acoustic-to-machining power
prediction sub-model, and compares the machining power prediction
accuracy of both single-sensor mappings with the multi-sensor fusion
mapping. The decision logic of the multisensory model is then examined
using integrated gradients to observe the learned mapping rules [41].

Fundamentals of multi-sensor fusion

The motivating idea of multi-sensor fusion is that decision making
ability, e.g., power signal prediction, is improved when information
from multiple sensing modalities is used. This is the case since using
multiple sensors that represent varying modalities provides a more
comprehensive characterization of the process or system being modeled
[42]. Fusion can be achieved at the data, feature, and decision levels as
shown in Fig. 3 [43].

In data fusion, multi-sensory data is concatenated to form a joint data
representation with no loss of the original information. An example is
seen in [44] where data from various sensors is fused by making each
sensor’s data a row of a matrix. However, this approach requires that
each sensor’s data have the same dimensionality, which may not always
be possible without downsampling and data loss.

In contrast, feature fusion combines data representations rather than
raw data directly. These features can be handcrafted, statistical, or latent
representations attained via ML models. Most CNNs are in this category
as described in [45], where convolutional layers are used to transform
images of dogs into latent representations which are then merged and
concatenated with age, weight, and gender data before being classified
using an ANN. Despite this flexibility, feature fusion requires careful
feature crafting, and it is difficult to determine if the selected features

Data
Fusion

Decision
Making

Feature

Data Extraction

Dat. Feature Feature Decision
ata Extraction Fusion Making
b)
Dat Feature Decision Decision
ata Extraction Making Fusion

Fig. 3. Schematic representation of a) data fusion, b) feature fusion, and c)
decision fusion.
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will adequately characterize all possible model inputs.

Decision-level fusion considers the output of several predictive
models at once and combines them into a single unified output.
Ensemble-based models [46] fall into this category and have seen recent
success in manufacturing process modeling [47,48,49,50]. A possible
drawback of decision-level fusion models is that the decision logic of the
fusion and of the constituent prediction models needs to be optimized
concurrently. While some decision fusion train the constituent members
in isolation, a preferable approach is to train all members relative to the
accuracy of the full model since this will maximize the full model’s
predictive power rather than only that of the constituent members.

Proposed multi-sensor fusion model and interpretation

An ML model is proposed for decision-level multi-sensor fusion for
machining power prediction. Acoustic and vibration signals are passed
to the model and transformed into sensor-specific power signal pre-
dictions via ANNSs inspired by the DLinear model architecture described
in [35]. This model has been previously shown to outperform trans-
formers, recurrent neural networks, and state-of-the-art variants in time
series prediction tasks [51]. Additionally, DLinear retains transformers’
advantageous ability to consider all input information at once without
forgetting previously seen information and is substantially faster to train
than sequential and transformer models since it can consider all input
data simultaneously and has orders of magnitude fewer trainable pa-
rameters than do transformers. The sensor-specific predictions (de-
cisions) are then fused via a convolution operation to arrive at a final
power prediction. The model is fully differentiable from the power
prediction output back to the sensor inputs, meaning that optimization
via backpropagation optimizes all model parameters simultaneously and
prediction accuracy of the full fusion model is maximized. This full
differentiability also enables use of integrated gradients for model
interpretation.

Fusion model

Assume discretely sampled acoustic signal P, |t], vibration signal P, [t],
and machining power signal Py, [t]. Given the multi-sensor fusion model
g’

8(Pa,P,;0) = Py, ®
where 0 represents trainable model parameters and Py, is the estimated
machining power signal corresponding to P, and P,, the objective of this
study is to ascertain the parameters, §*, which minimize the mean ab-
solute error (MAE) loss, .2, between each time step of predicted and
actual power signals over a training dataset of size N:

> t](9).

where n is the sample index and T = ||Py,|| where ||-||denotes vector
length. This is done using a decision-level fusion model optimized using
backpropagation [52], as shown in Fig. 1.

Each sensor’s signal is first decomposed into trend and seasonality
components as follows:

0" = argmin¥(g; P) = argmink >°7 (11\1 N ‘Pm,n —Ppn
0 0

P*,trend = 11, * P, (10)

P*,seas = Py — Py rend (11)

where 1;, is a vector of all ones with length [, i.e., a uniform filter,  is
the convolution operator, and * denotes the sensing mode (a or v). The
convolution is performed with mirrored padding such that ||Py gend|| =
||Ps.seas||- Eq. (10) extracts the trend by filtering out high-frequency
components from P, using a moving average. When the trend is sub-
tracted from the original signal, the remainder is, by definition, the high-
frequency seasonal components.
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The trend and seasonal components are then processed by separate
neural networks, h, to predict the trend and seasonal components of the
target power signal:

~%

h*.trend (P*.rrendl, g*uendv ¢*.trend) = Pm,rrend (12)

~%

=P

m,seas

h*.sea.s (P* ,58(15", 0*.52057 ¢*.SBGJ) (13)
where 6, represents the parameters of each network and ¢, is a
nonlinear activation function applied to the output of each neuron. The
final sensor-specific power prediction, 13;1, is found as the sum of the
trend and seasonal components:

* ~* ~*
Pm = Pm,tfend +Pm,xeas (14)

Each h, has ||P,|linput neurons,

‘ﬁmH output neurons, L, hidden

layers, and ||P,| neurons per hidden layer. This ensures that HT’;H =

diction which aligns with the length of the ground truth signal, P,,.
After obtaining both sensor-specific power predictions, decision
fusion model g is expressed as

~v

Pm

= HI)'"H and thus each h is trained to output a valid power pre-

gf(l3 13 'Hf) :Pm

m)* m?

(15)

This model first combines the incoming power signals using a multi-
channel 1-D CNN, g;, and then uses a final fully-connected layer to fine
tune the fused result. First, J trainable 1-D kernels per sensor, kq; € Rl
and k,; € RY, are synchronously convolved over each intermediate
power signal prediction and averaged to merge the signals together:

~a ~v

qs (P, P 16)

k) =23 (ko By < 7))
=1

The convolutional result is then passed through a final fully con-
nected ANN, A, for fine tuning:
hf (qf; 9f> = IN)m (17)

The network has quH input neurons,

INJ"IH output neurons, L, hid-

den layers, and qu H neurons per hidden layer. A convolutional approach

was chosen over a summation or fully-connected approach based on
experimental findings, which suggested the 1-D convolutional merging
yielded the highest machining power prediction accuracy.

Because each of the constituent models of g are fully differentiable, i.
€., Nogrends Naseass Myurend> Mvseass qf, and hy, all parameters of g can be
optimized at once via backpropagation and (9) can be solved. The
resulting model parameters are those which yield the most accurate
machining power predictions using the fused acoustic and vibration
data.

Model interpretation via integrated gradients

Model interpretation is performed using integrated gradients, which
quantify the sensitivity of each of a model’s outputs to the value of each
of its inputs, i.e., the sensitivity of the power signal output to the
acoustic and vibration signal inputs, respectively [41]. The purpose of
quantifying the input-output sensitivity of the model proposed in this
study is to check for signs of spurious decision logic. Nonspurious logic is
indicated by well-distributed integrated gradient values over the
acoustic and vibration inputs to the prediction model. In this case, the
model is using all information at its disposal to predict the machining
power rather than placing inordinate importance on only a few time
steps, which is a potential indicator of training data memorization and
compromised decision logic.
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The integrated gradient, IG, is a direct measure of output variable
sensitivity with respect to the inputs as quantified by the model gradi-
ents, which represent the rate of change of the outputs as a function of
the inputs. The underlying intuition is that the influence of an input
variable can be quantified by querying the model output with and
without the variable being present and observing the difference in
output between the two cases, with the assumption that the difference in
model output is caused by the variable of interest being omitted. In the
case of IG, this omission is calculated using integration of partial de-
rivatives, which measure output sensitivity with respect to the inputs,
with an interpolator, y € [0, 1] varying each input feature value from 0 to
the ground truth value.

For time step t; of input data X = [Pq, P,| processed by prediction
model g and assessed at output time step ¢;, the influence of the ith input
on the jth output, IG;,,is defined as:

1G4 (X;8) = X[t] / L],

o O0X[t] a8

Here, the partial derivative quantifies the instantaneous rate of
change of the machining power value at the jth output time step with
respect to the acoustic or vibration signal value at the i input time step.
This derivative is integrated using y as an interpolator to quantify the
average contribution of each input time step in the absence (y = 0) and
presence (y = 1) of the input time step’s information. Input time steps
with little effect on the model output will have approximately equal
gradient magnitudes at y = 0 and y = 1, which will cancel out during
integration and yield low IG values.

Furthermore, the integration over y overcomes the fact that the
model gradient vanishes as y—1 and thus assessment of the gradient at
only g(X)is insufficient to capture the true feature importance. Small
perturbations of X (y ~ 1), are expected to have little effect on a well-
trained g(X) whereas larger perturbations (y<1) will be associated
with larger gradient values as the network quickly and nonlinearly
moves from g(0) = 0 to g(yX) ~ Py,. This nonlinear gradient response is
visualized in [53]. Thus, the integration over y accumulates the gradi-
ents during interpolation to account for the large gradient values when
X ~ 0 and fairly quantify the expected gradient of each i.

The value of IGy,.; is the expected contribution of input time step i to
the power signal output value at time step j. When multiplied by the
original feature values, as shown in (18), the IG values yield an additive
explanation of the model output:

> 1G,-y(X;g) = g(X)[t] 19
4

Thus, input time steps with larger IG have a larger effect on the
predicted power at time j relative to the other time steps.

Since g is a multi-input, multi-output (MIMO) function, (18) must be
made into a multidimensional form to account for all dependencies
between the input and output time steps. Integration over y is also
generally intractable, so the integral is discretized as a sum. The modi-
fied form is expressed as:

1608) = XR;/ (s(E%) )-x" 20

where IG is a matrix whose entry at position (a,b) is the integrated
gradient of the ath power prediction time step with respect to the pth
input time step, / is the Jacobian, and X is a column vector of the
model inputs. The vector of expected influences for each time step, &, is
then the column-wise average of the absolute value of IG:

_ L0 HG(X; 8)|

o]

2D

where 1,x) is a row vector of all ones with length ||g(X)||. Each element
of £ describes how influential each input time step of the acoustic and
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vibration signals is, on average. Once calculated, & can be plotted, and
patterns identified which reveal the time steps of the input signal that
have the most influence over the power prediction.

Shapley additive explanation (SHAP) values [54] were also consid-
ered for feature influence quantification, however the combinatorial
nature of SHAP value calculation made them infeasible for the devel-
oped fusion model. SHAP value computational complexity scales ac-
cording to O(2N) where N is the total number of inputs [55]. The
acoustic and vibration signals used for this study each have length 500,
50 21900 — 1,08 x 10%%! calculation iterations would be required to find
the SHAP values. Previous work by the authors found that the average
computation time per iteration is approximately 1 s on a single-threaded
i7 CPU at 2.6 GHz, so computing all iterations would take an impossibly
extensive amount of time [56]. Faster SHAP value approximation
methods such as KernelSHAP were also considered, but the need to
optimize several hyperparameters made them undesirable [55]. Con-
trastingly, integrated gradients have computational complexity O(NM),
where M is the number of outputs. Further, each integrated gradient
iteration is computed in 0.01% the time of a SHAP value iteration,
making them more feasible for this study. Integrated gradients also use
only one tunable hyperparameter (R), making their computation more
reliable. Additionally, previous work has shown that integrated gradi-
ents approximate Aumann-Shapley values, which quantify feature in-
fluence similarly to SHAP values [57,58]. Given these computational
and theoretical benefits, integrated gradients are chosen over SHAP
values for this work.

Experimental evaluation and model training
The proposed acoustic-vibration sensor fusion method for machining
power prediction is validated using an experimentally acquired dataset

of in-process signals gathered during turning at varying speeds and
feeds.

Machining data collection

A CNC lathe equipped with TiN-coated CNMG432 TCN55 carbide

Table 1
Turning parameters for each cutting experiment.
Exp. Speed DOC Feed
(RPM) (mm) (mm/rev)
1 1200 0.635 0.254
2 1200 0.635 0.381
3 1200 0.635 0.508
4 1200 1.270 0.254
5 1200 1.270 0.381
6 1200 1.270 0.508
7 1200 1.905 0.254
8 1200 1.905 0.381
9 1200 1.905 0.508
10 1600 0.635 0.254
11 1600 0.635 0.381
12 1600 0.635 0.508
13 1600 1.270 0.254
14 1600 1.270 0.381
15 1600 1.270 0.508
16 1600 1.905 0.254
17 1600 1.905 0.381
18 1600 1.905 0.508
19 2000 0.635 0.254
20 2000 0.635 0.381
21 2000 0.635 0.508
22 2000 1.270 0.254
23 2000 1.270 0.381
24 2000 1.270 0.508
25 2000 1.905 0.254
26 2000 1.905 0.381
27 2000 1.905 0.508
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turning inserts was used to perform 27 cutting experiments, each with a
unique combination of speed, feed, and depth of cut (DOC) as listed in
Table 1. The insert had a 12.700 mm inscribed circle, a thickness of
4.763 mm, a corner radius of 0.793 mm. The material being turned was
AISI 1018 steel with initial nominal diameter of 50 mm and nominal
length of 250 mm. Each cutting experiment had a fixed duration of 10 s
and was repeated 3 times in a relatively quiet workshop and under
chatter-free conditions [24].

The experimental setup and on-machine sensors are shown in Fig. 4.
To record tool vibration, a high-sensitivity polyvinylidene fluoride
(PVDF) vibration sensor (model LDT0-028 K) is affixed to the tool shank
and outputs the dynamic strain of the tool as an analog voltage signal.
The machining audio is simultaneously collected using a PmodMIC3
microphone module equipped with an analog-digital-converter (ADC)
attached to the carriage and located approximately 100 mm away from
the tool-chip interface. Both sensors communicate with a Discovery 2
data acquisition (DAQ) board attached to the carriage and are recorded
by WaveForms software at 10 kHz [24]. The PVDF communicates over
analog channel while the microphone uses a serial communication
protocol (SPI).

Each of the three RMS current phases for the lathe are monitored and
summed using a Simple Logger II-AL834 AC current logger with probes
affixed directly to the machine’s main circuit breaker. Since the machine
has a fixed voltage as a lumped system and power is the product of
current and voltage, the dynamic current embodies the power deman-
ded by the machining operation plus the power consumption of the
machine tool’s auxiliary motors, pumps, computers, and lights. This
latter power draw can be readily learned by the prediction model as a
bias term. The sampling rate was set to 8 Hz, which is the maximum
allowable by the logger. The current sample rate is deemed reasonable
since machine current changes are attributed mainly to significant
changes of the speed and/or torque of the spindle [24].

The DAQ was used to initialize the ADC, SPI, and current logger
sampling simultaneously, yielding a common t = 0 point for all sensors,
and the latency observed between the ADC and SPI data streams was on
the order of 1 ps, indicating synchronized audio and vibration data.
Further, the data timestamps were double-checked after acquisition to
ensure signal alignment. Noise removal is performed following each 10 s
acquisition period using a uniform filter of length 7. This filter size was
determined experimentally by searching over odd-length filter sizes
from 3-51 and selecting the length that yielded the best power signal
prediction accuracy. After filtering, the acoustic and vibration signals
are divided into 500-sample segments. Each segment is then used to
predict the corresponding experiment’s 80-sample power signal. A
schematic overview of the experimental data acquisition is shown in
Fig. 5.

Fig. 4. Experimental setup.
Adapted from [24].
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Fig. 5. Experimental data acquisition.
Adapted from [24].

Fusion model architecture and training

A stochastic grid search is performed to find good values for
decomposition kernel length I, activation function ¢,, convolutional
kernel lengths [, and [,, number of convolutional kernels J, hidden layer
counts Lq, Ly, and L, model optimization algorithm, and training loss
function. To reduce the search space, all ¢, were identical, [, =1, =1,
and L, =L, =L, = L. The parameter search spaces were defined based
on similar models in literature and, in the case of the activation func-
tions [59,60,61] and optimizers [62,63,64], demonstrated performance
over other approaches.

The search is performed by sampling 1000 randomly chosen
parameter combinations and selecting the combination that produced
the lowest . as defined in (9) as the model’s parameter set for the study.
The search spaces for each variable are defined in Table 2, with the
optimal parameter values bolded. No signs of overfitting were observed
during training with the selected model parameters [65]. A total of 75%
of the experimental dataset is used for training, whereas 15% is used for
validation and parameter tuning, and 10% is used for testing. Before
acoustic and vibration signal segmentation, all subsets are shuffled and
stratified based on their experiment number, as listed in Table 1.
Training is performed using Z-score normalized versions of all signals.
To contextualize the model’s 7" from (9) on the testing dataset, testing
error is reported in terms of MAPE, defined as:

()

The expected integrated gradients, £, are then calculated for the
acoustic and vibration inputs to the fusion model, with the number of
computation steps, i.e., R in (20), set to 100 based on recommendations
from literature [41].

MAPE =

Pm.n - Pm.n
LL— 22
P (22)

> t] + 100%

|-

mn

Table 2

Model parameter search spaces; bold indicates values found via
stochastic grid search which minimize model ¥ (MSE = mean
squared error).

Parameter Search space

I {3,5,7}

& {ReLU, Leaky ReLU, Mish}
l {1, 11, 21, 41}

J {1,3,5,7}

L {1, 3,5}

Optimizer {Adam, Nadam, RMSprop}

Loss function {MAE, MSE}
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Results and discussion
Multi-sensor fusion power prediction results

Exemplary power prediction results for the fusion model are shown
for five evenly spaced MAPE percentiles in Fig. 6. The best result (100th
MAPE percentile) exhibits only 0.8% error whereas the worst result (Oth
percentile) exhibits 6.2% error. The median (50th percentile) is 2.3%. As
the percentile decreases, the model predictions remain centered about
the ground truth, indicating good trend predictions, but increasingly
exhibit sudden spikes, which deviate from the ground truth possibly
indicating that the seasonal component could not be adequately learned
for these power signals. Nonetheless, these results are initial indicators
that the model performs well on the testing data and is not overfit to the
training data.

The MAPE distribution for the testing dataset is shown in Fig. 7. The
left y-axis is the absolute number of samples in each histogram bin
whereas the right y-axis is the cumulative proportion of samples with a
MAPE at or below the corresponding MAPE value on the x-axis. The plot
shows that more than 80% of the testing dataset MAPE values are < 3%,
indicating a well-trained model capable of outputting highly accurate
machining power predictions. The distribution also has a thin right tail,
indicating a rapid drop in probability density as the MAPE exceeds 3%.
The average MAPE of the testing data is 2.5%.

Fig. 8 presents violin plots of MAPE for RPM, depth of cut, and feed.
The width of each violin is the kernel density estimate [66] of the test
dataset MAPE’s probability density function, marginalized to include
only the selected process parameter, and assessed at the level shown in
the x-axis. The mean MAPE of each distribution is plotted as a black dot.
The RPM and feed distributions show that the model exhibits very little
MAPE variance for the 2000 RPM and 0.508 mm/rev experiments, as
evidenced by short and wide violins, but has a much larger and more
uniformly distributed variability when predicting the power signal of
the other two experimental conditions.

Meanwhile the variability of the depth of cut distributions are more
even, with the 0.635 mm depth of cut exhibiting the highest maximum
MAPE at 6.2%. The 1.905 mm depth of cut exhibits a noticeably multi-
modal distribution, as shown by the violin’s double hourglass figure.
The 0.381 mm feed and 2000 RPM conditions also exhibit multimodal
MAPE distributions. Notably, average MAPE consistently decreases as
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28.0
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Fig. 6. Machining power prediction results by MAPE percentile; blue is
experimentally observed ground truth from testing dataset, orange is fusion
model prediction.
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Fig. 7. MAPE distribution calculated on testing dataset; left y-axis denotes
absolute number of testing samples; right y-axis denotes cumulative probability
that a test dataset sample has a MAPE less than the corresponding MAPE on the
x-axis; more than 80% of samples have less than 3% MAPE.

the depth of cut increases, indicating better power signal predictability
as the depth of cut is increased.

Comparison of multi-sensor and single-sensor prediction

Exemplary results of the acoustic-only and vibration-only power
prediction models h, and h, are compared with the fusion model g and
ground truth power signal, and the result is shown in Fig. 9. Each single-
sensor model is retrained using the parameters in Table 2 to directly

predict P, rather than the intermediate representation ﬁ; As shown in
the plots, the acoustic-only prediction model has a slightly lower MAPE
than the vibration-based model, but both are much higher than the
fusion model MAPE. The average acoustic-only, vibration-only, and
fusion model MAPEs over the entire training dataset are 5.6% + 0.5%,
8.2% =+ 1.1%, and 2.5% =+ 0.4% respectively, averaged over 5 model
reinitializations.

The vibration-based predictions have a more jagged profile, indi-
cating that the higher-frequency components of the power signal are
more difficult to predict using vibrations and the proposed prediction
model architecture. The same is somewhat true of the acoustic pre-
dictions as well, although the jaggedness is much less pronounced.
Taken as a whole, these results indicate the advantages of sensor fusion
for machining power prediction, as shown by the much-reduced MAPE
of the fusion model, as well as elucidate the effectiveness of the proposed
noninvasive acoustic-based method of indirect machining power pre-
diction in machining.

Prediction model interpretation results

The average integrated gradient magnitude for the acoustic and vi-
bration inputs to the fusion model, &, is shown in Fig. 10. The average
was taken over 50 randomly sampled testing datapoints. The shaded
region of the graph is + 1 standard deviation. The plot demonstrates two
notable phenomena: 1) the vibration signal is an order of magnitude
more influential on the fusion model output than the acoustic signal, and
2) both sensors’ IG values oscillate over the input signals.

In the former case, it is unclear why the vibration signal is so much
more influential, considering the higher MAPE yielded by the vibration-
only model. In terms of process physics, it may be possible that the tool
vibration is more influential on machining power predictions since the
tool is in direct contact with the workpiece and is thus more sensitive to
workpiece condition, which determines power demand. Alternatively,
the difference in influence may be a consequence of the convolutional
merging layer taking advantage of hidden information in the vibration-

specific latent power representation, 1~3Vm more so than the information

contained in the acoustic-specific representation, f’fn. This would indi-
cate that the vibration sensor-specific neural network h, is better trained
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Fig. 10. Average integrated gradients for the acoustic and vibration signal
inputs to the fusion model, calculated over 50 testing datapoints; the shaded
region represents + 1 standard deviation; the value of the integrated gradient
at each time step is proportional to the average influence of the input signal at
that time step on every time step of the machining power prediction.

to output latent representations while the acoustic network h, is more
adept at standalone power prediction. Further investigation of this hy-
pothesis is recommended as future work.

Regarding the latter observation that the IG values are oscillatory,
this may be an indicator that the model could inadvertently overlook
input information. The average integrated gradient, as shown in Fig. 10,
is a measure of input feature importance regardless of the feature value.
In the case of time-series input, where each input feature corresponds to
a time step, this means that temporal regions of low IG are deprioritized
by the prediction model in favor of the high IG regions, regardless of the
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input signal’s information distribution. Thus, if information that
strongly predicts machining power happens to be in the low-IG areas, e.
g., because of a phase shift, the model may produce a suboptimal pre-
diction. Future work will quantify the detriment imposed by oscillatory
IG values and develop IG smoothing techniques to avoid suboptimal
process signature prediction.

Conclusion

To simultaneously investigate the potential of utilizing the acoustic
and vibration signals as a predictor of machining process signatures and
compare single-sensor signature prediction with multi-sensor predic-
tion, this study has developed a multi-sensor fusion model for machining
power prediction using both acoustic and vibration signals and
compared its power predictions with acoustic-only and vibration-only
models. The fusion model produces sensor-specific power predictions
using ANNs then fuses them together convolutionally to yield a final
unified prediction. The result exhibits 2.5% average error as compared
to the experimentally observed ground truth. This contrasts with 5.6%
and 8.2% expected power prediction error for acoustic-only and
vibration-only models, respectively. Additionally, the fusion model’s
prediction logic has been elucidated using integrated gradients,
revealing that the vibration signal has a pronounced influence on the
machining power prediction result as compared to the acoustic signal
and an oscillatory trend of input feature importance, both of which merit
further investigation.

The study was performed with in-situ feasibility in mind. Power
sensing equipment is both expensive to acquire and more complex to
install whereas microphones and vibration sensors present themselves as
easily accessible alternatives capable of power signal prediction, as
demonstrated herein. It is foreseen that the developed multi-sensor
fusion system will enable greater awareness of the machine state, by
way of machining power signal monitoring, and product and tool state,
by enabling predictive metrology using the surface and subsurface in-
formation represented by the machining power. The presented fusion
approach for process signature prediction may also be adapted to other
manufacturing processes such as milling, grinding, or additive
manufacturing.

Regarding the use of the proposed model for real-world production,
two possible pathways are envisioned:

1) Through transfer learning or other appropriate data-driven methods,
the developed method is adapted to a different machining scenario
where a different set of process parameters, cutting tool, material,
and machine tool are used. The user will perform experimental data
acquisition using microphones and vibration sensors in the same way
as illustrated in this paper, without the need to purchase expensive
power measuring device.

2) The work as presented in this paper is extended to develop a library
of pretrained models with varying process parameters, cutting tools,
materials, and machine tools. This library can then be queried as
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needed by other users. Such an approach is being increasingly dis-
cussed for advancement of machine learning accessibility in aca-
demic, private, and governmental settings [67].

Beyond investigating the integrated gradient behavior identified
earlier, future research will consider integration of thermal power
dissipation in the fusion model to more comprehensively characterize
the machining energy transfer and achieve more accurate machining
power prediction results. Future studies are also anticipated to use a
larger number of audio, vibration, and power samples covering a
broader range of process parameters, e.g., 1000-5000 RPM cutting
speeds, to more comprehensively assess the power prediction model’s
capability using process parameters seen in industrial applications.
Ablation studies will also be performed to determine the necessity of the
trend-seasonality decomposition and possibly increase the model’s
parsimony by removing constituent ANNs. Modeling the noise inherent
to the sensor data will also be investigated to remove it from the trend
and seasonality components and possibly eliminate the need for this
decomposition altogether. Decision level fusion between the developed
power prediction model and analytical machining power predictions
will be investigated as well.
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