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A B S T R A C T

During machining, kinetic energy is imparted to a workpiece to remove material. The integrity of the machined 
surface, which depends on the energy transfer, affects the quality and performance of the product, therefore 
needs to be quantified. Prior studies have indicated the potential of using machining power, or the power 
consumption at the tool-chip interface, as a process signature for predicting machined surface integrity. How
ever, direct measurement of machining power is constrained by the availability of special equipment and the 
associated cost. To address this gap, this paper presents a machine learning-based method for machining power 
prediction through multi-sensor fusion and sequence-to-sequence translation from acoustic and vibration signals, 
which represent portions of the in-situ kinetic energy dissipation, to the machining power signal as a process 
signature. Specifically, a neural network architecture is developed to separately translate the acoustic and vi
bration signals to corresponding machining power signals. The two predicted power signals are subsequently 
fused to arrive at a unified power signal prediction. To check for spurious decision logic, the sensor fusion model 
is interpreted using integrated gradients to reveal temporal regions of the input data which have the most in
fluence on the machining power prediction accuracy of the fusion model. Systematic cutting experiments per
formed on a lathe using 1018 steel have shown that the developed sensor fusion method for process signature 
prediction can successfully map machine acoustics to power consumption with 5.6% error, tool vibration to 
power consumption with 8.2% error, and acoustics and vibration, jointly, to power with 2.5% error. Model 
parameter interpretation reveals that the vibration signal is more influential on the machining power prediction 
result than the acoustic signal, but that overall model accuracy is diminished if only the vibration signal is used.   

Introduction 

Commensurate with the rise of integrated sensing and industrial 
machine learning (ML), process signatures have emerged as valuable 
tools for manufacturing process monitoring and quality assurance [1,2, 
3]. Defined as the embodiment of all mechanical, thermal, and chemical 
energies imparted to the workpiece during a manufacturing process, a 
process signature comprehensively encodes the surface and subsurface 
conditions of a part caused by in-process energy transfer [4,5]. As such, 
process signatures have been shown to predict machined surface 
integrity characteristics and tool conditions with higher accuracy than 
process parameter-only models (e.g., speed, feed, depth of cut, etc.) or 
single process quantity-based approaches (e.g., acoustic, vibration, etc.). 

The benefit is earlier detection and correction of noncompliant product 
[6,7,8]. 

In the case of machining, recent studies have proposed machining 
power as a process signature since it represents, by definition, all energy 
imparted to the workpiece [9,10]. For example, Sealy et al. observed 
asymptotic relationships between the spindle specific energy and sur
face roughness, microhardness, and residual stress, indicating that the 
spindle specific energy embodies these product characteristics [11]. Zhu 
et al. identified an exponential relationship between specific cutting 
energy and undeformed chip thickness, which has a direct influence on 
the machined surface roughness [12]. Bustillo et al. used a radial basis 
function network to analyze average machining power readings and 
subsequently predict machined surface flatness deviations with 3 µm 
mean absolute error [13]. Cooper et al. modeled the relationship 
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between energy consumption and surface roughness by passing 
time-frequency representations of machining power signals to a 2-D 
convolutional neural network (CNN) to predict machined surface 
roughness with 9% error [6]. 

Several studies have also used machining power to predict tool 
condition and remaining useful life, which have direct effects on the 
surface integrity [14,15]. Drouillet et al. used measured machining 
power as an input to an artificial neural network (ANN) to predict tool 
remaining useful life and achieved approximately 5% error [16]. Like
wise, Corne et al. predicted tool wear in real time using the instanta
neous machining power as input to an ANN, yielding as little as 1% error 
[17]. Wang et al. predicted tool wear by fusing recurrent neural network 
(RNN) representations of machining power signals with CNN-based 
representations of surface images, with about 12% error [18]. 
Moliner-Heredia et al. fit a polynomial model to determine tool change 
points as a function of machining power and observed reduced tool 
consumption and lower numbers of rejected parts compared to 
non-power-based approaches [19]. Recent power-based tool condition 
monitoring approaches and associated ML techniques are further 
reviewed in [20,21]. 

Unfortunately, acquisition of machining power data is oftentimes 
impractical and/or financially infeasible. High-quality power meters are 
cost prohibitive and their installation impedes production [22,23]. 
Considering these limitations, it is desired to infer the machining power 
process signature using readily available process quantities that are 
indicative of the power signal. Literature has explored three such 
quantities: acoustics, vibration, and thermal signals emanating from the 
tool-chip interface. The sum of these three sensing modes is considered 
to fully characterize the energy transfer into the workpiece and can thus 
be used to infer the machining power process signature. Among the 
three sensing modalities, acoustic-based and vibration-based monitoring 
have been widely used due to their availability and ease in installation. 

Ragai et al. previously demonstrated that the principal component 
coefficients of acoustic signals acquired during turning processes were 
sufficient to achieve 99% cutting parameter classification accuracy 
using deep ML techniques, suggesting that machining acoustic data 
contains information unique to the cutting conditions [24]. Since cutting 
conditions have a predominant influence on machining power, it is 
hypothesized that the machining acoustics can also be used to predict 
the power signal while remaining responsive to in-machine conditions 
[25]. This hypothesis is supported by previous studies which used 
machining acoustics and ML to infer the tool and cutting conditions, 
which also determine the machining power [8,26,27,28]. Thus, the 
machining acoustic signature is considered to reflect the compound 

effect of process parameters and tool condition on the machining power 
consumption, and, as a result, represents an appropriate candidate for 
consideration for machining power process signature prediction. 

In the field of vibration-based machining power prediction, several 
studies have developed mechanistic models to predict machining power 
as a function of tool vibration [29,30,31,32]. One limitation is that these 
approaches require the use of 3-D dynamometers, which may not be as 
easily accessible for the same reasons as a power meter, as discussed 
earlier. Alternatively, Kim et al. developed a transfer learning ML model 
for machining power prediction as a function of spindle position and 
cutting parameters, and demonstrated qualitatively good results under a 
limited data condition in the target domain [33]. Xu et al. applied 
improved case-based reasoning to leverage knowledge distilled from 
previous prediction queries and more accurately predicted average 
machining power based on the vibration signal, achieving a mean ab
solute percentage error (MAPE) of 8%. The method requires explicit 
knowledge of the tool wear condition [34]. These studies suggest that 
information on the machining power process signature is embedded in 
the tool vibration signal. 

While information on the machining power is embedded in the 
acoustic and vibration signals, few published studies have directly pre
dicted the time-varying machining power signals. Recent studies have 
elucidated the effectiveness of trend-seasonality decomposition for time 
series prediction [35], though this approach is yet to be seen in the 
manufacturing literature. Additionally, an acoustic to machining power 
prediction model has yet to be reported in literature. A consequence of 
this is that a joint acoustic-vibration sensor fusion model has not been 
realized, which is expected to have improved power prediction accuracy 
over single-sensor approaches [36]. Previous data-driven machining 
power prediction models have also yet to be interpreted to reveal their 
decision logic, making them black boxes with inherently opaque 
decision-making rules and potentially spurious behavior when pro
cessing never-before-seen data [37,38]. This study closes these research 
gaps by developing a multi-sensor fusion machining power signal pre
diction method using ML, comparing the machining power prediction 
accuracy of the fusion model against single sensing modality 
acoustic-only and vibration-only models, and observing the learned 
power prediction logic by assessing the sensitivity of the predicted 
power signal to the acoustic and vibration inputs. An overview of the 
proposed methodology is shown in Fig. 1. 

Specifically, an ML architecture is designed to independently process 
raw acoustic and vibration signals and achieve sensor-specific pre
dictions of the machining power signal as functions of time. Following 
from the current time series prediction literature, data from each sensor 

Nomenclature 

c Baseline specific cutting force 
d Depth of cut 
E⋆ Energy 
f Cutting feed 
g Multi-sensor machining power prediction model 
gf Decision fusion model, part of g 
h⋆ Fully connected neural network 
IG Integrated gradient 
J Jacobian 
k⋆ Convolutional kernel 
L Power prediction model loss 
L⋆ Number of hidden layers 
l⋆ 1-D convolutional kernel length 
MRR Material removal rate 
P⋆ Power 
P̃⋆ Predicted power 

PP Process parameters 
q⋆ Multichannel 1-D convolutional neural network 
SFC Specific cutting force 
t Time 
tc Chip thickness 
TC Tool condition 
v Cutting speed 
w⋆ Proportion of power 
γ Integrated gradient input interpolator 
ε Power fluctuations 
ζ0 Rake angle 
θ Model parameters 
θ∗ Optimal model parameters 
ϕ⋆ Activation function 
‖⋆‖ Vector length 
1⋆ Ones vector of length ⋆  
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is decomposed into trend and seasonal components, which are trans
formed by separate ANNs into the corresponding trend and seasonal 
components of the power data, then recombined to yield a sensor- 
specific machining power signal estimate. A convolutional merging al
gorithm is then used to combine the predicted power signals from each 
sensor and arrive at a final unified machining power signal prediction, 
which considers the acoustic and vibration data simultaneously. Inte
grated gradients are calculated for the power signal predictions to 
identify which temporal regions of the acoustic and vibration signals 
have the greatest influence on the power signal predictions, as well as to 
identify any spurious logic. The contributions of this study are summa
rized as follows: 

1) Developed a data fusion technique for machining acoustic and vi
bration signals, which extracts and integrates the signal-underlying 
information to predict the machining power process signature, 
using only raw in-process data as input.  

2) Developed an interpretation method for the data fusion model using 
integrated gradients to reveal acoustic and vibration input patterns, 
which correspond to machining power signal features and elucidate 
the model’s prediction logic for greater model transparency.  

3) Quantitatively compared the performance of the fusion model with 
acoustic-only and vibration-only methods of machining power 
prediction. 

The remainder of the paper is organized as follows: in Section 2 the 
background on the machining power process signature and multi-sensor 
fusion is provided. Section 3 presents the proposed power prediction 
model and model interpretation method based on integrated gradients. 
Section 4 describes the experiment performed to validate the sensor 
fusion method and model training. Section 5 presents the power signal 
prediction results using single-sensor and multi-sensor approaches and 
interprets the model to elucidate its prediction logic. Finally in Section 
6, conclusions and future work are summarized. 

Background of machining and multi-sensor fusion 

The energy transferred into the workpiece during machining induces 
material removal as well as surface and subsurface transformations, 
which ultimately determine surface integrity. Thus, knowledge of the 
energy transfer in the form of machining power is paramount for the 
comprehensive characterization of post-machining product quality. In 

the absence of direct machining power measurement, prediction tech
niques must be developed to estimate the machining power signal using 
all available process observations. This section assesses the process 
physics embodied in the machining power and provides an overview of 
sensor fusion techniques to combine machining acoustic and tool vi
bration signals for prediction of the time-varying machining power. 

Machining power as a process signature 

Machining is a material removal process wherein a cutting edge 
imparts kinetic energy to a small region of the workpiece surface and 
subsurface as shown in Fig. 2. The source of this energy is the machine 
spindle, which rotates the tool during milling and rotates the workpiece 
during turning. The resulting shear deformation within the energy- 
affected region causes material displacement in the form of a chip, 
which grows until it breaks off or is manually removed. However, the 
input kinetic energy is simultaneously dissipated in several ways in 
addition to constituting the shear stress, namely acoustically, vibra
tionally, and thermally. Thus, the instantaneous energy balance can be 
written as follows: 

dEm

dt
=

dEout

dt
(1)  

Pm = Pτ + Pa + Pv + Ph (2)  

where Em and Pm are machining energy and power, respectively, Eout is 
energy dissipated into the workpiece and environment, Pτ is shear 
power, Pa is acoustic power, Pv is vibrational power, and Ph is thermal 
power. Since the sum of dissipated power cannot exceed Ps, each dissi
pation mode can be represented as dissipating a fraction of Pm: 

Fig. 1. Multi-sensor data fusion for machining power prediction and decision logic interpretation.  

Fig. 2. Machining power determinants in machining energy dissipation.  
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Pm = wτPm + waPm + wvPm + whPm (3)  

where w⋆ is fraction of Pm dissipated by the dissipation mode listed in 
the subscript and 

∑
w⋆ = 1. 

Previous work has shown that the machining power demanded can 
also be modeled in terms of material removal: 

Pm = MRR(PP)⋅SFC(PP, TC) + ε(t, TC, MP) (4)  

where MRR is the material removal rate (mm3/min) as a function of 
process parameters (PP), SFC is the specific cutting force (N/mm2) as a 
function of PP and tool condition (TC), and ε denotes power fluctuations 
caused by regenerative vibration, etc., which are dependent on time (t), 
TC, and material properties (MP) [39]. In turning, MRR and SFC are 
defined as: 

MRR = vfd (5)  

SFC = ck−c/tc
c

(
1 −

ζ0

100

)
(6)  

where v is the cutting speed (m/min), f is the feed rate (mm/rev), d is 
depth of cut (mm), kc is an experimental measurement of SFC at 0º rake 
angle (N/mm2), tc is chip thickness (mm), and ζ0 is the rake angle (deg) 
[40]. 

Combining (1)-(4), the following relationship between power dissi
pation and process physics is derived: 

Pm = wτPs + waPs + wvPs + whPs = MRR(PP)⋅SFC(PP, TC) + ε(t, TC, MP)

(7) 

Eq. (7) suggests that information on process parameters, tool con
ditions, and material property is encoded in the input power signal and 
its dissipation mechanisms. As a result, these power readings reflect the 
in-process physics caused by these physical properties. Previous work 
has shown that Ps in particular is an effective process signature for 
surface integrity quantification due to its embodiment of in-process 
disturbances not accounted for by parameter-only models [6]. Howev
er, few quantities in (7) are feasible to measure directly during 
machining and thus observation and inference of Pm are both difficult. 
Direct in-situ measurement of Pm, Pτ, Ph, and SFC is expensive due to the 
cost of equipment and its installation, i.e., power meters, thermal 
cameras, and dynamometers. Additionally, there are not yet models to 
estimate the w⋆ terms in (7). MRR cannot be used to infer Pm without 
accurate readings of SFC, which is infeasible for the reasons discussed 
above. Recent literature as reviewed herein suggests that acoustics and 
vibration are powerful predictors of machining power, although they are 
typically used individually [24,33]. This indicates that acoustic power, 
Pa, and vibrational power, Pv, are feasible means of estimating Pm. 

Acoustic power and vibrational power are measured using micro
phones and force sensors, respectively, and the output of each of these 
sensors is directly proportional to Pm [24]. A larger machining power 
generally corresponds to greater spindle torque, higher spindle speed, 
increased tool wear, and/or more aggressive process parameters, which 
are prone to induce more prominent acoustic artifacts and more 
aggressive vibrations (vice versa for a lower machining power). These 
changes in the physical behavior of the system will be reflected in the 
amplitude of the microphone and vibration sensor readings, thus 
encoding Pm in the Pa and Pv signals. 

Previous studies have successfully used vibration power as a pre
dictor of machining power. However, these models do not account for all 
energy dissipation modes in machining and do not fully characterize the 
process, resulting in suboptimal machining power predictions [33,34]. A 
mapping from acoustic power to machining power has yet to be estab
lished despite evidence suggesting that the mapping is likely to be 
feasible [8,24,26,27,28]. This research gap has also limited the consid
eration of acoustic and vibration data simultaneously by way of sensor 
fusion, which is hypothesized to provide better machining power 

prediction capabilities than acoustics or vibration alone [36]. To fill this 
gap, the study presented herein considers previous vibration to 
machining power mappings, develops an acoustic-to-machining power 
prediction sub-model, and compares the machining power prediction 
accuracy of both single-sensor mappings with the multi-sensor fusion 
mapping. The decision logic of the multisensory model is then examined 
using integrated gradients to observe the learned mapping rules [41]. 

Fundamentals of multi-sensor fusion 

The motivating idea of multi-sensor fusion is that decision making 
ability, e.g., power signal prediction, is improved when information 
from multiple sensing modalities is used. This is the case since using 
multiple sensors that represent varying modalities provides a more 
comprehensive characterization of the process or system being modeled 
[42]. Fusion can be achieved at the data, feature, and decision levels as 
shown in Fig. 3 [43]. 

In data fusion, multi-sensory data is concatenated to form a joint data 
representation with no loss of the original information. An example is 
seen in [44] where data from various sensors is fused by making each 
sensor’s data a row of a matrix. However, this approach requires that 
each sensor’s data have the same dimensionality, which may not always 
be possible without downsampling and data loss. 

In contrast, feature fusion combines data representations rather than 
raw data directly. These features can be handcrafted, statistical, or latent 
representations attained via ML models. Most CNNs are in this category 
as described in [45], where convolutional layers are used to transform 
images of dogs into latent representations which are then merged and 
concatenated with age, weight, and gender data before being classified 
using an ANN. Despite this flexibility, feature fusion requires careful 
feature crafting, and it is difficult to determine if the selected features 

Fig. 3. Schematic representation of a) data fusion, b) feature fusion, and c) 
decision fusion. 
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will adequately characterize all possible model inputs. 
Decision-level fusion considers the output of several predictive 

models at once and combines them into a single unified output. 
Ensemble-based models [46] fall into this category and have seen recent 
success in manufacturing process modeling [47,48,49,50]. A possible 
drawback of decision-level fusion models is that the decision logic of the 
fusion and of the constituent prediction models needs to be optimized 
concurrently. While some decision fusion train the constituent members 
in isolation, a preferable approach is to train all members relative to the 
accuracy of the full model since this will maximize the full model’s 
predictive power rather than only that of the constituent members. 

Proposed multi-sensor fusion model and interpretation 

An ML model is proposed for decision-level multi-sensor fusion for 
machining power prediction. Acoustic and vibration signals are passed 
to the model and transformed into sensor-specific power signal pre
dictions via ANNs inspired by the DLinear model architecture described 
in [35]. This model has been previously shown to outperform trans
formers, recurrent neural networks, and state-of-the-art variants in time 
series prediction tasks [51]. Additionally, DLinear retains transformers’ 
advantageous ability to consider all input information at once without 
forgetting previously seen information and is substantially faster to train 
than sequential and transformer models since it can consider all input 
data simultaneously and has orders of magnitude fewer trainable pa
rameters than do transformers. The sensor-specific predictions (de
cisions) are then fused via a convolution operation to arrive at a final 
power prediction. The model is fully differentiable from the power 
prediction output back to the sensor inputs, meaning that optimization 
via backpropagation optimizes all model parameters simultaneously and 
prediction accuracy of the full fusion model is maximized. This full 
differentiability also enables use of integrated gradients for model 
interpretation. 

Fusion model 

Assume discretely sampled acoustic signal Pa[t], vibration signal Pv[t], 
and machining power signal Pm[t]. Given the multi-sensor fusion model 
g, 

g(Pa, Pv; θ) = P̃m (8)  

where θ represents trainable model parameters and P̃m is the estimated 
machining power signal corresponding to Pa and Pv, the objective of this 
study is to ascertain the parameters, θ∗, which minimize the mean ab
solute error (MAE) loss, L , between each time step of predicted and 
actual power signals over a training dataset of size N: 

θ∗ = argmin
θ

L (g; Pm) = argmin
θ

1
T

∑T
t=1

(

1
N

∑N
n=1

⃒
⃒
⃒Pm,n −P̃m,n

⃒
⃒
⃒

)

[t](9). 

where n is the sample index and T = ‖Pm‖ where ‖⋅‖denotes vector 
length. This is done using a decision-level fusion model optimized using 
backpropagation [52], as shown in Fig. 1. 

Each sensor’s signal is first decomposed into trend and seasonality 
components as follows: 

P⋆,trend = 1lt ∗ P⋆ (10)  

P⋆,seas = P⋆ − P⋆.trend (11)  

where 1lt is a vector of all ones with length lt, i.e., a uniform filter, ∗ is 
the convolution operator, and ⋆ denotes the sensing mode (a or v). The 
convolution is performed with mirrored padding such that 

⃦
⃦P⋆,trend

⃦
⃦ =

⃦
⃦P⋆,seas

⃦
⃦. Eq. (10) extracts the trend by filtering out high-frequency 

components from P⋆ using a moving average. When the trend is sub
tracted from the original signal, the remainder is, by definition, the high- 
frequency seasonal components. 

The trend and seasonal components are then processed by separate 
neural networks, h, to predict the trend and seasonal components of the 
target power signal: 

h⋆,trend
(
P⋆,trend; θ⋆,trend, ϕ⋆,trend

)
= P̃

⋆
m,trend (12)  

h⋆,seas
(
P⋆,seas; θ⋆,seas, ϕ⋆,seas

)
= P̃

⋆
m,seas (13)  

where θ⋆ represents the parameters of each network and ϕ⋆ is a 
nonlinear activation function applied to the output of each neuron. The 
final sensor-specific power prediction, P̃

⋆
m, is found as the sum of the 

trend and seasonal components: 

P̃
⋆
m = P̃

⋆
m,trend + P̃

⋆
m,seas (14) 

Each h⋆ has ‖P⋆‖input neurons, 
⃦
⃦
⃦P̃m

⃦
⃦
⃦ output neurons, L⋆ hidden 

layers, and ‖P⋆‖ neurons per hidden layer. This ensures that 
⃦
⃦
⃦P̃

a
m

⃦
⃦
⃦ =

⃦
⃦
⃦P̃

v
m

⃦
⃦
⃦ =

⃦
⃦
⃦P̃m

⃦
⃦
⃦ and thus each h is trained to output a valid power pre

diction which aligns with the length of the ground truth signal, Pm. 
After obtaining both sensor-specific power predictions, decision 

fusion model gf is expressed as 

gf (P̃
a
m, P̃

v
m; θf ) = P̃m (15) 

This model first combines the incoming power signals using a multi- 
channel 1-D CNN, qf , and then uses a final fully-connected layer to fine 
tune the fused result. First, J trainable 1-D kernels per sensor, ka,j ∈ Rla 

and kv,j ∈ Rlv , are synchronously convolved over each intermediate 
power signal prediction and averaged to merge the signals together: 

qf (P̃
a
m, P̃

v
m; ka, kv) =

1
J

∑J

j=1

(
ka,j ∗ P̃

a
m + kv,j ∗ P̃

v
m

)
(16) 

The convolutional result is then passed through a final fully con
nected ANN, hf , for fine tuning: 

hf

(
qf ; θf

)
= P̃m (17) 

The network has 
⃦
⃦
⃦qf

⃦
⃦
⃦ input neurons, 

⃦
⃦
⃦P̃m

⃦
⃦
⃦ output neurons, Lm hid

den layers, and 
⃦
⃦
⃦qf

⃦
⃦
⃦ neurons per hidden layer. A convolutional approach 

was chosen over a summation or fully-connected approach based on 
experimental findings, which suggested the 1-D convolutional merging 
yielded the highest machining power prediction accuracy. 

Because each of the constituent models of g are fully differentiable, i. 
e., ha,trend, ha,seas, hv,trend, hv,seas, qf , and hf , all parameters of g can be 
optimized at once via backpropagation and (9) can be solved. The 
resulting model parameters are those which yield the most accurate 
machining power predictions using the fused acoustic and vibration 
data. 

Model interpretation via integrated gradients 

Model interpretation is performed using integrated gradients, which 
quantify the sensitivity of each of a model’s outputs to the value of each 
of its inputs, i.e., the sensitivity of the power signal output to the 
acoustic and vibration signal inputs, respectively [41]. The purpose of 
quantifying the input-output sensitivity of the model proposed in this 
study is to check for signs of spurious decision logic. Nonspurious logic is 
indicated by well-distributed integrated gradient values over the 
acoustic and vibration inputs to the prediction model. In this case, the 
model is using all information at its disposal to predict the machining 
power rather than placing inordinate importance on only a few time 
steps, which is a potential indicator of training data memorization and 
compromised decision logic. 
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The integrated gradient, IG, is a direct measure of output variable 
sensitivity with respect to the inputs as quantified by the model gradi
ents, which represent the rate of change of the outputs as a function of 
the inputs. The underlying intuition is that the influence of an input 
variable can be quantified by querying the model output with and 
without the variable being present and observing the difference in 
output between the two cases, with the assumption that the difference in 
model output is caused by the variable of interest being omitted. In the 
case of IG, this omission is calculated using integration of partial de
rivatives, which measure output sensitivity with respect to the inputs, 
with an interpolator, γ ∈ [0, 1] varying each input feature value from 0 to 
the ground truth value. 

For time step ti of input data X = [Pa, Pv] processed by prediction 
model g and assessed at output time step tj, the influence of the ith input 
on the jth output, IGti→tj ,is defined as: 

IGti→tj (X; g) = X[ti]⋅
∫ 1

0

∂g(γX)
[
tj

]

∂X[ti]
dγ (18) 

Here, the partial derivative quantifies the instantaneous rate of 
change of the machining power value at the jth output time step with 
respect to the acoustic or vibration signal value at the ith input time step. 
This derivative is integrated using γ as an interpolator to quantify the 
average contribution of each input time step in the absence (γ = 0) and 
presence (γ = 1) of the input time step’s information. Input time steps 
with little effect on the model output will have approximately equal 
gradient magnitudes at γ = 0 and γ = 1, which will cancel out during 
integration and yield low IG values. 

Furthermore, the integration over γ overcomes the fact that the 
model gradient vanishes as γ→1 and thus assessment of the gradient at 
only g(X)is insufficient to capture the true feature importance. Small 
perturbations of X (γ ≈ 1), are expected to have little effect on a well- 
trained g(X) whereas larger perturbations (γ≪1) will be associated 
with larger gradient values as the network quickly and nonlinearly 
moves from g(0) = 0 to g(γX) ≈ P̃m. This nonlinear gradient response is 
visualized in [53]. Thus, the integration over γ accumulates the gradi
ents during interpolation to account for the large gradient values when 
X ≈ 0 and fairly quantify the expected gradient of each i. 

The value of IGti→tj is the expected contribution of input time step i to 
the power signal output value at time step j. When multiplied by the 
original feature values, as shown in (18), the IG values yield an additive 
explanation of the model output: 
∑

ti

IGti→tj (X; g) = g(X)[tj] (19) 

Thus, input time steps with larger IG have a larger effect on the 
predicted power at time j relative to the other time steps. 

Since g is a multi-input, multi-output (MIMO) function, (18) must be 
made into a multidimensional form to account for all dependencies 
between the input and output time steps. Integration over γ is also 
generally intractable, so the integral is discretized as a sum. The modi
fied form is expressed as: 

IG(X; g) =
1
R

∑R

r=1
J

(
g
( r

R
X

) )
⋅XT (20)  

where IG is a matrix whose entry at position (a, b) is the integrated 
gradient of the ath power prediction time step with respect to the bth 

input time step, J is the Jacobian, and XT is a column vector of the 
model inputs. The vector of expected influences for each time step, ξ, is 
then the column-wise average of the absolute value of IG: 

ξ(X; g) =
1‖g(X)‖⋅|IG(X; g)|

‖g(X)‖
(21)  

where 1‖g(X)‖ is a row vector of all ones with length ‖g(X)‖. Each element 
of ξ describes how influential each input time step of the acoustic and 

vibration signals is, on average. Once calculated, ξ can be plotted, and 
patterns identified which reveal the time steps of the input signal that 
have the most influence over the power prediction. 

Shapley additive explanation (SHAP) values [54] were also consid
ered for feature influence quantification, however the combinatorial 
nature of SHAP value calculation made them infeasible for the devel
oped fusion model. SHAP value computational complexity scales ac
cording to O

(
2N)

where N is the total number of inputs [55]. The 
acoustic and vibration signals used for this study each have length 500, 
so 21000 = 1.08 × 10301 calculation iterations would be required to find 
the SHAP values. Previous work by the authors found that the average 
computation time per iteration is approximately 1 s on a single-threaded 
i7 CPU at 2.6 GHz, so computing all iterations would take an impossibly 
extensive amount of time [56]. Faster SHAP value approximation 
methods such as KernelSHAP were also considered, but the need to 
optimize several hyperparameters made them undesirable [55]. Con
trastingly, integrated gradients have computational complexity O(NM), 
where M is the number of outputs. Further, each integrated gradient 
iteration is computed in 0.01% the time of a SHAP value iteration, 
making them more feasible for this study. Integrated gradients also use 
only one tunable hyperparameter (R), making their computation more 
reliable. Additionally, previous work has shown that integrated gradi
ents approximate Aumann-Shapley values, which quantify feature in
fluence similarly to SHAP values [57,58]. Given these computational 
and theoretical benefits, integrated gradients are chosen over SHAP 
values for this work. 

Experimental evaluation and model training 

The proposed acoustic-vibration sensor fusion method for machining 
power prediction is validated using an experimentally acquired dataset 
of in-process signals gathered during turning at varying speeds and 
feeds. 

Machining data collection 

A CNC lathe equipped with TiN-coated CNMG432 TCN55 carbide 

Table 1 
Turning parameters for each cutting experiment.  

Exp. Speed 
(RPM) 

DOC 
(mm) 

Feed 
(mm/rev)  

1  1200  0.635  0.254  
2  1200  0.635  0.381  
3  1200  0.635  0.508  
4  1200  1.270  0.254  
5  1200  1.270  0.381  
6  1200  1.270  0.508  
7  1200  1.905  0.254  
8  1200  1.905  0.381  
9  1200  1.905  0.508  
10  1600  0.635  0.254  
11  1600  0.635  0.381  
12  1600  0.635  0.508  
13  1600  1.270  0.254  
14  1600  1.270  0.381  
15  1600  1.270  0.508  
16  1600  1.905  0.254  
17  1600  1.905  0.381  
18  1600  1.905  0.508  
19  2000  0.635  0.254  
20  2000  0.635  0.381  
21  2000  0.635  0.508  
22  2000  1.270  0.254  
23  2000  1.270  0.381  
24  2000  1.270  0.508  
25  2000  1.905  0.254  
26  2000  1.905  0.381  
27  2000  1.905  0.508  
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turning inserts was used to perform 27 cutting experiments, each with a 
unique combination of speed, feed, and depth of cut (DOC) as listed in  
Table 1. The insert had a 12.700 mm inscribed circle, a thickness of 
4.763 mm, a corner radius of 0.793 mm. The material being turned was 
AISI 1018 steel with initial nominal diameter of 50 mm and nominal 
length of 250 mm. Each cutting experiment had a fixed duration of 10 s 
and was repeated 3 times in a relatively quiet workshop and under 
chatter-free conditions [24]. 

The experimental setup and on-machine sensors are shown in Fig. 4. 
To record tool vibration, a high-sensitivity polyvinylidene fluoride 
(PVDF) vibration sensor (model LDT0–028 K) is affixed to the tool shank 
and outputs the dynamic strain of the tool as an analog voltage signal. 
The machining audio is simultaneously collected using a PmodMIC3 
microphone module equipped with an analog-digital-converter (ADC) 
attached to the carriage and located approximately 100 mm away from 
the tool-chip interface. Both sensors communicate with a Discovery 2 
data acquisition (DAQ) board attached to the carriage and are recorded 
by WaveForms software at 10 kHz [24]. The PVDF communicates over 
analog channel while the microphone uses a serial communication 
protocol (SPI). 

Each of the three RMS current phases for the lathe are monitored and 
summed using a Simple Logger II-AL834 AC current logger with probes 
affixed directly to the machine’s main circuit breaker. Since the machine 
has a fixed voltage as a lumped system and power is the product of 
current and voltage, the dynamic current embodies the power deman
ded by the machining operation plus the power consumption of the 
machine tool’s auxiliary motors, pumps, computers, and lights. This 
latter power draw can be readily learned by the prediction model as a 
bias term. The sampling rate was set to 8 Hz, which is the maximum 
allowable by the logger. The current sample rate is deemed reasonable 
since machine current changes are attributed mainly to significant 
changes of the speed and/or torque of the spindle [24]. 

The DAQ was used to initialize the ADC, SPI, and current logger 
sampling simultaneously, yielding a common t = 0 point for all sensors, 
and the latency observed between the ADC and SPI data streams was on 
the order of 1 µs, indicating synchronized audio and vibration data. 
Further, the data timestamps were double-checked after acquisition to 
ensure signal alignment. Noise removal is performed following each 10 s 
acquisition period using a uniform filter of length 7. This filter size was 
determined experimentally by searching over odd-length filter sizes 
from 3–51 and selecting the length that yielded the best power signal 
prediction accuracy. After filtering, the acoustic and vibration signals 
are divided into 500-sample segments. Each segment is then used to 
predict the corresponding experiment’s 80-sample power signal. A 
schematic overview of the experimental data acquisition is shown in  
Fig. 5. 

Fusion model architecture and training 

A stochastic grid search is performed to find good values for 
decomposition kernel length lt , activation function ϕ⋆, convolutional 
kernel lengths la and lv, number of convolutional kernels J, hidden layer 
counts La, Lv, and Lm, model optimization algorithm, and training loss 
function. To reduce the search space, all ϕ⋆ were identical, la = lv = l, 
and La = Lv = Lm = L. The parameter search spaces were defined based 
on similar models in literature and, in the case of the activation func
tions [59,60,61] and optimizers [62,63,64], demonstrated performance 
over other approaches. 

The search is performed by sampling 1000 randomly chosen 
parameter combinations and selecting the combination that produced 
the lowest L as defined in (9) as the model’s parameter set for the study. 
The search spaces for each variable are defined in Table 2, with the 
optimal parameter values bolded. No signs of overfitting were observed 
during training with the selected model parameters [65]. A total of 75% 
of the experimental dataset is used for training, whereas 15% is used for 
validation and parameter tuning, and 10% is used for testing. Before 
acoustic and vibration signal segmentation, all subsets are shuffled and 
stratified based on their experiment number, as listed in Table 1. 
Training is performed using Z-score normalized versions of all signals. 
To contextualize the model’s L from (9) on the testing dataset, testing 
error is reported in terms of MAPE, defined as: 

MAPE =
1
T

∑T

t=1

(
1
N

∑N

n=1

⃒
⃒
⃒
⃒
⃒

Pm,n − P̃m,n

Pm,n

⃒
⃒
⃒
⃒
⃒

)

[t] ∗ 100% (22) 

The expected integrated gradients, ξ, are then calculated for the 
acoustic and vibration inputs to the fusion model, with the number of 
computation steps, i.e., R in (20), set to 100 based on recommendations 
from literature [41]. 

Fig. 4. Experimental setup. 
Adapted from [24]. 

Fig. 5. Experimental data acquisition. 
Adapted from [24]. 

Table 2 
Model parameter search spaces; bold indicates values found via 
stochastic grid search which minimize model L (MSE = mean 
squared error).  

Parameter Search space 

lt {3, 5, 7} 
ϕ {ReLU, Leaky ReLU, Mish} 
l {1, 11, 21, 41} 
J {1, 3, 5, 7} 
L {1, 3, 5} 
Optimizer {Adam, Nadam, RMSprop} 
Loss function {MAE, MSE}  
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Results and discussion 

Multi-sensor fusion power prediction results 

Exemplary power prediction results for the fusion model are shown 
for five evenly spaced MAPE percentiles in Fig. 6. The best result (100th 
MAPE percentile) exhibits only 0.8% error whereas the worst result (0th 
percentile) exhibits 6.2% error. The median (50th percentile) is 2.3%. As 
the percentile decreases, the model predictions remain centered about 
the ground truth, indicating good trend predictions, but increasingly 
exhibit sudden spikes, which deviate from the ground truth possibly 
indicating that the seasonal component could not be adequately learned 
for these power signals. Nonetheless, these results are initial indicators 
that the model performs well on the testing data and is not overfit to the 
training data. 

The MAPE distribution for the testing dataset is shown in Fig. 7. The 
left y-axis is the absolute number of samples in each histogram bin 
whereas the right y-axis is the cumulative proportion of samples with a 
MAPE at or below the corresponding MAPE value on the x-axis. The plot 
shows that more than 80% of the testing dataset MAPE values are ≤ 3%, 
indicating a well-trained model capable of outputting highly accurate 
machining power predictions. The distribution also has a thin right tail, 
indicating a rapid drop in probability density as the MAPE exceeds 3%. 
The average MAPE of the testing data is 2.5%. 

Fig. 8 presents violin plots of MAPE for RPM, depth of cut, and feed. 
The width of each violin is the kernel density estimate [66] of the test 
dataset MAPE’s probability density function, marginalized to include 
only the selected process parameter, and assessed at the level shown in 
the x-axis. The mean MAPE of each distribution is plotted as a black dot. 
The RPM and feed distributions show that the model exhibits very little 
MAPE variance for the 2000 RPM and 0.508 mm/rev experiments, as 
evidenced by short and wide violins, but has a much larger and more 
uniformly distributed variability when predicting the power signal of 
the other two experimental conditions. 

Meanwhile the variability of the depth of cut distributions are more 
even, with the 0.635 mm depth of cut exhibiting the highest maximum 
MAPE at 6.2%. The 1.905 mm depth of cut exhibits a noticeably multi- 
modal distribution, as shown by the violin’s double hourglass figure. 
The 0.381 mm feed and 2000 RPM conditions also exhibit multimodal 
MAPE distributions. Notably, average MAPE consistently decreases as 

the depth of cut increases, indicating better power signal predictability 
as the depth of cut is increased. 

Comparison of multi-sensor and single-sensor prediction 

Exemplary results of the acoustic-only and vibration-only power 
prediction models ha and hv are compared with the fusion model g and 
ground truth power signal, and the result is shown in Fig. 9. Each single- 
sensor model is retrained using the parameters in Table 2 to directly 
predict P̃m rather than the intermediate representation P̃

⋆
m. As shown in 

the plots, the acoustic-only prediction model has a slightly lower MAPE 
than the vibration-based model, but both are much higher than the 
fusion model MAPE. The average acoustic-only, vibration-only, and 
fusion model MAPEs over the entire training dataset are 5.6% ± 0.5%, 
8.2% ± 1.1%, and 2.5% ± 0.4% respectively, averaged over 5 model 
reinitializations. 

The vibration-based predictions have a more jagged profile, indi
cating that the higher-frequency components of the power signal are 
more difficult to predict using vibrations and the proposed prediction 
model architecture. The same is somewhat true of the acoustic pre
dictions as well, although the jaggedness is much less pronounced. 
Taken as a whole, these results indicate the advantages of sensor fusion 
for machining power prediction, as shown by the much-reduced MAPE 
of the fusion model, as well as elucidate the effectiveness of the proposed 
noninvasive acoustic-based method of indirect machining power pre
diction in machining. 

Prediction model interpretation results 

The average integrated gradient magnitude for the acoustic and vi
bration inputs to the fusion model, ξ, is shown in Fig. 10. The average 
was taken over 50 randomly sampled testing datapoints. The shaded 
region of the graph is ± 1 standard deviation. The plot demonstrates two 
notable phenomena: 1) the vibration signal is an order of magnitude 
more influential on the fusion model output than the acoustic signal, and 
2) both sensors’ IG values oscillate over the input signals. 

In the former case, it is unclear why the vibration signal is so much 
more influential, considering the higher MAPE yielded by the vibration- 
only model. In terms of process physics, it may be possible that the tool 
vibration is more influential on machining power predictions since the 
tool is in direct contact with the workpiece and is thus more sensitive to 
workpiece condition, which determines power demand. Alternatively, 
the difference in influence may be a consequence of the convolutional 
merging layer taking advantage of hidden information in the vibration- 
specific latent power representation, P̃

v
m more so than the information 

contained in the acoustic-specific representation, P̃
a
m. This would indi

cate that the vibration sensor-specific neural network hv is better trained 

Fig. 6. Machining power prediction results by MAPE percentile; blue is 
experimentally observed ground truth from testing dataset, orange is fusion 
model prediction. 

Fig. 7. MAPE distribution calculated on testing dataset; left y-axis denotes 
absolute number of testing samples; right y-axis denotes cumulative probability 
that a test dataset sample has a MAPE less than the corresponding MAPE on the 
x-axis; more than 80% of samples have less than 3% MAPE. 
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to output latent representations while the acoustic network ha is more 
adept at standalone power prediction. Further investigation of this hy
pothesis is recommended as future work. 

Regarding the latter observation that the IG values are oscillatory, 
this may be an indicator that the model could inadvertently overlook 
input information. The average integrated gradient, as shown in Fig. 10, 
is a measure of input feature importance regardless of the feature value. 
In the case of time-series input, where each input feature corresponds to 
a time step, this means that temporal regions of low IG are deprioritized 
by the prediction model in favor of the high IG regions, regardless of the 

input signal’s information distribution. Thus, if information that 
strongly predicts machining power happens to be in the low-IG areas, e. 
g., because of a phase shift, the model may produce a suboptimal pre
diction. Future work will quantify the detriment imposed by oscillatory 
IG values and develop IG smoothing techniques to avoid suboptimal 
process signature prediction. 

Conclusion 

To simultaneously investigate the potential of utilizing the acoustic 
and vibration signals as a predictor of machining process signatures and 
compare single-sensor signature prediction with multi-sensor predic
tion, this study has developed a multi-sensor fusion model for machining 
power prediction using both acoustic and vibration signals and 
compared its power predictions with acoustic-only and vibration-only 
models. The fusion model produces sensor-specific power predictions 
using ANNs then fuses them together convolutionally to yield a final 
unified prediction. The result exhibits 2.5% average error as compared 
to the experimentally observed ground truth. This contrasts with 5.6% 
and 8.2% expected power prediction error for acoustic-only and 
vibration-only models, respectively. Additionally, the fusion model’s 
prediction logic has been elucidated using integrated gradients, 
revealing that the vibration signal has a pronounced influence on the 
machining power prediction result as compared to the acoustic signal 
and an oscillatory trend of input feature importance, both of which merit 
further investigation. 

The study was performed with in-situ feasibility in mind. Power 
sensing equipment is both expensive to acquire and more complex to 
install whereas microphones and vibration sensors present themselves as 
easily accessible alternatives capable of power signal prediction, as 
demonstrated herein. It is foreseen that the developed multi-sensor 
fusion system will enable greater awareness of the machine state, by 
way of machining power signal monitoring, and product and tool state, 
by enabling predictive metrology using the surface and subsurface in
formation represented by the machining power. The presented fusion 
approach for process signature prediction may also be adapted to other 
manufacturing processes such as milling, grinding, or additive 
manufacturing. 

Regarding the use of the proposed model for real-world production, 
two possible pathways are envisioned:  

1) Through transfer learning or other appropriate data-driven methods, 
the developed method is adapted to a different machining scenario 
where a different set of process parameters, cutting tool, material, 
and machine tool are used. The user will perform experimental data 
acquisition using microphones and vibration sensors in the same way 
as illustrated in this paper, without the need to purchase expensive 
power measuring device.  

2) The work as presented in this paper is extended to develop a library 
of pretrained models with varying process parameters, cutting tools, 
materials, and machine tools. This library can then be queried as 

Fig. 8. Violin plots showing kernel density estimate of test dataset MAPE probability density function, marginalized to include only the chosen process parameter, 
and assessed at the level shown in the x-axis. Narrow violin segments indicate that few samples from the test dataset exhibited the corresponding MAPE on the y-axis 
and vice versa for wide violin segments. Each violin is clipped at its minimum and maximum MAPE values. 

Fig. 9. 90th percentile machining power prediction results for acoustic-only, 
vibration-only, and sensor fusion models. 

Fig. 10. Average integrated gradients for the acoustic and vibration signal 
inputs to the fusion model, calculated over 50 testing datapoints; the shaded 
region represents ± 1 standard deviation; the value of the integrated gradient 
at each time step is proportional to the average influence of the input signal at 
that time step on every time step of the machining power prediction. 
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needed by other users. Such an approach is being increasingly dis
cussed for advancement of machine learning accessibility in aca
demic, private, and governmental settings [67]. 

Beyond investigating the integrated gradient behavior identified 
earlier, future research will consider integration of thermal power 
dissipation in the fusion model to more comprehensively characterize 
the machining energy transfer and achieve more accurate machining 
power prediction results. Future studies are also anticipated to use a 
larger number of audio, vibration, and power samples covering a 
broader range of process parameters, e.g., 1000–5000 RPM cutting 
speeds, to more comprehensively assess the power prediction model’s 
capability using process parameters seen in industrial applications. 
Ablation studies will also be performed to determine the necessity of the 
trend-seasonality decomposition and possibly increase the model’s 
parsimony by removing constituent ANNs. Modeling the noise inherent 
to the sensor data will also be investigated to remove it from the trend 
and seasonality components and possibly eliminate the need for this 
decomposition altogether. Decision level fusion between the developed 
power prediction model and analytical machining power predictions 
will be investigated as well. 
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