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Abstract

Prediction of surface topography in milling usually requires complex kinematics and dynamics modeling of the milling
process, plus solving physical models of surface generation is a daunting task. This paper presents a multimodal data-driven
machine learning (ML) method to predict milled surface topography. The proposed method predicts the height map of the
surface topography by fusing process parameters and in-process acoustic information as model inputs. This method has been
validated by comparing the predicted surface topography with the measured data.
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1 Introduction
1.1 Background

End milling plays a key role in manufacturing functional
components in industries. Compared with alternative pro-
cesses such as electrical discharge machining (EDM) and
grinding, end milling can create a variety of complex geom-
etries with high efficiency. Milling also generates a relatively
smooth surface and thus can be used as a post-process for
components made by metal additive manufacturing [1].
With these advantages, milling has become a competitive
manufacturing process in fabricating turbine blades, dies,
and molds [2]. Surface finish by the milling process can be
affected by many factors, e.g., milling parameters [3], cut-
ting fluids [4, 5], cutting tool conditions [6], and vibrations

[7].
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As a material removal process, milling generates surface
topography [8], which directly affects surface functional-
ity, such as friction, wear, and fatigue [9]. Topographical
roughness measures, such as arithmetical mean height S,
and root mean square height S > are critical when surface
functionality is concerned. For instance, surface topography
controls the tribology, corrosion, and fatigue of mechani-
cal components [10, 11]. Additionally, surface topography
controls mass transport, cell adhesion, and bone ingrowth of
orthopedic implants, which determine the effectiveness and
useful life of these crucial medical devices [12]. Therefore,
surface topography prediction in the milling process is nec-
essary to improve surface quality and efficiency. Assessing
the surface topography of each component in real-world sce-
narios can be time-consuming and expensive. For instance,
the automotive industry manufactures hundreds of thousands
of vehicles every month [13]. In light of such circumstances,
manually evaluating surface topography for each compo-
nent is impractical. Consequently, there is a practical need
to develop a cost-effective and efficient method to predict
milled surface topography rapidly.

1.2 Physical methods to predict surface topography

Milled surface topography depends on various factors such
as material properties, cutting force and vibrations [14], cut-
ting tool geometry [15], and coolant [S]. Current methods
for surface topography prediction can be roughly categorized
into physical methods and data-driven methods.
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Physical methods predict surface topography using
physical laws underlying the milling process. The physical
models typically use initial milling process parameters and
conditions to predict process phenomena such as chatter,
tool wear, surface roughness, etc. Physical methods can be
divided into two subcategories: analytical and numerical
methods. Table 1 summarizes the physical methods of mill-
ing analysis in the literature.

Montgomery and Altintas [14] described a method to
predict milling forces and surface topography through kin-
ematics modeling of milling tools and workpiece vibrations.
Altintag and Budak [16] proposed a method using transfer
functions of the milling tool in a stability model to predict
milling stability analytically. Schmitz et al. [17] considered
the runout effect of the milling tool on the workpiece sur-
face and predicted the surface line profile based on a mill-
ing force model. Both Altintas et al. and Ding et al. [7, 19]
proposed similar discrete time-domain methods to predict
the milling process stability lobes and analyze the surface
finish. Arizmendi et al. [18] proposed a surface topography
and roughness prediction method by applying tool vibra-
tion on a geometrical surface generation model. Altintas and
Jin [20] predicted the milling forces using a slip-line field
model considering material properties and friction coef-
ficient. Kaymakci et al. [22] proposed a model to predict
machining forces using the cutting insert geometry and mill-
ing parameters. The model is then extended to boring, turn-
ing, and other machining operations using cutting inserts.
Costes and Moreau [21] showed an analytical model for 3D
surface topography prediction considering the tool vibration.

The prediction of tool wear rate and milling forces is
prevalent in numerical methods. Rao et al. [23] used the
finite element method (FEM) with a tool-workpiece con-
tact 3D model in the milling process to analyze tool wear

Table 1 Physical models for milling analysis

patterns. This method also investigates the influence of
tool wear on surface integrity. Jin and Altintas [24] used a
tool-workpiece contact 3D model in FEM to predict milling
forces based on cutting tool geometry, material properties,
and initial milling conditions. Wu and Zhang [25] presented
a tool contact model considering material damage and heat
transfer to predict milling forces. Felh6 et al. [26] presented
a FEM approach with cutting insert geometry and initial
milling parameters to predict surface topography.

The current physical methods have been widely used to
predict critical milling parameters such as milling forces,
process stability, tool wear, and surface finish. However, the
physical methods require the milling process to be mathe-
matically modeled, which could be challenging and demand-
ing to implement in real-life production. Not to mention,
building the mathematical model itself could be challenging
and sometimes hard to validate. Physical methods could be
used to generate data for analysis or prediction to reduce the
number of physical experiments, but it is also hard to verify
the synthesized data quality and the accuracy of analysis
or prediction results against actual manufacturing environ-
ments. Given these challenges, data-driven methods have
been increasingly explored for topography prediction.

1.3 Data-driven methods to predict surface
topography

Data-driven methods refer to approaches that use pure data
to train machine learning (ML) models for prediction. Such
methods usually involve massive datasets for training pur-
poses. Table 2 summarizes some recent data-driven methods
for machining processes in the literature.

Yang and Liu [29] used multiple linear regression to pre-
dict the influence of different milling parameters on surface

Model type ~ Model inputs Model outputs Refs.

Analytical Milling parameters, tool geometry Milling forces, surface topography  [14]
Milling parameters, tool geometry (contact zone), system natural frequency Milling stability [16]
Milling parameters, milling forces, system natural frequency Line profile [17]
Milling parameters, system natural frequency Milling stability, milling forces [7]
Milling parameters, tool geometry, tool vibration Surface topography [18]
Milling parameters, system natural frequency Milling stability [19]
Milling parameters, material properties Milling forces [20]
Milling parameters, tool geometry, tool displacement Line profile [21]
Milling parameters, tool geometry, cutting angles Milling forces [22]

Numerical Milling parameters, material properties, tool geometry Surface integrity, specific cutting [23]

energy, tool wear

Milling parameters, material properties, tool geometry, tool-workpiece interaction ~ Milling forces [24]
Milling parameters, material properties, tool geometry Milling forces [25]
Milling parameters, tool geometry Surface topography [26]
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Table 2 Data-driven methods for milling surface prediction

Model type Model inputs Model outputs Refs.
Genetic algorithms Milling parameters, tool geometry Surface roughness [27]
Genetic algorithm Milling parameters Surface roughness [28]
Linear regression Milling parameters Surface roughness [29]
Bayesian inference Milling parameters Milling stability [30, 31]
FCNN Milling parameters Surface roughness [32]
SVM Cutting forces Surface topography, milling stability [33]
SVM, ELM EDM process parameters Surface roughness [34]
CNN Surface topography Surface roughness [35]
GAN Turning parameters, tool vibration, turning forces Surface image [36]
CNN Milling vibrations Milling stability (chatter) [37]
Classification tree Milling acoustic signals Surface roughness [38]
CNN Milling acoustic signals Part defect (pores) [39]
GAN, LSTM Milling vibration and acoustic signals Tool wear [40]
CNN Milling acoustic signals Tool wear [41]

roughness. Suresh Kumar Reddy and Venkateswara Rao
Suresh [27] applied genetic algorithms for milling rough-
ness prediction, where the input is milling parameters with
81 experiments with four 2-level parameters, and the out-
put is surface roughness. Karandikar et al. [30] employed a
Bayesian-based learning algorithm and milling parameters
(data size of 105 samples) to analyze milling stability. Colak
et al. [28] utilized 84 datasets and genetic expression pro-
gramming for surface roughness prediction, where the input
is milling parameters, and the output is surface roughness.
Zain et al. [32] adopted a fully connected neural network
(FCNN) and 24 datasets to predict surface roughness. Liu
et al. [35] presented a convolutional neural network (CNN)
to estimate surface roughness parameters based on surface
topography images. Paturi et al. [34] used 81 experiments
on four different models to predict the surface roughness of
the EDMed workpiece. Peng et al. [33] developed a support
vector machine (SVM) model using milling parameters and
vibration signals during the cutting process to generate the
milled surface topography and identify stable cutting process
windows. Rahimi et al. [37] presented a CNN-based model
which used milling vibration signals to predict the process
stability.

As the acoustic signal is an easy-to-acquire process sig-
nature indicative of surface generation, it is widely used in
data-driven approaches to predict tool and workpiece contact
conditions. The acoustic signal originates from the vary-
ing tool-chip interface, and the changes to the interface are
reflected as changes in the signal. Gauder et al. [39] pre-
sented a CNN-based deep-learning model using acoustic sig-
nals for the prediction of workpiece pores in milling. Shah
et al. [40] proposed a method using LSTM and GAN to ana-
lyze milling vibration and acoustic emission signals for the
prediction of tool wear. Griffin et al. [38] proposed a method

using acoustic data and short-time Fourier transform (STFT)
to predict surface parameters. Cooper et al. [41] presented
a CNN model for the classification of tool conditions using
acoustic signals. Although the acoustic signal is popular in
analyzing tool wear and workpiece defects, few data-driven
methods use acoustic signals for topography prediction.

Cao et al. [36] proposed a surface topography generation
method in a turning process using a generative adversarial
network (GAN). The inputs of the GAN are the turning
parameters, tool vibration signal, and turning forces. The
outputs are grayscale images of turning surfaces. However,
the generated 2D images can only be used for visualiza-
tion as they contain no height data. Moreover, this method
uses the conventional SRResNet architecture [42], which is
less efficient and produces low-resolution images compared
to other popular GAN architectures. In summary, although
acoustic signals are often used in analyzing tool wear and
workpiece quality, there are few data-driven methods using
acoustic signals for topography prediction.

1.4 Hybrid physics-informed data-driven
approaches

It is essential to acknowledge the emerging hybrid methods,
which combine the advantages of both the physics-driven
and data-driven approaches to enhance model performance.
One example of the hybrid method is Physics-Informed Neu-
ral Networks (PINNS), which integrate neural networks with
physical laws to solve partial differential equations (PDEs).
Such a method is very important in solving heat transfer
[43] and fluid mechanics [44] problems. PINNs leverage the
strengths of both data-driven and physics-based methodolo-
gies to enable more accurate predictions. Despite the promis-
ing potential, the application of PINNs in the manufacturing
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domain, e.g., machining, is still in its infancy [45]. Further
research and development are needed to explore the use of
PINNS to predict surface topography.

1.5 Research objectives

The literature analysis has shown that, on the one hand,
physical methods may predict milling surface finish by lev-
eraging machining process conditions such as tool wear, pro-
cess stability, and cutting forces. However, the current physi-
cal methods require complex mathematical modeling of the
milling process, which is often very challenging to derive
and implement. On the other hand, data-driven methods can
predict tool wear, milling stability, and surface attributes
(e.g., roughness) based on the machining process conditions.
The data-driven approach can also be a key component of
digital twins [46]. Nevertheless, the data-driven approaches
for predicting milled surface topography are still at an early
stage. Some methods can predict surface images for visuali-
zation, but few can accurately predict surface topography.

To fill the knowledge gap and achieve more compre-
hensive and accurate results in predicting milling surface
topography, an in-depth multimodal ML method has been
developed in this work. The characteristics of the developed
method are summarized as follows:

e The proposed approach predicts surface topography
using an ML method. Current data-driven methods for
roughness quantification focus on scalar roughness pre-
diction, e.g., S,, or generate surface images. However,
these scalars and images cannot fully model the intricate
topography induced by milling.

e The proposed method uses multimodal data by fusing the
machining process conditions and milling parameters.
The bulk of ML models is limited to a single type of data
modality for surface analysis.

Fig. 1 Research route
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e The proposed method is based on the Generative Adver-
sarial Network (GAN) [47]. GAN is a widely used image
generation framework that can effectively learn the sta-
tistics and characteristics of the input data and generate
accurate output based on the conditioned input.

The paper is structured as follows: Sect. 2 presents the
research route, milling experiments, and data pre-process-
ing. Section 3 proposes a GAN-based ML model for surface
generation. Section 4 presents and discusses the ML output
by comparing model outputs with experimentally measured
surfaces. Section 5 summarizes the key results of this work
and presents future outlooks.

2 Milling experiment and data ingestion
2.1 Research route

The overall research route is shown in Fig. 1. The milling
parameters, i.e., cutting speed (v), feed/tooth (f;), radial
depth-of-cut (DoC) a,, and axial DoC a,,, are first planned
based on the Design of Experiment (DoE) method and then
programmed into G-codes to conduct the milling experi-
ments. A microphone was placed next to the workpiece
inside the milling chamber to record the milling acoustic
signals. After milling, the machined surfaces are measured
using the Keyence 3D measurement system VR-3000 to
obtain surface topography. On the other hand, the milling
parameters and the recorded acoustic data will be used as
multimodal inputs to train the GAN model. The output of
the GAN is surface topography generated by the machine
learning (ML) model. The generated surface topography and
measured surface topography will be compared to conduct
a post-analysis to study the accuracy and cost of the ML
model.

Milling
Process

|
l
l
)
\

H““lllllllln-Q Surface Topography

(Measurement)

SOUND WAVE

ML Prediction

!
|

I s ! i
)

| ML modelvevaluation |

el

! | Surface Topography
: (Generated)
I



Production Engineering (2024) 18:507-523

51

Fig.2 Milling experiment setup

v Cutting speed
a, Radial DoC
a, Axial DoC
/. Feed/tooth

-

R

Fig. 3 Material removal schematics in milling

2.2 Milling experiment design

The experiment setup is shown in Fig. 2 with the close-
up view of the tool/workpiece interaction zone in Fig. 3.
The milling experiments were performed on the Mircolu-
tion 5100 High-Speed 5-Axis CNC machine with a 2-flute
uncoated carbide 6.35 mm flat end milling tool. The work
material is Aluminum alloy 6061-T6. Acoustic signals were
recorded in real-time with a microphone sampling at 48 kHz
during milling. The microphone is placed next (~300 mm)
to the workpiece at the same location for each milling exper-
iment. The machined surface topographies were measured
using the Keyence VR-3000 measurement system.

The milling process involves several stages: air cutting,
tool engagement, stable cutting, cutting direction change,
and tool disengagement. Figure 4 shows a schematic tool
path of the milling process, where the yellow line is the
milling tool path, and the gray area is the workpiece. At
the beginning of the milling process, the tool path starts

Air cutting
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) 18 mm 0O
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Fig.4 Milling process stages
Tool diameter d
d NN
Starting position o
of milling tool
Stable zone
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of milling tool \ 25

Fig.5 Transitional and stable milling zones

at the top-left position, and the tool does not contact the
workpiece. Each milled surface is a 16 mm X 18 mm rectan-
gle. When the milling process starts, the rotating tool moves
along the yellow line without contacting the workpiece (i.e.,
air cutting). On the right side, the path arrow pointing to the
workpiece represents the tool’s engagement with the work-
piece. Stable cutting starts when the milling tool is fully
engaged with the workpiece. The milling tool changes its
cutting direction at the workpiece edges. When the milling
process is finished, the milling tool disengages the work-
piece. Figure 5 [48] shows the stable cutting zone, situated
at a distance of one tool diameter (d) from the milled surface
edges. Surface measurements were conducted within the sta-
ble zone of 8.5 mm X 8.5 mm.

To cover the wide range of cutting conditions, the milling
parameters are planned in the ranges as shown in Table 3a.
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Table 3 Milling parameters and
ranges

(a) ISO milling parameters

(b) G-code parameters

4-Parameter Range of 6-level Increment  4-Parameter Range of 6-level Increment
Cutting speed 120-320 m/min 40 m/min Spindle speed 6000-16,000 rpm 2000 rpm
Feed/tooth 0.025-0.035 mm 0.002 mm Feed rate 300-1100 mm/min -

Axial DoC 0.5-1.5 mm 0.2 mm Axial DoC 0.5-1.5 mm 0.2 mm
Radial DoC 0.2-1.2 mm 0.2 mm Radial DoC 0.2-1.2 mm 0.2 mm

The first column shows the milling parameters, and the
second column indicates the ranges of the parameters. The
increment shows the difference between the two adjacent
levels. For example, the cutting speed starts at 120 m/min
and then increases by 40 m/min, so the next level cutting
speed is 160 m/min. To cover more possible combinations,
we chose the four parameters in six levels, which resulted
in 6% (i.e., 1296) different parameter combinations. Each
process parameter value has been used 216 times in the
parameter space, which would avoid the need to repeat the
experiment and the associated high costs. Other setups, such
as 5-level or 7-level experimental designs, produce either
inefficient numbers of samples (< 650) or would be too
expensive to produce. Note that cutting speeds and feeds/
tooth are converted into spindle speeds and feed rates in the
G-code, respectively. It is worth mentioning that the tool
condition was examined throughout the experiments, and
tool wear was measured using a Keyence machine under
high magnification after every 24 milled surfaces to make
sure there was no visible tool wear.

The milling acoustic signals are collected in real time
by the microphone placed inside the milling chamber. Each
milled surface consists of multiple tool paths, which include
air cutting and changes in cutting direction. The acoustic
sensor starts recording before the milling process is initi-
ated. Therefore, acoustic data outside the stable zone was
also recorded. However, this data might create an issue for
ML training as air cutting and changes in cutting direction

are not related to the machined surface in the stable milling
zone. For precise ML training data, acoustic signals of air
cutting were excluded, as shown in Fig. 6. Acoustic sig-
nals corresponding to the changes in cutting direction were
also identified and excluded in preparing the dataset for ML
training and testing. The acoustic signals consist of the sig-
nal from each cutting path inside the stable zone (P1 and P2
in Fig. 6a) and the signal from the step-over segment when
the cutting direction changes.

2.3 Surface data measurement and acoustic data
post-processing

Surface topographies of the milled surfaces inside the stable
milling zone were measured using the Keyence VR-3000
system. Figure 7 shows two examples of the measured sur-
face topography under different milling conditions. The
surface topographies were converted and output as height
matrices, where the column and row of such matrices rep-
resent the pixel position. The value inside each matrix cell
represents the measured height of the surface at that pixel
location. Then, the surface data are saved in CSV format
for subsequent use in training ML models. Also, the surface
roughness parameters can be calculated from this surface
data, such as 3D surface roughness S, maximum height S,
root mean square S,, skewness S, and Kurtosis S;,. The
detailed description of surface roughness parameters is
described in Sect. 4.1.
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Fig.7 Representative surf ace
topography

(a) Smooth surface @ = 0.5 mm,= 0.6 mm
=280 m/min, = 0.025 mm

Acoustic signals are commonly used to identify milling
stabilities [49] and chatter [50]. In contrast to using direct
learning on the raw waveforms in the previous ML work
for audio [51, 52], the audio signals are used to create a
time—frequency map from the power magnitude obtained
through Short-time Fourier Transform (STFT), which cap-
tures the changes over time of each frequency component.
Figure 8 shows the process of the spectrogram conversion.
It converts the time-series data into a spectrogram, reveal-
ing the frequency and amplitude change with time. First,
a small-time step was used to slice the time-series sound
signal (red box region) and use this slice to perform Fourier
Transform (FT) to get frequency-amplitude information.
Then, the FT process repeats at the next time step. After
all time steps were processed, all frequency-amplitude data
was stitched with the time stamp to get the whole 3-dimen-
sional spectrum representing the acoustic data. The X- and
Y-axis are the time stamp and frequency, respectively, and
the color legend represents the amplitude. Note the shape of
the spectrums is different as the time of each milling process
is different.

Fig.8 Convert acoustic data
into spectrum

(b) Rough surface @ =1 mm, = 1.2 mm
=320 m/min, = 0.027 mm

3 Multimodal data-based ML models

The proposed ML model aims to use acoustic signals and
milling parameters as the model inputs to predict surface
topography. Generative Adversarial Network (GAN) is one
of the popular deep learning architectures used for image
generation. Such architecture trains two neural networks
(i.e., Generator and Discriminator) in a zero-sum game
until the Discriminator cannot tell the true images. The layer
structure of a GAN model [53] for efficient ML training
and inference has been adopted in this study. However, a
key change was introduced that the traditional loss func-
tion, e.g., cycle consistency loss, is bypassed since this study
focuses on mapping milling parameters and acoustic signals
to surface topography. This alteration leverages the selected
GAN model to align more closely with the specific require-
ments of this study. The ML model in this work is built
using PyTorch, one of the most widely used open-source
deep learning libraries.

3.1 ML problem formulation

In the presented study, the prediction of milled surface
topography is formulated as a supervised ML problem. In
general, the milling parameters and milling acoustic sig-
nals are treated as the input information for the ML model,

Recorded acoustic file

v

PyTorch’s Spectrogram function

Start Move

Frequency
Amplitude

Stop
Time
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and the surface topography is the ground truth for the
predictions.

Let x, denotes the input milling parameters, x, denotes
the milling acoustic signals, y denotes the predicted surface
topography, and y denotes the measured surface map (sur-
face position X, Y, and height Z). A CNN called a generator,
denoted as G(-) can be used to map the input information
to the corresponding surface topography, where £ denotes
a loss function, and || - || represents the Frobenius norm.
Hence, the supervised ML problem can be formulated as
follows:

min £(5,y) = min[[¥ = yII2 = min| GG, x) =2 (1)

Solving Eq. (1) has several challenges, as discussed in the
following sub-sections.

3.2 Fusing inputs from different modalities

Challenge 1: Input signals x, and x, have different modali-
ties. The milling parameters x, are represented as 4-dimen-
sional vectors, while the milling audio data x, are repre-
sented as acoustic signal waves. Hence, these two input
signals have different representations and statistical distri-
butions. As a result, directly using these signals as inputs
for the generator G(+) can lead to poor results because of the
generator’s inability to fuse the two inputs.

Approach 1: To address Challenge 1, we propose to use a
trainable Encoder E(-) that includes several transformations
on both x;, and x, and a trainable linear layer to process these
two inputs that come from different modalities. The Encoder

E(-) fuses the two separated input signals x, and x,, into an
input tensor x that encodes both the milling parameters and
milling acoustic signals: E(xp,xs). Hence, the input to G(-)
is no longer X, and x,, but the fused input x.

Figure 9 shows the encoder process in detail. To ensure
size consistency, both the model input tensor and output
topography are set to 256 X256, which matches the dimen-
sion of the measured surface topographies. Importantly,
input tensors accommodate multiple channels to encode
additional data. The tensor is transformed from the 4 X 1
milling parameters tensor into a 256 X 1 tensor using linear
layers and then augmented for dimension matching. Linear
transform is a common machine learning technique involv-
ing mapping low-dimensional data into higher dimensions
[36]. Given the milling parameters x, = [ae a, f. V]T and
the linear layer noted as y = Wx + B, the transform of the
4% 1 tensor into a 256 X 1 tensor can be written as:

x;x”“”d =W-x,+B. )

In which W= [wl_./-], wherei=1,2,3...256 and j

=1,2,3,4;B=[b,b, ... ,szé]T. W and B represent the
weights and bias of the linear transform and can be updated
by the training loss. Then, the 256 X 1 tensor duplicates itself
to match the 256 X 256 dimension.

In order to fuse the acoustic signals with the milling
parameters, the acoustic signals are first transformed into a
spectrogram, which is then resized into the same shape as
the milling parameters tensor using PyTorch’s resize func-
tion (bilinear interpolation). Finally, the milling parameters
and spectrograms are concatenated into a 2-channel tensor

=
|
[ | |
4 % 1= 256 X 1= = |
u u 256 X 256 X 1 n -
. [ | ||
Milling ~ Linear Layer Milling Repeat Milling [ ]
Parameters Parameters Parameters -
256 X 256 X 2
Concatenate Input Tensor
Spectrogram
Transform Resize
Acoustic Signals > Spectrogram Spectrogram
256 X 256 X 1

Various shapes

Fig. 9 Fusing the two inputs from different modalities using the encoder
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with dimensions 256 X 256 X 2. Concatenation is often
used to encode additional data and can be applied to differ-
ent types of tensors, including videos with audio [54] and
numbers with images [55]. Several other encoders are also
evaluated, and their performance is reviewed in Sect. 4.2.
It should be pointed out that there are many alternative
approaches to encoding data. It could be further investigated
in another study.

3.3 Learning the variations in the surface
topography using GANs

Challenge 2: While loss function £ in Eq. (1) measures pixel
difference, it might not be sensitive enough to capture all
the intricate details, patterns, and imperfections across the
surface topographies. As y is not the unique mapping of x;
and Xy, other variations of y can also correspond to the same
surface topography. Hence, the model cannot learn the varia-
tions in the surface topography only by minimizing the norm
difference between the prediction y and the ground truth y.
Furthermore, since the training dataset has a limited number
of data points (less than 1000), the overparameterized G(-)
will overfit the training data and thus will not generalize to
new unseen data.

Approach 2: To address Challenge 2, the GAN frame-
work [47, 53] is proposed to effectively train the genera-
tor G(+) to predict surface topography. The GAN learning
framework consists of two separate DNNs: the generator
G(-) and the discriminator D(-). In this problem, the goal
of the generator is to generate realistic and correct sur-
face topography y from the input milling information x,
while the discriminator’s goal is to classify a given sur-
face topography as generate (synthesized by the G net-
work), or real (actual measurement of the surface). The

Predicted Surface

two networks have opposing optimization goals. Hence G
and D play the following minimax game:

mGinmla)lxlogD(y)+log(l —D(G(E(xp,xs)))). (3)

Optimizing the discriminator:
The discriminator can be trained using the following
optimization function:

min £, = ~[logD) +log(1 = D(G(E(x,.x.))))]. (4

Several augmentation strategies have been investigated,
including cropping, flipping, scaling, and blurring the
input images to create a more diverse training set. As a
result, the input images have a wide range of variations
in the surface topography. Hence, the discriminator must
learn the actual characteristics of the surface rather than
memorize the measured images in the dataset.

Optimizing the encoder and generator:

min £g = ~log D(G(E(x,.x))) + |8 G(E(5,.x)) - i

A

v
adversarial loss

~~
correctness loss

&)

In Eq. (5), f is the balancing hyper-parameters between
adversarial loss and correctness loss. The Generator net-
work has two goals: (1) synthesize realistic-looking sur-
face images that fool the discriminator into thinking those
images are actual measurements. (2) Synthesize images
that have correct surface topography. The two goals are
reflected by the adversarial loss term and correctness loss
term in (5), respectively. The details of the overall train-
ing procedure are summarized in Fig. 10 and Algorithm 1
(Pseudo Code). The algorithm delineates the model’s
training process in structured steps: Inputs and Outputs

Measured Surface

[ Sadiing N AR IR o
Generator &S -:'; i L2 Loss w
Input Tensor T S o SRR e ts s s
S 13T s
e ST e s
Augmentation

DNN

Fig. 10 The overall training procedure

Discriminator

Augmentation

Predicted
Surface /
Measured
Surface

Cross Entropy
Loss

Generated
or
Measured
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(line 1-2): the algorithm starts by defining inputs: dataset
D, which contains milling parameters x,, milling acoustic
signals x,, measured surface topography y. Additionally,
it also requires a learning rate « to guide the optimization
and a balancing factor f to weigh the different components
of the loss function. Line 2 defines the final outputs after
training as the trained encoder (E) and trained generator
(G). Initialization (line 3): The weights of the E, discrimi-
nator (D), and G are initialized with random values. This
random initialization serves as the starting point for the
optimization process. Training Loop (lines 4-15): line 4
defines a loop that iterates over each data tuple from D,
which encompasses the x,, x; and corresponding meas-
ured surface topography (y). Discriminator Training
(lines 5-10): line 5 is a comment indicating the following
lines are for discriminator training. In line 6, the surface
topography (¥,eperae) 18 generated using the £ and D given
the input x, and x,. Both the generated (Yg,e/qr) and the
measured topography (y) undergo data augmentation in
line 7. Data augmentation is a technique to artificially
expand the dataset by creating slightly modified copies of
existing data. It enhances the robustness and generaliza-
tion capability of the model. In line 8, the D assesses the

topographies, ideally scoring real topographies near one
and generated ones near 0. A loss for D is calculated using
the scores (line 9) and is utilized to update the weights of
this loss and the learning rate (o) at line 10. Encoder and
Generator Training (lines 11-15): line 11 is a comment
indicating the following lines are for training E and G.
The surface topography (¥,eperare) 18 generated the same
as line 6 (line 12). This generated topography is evaluated
by the D to give a prediction score at line 13. In line 14,
the loss for both E and G is computed in two parts: 1.
Cross-entropy between discriminator’s (D) prediction for
the generated topography and an ideal score of 1. 2. Mean
Squared Error (MSE) between the generated topography
and the measured one. The balancing factor (f) weighs
the importance of this accuracy term in the loss function.
Finally, in line 15, the combined loss updates weights for
both E and G with the given learning rate (). Figure 10
shows the overall training procedure: the generator pre-
dicts the surface to compare with the measured surface
and get L, loss. The predicted and measured surfaces will
be fed to the Discriminator to be classified as generated or
measured and get CSE (cross-entropy loss). Both losses
are used to update the model weights.

Algorithm 1: Multimodal Data-Based ML Algorithm for Prognosis of Surface Topography

1. Input: Dataset D consists of milling parameters x,,, milling acoustic signals x;, measured
surface topography y. Learning rate a and balancing factor f5.

2. Output: Trained Encoder £, trained generator G.

3. E D, G «random.init(E,D,G) #random initialize weights

4. for (xp, X5, ¥) in d do:

5. #Train Discriminator (D)

6. Ygenerate < G (E(xp: xs))

7’ YQeneratet y « augment()’generate)a augment(y)

8. predgene‘ratel predreal < D(generate), D(y)

9. loss « cross. entropy(predgenemte, 0) + cross.entropy(pred,eq, 1)

10. | update(Dis, loss, a)

11. | #Train Encoder E and Generator G

12. Ygenerate < G(E(xp,xs))
13. predgenerate < D(.Vgenerate)

14. | loss « cross.entropy(predgenerate 1) + B - MSE (Vgenerater Y)

15. | update(E, loss, @), update(G, loss, @)
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3.4 ML experiment setup

The dataset has a total of 1296 data points. 80% of the data
were randomly selected for the training set and the rest
for the validation set. To enlarge the training set, one or
more augmentation techniques are randomly applied: ran-
dom cropping, horizontal flipping, scaling, and Gaussian
blurring. During the validation phase, no augmentation
technique is used, and all validation images are resized to
256 % 256.

The architectures proposed in [48] were used for the dis-
criminator and generator model architectures. Specifically,
the ResNetGenerator with a depth of 5 blocks was used for
the Generator, and the NLayer Discriminator with a depth
of 2 layers was used for the Discriminator. A linear layer of
4 input neurons and 256 output neurons was used for the
encoder. Adam optimizer with a learning rate of 0.0003 and
weight decay of 0.0001 was used to train the three models
for a total of 1000 epochs. Here, “epochs” refers to complete
cycles through the entire training dataset. One epoch consists
of multiple training steps to cover every sample once in the
dataset. Each training step is an individual iteration where
the model updates its weights based on a subset (batch) of
the training dataset. The balancing factor was setto f = 1.

4 Results and discussions
4.1 ML model predictions

The ML models were trained in two ways: (1) with only
four milling parameters as the input to generate surface
topography and (2) integrating four milling parameters and
acoustic signal spectrum as input to generate surface topog-
raphy. Both types of training were conducted using the same
training method described in Sect. 3. In this section, we plot
the training results as color maps to intuitively show the dif-
ference between the measurements and the training results.

Then, the predicted surfaces are analyzed quantitatively
using surface roughness metrics.

Figure 11 shows the top view of a few examples of the
ML model’s training results at the end of the training pro-
cess. Each subfigure contains 28 surfaces (7-row X 4-col-
umn surface matrix), and the color in each map indicates
the height of the surface. Figure 11a shows the measured
surface topographies as the ground truth. Figure 11b shows
the outputs from the ML model trained with the multimodal
data (i.e., integrated milling parameters and acoustic signals)
as the input. Figure 11c is the output from benchmark train-
ing, where only milling parameters were used as the input.
The images show that the ML model can predict similar
surface data distributions to those of the measured surfaces.
At the same time, the benchmark training results cannot
learn such distributions, and the outputs are not similar to
the measurement.

Figure 12 shows the measured surface compared with
the model output in a three-dimensional view. The pro-
posed method generates the multimodal prediction using
the corresponding milling parameters and acoustic signals
from the validation dataset. The benchmark prediction is
generated using only corresponding milling parameters.
In Fig. 12, the top left measured surface has three notice-
able feed marks. This feature is also shown on the mul-
timodal predicted surface topography but is not on the
benchmark training. The top right image of Fig. 12 shows
a relatively smoother surface. The multimodal prediction
also has a similarly smooth surface, and the benchmark
prediction is almost the same as the left side. Thus, the
three-dimensional topography surfaces intuitively sug-
gest the proposed method can learn the hidden relation
between the actual surfaces and the multimodal input data
(e.g., milling parameters and acoustic signals) but not the
benchmark data. Since the benchmark model only takes
milling parameters as input, it lacks sufficient information
to learn the hidden relationship between inputs and surface
topography. Consequently, the benchmark predictions are
trivial and fail to match the measurements. In fact, the

— - 3 um
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3
0 um
2 e |
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(7x4 surface matrix) (7x4 surface matrix) (7x4 surface matrix)
Fig. 11 Surface topographies by measurement, ML model, and benchmark
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Fig. 12 Examples of ML
predicted surface topography
compared with measured ones

a, = 0.9 mm,a, = 1 mm,
v =200 m/min, f, = 0.035 mm

Unit: mm

Y,

8.5
X
8.5

4.2
4.2
00
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Y
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8.5

4.2
4.2
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Y,
8-5\/)(
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4.2
00
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Table 4 Surface indicators of validation dataset (260 surfaces)

a, =0.5mm,a, = 0.2 mm,
v=160 m/min,f, =0.027mm 5m

Unit: mm

Y
8.5

©
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Measured

0 o
Prediction - Multimodal

Unit: m
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Methods Surface indicators (averaged)
S, (pm) S, (pm) S, (um) Sok Shu
Arithmetical Maximum height Root mean square height Skewness Kurtosis
mean height
% [ Zldxdy |Max Peak| + |Min Valley| /}; [ Z2dxdy #[% [ Z3dxdy) #[i [ Z*axay)
1 Measured 0.649 6.897 0.816 0.198 3.290
2 Multimodal 0.504 6.538 0.654 0.278 3.801
3 A, 0.145 0.359 0.162 —0.080 —0.511
4 Benchmark 0.751 14.099 1.072 0.488 7.262
5 A, —0.102 —7.202 - 0.256 -0.290 —-3.972

benchmark predictions are almost identical for every input
and consistently show rough regions at the front and back

of the surface.
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The outputs of the proposed model are surface height
maps (positions X, Y, and height Z) of the milled surfaces

instead of images. The general quantitative measures of
image correlation, such as the sum of squared differences
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Fig. 13 Surface topography parameters testing errors with epochs

(SSD) and cross-correlation (CC), are widely used for image
analysis but are not suitable for analyzing surface topog-
raphy. The proposed method uses the ISO surface param-
eters (Table 4) to analyze the predicted surfaces’ deviation
quantitatively. Note the surface indicators are calculated as
the average of the 260 surfaces in the validation dataset.
The 3D surface roughness S, expresses the absolute value
of the difference between the height at each surface point
and the theoretical perfect flat surface (arithmetical mean
of the surface). S, defines the sum of the highest peak value
and lowest valley value. S, (root mean square or RMS) is the
standard deviation of the heights in the area. S (skewness)
values the degree of bias of the roughness shape, and S,
(kurtosis) represents the sharpness of the roughness pro-
file. The variables x,y stand for the pixel position on the
surface, while Z represents the relative difference measured
from the surface mean plane. Thus, each measured surface
topography has a set of five surface parameters to define the
surface geometrical properties. The model’s performance
was evaluated on the validation dataset after the training

519
Ssk —Benchmark
1 —Multimodal
0.8 Measured
i 0.6
0.4
0.2
0
1 500 1,000
Epoch
Sq
—Benchmark
1.75 —Multimodal
~ Measured
g 125
; I\,\
w
0.75 —
0.25 4 500 1,000
Epoch

phase, which consisted of previously unseen data. As deline-
ated in Table 4, the proposed multimodal approach gener-
ally outperforms the benchmark method except for the Sa
value. This suggests that while the benchmark method is
more adept at capturing the pattern of surface mean height,
the multimodal method excels in other aspects. A, stands
for the difference between the measured value and multi-
modal prediction, while A, denotes the difference between
the measured value and benchmark prediction.

Figure 13 presents the surface indicators of both meas-
ured and predicted values throughout the training epochs.
The Sz, Sq, and Sku subfigures suggest that the multimodal
method offers superior surface sharpness and deviation pre-
diction than the benchmark as the multimodal prediction
aligns closely with the measured values early in training,
maintaining minor discrepancies throughout. In the Ssk
subfigure, the multimodal prediction converges to a value
closer to the measurements, whereas the benchmark exhibits
consistent fluctuations throughout the training. This indi-
cates the multimodal’s enhanced capability in predicting the
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Fig. 14 Training loss of separate runs against global steps

roughness shape bias over the benchmark. The Sa subfigure
suggests that the multimodal predicts a relatively smoother
surface compared to both the benchmark and the measured
surface.

4.2 ML results analysis

From the ML perspective, the model successfully captured
the relationship between the multimodal input data and the
corresponding surface topography during the training phase.
The predicted surface topography is almost identical to the
actual measurement by the end of the training loop. Fig-
ure 14 (a) correctness loss, (b) adversarial loss, and (c) total
loss shows the two separate runs of the training loss (refer-
ring to Eq. 5) of the multimodal training process to verify the
proposed model’s stability, Runl and Run2 have randomly
and independently selected the training dataset. The X-axis,
global steps, stands for the cumulative count of the indi-
vidual training step iteration. As the figures suggest, all three
losses steadily decrease along the global steps and converge
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around 25 k steps. Additionally, with different training data-
sets, Runl and Run2 show almost the same trend on the
loss trend, which indicates the model is stable against dif-
ferent data. Figure 14d illustrates the training loss of differ-
ent encoders. “Linear + Repeat” represents the training loss
for the encoder used in this study. The “Linear+ Conv” is
similar to that of the proposed encoder, which uses a linear
layer to convert the 4 X 1 milling parameters tensor into a
256 x 1 tensor, followed by a convolution layer to expand
it to a 256 X256 tensor. Two other encoding approaches
are also compared: “Only_Repeat” and “Only_Linear.” It’s
worth noting that the “Only_Linear” encoder has also been
utilized in literature [36]. The former expands the 4 X 1 ten-
sor to a 256 X 256 tensor solely via repetition, while the latter
achieves this expansion using only a linear layer.

From the results in Fig. 14d, it’s clear that the “Only_
Repeat” encoder records the highest loss (4.274) at the
end of the training cycle. This is approximately 1.33, 1.39,
and 1.16 times higher than the losses of the “Only_Linear”
encoder (3.030), the “Linear + Conv” encoder (3.077), and
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Fig. 15 Training loss of differ-
ent depth
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the “Linear + Repeat” encoder (3.689), respectively. It is
noted that the computational complexity, a measure of
the computing resources (time and memory) required by
an algorithm during its execution, is also a crucial fac-
tor in evaluating these encoders. The “Linear + Conv”
and “Only_Linear” encoders have the highest computa-
tional complexity among the four models. This is because
both the linear transformation and convolution operations
involve 256 X 256 tensor multiplication, which is com-
putationally intensive. The “Linear + Repeat” encoder
has slightly lower computational complexity, given that
duplication is less complex than either linear transforma-
tion or convolution. The “Only_Repeat” encoder has the
least computational complexity due to its straightforward
repeating operation. Based on the tradeoff between training
loss and computational complexity, the “Linear + Repeat”
encoder was used in this study.

Multiple Generator and Discriminator architectures were
tested with varying depths, and it is important to note that
the deeper architectures did not perform the task better, while
shallower architectures produced low-quality results. Figure 15
displays the training loss of the Generators and Discriminators
of different depths throughout the training process. The nota-
tion used indicates the depth of the architecture. For example,
“G4D2” represents a depth of 4 blocks of ResNetGenerator for
the Generator and a depth of 2 layers of NLayer Discrimina-
tor for the Discriminator. Notably, G5D2 exhibited the best
performance, with the training loss converging and stabilizing
around 10 k global steps.

16k 32k
Global Steps

5 Conclusions

This paper proposes a multimodal data-driven ML model
integrating different milling process information to predict
machined surface topography. The full-factorial design of
experiments generates a dataset to cover various milling
conditions. The model’s training was initially confined to
milling parameters alone to set a benchmark. In subsequent
training phases, a fusion of both milling parameters and real-
time processed acoustic data gathered during milling opera-
tions was employed. Integrating real-time acoustic data into
the model showcased a discernible enhancement in the pre-
diction accuracy. The comprehensive comparisons between
predicted and measured surface topographies solidified this
observation. This advancement underscores the pivotal role
of assimilating process physics data into ML training, a
strategy that brings efficiency and heightened accuracy to
the predictive modeling of milling processes.

The choice of employing the Generative Adversarial
Network (GAN) model was influenced by its distinctive
attributes. Foremost among these is GAN'’s proficiency
in managing high-dimensional datasets, outpacing tradi-
tional algorithms like Random Forests or Support Vector
Machines. Additionally, GANs have shown a remarkable
ability to decode the intricate relationships between vari-
ous milling parameters and the resultant acoustic emis-
sions, an accomplishment achieved due to their natural
inclination towards recognizing non-linear associations.
This quality is paramount in this study, which deals with
the complex and nuanced prediction of milled surface
topographies. Notably, the GAN’s unsupervised learning
nature makes it uniquely positioned to handle the multifac-
eted relationships between milling parameters and acoustic
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data, sidestepping the need for intricate feature engineer-
ing required by other Neural Networks.

In summary, as a complement to traditional meas-
urement techniques, the proposed approach promises
enhanced precision and efficiency, significantly reducing
associated measurement time and costs. While our model
excels within the confines of our dataset, we recognize the
inherent challenges of extrapolation and believe it presents
an intriguing avenue for future research.
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