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Abstract
Prediction of surface topography in milling usually requires complex kinematics and dynamics modeling of the milling 
process, plus solving physical models of surface generation is a daunting task. This paper presents a multimodal data-driven 
machine learning (ML) method to predict milled surface topography. The proposed method predicts the height map of the 
surface topography by fusing process parameters and in-process acoustic information as model inputs. This method has been 
validated by comparing the predicted surface topography with the measured data.
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1  Introduction

1.1 � Background

End milling plays a key role in manufacturing functional 
components in industries. Compared with alternative pro-
cesses such as electrical discharge machining (EDM) and 
grinding, end milling can create a variety of complex geom-
etries with high efficiency. Milling also generates a relatively 
smooth surface and thus can be used as a post-process for 
components made by metal additive manufacturing [1]. 
With these advantages, milling has become a competitive 
manufacturing process in fabricating turbine blades, dies, 
and molds [2]. Surface finish by the milling process can be 
affected by many factors, e.g., milling parameters [3], cut-
ting fluids [4, 5], cutting tool conditions [6], and vibrations 
[7].

As a material removal process, milling generates surface 
topography [8], which directly affects surface functional-
ity, such as friction, wear, and fatigue [9]. Topographical 
roughness measures, such as arithmetical mean height Sa 
and root mean square height Sq , are critical when surface 
functionality is concerned. For instance, surface topography 
controls the tribology, corrosion, and fatigue of mechani-
cal components [10, 11]. Additionally, surface topography 
controls mass transport, cell adhesion, and bone ingrowth of 
orthopedic implants, which determine the effectiveness and 
useful life of these crucial medical devices [12]. Therefore, 
surface topography prediction in the milling process is nec-
essary to improve surface quality and efficiency. Assessing 
the surface topography of each component in real-world sce-
narios can be time-consuming and expensive. For instance, 
the automotive industry manufactures hundreds of thousands 
of vehicles every month [13]. In light of such circumstances, 
manually evaluating surface topography for each compo-
nent is impractical. Consequently, there is a practical need 
to develop a cost-effective and efficient method to predict 
milled surface topography rapidly.

1.2 � Physical methods to predict surface topography

Milled surface topography depends on various factors such 
as material properties, cutting force and vibrations [14], cut-
ting tool geometry [15], and coolant [5]. Current methods 
for surface topography prediction can be roughly categorized 
into physical methods and data-driven methods.
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Physical methods predict surface topography using 
physical laws underlying the milling process. The physical 
models typically use initial milling process parameters and 
conditions to predict process phenomena such as chatter, 
tool wear, surface roughness, etc. Physical methods can be 
divided into two subcategories: analytical and numerical 
methods. Table 1 summarizes the physical methods of mill-
ing analysis in the literature.

Montgomery and Altintas [14] described a method to 
predict milling forces and surface topography through kin-
ematics modeling of milling tools and workpiece vibrations. 
Altintaş and Budak [16] proposed a method using transfer 
functions of the milling tool in a stability model to predict 
milling stability analytically. Schmitz et al. [17] considered 
the runout effect of the milling tool on the workpiece sur-
face and predicted the surface line profile based on a mill-
ing force model. Both Altintas et al. and Ding et al. [7, 19] 
proposed similar discrete time-domain methods to predict 
the milling process stability lobes and analyze the surface 
finish. Arizmendi et al. [18] proposed a surface topography 
and roughness prediction method by applying tool vibra-
tion on a geometrical surface generation model. Altintas and 
Jin [20] predicted the milling forces using a slip-line field 
model considering material properties and friction coef-
ficient. Kaymakci et al. [22] proposed a model to predict 
machining forces using the cutting insert geometry and mill-
ing parameters. The model is then extended to boring, turn-
ing, and other machining operations using cutting inserts. 
Costes and Moreau [21] showed an analytical model for 3D 
surface topography prediction considering the tool vibration.

The prediction of tool wear rate and milling forces is 
prevalent in numerical methods. Rao et al. [23] used the 
finite element method (FEM) with a tool-workpiece con-
tact 3D model in the milling process to analyze tool wear 

patterns. This method also investigates the influence of 
tool wear on surface integrity. Jin and Altintas [24] used a 
tool-workpiece contact 3D model in FEM to predict milling 
forces based on cutting tool geometry, material properties, 
and initial milling conditions. Wu and Zhang [25] presented 
a tool contact model considering material damage and heat 
transfer to predict milling forces. Felhő et al. [26] presented 
a FEM approach with cutting insert geometry and initial 
milling parameters to predict surface topography.

The current physical methods have been widely used to 
predict critical milling parameters such as milling forces, 
process stability, tool wear, and surface finish. However, the 
physical methods require the milling process to be mathe-
matically modeled, which could be challenging and demand-
ing to implement in real-life production. Not to mention, 
building the mathematical model itself could be challenging 
and sometimes hard to validate. Physical methods could be 
used to generate data for analysis or prediction to reduce the 
number of physical experiments, but it is also hard to verify 
the synthesized data quality and the accuracy of analysis 
or prediction results against actual manufacturing environ-
ments. Given these challenges, data-driven methods have 
been increasingly explored for topography prediction.

1.3 � Data‑driven methods to predict surface 
topography

Data-driven methods refer to approaches that use pure data 
to train machine learning (ML) models for prediction. Such 
methods usually involve massive datasets for training pur-
poses. Table 2 summarizes some recent data-driven methods 
for machining processes in the literature.

Yang and Liu [29] used multiple linear regression to pre-
dict the influence of different milling parameters on surface 

Table 1   Physical models for milling analysis

Model type Model inputs Model outputs Refs.

Analytical Milling parameters, tool geometry Milling forces, surface topography [14]
Milling parameters, tool geometry (contact zone), system natural frequency Milling stability [16]
Milling parameters, milling forces, system natural frequency Line profile [17]
Milling parameters, system natural frequency Milling stability, milling forces [7]
Milling parameters, tool geometry, tool vibration Surface topography [18]
Milling parameters, system natural frequency Milling stability [19]
Milling parameters, material properties Milling forces [20]
Milling parameters, tool geometry, tool displacement Line profile [21]
Milling parameters, tool geometry, cutting angles Milling forces [22]

Numerical Milling parameters, material properties, tool geometry Surface integrity, specific cutting 
energy, tool wear

[23]

Milling parameters, material properties, tool geometry, tool-workpiece interaction Milling forces [24]
Milling parameters, material properties, tool geometry Milling forces [25]
Milling parameters, tool geometry Surface topography [26]
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roughness. Suresh Kumar Reddy and Venkateswara Rao 
Suresh [27] applied genetic algorithms for milling rough-
ness prediction, where the input is milling parameters with 
81 experiments with four 2-level parameters, and the out-
put is surface roughness. Karandikar et al. [30] employed a 
Bayesian-based learning algorithm and milling parameters 
(data size of 105 samples) to analyze milling stability. Çolak 
et al. [28] utilized 84 datasets and genetic expression pro-
gramming for surface roughness prediction, where the input 
is milling parameters, and the output is surface roughness. 
Zain et al. [32] adopted a fully connected neural network 
(FCNN) and 24 datasets to predict surface roughness. Liu 
et al. [35] presented a convolutional neural network (CNN) 
to estimate surface roughness parameters based on surface 
topography images. Paturi et al. [34] used 81 experiments 
on four different models to predict the surface roughness of 
the EDMed workpiece. Peng et al. [33] developed a support 
vector machine (SVM) model using milling parameters and 
vibration signals during the cutting process to generate the 
milled surface topography and identify stable cutting process 
windows. Rahimi et al. [37] presented a CNN-based model 
which used milling vibration signals to predict the process 
stability.

As the acoustic signal is an easy-to-acquire process sig-
nature indicative of surface generation, it is widely used in 
data-driven approaches to predict tool and workpiece contact 
conditions. The acoustic signal originates from the vary-
ing tool-chip interface, and the changes to the interface are 
reflected as changes in the signal. Gauder et al. [39] pre-
sented a CNN-based deep-learning model using acoustic sig-
nals for the prediction of workpiece pores in milling. Shah 
et al. [40] proposed a method using LSTM and GAN to ana-
lyze milling vibration and acoustic emission signals for the 
prediction of tool wear. Griffin et al. [38] proposed a method 

using acoustic data and short-time Fourier transform (STFT) 
to predict surface parameters. Cooper et al. [41] presented 
a CNN model for the classification of tool conditions using 
acoustic signals. Although the acoustic signal is popular in 
analyzing tool wear and workpiece defects, few data-driven 
methods use acoustic signals for topography prediction.

Cao et al. [36] proposed a surface topography generation 
method in a turning process using a generative adversarial 
network (GAN). The inputs of the GAN are the turning 
parameters, tool vibration signal, and turning forces. The 
outputs are grayscale images of turning surfaces. However, 
the generated 2D images can only be used for visualiza-
tion as they contain no height data. Moreover, this method 
uses the conventional SRResNet architecture [42], which is 
less efficient and produces low-resolution images compared 
to other popular GAN architectures. In summary, although 
acoustic signals are often used in analyzing tool wear and 
workpiece quality, there are few data-driven methods using 
acoustic signals for topography prediction.

1.4 � Hybrid physics‑informed data‑driven 
approaches

It is essential to acknowledge the emerging hybrid methods, 
which combine the advantages of both the physics-driven 
and data-driven approaches to enhance model performance. 
One example of the hybrid method is Physics-Informed Neu-
ral Networks (PINNs), which integrate neural networks with 
physical laws to solve partial differential equations (PDEs). 
Such a method is very important in solving heat transfer 
[43] and fluid mechanics [44] problems. PINNs leverage the 
strengths of both data-driven and physics-based methodolo-
gies to enable more accurate predictions. Despite the promis-
ing potential, the application of PINNs in the manufacturing 

Table 2   Data-driven methods for milling surface prediction

Model type Model inputs Model outputs Refs.

Genetic algorithms Milling parameters, tool geometry Surface roughness [27]
Genetic algorithm Milling parameters Surface roughness [28]
Linear regression Milling parameters Surface roughness [29]
Bayesian inference Milling parameters Milling stability [30, 31]
FCNN Milling parameters Surface roughness [32]
SVM Cutting forces Surface topography, milling stability [33]
SVM, ELM EDM process parameters Surface roughness [34]
CNN Surface topography Surface roughness [35]
GAN Turning parameters, tool vibration, turning forces Surface image [36]
CNN Milling vibrations Milling stability (chatter) [37]
Classification tree Milling acoustic signals Surface roughness [38]
CNN Milling acoustic signals Part defect (pores) [39]
GAN, LSTM Milling vibration and acoustic signals Tool wear [40]
CNN Milling acoustic signals Tool wear [41]
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domain, e.g., machining, is still in its infancy [45]. Further 
research and development are needed to explore the use of 
PINNs to predict surface topography.

1.5 � Research objectives

The literature analysis has shown that, on the one hand, 
physical methods may predict milling surface finish by lev-
eraging machining process conditions such as tool wear, pro-
cess stability, and cutting forces. However, the current physi-
cal methods require complex mathematical modeling of the 
milling process, which is often very challenging to derive 
and implement. On the other hand, data-driven methods can 
predict tool wear, milling stability, and surface attributes 
(e.g., roughness) based on the machining process conditions. 
The data-driven approach can also be a key component of 
digital twins [46]. Nevertheless, the data-driven approaches 
for predicting milled surface topography are still at an early 
stage. Some methods can predict surface images for visuali-
zation, but few can accurately predict surface topography.

To fill the knowledge gap and achieve more compre-
hensive and accurate results in predicting milling surface 
topography, an in-depth multimodal ML method has been 
developed in this work. The characteristics of the developed 
method are summarized as follows:

•	 The proposed approach predicts surface topography 
using an ML method. Current data-driven methods for 
roughness quantification focus on scalar roughness pre-
diction, e.g., Sa , or generate surface images. However, 
these scalars and images cannot fully model the intricate 
topography induced by milling.

•	 The proposed method uses multimodal data by fusing the 
machining process conditions and milling parameters. 
The bulk of ML models is limited to a single type of data 
modality for surface analysis.

•	 The proposed method is based on the Generative Adver-
sarial Network (GAN) [47]. GAN is a widely used image 
generation framework that can effectively learn the sta-
tistics and characteristics of the input data and generate 
accurate output based on the conditioned input.

The paper is structured as follows: Sect. 2 presents the 
research route, milling experiments, and data pre-process-
ing. Section 3 proposes a GAN-based ML model for surface 
generation. Section 4 presents and discusses the ML output 
by comparing model outputs with experimentally measured 
surfaces. Section 5 summarizes the key results of this work 
and presents future outlooks.

2 � Milling experiment and data ingestion

2.1 � Research route

The overall research route is shown in Fig. 1. The milling 
parameters, i.e., cutting speed (v), feed/tooth (fz), radial 
depth-of-cut (DoC) ae, and axial DoC ap, are first planned 
based on the Design of Experiment (DoE) method and then 
programmed into G-codes to conduct the milling experi-
ments. A microphone was placed next to the workpiece 
inside the milling chamber to record the milling acoustic 
signals. After milling, the machined surfaces are measured 
using the Keyence 3D measurement system VR-3000 to 
obtain surface topography. On the other hand, the milling 
parameters and the recorded acoustic data will be used as 
multimodal inputs to train the GAN model. The output of 
the GAN is surface topography generated by the machine 
learning (ML) model. The generated surface topography and 
measured surface topography will be compared to conduct 
a post-analysis to study the accuracy and cost of the ML 
model.

Fig. 1   Research route
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2.2 � Milling experiment design

The experiment setup is shown in Fig. 2 with the close-
up view of the tool/workpiece interaction zone in Fig. 3. 
The milling experiments were performed on the Mircolu-
tion 5100 High-Speed 5-Axis CNC machine with a 2-flute 
uncoated carbide 6.35 mm flat end milling tool. The work 
material is Aluminum alloy 6061-T6. Acoustic signals were 
recorded in real-time with a microphone sampling at 48 kHz 
during milling. The microphone is placed next (~ 300 mm) 
to the workpiece at the same location for each milling exper-
iment. The machined surface topographies were measured 
using the Keyence VR-3000 measurement system.

The milling process involves several stages: air cutting, 
tool engagement, stable cutting, cutting direction change, 
and tool disengagement. Figure 4 shows a schematic tool 
path of the milling process, where the yellow line is the 
milling tool path, and the gray area is the workpiece. At 
the beginning of the milling process, the tool path starts 

at the top-left position, and the tool does not contact the 
workpiece. Each milled surface is a 16 mm × 18 mm rectan-
gle. When the milling process starts, the rotating tool moves 
along the yellow line without contacting the workpiece (i.e., 
air cutting). On the right side, the path arrow pointing to the 
workpiece represents the tool’s engagement with the work-
piece. Stable cutting starts when the milling tool is fully 
engaged with the workpiece. The milling tool changes its 
cutting direction at the workpiece edges. When the milling 
process is finished, the milling tool disengages the work-
piece. Figure 5 [48] shows the stable cutting zone, situated 
at a distance of one tool diameter (d) from the milled surface 
edges. Surface measurements were conducted within the sta-
ble zone of 8.5 mm × 8.5 mm.

To cover the wide range of cutting conditions, the milling 
parameters are planned in the ranges as shown in Table 3a. 

Fig. 2   Milling experiment setup

Fig. 3   Material removal schematics in milling
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The first column shows the milling parameters, and the 
second column indicates the ranges of the parameters. The 
increment shows the difference between the two adjacent 
levels. For example, the cutting speed starts at 120 m/min 
and then increases by 40 m/min, so the next level cutting 
speed is 160 m/min. To cover more possible combinations, 
we chose the four parameters in six levels, which resulted 
in 64 (i.e., 1296) different parameter combinations. Each 
process parameter value has been used 216 times in the 
parameter space, which would avoid the need to repeat the 
experiment and the associated high costs. Other setups, such 
as 5-level or 7-level experimental designs, produce either 
inefficient numbers of samples (< 650) or would be too 
expensive to produce. Note that cutting speeds and feeds/
tooth are converted into spindle speeds and feed rates in the 
G-code, respectively. It is worth mentioning that the tool 
condition was examined throughout the experiments, and 
tool wear was measured using a Keyence machine under 
high magnification after every 24 milled surfaces to make 
sure there was no visible tool wear.

The milling acoustic signals are collected in real time 
by the microphone placed inside the milling chamber. Each 
milled surface consists of multiple tool paths, which include 
air cutting and changes in cutting direction. The acoustic 
sensor starts recording before the milling process is initi-
ated. Therefore, acoustic data outside the stable zone was 
also recorded. However, this data might create an issue for 
ML training as air cutting and changes in cutting direction 

are not related to the machined surface in the stable milling 
zone. For precise ML training data, acoustic signals of air 
cutting were excluded, as shown in Fig. 6. Acoustic sig-
nals corresponding to the changes in cutting direction were 
also identified and excluded in preparing the dataset for ML 
training and testing. The acoustic signals consist of the sig-
nal from each cutting path inside the stable zone (P1 and P2 
in Fig. 6a) and the signal from the step-over segment when 
the cutting direction changes.

2.3 � Surface data measurement and acoustic data 
post‑processing

Surface topographies of the milled surfaces inside the stable 
milling zone were measured using the Keyence VR-3000 
system. Figure 7 shows two examples of the measured sur-
face topography under different milling conditions. The 
surface topographies were converted and output as height 
matrices, where the column and row of such matrices rep-
resent the pixel position. The value inside each matrix cell 
represents the measured height of the surface at that pixel 
location. Then, the surface data are saved in CSV format 
for subsequent use in training ML models. Also, the surface 
roughness parameters can be calculated from this surface 
data, such as 3D surface roughness Sa, maximum height Sz, 
root mean square Sq, skewness Ssk, and kurtosis Sku. The 
detailed description of surface roughness parameters is 
described in Sect. 4.1.

Table 3   Milling parameters and 
ranges

(a) ISO milling parameters (b) G-code parameters

4-Parameter Range of 6-level Increment 4-Parameter Range of 6-level Increment

Cutting speed 120–320 m/min 40 m/min Spindle speed 6000–16,000 rpm 2000 rpm
Feed/tooth 0.025–0.035 mm 0.002 mm Feed rate 300–1100 mm/min –
Axial DoC 0.5–1.5 mm 0.2 mm Axial DoC 0.5–1.5 mm 0.2 mm
Radial DoC 0.2–1.2 mm 0.2 mm Radial DoC 0.2–1.2 mm 0.2 mm

Fig. 6   Acoustic data collection
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Acoustic signals are commonly used to identify milling 
stabilities [49] and chatter [50]. In contrast to using direct 
learning on the raw waveforms in the previous ML work 
for audio [51, 52], the audio signals are used to create a 
time–frequency map from the power magnitude obtained 
through Short-time Fourier Transform (STFT), which cap-
tures the changes over time of each frequency component. 
Figure 8 shows the process of the spectrogram conversion. 
It converts the time-series data into a spectrogram, reveal-
ing the frequency and amplitude change with time. First, 
a small-time step was used to slice the time-series sound 
signal (red box region) and use this slice to perform Fourier 
Transform (FT) to get frequency-amplitude information. 
Then, the FT process repeats at the next time step. After 
all time steps were processed, all frequency-amplitude data 
was stitched with the time stamp to get the whole 3-dimen-
sional spectrum representing the acoustic data. The X- and 
Y-axis are the time stamp and frequency, respectively, and 
the color legend represents the amplitude. Note the shape of 
the spectrums is different as the time of each milling process 
is different.

3 � Multimodal data‑based ML models

The proposed ML model aims to use acoustic signals and 
milling parameters as the model inputs to predict surface 
topography. Generative Adversarial Network (GAN) is one 
of the popular deep learning architectures used for image 
generation. Such architecture trains two neural networks 
(i.e., Generator and Discriminator) in a zero-sum game 
until the Discriminator cannot tell the true images. The layer 
structure of a GAN model [53] for efficient ML training 
and inference has been adopted in this study. However, a 
key change was introduced that the traditional loss func-
tion, e.g., cycle consistency loss, is bypassed since this study 
focuses on mapping milling parameters and acoustic signals 
to surface topography. This alteration leverages the selected 
GAN model to align more closely with the specific require-
ments of this study. The ML model in this work is built 
using PyTorch, one of the most widely used open-source 
deep learning libraries.

3.1 � ML problem formulation

In the presented study, the prediction of milled surface 
topography is formulated as a supervised ML problem. In 
general, the milling parameters and milling acoustic sig-
nals are treated as the input information for the ML model, 

Fig. 7   Representative surf ace 
topography
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and the surface topography is the ground truth for the 
predictions.

Let xp denotes the input milling parameters, xs denotes 
the milling acoustic signals, ỹ denotes the predicted surface 
topography, and y denotes the measured surface map (sur-
face position X, Y, and height Z). A CNN called a generator, 
denoted as G(⋅) can be used to map the input information 
to the corresponding surface topography, where L denotes 
a loss function, and ‖ ⋅ ‖F represents the Frobenius norm. 
Hence, the supervised ML problem can be formulated as 
follows:

Solving Eq. (1) has several challenges, as discussed in the 
following sub-sections.

3.2 � Fusing inputs from different modalities

Challenge 1: Input signals xp and xs have different modali-
ties. The milling parameters xp are represented as 4-dimen-
sional vectors, while the milling audio data xs are repre-
sented as acoustic signal waves. Hence, these two input 
signals have different representations and statistical distri-
butions. As a result, directly using these signals as inputs 
for the generator G(⋅) can lead to poor results because of the 
generator’s inability to fuse the two inputs.

Approach 1: To address Challenge 1, we propose to use a 
trainable Encoder E(⋅)  that includes several transformations 
on both xp and xs , and a trainable linear layer to process these 
two inputs that come from different modalities. The Encoder 

(1)min
G

L
�
ỹ, y

�
= min

G
‖ỹ − y‖2

F
= min

G
‖G(xp, xs) − y‖2

F

E(⋅)  fuses the two separated input signals xp and xs , into an 
input tensor x that encodes both the milling parameters and 
milling acoustic signals: E(xp, xs) . Hence, the input to G(⋅) 
is no longer xp and xs , but the fused input x.

Figure 9 shows the encoder process in detail. To ensure 
size consistency, both the model input tensor and output 
topography are set to 256 × 256, which matches the dimen-
sion of the measured surface topographies. Importantly, 
input tensors accommodate multiple channels to encode 
additional data. The tensor is transformed from the 4 × 1 
milling parameters tensor into a 256 × 1 tensor using linear 
layers and then augmented for dimension matching. Linear 
transform is a common machine learning technique involv-
ing mapping low-dimensional data into higher dimensions 
[36]. Given the milling parameters xp =

[
ae ap fz v

]T and 
the linear layer noted as y = Wx + B , the transform of the 
4 × 1 tensor into a 256 × 1 tensor can be written as:

I n  w h i ch  W =
[

wij
]

, where i = 1, 2, 3… 256 and j
= 1, 2, 3, 4;B =

[

b1, b2 … , b256
]T . W and B represent the 

weights and bias of the linear transform and can be updated 
by the training loss. Then, the 256 × 1 tensor duplicates itself 
to match the 256 × 256 dimension.

In order to fuse the acoustic signals with the milling 
parameters, the acoustic signals are first transformed into a 
spectrogram, which is then resized into the same shape as 
the milling parameters tensor using PyTorch’s resize func-
tion (bilinear interpolation). Finally, the milling parameters 
and spectrograms are concatenated into a 2-channel tensor 

(2)xexpand
p

= W ⋅ xp + B.

Fig. 9   Fusing the two inputs from different modalities using the encoder
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with dimensions 256 × 256 × 2. Concatenation is often 
used to encode additional data and can be applied to differ-
ent types of tensors, including videos with audio [54] and 
numbers with images [55]. Several other encoders are also 
evaluated, and their performance is reviewed in Sect. 4.2. 
It should be pointed out that there are many alternative 
approaches to encoding data. It could be further investigated 
in another study.

3.3 � Learning the variations in the surface 
topography using GANs

Challenge 2: While loss function L in Eq. (1) measures pixel 
difference, it might not be sensitive enough to capture all 
the intricate details, patterns, and imperfections across the 
surface topographies. As y is not the unique mapping of xs 
and xp , other variations of y can also correspond to the same 
surface topography. Hence, the model cannot learn the varia-
tions in the surface topography only by minimizing the norm 
difference between the prediction ỹ and the ground truth y . 
Furthermore, since the training dataset has a limited number 
of data points (less than 1000), the overparameterized G(⋅) 
will overfit the training data and thus will not generalize to 
new unseen data.

Approach 2: To address Challenge 2, the GAN frame-
work [47, 53] is proposed to effectively train the genera-
tor G(⋅) to predict surface topography. The GAN learning 
framework consists of two separate DNNs: the generator 
G(⋅) and the discriminator D(⋅) . In this problem, the goal 
of the generator is to generate realistic and correct sur-
face topography ỹ  from the input milling information x , 
while the discriminator’s goal is to classify a given sur-
face topography as generate (synthesized by the G net-
work), or real (actual measurement of the surface). The 

two networks have opposing optimization goals. Hence G 
and D play the following minimax game:

Optimizing the discriminator:
The discriminator can be trained using the following 

optimization function:

Several augmentation strategies have been investigated, 
including cropping, flipping, scaling, and blurring the 
input images to create a more diverse training set. As a 
result, the input images have a wide range of variations 
in the surface topography. Hence, the discriminator must 
learn the actual characteristics of the surface rather than 
memorize the measured images in the dataset.

Optimizing the encoder and generator:

In Eq. (5), � is the balancing hyper-parameters between 
adversarial loss and correctness loss. The Generator net-
work has two goals: (1) synthesize realistic-looking sur-
face images that fool the discriminator into thinking those 
images are actual measurements. (2) Synthesize images 
that have correct surface topography. The two goals are 
reflected by the adversarial loss term and correctness loss 
term in (5), respectively. The details of the overall train-
ing procedure are summarized in Fig. 10 and Algorithm 1 
(Pseudo Code). The algorithm delineates the model’s 
training process in structured steps: Inputs and Outputs 
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G
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D
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(
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(
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))))
.
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(
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Fig. 10   The overall training procedure
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(line 1–2): the algorithm starts by defining inputs: dataset 
D, which contains milling parameters xp , milling acoustic 
signals xs , measured surface topography y. Additionally, 
it also requires a learning rate � to guide the optimization 
and a balancing factor � to weigh the different components 
of the loss function. Line 2 defines the final outputs after 
training as the trained encoder (E) and trained generator 
(G). Initialization (line 3): The weights of the E, discrimi-
nator (D), and G are initialized with random values. This 
random initialization serves as the starting point for the 
optimization process. Training Loop (lines 4–15): line 4 
defines a loop that iterates over each data tuple from D, 
which encompasses the xp , xs and corresponding meas-
ured surface topography (y). Discriminator Training 
(lines 5–10): line 5 is a comment indicating the following 
lines are for discriminator training. In line 6, the surface 
topography ( ygenerate ) is generated using the E and D given 
the input xp and xs . Both the generated ( ygenerate ) and the 
measured topography ( y ) undergo data augmentation in 
line 7. Data augmentation is a technique to artificially 
expand the dataset by creating slightly modified copies of 
existing data. It enhances the robustness and generaliza-
tion capability of the model. In line 8, the D assesses the 

topographies, ideally scoring real topographies near one 
and generated ones near 0. A loss for D is calculated using 
the scores (line 9) and is utilized to update the weights of 
this loss and the learning rate (α) at line 10. Encoder and 
Generator Training (lines 11–15): line 11 is a comment 
indicating the following lines are for training E and G. 
The surface topography ( ygenerate ) is generated the same 
as line 6 (line 12). This generated topography is evaluated 
by the D to give a prediction score at line 13. In line 14, 
the loss for both E and G is computed in two parts: 1. 
Cross-entropy between discriminator’s (D) prediction for 
the generated topography and an ideal score of 1. 2. Mean 
Squared Error (MSE) between the generated topography 
and the measured one. The balancing factor (β) weighs 
the importance of this accuracy term in the loss function. 
Finally, in line 15, the combined loss updates weights for 
both E and G with the given learning rate ( � ). Figure 10 
shows the overall training procedure: the generator pre-
dicts the surface to compare with the measured surface 
and get L2 loss. The predicted and measured surfaces will 
be fed to the Discriminator to be classified as generated or 
measured and get CSE (cross-entropy loss). Both losses 
are used to update the model weights.

Algorithm 1: Multimodal Data-Based ML Algorithm for Prognosis of Surface Topography
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3.4 � ML experiment setup

The dataset has a total of 1296 data points. 80% of the data 
were randomly selected for the training set and the rest 
for the validation set. To enlarge the training set, one or 
more augmentation techniques are randomly applied: ran-
dom cropping, horizontal flipping, scaling, and Gaussian 
blurring. During the validation phase, no augmentation 
technique is used, and all validation images are resized to 
256 × 256.

The architectures proposed in [48] were used for the dis-
criminator and generator model architectures. Specifically, 
the ResNetGenerator with a depth of 5 blocks was used for 
the Generator, and the NLayer Discriminator with a depth 
of 2 layers was used for the Discriminator. A linear layer of 
4 input neurons and 256 output neurons was used for the 
encoder. Adam optimizer with a learning rate of 0.0003 and 
weight decay of 0.0001 was used to train the three models 
for a total of 1000 epochs. Here, “epochs” refers to complete 
cycles through the entire training dataset. One epoch consists 
of multiple training steps to cover every sample once in the 
dataset. Each training step is an individual iteration where 
the model updates its weights based on a subset (batch) of 
the training dataset. The balancing factor was set to � = 1.

4 � Results and discussions

4.1 � ML model predictions

The ML models were trained in two ways: (1) with only 
four milling parameters as the input to generate surface 
topography and (2) integrating four milling parameters and 
acoustic signal spectrum as input to generate surface topog-
raphy. Both types of training were conducted using the same 
training method described in Sect. 3. In this section, we plot 
the training results as color maps to intuitively show the dif-
ference between the measurements and the training results. 

Then, the predicted surfaces are analyzed quantitatively 
using surface roughness metrics.

Figure 11 shows the top view of a few examples of the 
ML model’s training results at the end of the training pro-
cess. Each subfigure contains 28 surfaces (7-row × 4-col-
umn surface matrix), and the color in each map indicates 
the height of the surface. Figure 11a shows the measured 
surface topographies as the ground truth. Figure 11b shows 
the outputs from the ML model trained with the multimodal 
data (i.e., integrated milling parameters and acoustic signals) 
as the input. Figure 11c is the output from benchmark train-
ing, where only milling parameters were used as the input. 
The images show that the ML model can predict similar 
surface data distributions to those of the measured surfaces. 
At the same time, the benchmark training results cannot 
learn such distributions, and the outputs are not similar to 
the measurement.

Figure 12 shows the measured surface compared with 
the model output in a three-dimensional view. The pro-
posed method generates the multimodal prediction using 
the corresponding milling parameters and acoustic signals 
from the validation dataset. The benchmark prediction is 
generated using only corresponding milling parameters. 
In Fig. 12, the top left measured surface has three notice-
able feed marks. This feature is also shown on the mul-
timodal predicted surface topography but is not on the 
benchmark training. The top right image of Fig. 12 shows 
a relatively smoother surface. The multimodal prediction 
also has a similarly smooth surface, and the benchmark 
prediction is almost the same as the left side. Thus, the 
three-dimensional topography surfaces intuitively sug-
gest the proposed method can learn the hidden relation 
between the actual surfaces and the multimodal input data 
(e.g., milling parameters and acoustic signals) but not the 
benchmark data. Since the benchmark model only takes 
milling parameters as input, it lacks sufficient information 
to learn the hidden relationship between inputs and surface 
topography. Consequently, the benchmark predictions are 
trivial and fail to match the measurements. In fact, the 

Fig. 11   Surface topographies by measurement, ML model, and benchmark
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benchmark predictions are almost identical for every input 
and consistently show rough regions at the front and back 
of the surface.

The outputs of the proposed model are surface height 
maps (positions X, Y, and height Z) of the milled surfaces 
instead of images. The general quantitative measures of 
image correlation, such as the sum of squared differences 

Fig. 12   Examples of ML 
predicted surface topography 
compared with measured ones
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Table 4   Surface indicators of validation dataset (260 surfaces)

Methods Surface indicators (averaged)

Sa ( μm)
Arithmetical 
mean height

Sz ( μm)
Maximum height

Sq ( μm)
Root mean square height

Ssk
Skewness

Sku
Kurtosis

1

A
∬ |Z|dxdy |Max Peak| + |Min Valley| √

1

A
∬ Z2dxdy

1

Sq3
[
1

A
∬ Z3dxdy]

1

Sq4
[
1

A
∬ Z4dxdy]

1 Measured 0.649 6.897 0.816 0.198 3.290
2 Multimodal 0.504 6.538 0.654 0.278 3.801
3 Δ

1
0.145 0.359 0.162 − 0.080 − 0.511

4 Benchmark 0.751 14.099 1.072 0.488 7.262
5 Δ

2
− 0.102 − 7.202 − 0.256 − 0.290 − 3.972
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(SSD) and cross-correlation (CC), are widely used for image 
analysis but are not suitable for analyzing surface topog-
raphy. The proposed method uses the ISO surface param-
eters (Table 4) to analyze the predicted surfaces’ deviation 
quantitatively. Note the surface indicators are calculated as 
the average of the 260 surfaces in the validation dataset. 
The 3D surface roughness Sa expresses the absolute value 
of the difference between the height at each surface point 
and the theoretical perfect flat surface (arithmetical mean 
of the surface). Sz defines the sum of the highest peak value 
and lowest valley value. Sq (root mean square or RMS) is the 
standard deviation of the heights in the area. Ssk (skewness) 
values the degree of bias of the roughness shape, and Sku 
(kurtosis) represents the sharpness of the roughness pro-
file. The variables x, y stand for the pixel position on the 
surface, while Z represents the relative difference measured 
from the surface mean plane. Thus, each measured surface 
topography has a set of five surface parameters to define the 
surface geometrical properties. The model’s performance 
was evaluated on the validation dataset after the training 

phase, which consisted of previously unseen data. As deline-
ated in Table 4, the proposed multimodal approach gener-
ally outperforms the benchmark method except for the Sa 
value. This suggests that while the benchmark method is 
more adept at capturing the pattern of surface mean height, 
the multimodal method excels in other aspects. Δ1 stands 
for the difference between the measured value and multi-
modal prediction, while Δ2 denotes the difference between 
the measured value and benchmark prediction.

Figure 13 presents the surface indicators of both meas-
ured and predicted values throughout the training epochs. 
The Sz, Sq, and Sku subfigures suggest that the multimodal 
method offers superior surface sharpness and deviation pre-
diction than the benchmark as the multimodal prediction 
aligns closely with the measured values early in training, 
maintaining minor discrepancies throughout. In the Ssk 
subfigure, the multimodal prediction converges to a value 
closer to the measurements, whereas the benchmark exhibits 
consistent fluctuations throughout the training. This indi-
cates the multimodal’s enhanced capability in predicting the 

Fig. 13   Surface topography parameters testing errors with epochs
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roughness shape bias over the benchmark. The Sa subfigure 
suggests that the multimodal predicts a relatively smoother 
surface compared to both the benchmark and the measured 
surface.

4.2 � ML results analysis

From the ML perspective, the model successfully captured 
the relationship between the multimodal input data and the 
corresponding surface topography during the training phase. 
The predicted surface topography is almost identical to the 
actual measurement by the end of the training loop. Fig-
ure 14 (a) correctness loss, (b) adversarial loss, and (c) total 
loss shows the two separate runs of the training loss (refer-
ring to Eq. 5) of the multimodal training process to verify the 
proposed model’s stability, Run1 and Run2 have randomly 
and independently selected the training dataset. The X-axis, 
global steps, stands for the cumulative count of the indi-
vidual training step iteration. As the figures suggest, all three 
losses steadily decrease along the global steps and converge 

around 25 k steps. Additionally, with different training data-
sets, Run1 and Run2 show almost the same trend on the 
loss trend, which indicates the model is stable against dif-
ferent data. Figure 14d illustrates the training loss of differ-
ent encoders. “Linear + Repeat” represents the training loss 
for the encoder used in this study. The “Linear + Conv” is 
similar to that of the proposed encoder, which uses a linear 
layer to convert the 4 × 1 milling parameters tensor into a 
256 × 1 tensor, followed by a convolution layer to expand 
it to a 256 × 256 tensor. Two other encoding approaches 
are also compared: “Only_Repeat” and “Only_Linear.” It’s 
worth noting that the “Only_Linear” encoder has also been 
utilized in literature [36]. The former expands the 4 × 1 ten-
sor to a 256 × 256 tensor solely via repetition, while the latter 
achieves this expansion using only a linear layer.

From the results in Fig. 14d, it’s clear that the “Only_
Repeat” encoder records the highest loss (4.274) at the 
end of the training cycle. This is approximately 1.33, 1.39, 
and 1.16 times higher than the losses of the “Only_Linear” 
encoder (3.030), the “Linear + Conv” encoder (3.077), and 

(b) Adversarial loss of two separate runs(a) Correctness loss of two separate runs

(c) Total loss of two separate runs (d) Total loss of different encoders

Fig. 14   Training loss of separate runs against global steps
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the “Linear + Repeat” encoder (3.689), respectively. It is 
noted that the computational complexity, a measure of 
the computing resources (time and memory) required by 
an algorithm during its execution, is also a crucial fac-
tor in evaluating these encoders. The “Linear + Conv” 
and “Only_Linear” encoders have the highest computa-
tional complexity among the four models. This is because 
both the linear transformation and convolution operations 
involve 256 × 256 tensor multiplication, which is com-
putationally intensive. The “Linear + Repeat” encoder 
has slightly lower computational complexity, given that 
duplication is less complex than either linear transforma-
tion or convolution. The “Only_Repeat” encoder has the 
least computational complexity due to its straightforward 
repeating operation. Based on the tradeoff between training 
loss and computational complexity, the “Linear + Repeat” 
encoder was used in this study.

Multiple Generator and Discriminator architectures were 
tested with varying depths, and it is important to note that 
the deeper architectures did not perform the task better, while 
shallower architectures produced low-quality results. Figure 15 
displays the training loss of the Generators and Discriminators 
of different depths throughout the training process. The nota-
tion used indicates the depth of the architecture. For example, 
“G4D2” represents a depth of 4 blocks of ResNetGenerator for 
the Generator and a depth of 2 layers of NLayer Discrimina-
tor for the Discriminator. Notably, G5D2 exhibited the best 
performance, with the training loss converging and stabilizing 
around 10 k global steps.

5 � Conclusions

This paper proposes a multimodal data-driven ML model 
integrating different milling process information to predict 
machined surface topography. The full-factorial design of 
experiments generates a dataset to cover various milling 
conditions. The model’s training was initially confined to 
milling parameters alone to set a benchmark. In subsequent 
training phases, a fusion of both milling parameters and real-
time processed acoustic data gathered during milling opera-
tions was employed. Integrating real-time acoustic data into 
the model showcased a discernible enhancement in the pre-
diction accuracy. The comprehensive comparisons between 
predicted and measured surface topographies solidified this 
observation. This advancement underscores the pivotal role 
of assimilating process physics data into ML training, a 
strategy that brings efficiency and heightened accuracy to 
the predictive modeling of milling processes.

The choice of employing the Generative Adversarial 
Network (GAN) model was influenced by its distinctive 
attributes. Foremost among these is GAN’s proficiency 
in managing high-dimensional datasets, outpacing tradi-
tional algorithms like Random Forests or Support Vector 
Machines. Additionally, GANs have shown a remarkable 
ability to decode the intricate relationships between vari-
ous milling parameters and the resultant acoustic emis-
sions, an accomplishment achieved due to their natural 
inclination towards recognizing non-linear associations. 
This quality is paramount in this study, which deals with 
the complex and nuanced prediction of milled surface 
topographies. Notably, the GAN’s unsupervised learning 
nature makes it uniquely positioned to handle the multifac-
eted relationships between milling parameters and acoustic 

Fig. 15   Training loss of differ-
ent depth
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data, sidestepping the need for intricate feature engineer-
ing required by other Neural Networks.

In summary, as a complement to traditional meas-
urement techniques, the proposed approach promises 
enhanced precision and efficiency, significantly reducing 
associated measurement time and costs. While our model 
excels within the confines of our dataset, we recognize the 
inherent challenges of extrapolation and believe it presents 
an intriguing avenue for future research.
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