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Abstract
We show explicit forms for extremals of some fourth-order sharp Sobolev trace inequalities
on the unit balls recently proved byAche-Chang and Case.We also give a classification result
of the bi-harmonic equation on R

4+ with some conformally covariant boundary conditions.
Moreover, we show a classification result for an associated integral equation.

Mathematics Subject Classification Primary 35J40 · 58J32; Secondary 39B05 · 46E35

1 Introduction

Let Bn+1 ⊂ R
n+1, n ≥ 1, be the unit ball with boundary ∂Bn+1 = S

n . Recall the following
two Sobolev trace inequalities: For any f ∈ C∞ (Sn) and v being a smooth extension of f
to B

n+1, there hold

– If n = 1, then

log

(
1

2π

˛
S1
e f dσ

)
� 1

4π

ˆ
B2

|∇v|2dx + 1

2π

˛
S1

f dσ. (1.1)

Moreover, the equality holds if and only if �v = 0 and f = c− log |1 − 〈z0, ξ 〉|, where
c is a constant, ξ ∈ S

1, and z0 is some fixed point in the interior of B2.
– If n > 1, then

�
( n+1

2

)
�

( n−1
2

) |Sn |1/n
(˛

Sn
| f | 2n

n−1 dσ

) n−1
n

�
ˆ
Bn+1

|∇v|2dx + n − 1

2

˛
Sn

| f |2dσ. (1.2)
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Moreover, the equality holds if and only if �v = 0 and f = c|1 − 〈z0, ξ 〉|−(n−1)/2,
where c is a constant, ξ ∈ S

n and z0 ∈ B
n+1. Here � is the standard Gamma function.

The first one (1.1) was proved by Lebedev-Milin [11] and Osgood-Phillips-Sarnak [17].
The second one (1.2) was proved by Lions [14], Escobar [7] and Beckner [2].

A natural question is what the extremal v look like in the unit ball. It is not hard to find
that the harmonic extension of − log |1 − 〈z0, ξ 〉| on B

2 is

v(ξ) = − log

∣∣∣∣ ξ

|ξ | − |ξ |ω0

∣∣∣∣
2

+ log(1 + |ω0|2), ξ ∈ B
2 (1.3)

and the harmonic extension of |1 − 〈z0, ξ 〉|− n−1
2 on Bn+1 with n > 1 is

v(ξ) = (1 + |ω0|2) n−1
2

∣∣∣∣ ξ

|ξ | − |ξ |ω0

∣∣∣∣
1−n

, ξ ∈ B
n+1 (1.4)

where w0 = z0/(1 + √
1 − |z0|2) ∈ B

n+1. To obtain (1.3), one can use the observation

log |ω0 − ξ |2 = log(1 − 2ω0 · ξ + |ω0|2) = log(1 − 〈z0, ξ 〉) + log(1 + |ω0|2) (1.5)

because z0 = 2ω0/(1 + |ω0|2). One notices that log |ω0 − ξ |2 is a harmonic function with
a pole in B

2. Using explicit expressions of Green’s function on the unit ball (for instance,
see [9]) to annihilate the singularity, we can find the explicit forms for the extremal v. This
approach also works for (1.4).

Ache and Chang [1] generalized the Lebedev-Milin inequality and its counterpart (1.2)
to ones of order four. More precisely, let f ∈ C∞ (Sn) and v be a smooth extension of f to
the unit ball Bn+1. Let η be the outward-pointing unit normal to Sn and ∇̄ be the gradient in
S
n . Then we have the sharp trace inequalities.

– If n = 3, then

16π2

3
log

(
1

2π2

˛
S3
e3 f dσ

)
≤
ˆ
B4

(�v)2 dx + 2
˛
S3

|∇̄ f |2dσ + 8
˛
S3

f dσ (1.6)

for any v satisfying the homogeneous Neumann boundary condition ηv|S3 = 0. Equality
holds if and only if f = c − log |1 − 〈z0, ξ 〉| where c is a constant, ξ ∈ S

3, z0 is some
point in B

4 and v satisfies that
⎧⎪⎨
⎪⎩

�2v = 0 in B
4,

ηv = 0 on S
3,

v = f on S
3.

(1.7)

– If n > 3, then

an

(˛
Sn

| f | 2n
n−3 dσ

) n−3
n

�
ˆ
Bn+1

|�v|2dx + 2
˛
Sn

|∇̄ f |2dσ + bn

˛
Sn

| f |2dσ, (1.8)

for any v satisfying the Neumann boundary condition ηv|Sn = − n−3
2 f . Here an =

2
�

(
n+3
2

)

�
(
n−3
2

) |Sn |3/n and bn = (n + 1)(n − 3)/2. Equality holds if and only if f =
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c |1 − 〈z0, ξ 〉| 3−n
2 and v satisfies that⎧⎪⎨

⎪⎩
�2v = 0 in B

n+1,

ηv = − n−3
2 v on Sn,

v = f on Sn .

(1.9)

Similar to the second order case, we also want to know what the extremal functions of
(1.6) and (1.8) look like in B

n+1. We introduce the function F : Bn+1 × Bn+1 → R as

F(ξ, ω) =
∣∣∣∣ ξ

|ξ | − |ξ |ω
∣∣∣∣ . (1.10)

Theorem 1.1 Given any z0 ∈ B
n+1, define ω0 = z0/(1 + √

1 − |z0|2) ∈ B
n+1.

(1) If n = 3, then the solution of (1.7) with f = − log |1 − 〈z0, ξ 〉| on S
3 is

v(ξ) = − log F(ξ, ω0)
2 + (1 − |ξ |2)

2

[
1 − |ω0|2
F(ξ, ω0)2

− 1

]
+ log(1 + |ω0|2). (1.11)

(2) If n > 3, then the solution of (1.9) with f = |1 − 〈z0, ξ 〉| 3−n
2 on Sn is

v(ξ) =
(
1 + |ω0|2

) n−3
2

F(ξ, ω0)n−3

[
1 + (n − 3)(1 − |ω0|2)(1 − |ξ |2)

4F(ξ, ω0)2

]
. (1.12)

Proving the above theorem is more complicated than the second-order case because we
have one more boundary condition in the fourth-order case. We reformulate the problem on
R
n+1+ via the Möbius transformation (see (2.1)), because the extremals of (1.6) and (1.8)

(after a change of variable) satisfy simpler equations on Rn+1+ . In fact, when n > 3, Case [3]
and Ngô et al. [16] prove that (1.8) is equivalent to a sharp trace inequality on R

n+1+ whose
extremal function satisfies ⎧⎪⎨

⎪⎩
�2u = 0 in R

n+1+ ,

∂t�u = cu
n+3
n−3 on ∂Rn+1+ ,

∂t u = 0 on ∂Rn+1+ ,

(1.13)

for some constant c > 0. Fortunately, [18] has found the definitive solution to the above
equation. One can move everything back to the unit ball through a Möbius transformation.

In the case n = 3, we do not find an equivalent formulation of (1.6) on R
4+. However,

we notice that v is an extremal of (1.6) implies that (B4, e2vg∗) has vanishing Q-curvature,
constant T -curvature and vanishing mean curvature. Here T -curvature is defined by [5] and
g∗ is the adapted metric on B

4 (see [1, Prop 2.2] and [4]). It is interesting that one has
to use the adapted metric here. Via Möbius transformation, these geometric conditions are
equivalent to the existence of u which satisfies the following equation1⎧⎪⎨

⎪⎩
�2u = 0 in R

4+,

∂t�u = 4e3u on ∂R4+,

∂t u = 0 on ∂R4+.

(1.14)

1 Here the coefficient 4 in front of e3u is normalized for the convenience of (1.17). The other solutions to
∂t�u = ce3u differs from (1.17) by adding a constant.
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This equation is similar to (1.13). It is not studied in [18]. Here we continue to classify
the solutions of this equation under the finite volume conditions (1.15) and (1.16). These are
very natural geometric conditions.

Theorem 1.2 Suppose that u ∈ C4(R4+) satisfies (1.14) and the following conditions.

(i)
ˆ
R3

e3u(x,0)dx < ∞, (1.15)

(i i)
ˆ
R
4+
e4u(x,t)dxdt < ∞. (1.16)

Then lim|x |→∞ �̄u(x, 0) exists and is non-positive, here �̄ is the Laplacian w.r.t. x ∈ R
3

only. If �̄u(x, 0) = o(1) or u(x, 0) = o(|x |2) as |x | → ∞, then there exist a ∈ R
3, λ > 0

and c ≤ 0 such that u = ua,λ(x, t) + ct2 where

ua,λ(x, t) = log

(
2λ

(λ + t)2 + |x − a|2
)

+ 2tλ

(λ + t)2 + |x − a|2 . (1.17)

Remark 1.3 Conditions (i) and (ii) are sharp in the sense that if we remove both of them, then
there are other solutions. For instance, u = 2

3 t
3 satisfies (1.14) but violates (1.15) and (1.16).

On the other hand u = ua,λ +ct2 for any c > 0 satisfies (1.14) and (1.15) but violates (1.16).

As a byproduct of our arguments, we have the following corollary.

Corollary 1.4 Suppose that u ∈ C4(R4+) satisfies (1.15) and

u(x, t) = 1

|S3|
ˆ
R3

e3u(y,0) log
|y|2

|x − y|2 + t2
dy + u(0, 0) (1.18)

then there exists a ∈ R
3 and λ > 0 such that u = ua,λ.

Remark 1.5 Corollary 1.4 and Theorem 1.1 are expected to be used to describe the asymptotic
behavior of sequences of conformal metrics with prescribed T -curvature, Q = 0 and H = 0
on the whole background manifold rather than just at the boundary as available results in the
literature provides.

This is one of the motivations why we consider the extensions of extremals of Ache-
Chang’s inequality.

After the work of Ache-Chang [1, 3] found more general Sobolev trace inequalities of
order four. More precisely, keeping the notations as in (1.6) and (1.8),

– If n = 3, then

16π2

3
log

(
1

2π2

˛
S3
e3 f dσ

)
+

(
4π

˛
S3

|ψ |3dσ

) 2
3

≤
ˆ
B4

(�v)2 dx +
˛
S3

[
2|∇̄ f |2 + 4〈∇̄ f , ∇̄ψ〉 − 2ψ2 + 8 f

]
dσ.

(1.19)

Here ψ = ηv. Equality holds if and only if �2v = 0, f (ξ) = c0 − log(1 − 〈z0, ξ 〉) and
ψ(ξ) = c1|1 − 〈z1, ξ 〉|−1 for some constant c0, c1 ∈ R and points z0, z1 ∈ B

4.

123



Explicit forms for extremals of sharp Sobolev trace… Page 5 of 21   181 

– If n > 3, then

an

(˛
Sn

| f | 2n
n−3 dσ

) n−3
n + ãn

(˛
Sn

|ψ | 2n
n−1 dσ

) n−1
n

≤
ˆ
Bn+1

|�v|2dx +
˛
Sn

[
2|∇̄ f |2 + 4〈∇̄ f , ∇̄ψ〉 − 2ψ2 + 2bn f ψ + bn | f |2

]
dσ,

(1.20)

where an and bn are the same as in (1.8), ãn = 2
√

π(n − 1)(�(n/2)/�(n))1/n and

ψ = ηv + n − 3

2
f .

Equality holds if and only if �2v = 0, f (ξ) = c0|1 − 〈z0, ξ 〉|−(n−3)/2 and ψ(ξ) =
c1|1 − 〈z1, ξ 〉|−(n−1)/2 for some constant c0, c1 ∈ R and points z0, z1 ∈ B

n+1.

We also find the explicit forms of extremals of (1.19) and (1.20). It actually suffices to
deal with the case f = 0.

Theorem 1.6 Given any z1 ∈ B
n+1, we define ω1 = z1/(1 + √

1 − |z1|2) ∈ B
n+1. If either

n = 3 and the equality of (1.19) holds for v with f = 0 and ψ = |1 − 〈z1, ξ 〉|−1, or n > 3
and the equality of (1.20) holds for v with f = 0 and ψ = |1 − 〈z1, ξ 〉|−(n−1)/2, then

v(ξ) = −1

2
(1 − |ξ |2) (1 + |ω1|2) n−1

2

F(ξ, ω1)n−1 . (1.21)

In the proof of the Theorem 1.6, we also pull the equation to the upper half-space and
construct the solution directly. Unfortunately, we do not have a classification result to the
corresponding Euler-Lagrange equation on the upper half space, which is important for most
blow-up analysis leading to such a limiting equation. See the discussions at the end of this
paper.

To deal with the most general case of equalities in (1.19) and (1.20) with arbitrary c0
and c1, one needs to combine the results of Theorem 1.1 and Theorem 1.6. More precisely,
Theorem 1.1 (up to a translation/scaling) gives a solution to �2v = 0, f = c0 − log(1 −
〈z0, ξ 〉) or c0|1 − 〈z0, ξ 〉|−(n−3)/2 (depending on whether n = 3 or n ≥ 3) and ψ = 0.
Theorem 1.6 (up to a scaling) gives a solution to �2v = 0, f = 0 and ψ = c1|1 −
〈z1, ξ 〉|−(n−1)/2. By the linear property of bi-harmonic functions, the sum of these gives the
solution to the equality with arbitrary c0 and c1.

Corollary 1.7 The equality of (1.19) holds with

v = c0 + log
1 + |ω0|2
F(ξ, ω0)2

+ (1 − |ξ |2)
2

[
1 − |ω0|2
F(ξ, ω0)2

− 1

]
− c1

2
(1 − |ξ |2) (1 + |ω1|2)

F(ξ, ω1)2
.

(1.22)

where c0, c1 ∈ R and ω0, ω1 ∈ B
4. The equality of (1.20) holds with

v = c0

(
1 + |ω0|2

) n−3
2

F(ξ, ω0)n−3

[
1 + (n − 3)(1 − |ω0|2)(1 − |ξ |2)

4F(ξ, ω0)2

]
− c1

2
(1 − |ξ |2) (1 + |ω1|2) n−1

2

F(ξ, ω1)n−1 .

(1.23)

where c0, c1 ∈ R and ω0, ω1 ∈ B
n+1.
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The paper is organized as follows. In Sect. 2, we first give some preliminary on a Möbius
transformation which maps the upper half space to the unit ball. Sect.2.1 is devoted to finding
the extension of extremals on dimensions five and above and proving Part (2) of Theorem 1.1.
The case of dimension four is studied in the subsequent Sect.2.2, and we prove Part (1) of
Theorem 1.1. In Sect. 3, we prove the classification theorems about a bi-harmonic equation
on R

4+ with some conformally covariant boundary conditions and an associated integral
equation. Theorem 1.2 and Corollary 1.4 is established in this section. Finally, in the last
section, we prove Theorem 1.6 and Corollary 1.7 by computing the extension of extremals
of Sobolev trace inequalities proved by Case [3].

2 Sobolev trace inequality of order four

Recall that the following Möbius transformation maps the upper half space to the unit ball.

S : Rn+1+ = {X = (x, t)} 
→ B
n+1 = {ξ = (ξ ′, ξn+1)}

X → 2(X + en+1)

|X + en+1|2 − en+1
(2.1)

where en+1 = (0, · · · , 0, 1) ∈ R
n+1. Conversely

S−1(ξ) = 2(ξ + en+1)

|ξ + en+1|2 − en+1. (2.2)

It is well-known that

S∗|dξ |2 =
(

2

|X + en+1|2
)2

|dX |2. (2.3)

|x |2 + t2 = −4ξn+1

|ξ ′|2 + (ξn+1 + 1)2
+ 1, |ξ |2 = −4t

|x |2 + (t + 1)2
+ 1. (2.4)

Lemma 2.1 For any (a, λ) ∈ R
n+1+ , the following identity holds for ω = S(a, λ) ∈ B

n+1

λ

|x − a|2 + |t + λ|2 = (1 − |ω|2)
4

|ξ + en+1|2
F(ξ, ω)2

. (2.5)

Proof Denote A = |ξ ′|2 + |ξn+1 + 1|2 for short. We plug in (2.2) to the LHS and achieve

|λ + t |2 + |x − a|2 = A−2[(2(ξn+1 + 1) + (λ − 1)A)2 + |2ξ ′ − aA|2]
= 1

A2 [((λ − 1)2 + |a|2)A2 + 4(ξn+1 + 1)(λ − 1)A − 4Aa · ξ ′ + 4A]

= 1

A
[((λ − 1)2 + |a|2)|ξ |2 + 2(λ2 + |a|2 − 1)ξn+1 − 4a · ξ ′ + (λ + 1)2 + |a|2]

= (λ + 1)2 + |a|2
|ξ ′|2 + |ξn+1 + 1|2 [|ω|2|ξ |2 − 2ω · ξ + 1]

= (λ + 1)2 + |a|2
|ξ ′|2 + |ξn+1 + 1|2

∣∣∣∣ ξ

|ξ | − |ξ |ω
∣∣∣∣
2

123
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where ω = S(a, λ) with

ω′ = 2a

(λ + 1)2 + |a|2 , ωn+1 = 2(λ + 1)

(λ + 1)2 + |a|2 − 1. (2.6)

We also used the following fact

|ω|2 = −4λ

(λ + 1)2 + |a|2 + 1. (2.7)

Consequently

λ

|λ + t |2 + |x − a|2 = 1 − |ω|2
4

|ξ ′|2 + |ξn+1 + 1|2
F(ξ, ω)2

. (2.8)

��

2.1 Ache-Chang inequality in dimension five and above

In this subsection, we shall consider the case n > 3.

Proof of Theorem 1.1 Part (2) Suppose v is the extension. Obviously when z0 = 0, v will be
a positive constant. Since v depends continuously on z0 uniformly, we can suppose for |z0|
small enough that v > 0 in B

n+1.
We define

U (x, t) = v(S(x, t))

(
2

|x |2 + (1 + t)2

) n−3
2

(2.9)

Then it is easy to see that
ˆ
Rn

|U (x, 0)| 2n
n−3 dx =

˛
Sn

|v| 2n
n−3 dσ (2.10)

and

∂tU (x, 0) = − [S(x, 0) · ∇v(S(x, 0)) + n−3
2 v(S(x, 0))

] (
2

1 + |x |2
) n−1

2

(2.11)

Since S(x, 0) is normal to S
n , thus S(x, 0) · ∇v(S(x, 0)) = ηv(S(x, 0)). Therefore ηv =

− n−3
2 v is equivalent to ∂tU (x, 0) = 0 for ∀ x ∈ R

n . After some computation (for instance,
see Ngô et al. [16, Eq. (4.9)]2), we obtain

ˆ
R
n+1+

|�U |2dX =
ˆ
Bn+1

|�v|2dx + 2
˛
Sn

|∇̄ f |2dσ + bn

˛
Sn

| f |2dσ. (2.12)

Consequently (1.8) is equivalent to the sharp trace inequality

an

(ˆ
Rn

|U (x, 0)| 2n
n−3 dx

) n−3
n

�
ˆ
R
n+1+

|�U (x, t)|2dxdt (2.13)

2 TheMöbius transformation in [16] is different from ours (see (2.1)) by a negative sign in the ξn+1 coordinate.
However, this difference does not affect the energy identity.
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for functions U with ∂tU (x, 0) = 0. Using (2.9), we know that U is also positive. The
positive extremal function of the above inequality satisfies

⎧⎪⎨
⎪⎩

�2U = 0 in R
n+1+ ,

∂t�U = cU
n+3
n−3 on Rn,

∂tU = 0 on Rn,

(2.14)

for some c > 0. The positive solutions to the above equations have been studied by [18]. It
follows from (2.9) that U (x, t) = o(|x |2 + t2). Therefore, one can apply [18, Rmk 1.2] to
achieve that there exists λ > 0, a ∈ R

3 and

U (x, t) = c

(
λ

(λ + t)2 + |x − a|2
) n−3

2
[
1 + (n − 3)tλ

(λ + t)2 + |x − a|2
]

(2.15)

for some constant c > 0. Now we plug in the above equation to

v(ξ) = U (S−1(ξ))

(
2

|ξ ′|2 + (1 + ξn+1)2

) n−3
2

(2.16)

and using (2.5) and (2.2) to obtain that

v(ξ) = c

(
1 − |ω0|2

) n−3
2

F(ξ, ω0)n−3

[
1 + (n − 3)(1 − |ω0|2)(1 − |ξ |2)

4F(ξ, ω0)2

]
(2.17)

for some c > 0. Here ω0 = S(a, λ) and F is defined in (1.10). One can determine c through
c(1 − |ω0|2)(n−3)/2 = (1 + |ω0|2)(n−3)/2 using v(ξ) = |1 − 〈z0, ξ 〉|(3−n)/2 on Sn .

Now we want to show that v takes the form in (2.17) for any z0 ∈ B
n+1, not just for z0

near the origin. Fixing any r ∈ (0, 1), we define

Zr := {z0 ∈ Bn+1(0, r) : Part (2) of Theorem 1.1 holds true}.
The previous proof shows that Zr contains a neighborhood of 0, thus it is non-empty. Since
v depends on z0 smoothly and is strictly positive, then for any z sufficiently near to z0,
v is also positive. This fact implies that Zr is open. Clearly, Zr is a close set. Therefore
Zr = Bn+1(0, r). Since this holds for any r , then the proof is complete. ��
Remark 2.2 There is a geometric interpretation of the extremals for (1.8) (with the Neumann
boundary condition). According to Case [3], the best constant in (1.8) is Y4,1(Bn+1,Sn).
Moreover, the conformal metric ĝ = v4/(n−3)gBn+1 will have Q̂4 = 0, Ĥ = 0 and T̂ 3

3 =
const > 0. There is another way to show the extremals v is positive if one uses the fractional
GJMS operator P3 on Sn , which has leading order (−�Sn )

3/2. The Euler-Lagrange equation
implies P3v > 0. One can apply the result Case and Alice Chang [4, Theorem 1.3] to prove
v > 0. Here we try to avoid citing this deep result and make the proof self-contained.

2.2 Ache-Chang inequality on dimension four

Recall the Paneitz operator defined on a smooth compact Riemannian manifold (Xn+1, g)
for n ≥ 3,

(L4)g = (−�g
)2 + δg

((
4Pg − (n − 1)Jgg

)
(∇·, ·)) + n − 3

2
(Q4)g (2.18)

123
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where δ denotes divergence, ∇ denotes gradient on functions, Pg the Schouten tensor Pg =
1

n−1

(
Ricg − Jgg

)
, Jg = 1

2n Rg, Rg is the scalar curvature of the metric g and Q4 is the
Q-curvature

(Q4)g = −�g Jg + n + 1

2
J 2g − 2

∣∣Pg∣∣2g .

In the following, we shall write L4 = (L4)g for short when the background metric is under-
stood.

When n = 3, we have the following conformal invariance property of L4 and Q4,

(L4)ĝ U = e−4τ (L4)g (U ),

(Q4)ĝ = e−4τ (
(L4)gτ + (Q4)g

)
,

(2.19)

for any smooth function U on X4 and ĝ = e2τ g.
When X4 has boundary M , Chang and Qing [5] derived a conformally covariant boundary

operator Pb
3 and associated T -curvature T3. Suppose h is the induced metric of (X4, g) on

M . Let us use �̄ and ∇̄ denote the Laplacian and connection on (M, h). Assume A is the
second fundamental form of M and H = trh A is the mean curvature. Then

Pb
3 (u) = −1

2
η�u − �̄ηu +

〈
A − 2

3
Hh, ∇̄2u

〉
+ 1

3
〈∇̄H , ∇̄u〉 − (Ric(η, η) − 2J )ηu

T3 = 1

2
ηJ − 1

3
�̄H + J H − 〈R(η, ·, η, ·), A〉 − 1

3
tr A3 + 1

9
H3.

Here η = ηg is the outward-pointing unit normal to M .
If ĝ = e2τ g, we have the transformation laws(

Pb
3

)
ĝ
U = e−3τ

(
Pb
3

)
g
U ,

(T3)ĝ = e−3τ
((

Pb
3

)
g
τ + (T3)g

)
.

(2.20)

We also have the relation of mean curvature

Hĝ = e−τ
(
Hg + nηgτ

)
. (2.21)

For the model case (B4,S3, g0) where g0 is the Euclidean metric, one has (for instance,
see [1, (6.6)])

(Pb
3 )g0 = −1

2
η� − �̄η − �̄, (T3)g0 = 2, Hg0 = 3. (2.22)

On B
4, there is a special metric g∗ = e1−|ξ |2g0 which has nice properties. It is called

adapted metric in [4] (also appeared in [8]). Under this metric g∗, S3 is totally geodesic and

(Q4)g∗ = (Q4)g0 = 0, (2.23)

(T3)g∗ = (T3)g0 = 2. (2.24)

Now we are ready to prove the main theorem of this subsection.

Proof of Theorem 1.1 part (1) Suppose that v is the extension. Then v will be an extremal
function for the (1.6). It is easy to see that the Euler-Lagrange equation of (1.6) is⎧⎨

⎩
�2v = 0 in B

4,

−η�v − 2�̄v + 4 = 8π2
(´

S3
e3v

)−1
e3v on S3,

ηv = 0 on S3.
(2.25)
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Here � = �g0 and η = ηg0 . Let g = e2vg∗ = e2v+1−|ξ |2 |dξ |2, here g∗ is the so-called
adapted metric. Denote τ = v + (1 − |ξ |2)/2. The first line of (2.25) implies (L4)g0τ =
�2

g0τ = �2
g0v = 0. Then applying (2.19) with τ = v + (1 − |ξ |2)/2, the first line of (2.25)

is equivalent to

(Q4)g = e−4τ ((L4)g0τ + (Q4)g0) = 0. (2.26)

Applying (2.20) with τ = v + (1 − |ξ |2)/2, the second line of (2.25) is equivalent to

(T3)g = e−3τ ((Pb
3 )g0τ + (T3)g0) = e−3v

(
−1

2
ηg0�g0v − �̄g0v + 2

)
= const > 0

(2.27)

where we have used (2.22), τ = v on S
4 and ηg0v = 0. Applying (2.21) with the same τ as

before, the third line of (2.25) is equivalent to

Hg = e−τ (Hg0 + 3ηg0τ) = e−v(3 + 3(ηg0v − 1)) = 0. (2.28)

Combining the above analysis, (2.25) is equivalent to

(Q4)g = 0, (T3)g = const > 0, Hg = 0. (2.29)

Using Möbius transformation (2.1), we can find w such that (B4 \ {(0, 0, 0,−1)}, g) is
isometric to (R4+, e2w(|dx |2 + dt2)) through

S∗(e2v+1−|ξ |2 |dξ |2) = e2w(|dx |2 + dt2) (2.30)

where v and w are related by

w = v ◦ S + 1

2
− 1

2

|x |2 + (t − 1)2

|x |2 + (t + 1)2
+ log

2

x2 + (1 + t)2
, (2.31)

v = w ◦ S−1 − 1 − |ξ |2
2

+ log
2

|ξ ′|2 + (1 + ξ4)2
. (2.32)

By the isometry, we can think of (2.29) as referring to S∗g on R
4+. Thus using |dx |2 + dt2

as the background metric and the conformal properties of L4, Pb
3 and H , we rewrite (2.29)

as the following ⎧⎪⎨
⎪⎩

�2w = 0 in R
4+,

∂t�w = ce3w on R
3,

∂tw = 0 on R
3,

(2.33)

for some constant c > 0. Moreover, isometry also implies
ˆ
R
4+
e4w(x,t)dxdt = vol(B4, g) < ∞,

ˆ
R
3+
e3w(x,0)dx = vol(S3, g|S3) < ∞. (2.34)

The solution to (2.33) with (2.34) has been studied by Theorem 1.2. Since v is smooth on
B4, then (2.31) leads to w(x, t) = o(|x |2 + t2) as |x | + t → ∞. Therefore, it follows from
Theorem 1.2 that there exists λ > 0, a ∈ R

3 and a constant C such that

w(x, t) = log
2λ

(λ + t)2 + |x − a|2 + 2tλ

(λ + t)2 + |x − a|2 + C . (2.35)
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Plugging in (2.5) with ω0 = S(a, λ) and (2.2) to (2.32), one obtains

v(ξ) = log F(ξ, ω0)
−2 + (1 − |ω0|2)(1 − |ξ |2)

2F(ξ, ω0)2
− 1

2
(1 − |ξ |2) + C

= − log F(ξ, ω0)
2 + 1 − |ξ |2

2

[
1 − |ω0|2
F(ξ, ω0)2

− 1

]
+ C

The precise value of C can be determined through v(ξ) = − log |1 − 〈z0, ξ 〉| for ξ ∈ S
3.

This completes the proof. ��

Remark 2.3 The above method also applies to the harmonic case. The proof is simpler in that
case because the adapted metric g∗ for Bn+1 is identical to the Euclidean metric g0 (see [1,
Rmk 2.4]).

3 Classification of the solution to a bi-harmonic equation

In this section, we will prove Theorem 1.2. The strategy is to separate the nonlinear effect,
by subtracting a function constructed from nonlinear boundary conditions. Such trick has
been used by [10, 18]. The resulting linear fourth-order equation can be classified under the
finite volume condition. The proof here is greatly inspired by Lin [13], who initiated the
classification of some conformal bi-harmonic equation on R4.

Given any f ∈ L1(R3), we define v for (x, t) ∈ R
4+

v(x, t) = 1

|S3|
ˆ
R3

f (y) log
|y|2

|x − y|2 + t2
dy.

Lemma 3.1 For any f (y) ∈ C2(R3) ∩ L1(R3), one has
⎧⎪⎨
⎪⎩

�2v = 0 in R
4+,

∂t�v = 4 f on ∂R4+,

∂tv = 0 on ∂R4+.

(3.1)

Proof Using the Lebesgue dominating theorem, it is easy to see ∂tv(x, 0) = 0 and for any
t > 0

�v(x, t) = −4

|S3|
ˆ
R3

f (y)

|x − y|2 + t2
dy (3.2)

∂t�v(x, t) = 8

|S3|
ˆ
R3

t f (y)

(|x − y|2 + t2)2
dy (3.3)

�2v = 0. (3.4)

Note that 2
|S3|

t
(|x−y|2+t2)2

is the Possion kernel of � on R4+ (see [18, Lemma 2.2]). Then one
has

lim
t→0+ ∂t�v(x, t) = 4 f (y). (3.5)

��
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Now suppose that u satisfies the assumptions of Theorem1.2. In the following, wewill denote

v(x, t) = 1

|S3|
ˆ
R3

e3u(y,0) log
|y|2

|x − y|2 + t2
dy. (3.6)

Lemma 3.2 For v(x, t) defined in (3.6), there exists some constant C > 0 such that

v(X) ≥ −α log(1 + |X |) − C (3.7)

where

α = 2

|S3|
ˆ
R3

e3u(y,0)dy. (3.8)

Proof The proof is essentially contained in [13, Lemma 2.1 and 2.4] and [15]. For readers’
convenience, we present it here.

For |X | ≥ 4, we decompose R3 = A1 ∪ A2, where A1 = {y||(y, 0) − X | ≤ |X |/2} and
A2 = {y||(y, 0) − X | ≥ |X |/2}. For y ∈ A1, one has |y| ≥ |X | − |X − (y, 0)| ≥ |X |/2 ≥
|X − (y, 0)|. Consequently, we have log |y|/|X − (y, 0)| ≥ 0 and

ˆ
A1

e3u(y,0) log
|y|2

|x − y|2 + t2
dy ≥ 0. (3.9)

For y ∈ A2, one has |X − (y, 0)| ≤ |X ||y| if |y| ≥ 2 and log |X − (y, 0)| ≤ log |X | + C
if |X | ≥ 4 and |y| ≤ 2. Thus

v(x) ≥ 1

|S3|
ˆ
A2

e3u(y,0) log
|y|2

|x − y|2 + t2
dy (3.10)

≥ − 2

|S3| log |X |
ˆ
A2

e3u(y,0)dy + 1

|S3|
ˆ

|y|≤2
e3u(y,0) log

|y|2
|X − (y, 0)|2 dy (3.11)

≥ − α log |X | − C . (3.12)

For |X | ≤ 4, since v is continuous, we have v(X) ≥ −C for some constant C > 0.
Combining the two cases, we have (3.7). ��
Lemma 3.3 Suppose u satisfies (1.14), (1.15) and (1.16). Then there exists a constant C1 ≥ 0
such that

�u(x, t) = − 4

|S3|
ˆ
R3

e3u(y,0)

|x − y|2 + t2
dy − C1. (3.13)

Moreover, there exist constants c∗ ≤ 0, ai ≤ 0, i = 1, 2, 3 such that

u − v = c∗t2 +
3∑

i=1

ai (xi − x0i )
2 + c0. (3.14)

Proof Denote w = u − v where v is defined in (3.6). Then w satisfies⎧⎪⎨
⎪⎩

�2w = 0 in R
4+,

∂t�w = 0 on ∂R4+,

∂tw = 0 on ∂R4+.

(3.15)
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We extend w by w(x, t) = w(x,−t) for t < 0. We denote ŵ this new function on R
4.

It follows from the mean value property of harmonic functions that �ŵ is smooth is R4.
Consequently, ŵ is also smooth in R

4.
It follows from Lemma 3.2 that for t > 0,

w(x, t) = u(x, t) − v(x, t) ≤ u(x, t) + α log(1 + |(x, t)|) + C . (3.16)

Thus ŵ(X) ≤ û(X) + α log(1 + |X |) + C , where û is the even extension of u to R
4. By

Pizzetti’s formula (see [15]), we have

r2

8
�ŵ(X0) =

 
∂Br (X0)

ŵdσ − ŵ(X0). (3.17)

By Jensen’s inequality

exp

(
r2

2
�ŵ(X0)

)
≤ e−4ŵ(X0) exp

(
4
 

∂Br (X0)

ŵdσ

)
(3.18)

≤ e−4ŵ(X0)

 
∂Br (X0)

e4ŵdσ. (3.19)

Since ŵ(X) ≤ û(X) + α log(1 + |X |) + C and (1.16), then r3−4α exp( r
2

2 �ŵ(X0)) ∈
L1[1,∞). Thus �ŵ(X0) ≤ 0 for all x0 ∈ R

4. By Liouville’s Theorem, �ŵ(X) ≡ −C1 in
R
4 for some constant C1 ≥ 0.
For bi-harmonic functions, one has the following fact that (for instance, see [15, eq. (14)])

|D3ŵ|(X0) ≤ C

r3

 
Br (X0)

|ŵ|dσ (3.20)

holds for some universal constant C . Note that 
Br (X0)

ŵ+dσ ≤
 
Br (X0)

û + α log(1 + |X |)dσ + C

≤
 
Br (X0)

[1
4
e4û + C log r ]dσ + C

Using (1.16), we have r−3
ffl
Br (X0)

ŵ+dσ → 0 as r → ∞. Consequently,

|D3ŵ|(X0) ≤ C

r3

 
Br (X0)

|ŵ|dσ = C

r3

 
Br (X0)

[2ŵ+ − 2ŵ]dσ

= o(1) − 2C

r3

 
Br (X0)

ŵdσ.

However, (3.17) and �ŵ(X) = −C1 implies that
 
Br (X0)

ŵdσ = O(r2). (3.21)

Inserting this to the previous inequality and letting r → ∞, one must have |D3ŵ|(X0) = 0.
Therefore ŵ is a polynomial of degree at most 2. By the boundary condition of w and even
symmetry of ŵ, one has ŵ = c∗t2 + p(x) where p(x) has a degree at most 2.

Sincew(X) ≤ u(X)+α log(1+|X |)+C for X ∈ R
4+ and u satisfies (1.16), then c∗ < 0.

Moreover, after an orthogonal transformation, we can assume p(x) = ∑3
i=1 ai x

2
i +bi xi +c0.

123



  181 Page 14 of 21 C. B. Ndiaye, L. Sun

Since
´
R3 e3u(x,0)dx < ∞, then we must have ai ≤ 0 and bi = 0 whenever ai = 0. Thus

p(x) =
∑
i

ai (x − x0i )
2 + c0. (3.22)

The proof is complete. ��
Lemma 3.4 Suppose that v(x, t) defined in (3.6). For any ε > 0, there exists R = R(ε) such
that for |X | > R,

v(X) ≤ −(α − ε) log |X | (3.23)

where α is defined in (3.8).

Proof As in the proof of [13, Lemma 2.4], we can show that for any ε > 0 there exists
R = R(ε) > 0 such that

−v(X) ≥ (α − ε

2
) log |X | + 2

|S3|
ˆ
B1(X)∩∂R4

log |X − (y, 0)|e3u(y,0)dy (3.24)

where B1(X) denotes the ball in R
4 with center X and radius 1. It suffices to prove that the

last term is bounded from below independent of X .
Applying Lemma 3.3 and letting t → 0+ in (3.14), we have

u(x, 0) = 2

|S3|
ˆ
R3

e3u(y,0) log
|y|

|x − y|dy +
3∑

i=1

ai (xi − x0i )
2 + c0. (3.25)

One can compute that

�̄u(x, 0) = − 2

|S3|
ˆ
R3

e3u(y,0)

|x − y|2 dy + 2a1 + 2a2 + 2a3. (3.26)

Applying [19, Lemma 3.1], the above equation implies that 0 ≤ −�̄u(x, 0) ≤ C for x ∈ R
3

and some constant C . In fact, although the statement of Lemma 3.1 of [19] is for the case
a1 = a2 = a3 = 0, the proof still works for all a1 ≤ 0, a2 ≤ 0, a3 ≤ 0 with mild changes,
as observed in [10, Lemma 18].

Once we have the bound of �̄u, then using [19, Lemma 3.2], one can conclude that
u(x, 0) ≤ C for x ∈ R

3 and some constant C . Consequently, the last term in (3.24) is
bounded from below independent of X . Thus (3.23) is established. ��
Lemma 3.5 Suppose that u satisfies theassumptions of Theorem1.2. Then lim|x |→∞ �̄u(x, 0)
exists and is non-positive, here �̄ is the Laplacian w.r.t. x ∈ R

3 only.If u(x, 0) = o(|x |2) or
�̄u(x, 0) = o(1) as |x | → ∞, then there exist λ > 0 and a ∈ R

3 such that

u(x, 0) = ua,λ(x, 0) = log

(
2λ

λ2 + |x − a|2
)

(3.27)

where ua,λ is defined in (1.17). Consequently there exists some c ≤ 0 such that

u(x, t) = va,λ(x, t) + ua,λ(0, 0) + ct2 (3.28)

where

va,λ(x, t) = 1

|S|3
ˆ
R3

e3ua,λ(y,0) log
|y|2

|x − y|2 + t2
dy. (3.29)
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Proof We claim that the first term on the right-hand side of (3.26) converges to 0 when
|x | → ∞. In fact, it can be decomposed to

ˆ
R3

e3u(y,0)

|x − y|2 dy =
ˆ
B1(x)

e3u(y,0)

|x − y|2 dy +
ˆ
R3\B1(x)

e3u(y,0)

|x − y|2 dy.

The first term can be bounded as
ˆ
B1(x)

e3u(y,0)

|x − y|2 dy ≤
(ˆ

B1(x)
|x − y|− 8

3 dy

) 3
4
(ˆ

B1(x)
e12u(y,0)dy

) 1
4

(3.30)

≤ C

(ˆ
B1(x)

e12v(y,0)+12
∑3

i=1 ai (y−x0i )2+c0dy

) 1
4 → 0 (3.31)

as |x | → ∞. Here we have used (3.23) and ai ≤ 0 from Lemma 3.3. By the dominated
convergence theorem and (1.15), the second term is going to 0 as |x | → ∞,

ˆ
R3\B1(x)

e3u(y,0)

|x − y|2 dy → 0 as |x | → ∞.

Thus the claim is proved and consequently

lim|x |→∞ �̄u(x, 0) = 2(a1 + a2 + a3) ≤ 0. (3.32)

Now, if u(x, 0) = o(|x |2), then clearly a1 = a2 = a3 = 0. Since Lemma 3.3 says that
ai ≤ 0 for i = 1, 2, 3, then if �̄u(x, 0) = o(1), then we also get a1 = a2 = a3 = 0.

In both cases, we get

u(x, 0) = 2

|S3|
ˆ
R3

e3u(y,0) log
|y|

|x − y|dy + c0. (3.33)

The solutions to such an equation have been studied by Xu [19]. More precisely, under the
condition (1.15), there exist some a ∈ R

3 and λ > 0 such that u(x, 0) = ua,λ(x, 0) where
ua,λ is defined in (1.17). Consequently, taking x = 0 in (3.33), one obtains that

c0 = ua,λ(0, 0) = log

(
2λ

λ2 + |a|2
)

. (3.34)

Noticing (3.6), we introduce the notation va,λ as defined in (3.29). Since we have derived
that a1 = a2 = a3 = 0, then (3.14) leads to (3.28). ��

It seems hard to integrate (3.29) out explicitly.We get around this difficulty by constructing
a solution to (1.14) directly.

Lemma 3.6 For any λ > 0 and a ∈ R
3, (1.17) satisfies (1.14).

Proof For the convenience of notation, we assume a = 0. The general case follows from the
translation invariance of the equation. Let u = u1 + u2

u1 = log

(
2λ

(λ + t)2 + |x |2
)

, u2 = 2λt

(λ + t)2 + |x |2 . (3.35)

Then it is easy to see

∂t u1(x, 0) = − 2λ

λ2 + |x |2 = −∂t u2(x, 0) (3.36)
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Therefore ∂t u(x, 0) = 0 for x ∈ R
3. We continue taking derivatives

�u1 = − 4

(λ + t)2 + |x |2 , �u2 = − 8λ(t + λ)(
(λ + t)2 + |x |2)2 (3.37)

∂t�u1(x, 0) = 8λ(
λ2 + |x |2)2 , ∂t�u2(x, 0) = −8λ

(|x |2 − 3λ2
)

(
λ2 + |x |2)3 . (3.38)

Therefore

∂t�u(x, 0) = 32λ3(
λ2 + |x |2)3 = 4e3u(x,0). (3.39)

Last, we have

�2u1(x, t) = �2u2(x, t) = 0 (3.40)

This implies �2u = 0 in R
4. Thus u satisfies (1.14). It is easy to see that (1.15) holds. ��

Corollary 3.7 One must have ua,λ = va,λ + ua,λ(0, 0) where ua,λ is defined in (1.17) and
va,λ is defined in (3.29).

Proof Given any a ∈ R
3 and λ > 0, it is easy to show that ua,λ satisfies (1.15) and (1.16).

Combining Lemma 3.6, u satisfies the assumption of Theorem 1.2. Apparently ua,λ(x, 0) =
o(|x |2). Then Lemma 3.5 asserts the existence of a′ ∈ R

3, λ′ > 0 and c ≤ 0 such that

ua,λ(x, t) = va′,λ′(x, t) + ua′,λ′(0, 0) + ct2.

Applying ∂t� on the boundary, Lemma 3.1 and (3.29) imply that ua,λ(x, 0) = ua′,λ′(x, 0).
Thus a = a′ and λ = λ′. It is easy to see c = 0 in this case, because both ua,λ and va′,λ′ are
o(|x |2 + t2). This completes the proof. ��

Proof of Theorem 1.2 It follows from (3.32) in Lemma 3.5 that lim|x |→∞ �̄u(x, 0) exists and
is non-positive. If u(x, 0) = o(|x |2) or �̄u(x, 0) = o(1) as |x | → ∞, then Lemma 3.5
applies to this case. Consequently, (3.28) and Corollary 3.7 give that u = ua,λ +ct2 for some
a ∈ R

3 and λ > 0. ��

Proof of Corollary 1.4 Taking t = 0 in (1.18) implies that u satisfies (3.33), which leads to
(3.27). Then Lemma 3.5 holds with c = 0 in (3.28). The result follows from Corollary 3.7. ��

4 Equality case for more general Sobolev trace inequalities

In this section,we shall study the general Sobolev trace inequalities proved byCase. The result
here is not as rich as Ache-Chang’s inequality. As did before, we shall write the equations
on the upper half space. However, in this general case, we do not have a classification result
for the Euler-Lagrange equations (see the discussion at the end), which plays an important
role in most of the the blow up analysis giving rise to such limit equation. Nevertheless, to
find the extremals it suffices to find a solution with sufficient decay on the upper half space.
When we pull back the solution to the unit ball, it won’t cause a singularity.
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4.1 Extensions of extremals

We shall prove Theorem 1.6 and Corollary 1.7.

Proof of Theorem 1.6 For n ≥ 3, we want to find the solution of⎧⎪⎨
⎪⎩

�2v = 0 in B
n+1,

ηv + n−3
2 v = |1 − 〈z1, ξ 〉|−(n−1)/2 on S

n,

v = 0 on S
n

(4.1)

Note that we do not need to distinguish the cases n = 3 and n ≥ 4.
We will first find the corresponding equations of (4.1) onRn+1+ using Möbius transforma-

tion. We define

U (x, t) = v(S(x, t))

(
2

|x |2 + (1 + t)2

) n−3
2

. (4.2)

It follows from (2.11) that

∂tU (x, 0) = −|1 − 〈z1, ξ 〉|− n−1
2

(
2

1 + |x |2
) n−1

2

. (4.3)

For ξ ∈ S
n , we have |1− 〈z1, ξ 〉| = F(ω1, ξ)2(1+ |ω1|2)−1. Consequently, we use (2.5) to

derive that

∂tU (x, 0) = −(1 + |ω1|2) n−1
2 F(ω1, ξ)−(n−1)

( |ξ + en+1|2
2

) n−1
2

= c(ω1)

(
λ

|x − a|2 + (t + λ)2

) n−1
2

(4.4)

where c(ω1) = −
(
21+|ω1|2
1−|ω1|2

)(n−1)/2
and (a, λ) = S−1(ω1). Thus U satisfies the following

equations
⎧⎪⎪⎨
⎪⎪⎩

�2U = 0 in R
n+1+ ,

∂tU = c(ω1)
(

λ
|x−a|2+(t+λ)2

) n−1
2

on Rn,

U = 0 on Rn .

(4.5)

Conversely, if U satisfies the above equation and is smooth, then the following v defined by

v(ξ) = U (S−1(ξ))

(
2

|ξ ′|2 + (1 + ξn+1)2

) n−3
2

(4.6)

will satisfy (4.1) on Bn+1 \ {−en+1}.

Claim 1 Fix any (a, λ) ∈ R
n+1+ , equations (4.5) have a solution

U (x, t) = c(ω1)t

(
λ

|x − a|2 + (t + λ)2

) n−1
2

(4.7)
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Proof It is easy to verify the boundary conditions. We only need to prove �2U = 0. This
follows from the direct computation. For instance, one can get

�U (x, t) = 2(1 − n)(t + λ)
λ

n−1
2

(|x − a|2 + (t + λ)2)
n+1
2

. (4.8)

��
Now plugging in (4.7) to (4.6) and using (2.5), we obtain

v(ξ) = −1

2
(1 − |ξ |2) (1 + |ω1|2) n−1

2

F(ξ, ω1)n−1 . (4.9)

Note that this v is smooth on whole Bn+1. Thus it is the desired solution. ��
Proof of Corollary 1.7 For any n ≥ 3, if v is the extremal of (1.19) or (1.20), then Case [3]
implies that it satisfies ⎧⎪⎨

⎪⎩
�2v = 0 in B

n+1,

ηv + n−3
2 v = ψ on Sn,

v = f on Sn .

(4.10)

Denote the unique solution to be v f ,ψ . By the linearity, we must have v f ,ψ = v f ,0 + v0,ψ .
However, v f ,0 is obtained from Theorem 1.1 and Theorem 1.6 finds v0,ψ . The sum of them
will give v f ,ψ . ��

4.2 Discussion

In the end, we shall provide some discussion to the Euler-Lagrange equation for the general
Sobolev trace inequality of order four proved by Case. Consider (1.19) and (1.20) for f = 0,
that is

ãn

(˛
Sn

|ψ | 2n
n−1 dσ

) n−1
n ≤

ˆ
Bn+1

|�v|2dx − 2
˛
Sn

ψ2dσ. (4.11)

Recall that ψ = ηv if f = 0. Then the Euler-Lagrange equation for the equality (modulo
scaling) is ⎧⎪⎨

⎪⎩
�2v = 0 in B

n+1,

∇2v(η, η) + (n − 2)ηv = |ηv| 2
n−1 ηv on S

n,

v = 0 on S
n .

(4.12)

Again usingMöbius transformation and (2.9), we compute thatU (x, t) satisfies the following
equations on the upper half space Rn+1+ for n ≥ 3.⎧⎪⎨

⎪⎩
�2U = 0 in R

n+1+ ,

∂2t tU = −|∂tU | 2
n−1 ∂tU on R

n,

U = 0 on R
n .

(4.13)

It is easy to verify that

U (x, t) = ct

(
λ

|x − a|2 + (t + λ)2

) n−1
2

(4.14)
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satisfies (4.13) for some suitable constant c and any (a, λ) ∈ R
n+1+ .

It is quite possible that (4.13) has many solutions with ∂tU changes sign on ∂Rn+1+ . An
interesting question is the classification of the solutions of (4.13) assuming ∂tU has a fixed
sign on ∂Rn+1+ for n ≥ 3. Here we provide some useful observations. If we in addition
assume that U has sufficient decay (say U ∈ C4 ∩ W 2,2(Rn+1+ )), then one can characterize
∂tU on ∂Rn+1+ . More precisely, we denote ψ = −Ut (x, 0) and assume ψ > 0. Since �U is
a harmonic function on the upper half space, then we apply the Poisson kernel to get

�U (x, t) = P ∗ ψ(X). (4.15)

Since U = 0 on the boundary, then we use Green’s representation on the upper half space

U (X) =
ˆ
R
n+1+

G(X , Y )(P ∗ ψ)(Y )dY (4.16)

where X = (X , t), Y = (y, s). Recall that ∂t |t=0G(X , Y ) = −P(x − y, s). Consequently

ψ(x) = −∂tU (X)|t=0 =
ˆ
Rn

(ˆ
Rn+1

P(x − y, s)P(y − z, s)dyds

)
ψ(z)

n+1
n−1 dz

=
ˆ
Rn

(ˆ ∞

0
P(x − z, 2s)ds

)
ψ(z)

n+1
n−1 dz

=
ˆ
Rn

ψ
n+1
n−1

|x − z|n−1 dz.

(4.17)

Namely, ψ satisfies an integral equation. The results in [12] and [6] assert that ψ must be
(λ/[λ2 + |x − a|2])−(n−1)/2 up to some constant for (a, λ) ∈ R

4+. This coincides with the
rigidity of equality in (1.19) and (1.20) through the observation (4.4).

However, without any decay condition on U , it is easy to see that ct3 is also a solution of
(4.13) for any constant c.

Furthermore, one can study the Euler-Lagrange equations of (1.19) and (1.20) for general
f and ψ . The equations will look more complicated but the results should be expected from
some similar analysis in this paper. We shall state the equations and leave the details to the
interested reader.More precisely, usingMöbius transformation and the results by [3], if n > 3
then the inequality (1.20) is equivalent to that the following one holds for anyU ∈ C∞

c (Rn+1)

an

(ˆ
Rn

| f | 2n
n−3 dx

) n−3
n + ãn

(ˆ
Rn

|ψ | 2n
n−1 dx

) n−1
n

�
ˆ
R
n+1+

|�U (x, t)|2dxdt

+
ˆ
Rn

4〈∇̄ f , ∇̄ψ〉dx (4.18)

where f (x) = U (x, 0), ψ(x) = −∂tU (x, 0). The Euler-Lagrange equation of the above
inequality is ⎧⎪⎨

⎪⎩
�2U = 0 in R

n+1+ ,

∂t�U − 2�̄ψ = 2an(
´
Rn | f | 2n

n−3 )− 3
n | f | 6

n−3 f on Rn,

∂2t tU − �̄ f = 2ãn(
´
Rn |ψ | 2n

n−1 )
−1
n |ψ | 2

n−1 ψ on Rn .

(4.19)

providing f �≡ 0 and ψ �≡ 0. If ψ ≡ 0, the Euler-Lagrange equation reduces to (2.14)
modulo suitable scaling, and to (4.13) if f ≡ 0 modulo suitable scaling. We know that (4.19)
has explicit solutions which come from the linear combinations of (2.15) and (4.7). We do
not know if there is any other solutions.
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Now let us consider n = 3 case. The Euler-Lagrange equation for (1.19) is⎧⎪⎨
⎪⎩

�2v = 0 in B
4,

−η�v − 2�̄v − 2�̄ηv + 4 = 8π2
(¸

S3
e3v

)−1
e3v on S

4,

�v − 2�̄v − 2ηv = (4π)
2
3 (
¸
S3

|ηv|3)− 1
3 |ηv|ηv on S

4

(4.20)

provided ηv �≡ 0. Here η = ηg0 is the unit outward normal for (B4, g0). If ηv ≡ 0, then the
Euler-Lagrange equation reduces to (2.25).

Using the adapted metric g∗, one defines g = e2vg∗ = e2v+1−|ξ |2 |dξ |2. As we did in the
Sect. 2.2, the first line of (4.20) is equivalent to (Q4)g = 0, and the second line is equivalent
to (T3)g = const > 0. In order to interpret the third line of (4.20), we need to introduce the
boundary operator B3

2 and its conformation rule. On a four-dimensional manifold (X4, g)
with boundary M , one can define B3

2u = −�̄u + ∇2u(η, η) + 1
3Hηu for any u ∈ C∞(X)

and its associated curvature T 3
2 = J̄ − P(η, η) + 1

18H
2 (see [3]). Such curvature obeys the

conformal transformation rule for ĝ = e2τ g as

(T 3
2 )ĝ = e−2τ ((T 3

2 )g + (B3
2 )gτ). (4.21)

On (B4,S3, g0), we have

(B3
2 )g0u = �u − 2�̄u − 2ηu, (T 3

2 )g0 = 2

Using (4.21), the T 3
2 curvature for the conformal metric g = e2v+1−|ξ |2g0 can be computed

as

(T 3
2 )g = e−2v (

2 + B3
2 [v + 1

2 (1 − |ξ |2)]) = e−2vB3
2v = c̃|Hg|Hg

for some constant c̃ > 0. Here in the last equality, we have used the third line of (4.20) and
Hg = 3e−vηg0v. Now since S∗g = e2w(|dx |2 + dt2), then the conformal transformation
rules (2.19), (2.20) and (4.21) imply that w satisfies

⎧⎪⎨
⎪⎩

�2w = 0 in R
4+,

∂t�w + 2�̄∂tw = 8π2(
´
Rn e3w)−1e3w on R3,

∂2t tw − �̄w = −(4π)
2
3 (
´
R3 |∂tw|3)− 1

3 |∂tw|∂tw on R3.

(4.22)

We have found some explicit solutions of (4.22), namely, they are the sum of constants,
(1.17) and (4.14). We do not know if there are any other solutions.
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