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Abstract

We show explicit forms for extremals of some fourth-order sharp Sobolev trace inequalities
on the unit balls recently proved by Ache-Chang and Case. We also give a classification result
of the bi-harmonic equation on Ri with some conformally covariant boundary conditions.
Moreover, we show a classification result for an associated integral equation.

Mathematics Subject Classification Primary 35J40 - 58J32; Secondary 39B05 - 46E35

1 Introduction

Let B"+! ¢ R"*!, n > 1, be the unit ball with boundary dB"*! = S”. Recall the following
two Sobolev trace inequalities: For any f € C* (§") and v being a smooth extension of f
to B"*! there hold

1 1 1
log —55 efdo ) < — [ |VvlPdx + —55 fdo. (1.1)
2w Jsi 4 g2 2w Jst

Moreover, the equality holds if and only if Av = 0and f = ¢ —log|1 — (z0, &)|, where
cis aconstant, & € S!, and zg is some fixed point in the interior of B2
— Ifn > 1, then

— Ifn =1, then

(&) =t n—1
2 2 |sn/n (35 |f]T lda) g/ |Vv|2dx+—y§ |f1Pdo.  (1.2)
F(% B+l 2 sn
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Moreover, the equality holds if and only if Av = 0 and f = ¢|1 — (zo, &)|" "~ D/2,
where ¢ is a constant, £ € S" and zg € B"*!. Here T is the standard Gamma function.

The first one (1.1) was proved by Lebedev-Milin [11] and Osgood-Phillips-Sarnak [17].
The second one (1.2) was proved by Lions [14], Escobar [7] and Beckner [2].

A natural question is what the extremal v look like in the unit ball. It is not hard to find
that the harmonic extension of —log |1 — (zp, &)| on B2 is

2

v(E) = —log | = — |&lwo| +log(1 + wol?), & € B? (1.3)

£
&1

n—1
and the harmonic extension of |1 — (zg, £)|” 2 on B"*! withn > 11is

1—-n
v(§) = (1 + |wo| )7‘E—I€Iw0 . EeB"t! 1.4

where wo = zo/(1 ++/1 — |z0|?) € B"+!. To obtain (1.3), one can use the observation

log |wy — &> = log(1 — 2wp - & + |wo|?) = log(1 — (z0, £)) + log(1 + wol®)  (1.5)

because zg = 2wo/(1 + |wo|?). One notices that log |wp — £|? is a harmonic function with
a pole in B2. Using explicit expressions of Green’s function on the unit ball (for instance,
see [9]) to annihilate the singularity, we can find the explicit forms for the extremal v. This
approach also works for (1.4).

Ache and Chang [1] generalized the Lebedev-Milin inequality and its counterpart (1.2)
to ones of order four. More precisely, let f € C* (S™) and v be a smooth extension of f to
the unit ball B!, Let 5 be the outward-pointing unit normal to S" and V be the gradient in
S". Then we have the sharp trace inequalities.

— If n = 3, then

1672 1 3f 5
3 log o 2% do /(Av) dx+2§1§ IV £ dcr—l—Syg fdo (1.6)

for any v satisfying the homogeneous Neumann boundary condition nv|g3 = 0. Equality
holds if and only if f = ¢ —log|1 — (z0, £)| where c is a constant, £ € S3, 70 is some
point in B* and v satisfies that

A%y =0 inB*
n=0 onS? (L.7)

v=f on S°.

— Ifn > 3, then
n—=3
2n n —
an ( |f|mda) < / |Av|>dx + 255 IV f?do +bn§l§ | f12do, (1.8
sn Brtl Sn sn

for any v satisfying the Neumann boundary condition nvlgy = —%5= f Here a, =

r(=3
2 ( - )|S”|3/” and b, = (n + 1)(n — 3)/2. Equality holds if and only if f =

)
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3—n .
c|l —(zo,&)| 2 and v satisfies that

Ay =0 in B+,
nv=—"3v onS", (1.9)
v=f on S".

Similar to the second order case, we also want to know what the extremal functions of
(1.6) and (1.8) look like in B"t!. We introduce the function F : Bn+! x B+l — R as
&

FE, o) = E'—Ié‘lw

. (1.10)

Theorem 1.1 Given any zog € B"t!, define wy = zo/(1 + /1 — |z0/?) € B*t1.
(1) Ifn =3, then the solution of (1.7) with f = —log |1 — (z0, &)| on S? is

- I&P [1 — lool®
2 LFE w)?

(2) Ifn > 3, then the solution of (1.9) with f = |1 — (2o, §)|3%n on S" is

n—3

(14 |wol?) 2
F(&, wo)"—3
Proving the above theorem is more complicated than the second-order case because we

have one more boundary condition in the fourth-order case. We reformulate the problem on
R'fl via the Mobius transformation (see (2.1)), because the extremals of (1.6) and (1.8)

(after a change of variable) satisfy simpler equations on R’fl . In fact, when n > 3, Case [3]

v(E) = —log F (€, wp)* + 1} +log(l + Jwol®).  (1.11)

v(é) =

[1 N 3)(1 — |ao|)(1 — |&] )]_ (1.12)

4F (5, w)?

and Ngo et al. [16] prove that (1.8) is equivalent to a sharp trace inequality on Ri“ whose
extremal function satisfies

Au=0 in R,
Au=cur3 on IRV, (1.13)
hu =20 on 8R’fl,

for some constant ¢ > 0. Fortunately, [18] has found the definitive solution to the above
equation. One can move everything back to the unit ball through a M&bius transformation.

In the case n = 3, we do not find an equivalent formulation of (1.6) on Ri. However,
we notice that v is an extremal of (1.6) implies that (B, ezvg*) has vanishing Q-curvature,
constant T -curvature and vanishing mean curvature. Here 7 -curvature is defined by [5] and
g* is the adapted metric on B* (see [1, Prop 2.2] and [4]). It is interesting that one has
to use the adapted metric here. Via Mobius transformation, these geometric conditions are
equivalent to the existence of u which satisfies the following equation'

A2y =0 in R,
dAu=4e* on OR%, (1.14)
oru =0 on 8Rj_.

! Here the coefficient 4 in front of ¢ is normalized for the convenience of (1.17). The other solutions to
9 Au = ce3" differs from (1.17) by adding a constant.
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This equation is similar to (1.13). It is not studied in [18]. Here we continue to classify
the solutions of this equation under the finite volume conditions (1.15) and (1.16). These are
very natural geometric conditions.

Theorem 1.2 Suppose that u € C* (ﬂ) satisfies (1.14) and the following conditions.

() /Rz S0 gy < o0, (1.15)

(ii) /]R“ D dxdr < oo. (1.16)
+

Then lin}| x| =00 Au(x, 0) exists and is non-positive, here A is the Laplacian w.r.t. x € R3
only. If Au(x,0) = o(1) or u(x,0) = o(|x|?) as |x| — 00, then there exista € R3, A > 0
and ¢ < 0 such that u = ug ;(x,t) + ct? where

2M N 2tA
A+02+|x —al? A+0D2+|x —al*

Ug(x,t) =log< (1.17)

Remark 1.3 Conditions (i) and (ii) are sharp in the sense that if we remove both of them, then
there are other solutions. For instance, u = %IS satisfies (1.14) but violates (1.15) and (1.16).
On the other hand u = u, ) + ct? for any ¢ > 0 satisfies (1.14) and (1.15) but violates (1.16).

As a byproduct of our arguments, we have the following corollary.
Corollary 1.4 Suppose that u € C‘%@) satisfies (1.15) and

1 3u(y,0) Iy?
) = — YW log —————d 0,0 1.18
u(x, 1) IS3|/Rae g v +ul.0 (1.18)

then there exists a € R and ) > 0 such that u = uy ;..

Remark 1.5 Corollary 1.4 and Theorem 1.1 are expected to be used to describe the asymptotic
behavior of sequences of conformal metrics with prescribed T'-curvature, Q = O0and H = 0
on the whole background manifold rather than just at the boundary as available results in the
literature provides.

This is one of the motivations why we consider the extensions of extremals of Ache-
Chang’s inequality.

After the work of Ache-Chang [1, 3] found more general Sobolev trace inequalities of
order four. More precisely, keeping the notations as in (1.6) and (1.8),

— If n = 3, then

2
1672 1 : 3
" Jog (—275 e3fda> + <4n5£ |1//|3dcr>
3 2 S3 S3 (1.19)

5/ (Av)zdx+¢ 21V +4(Vf, Vy) — 292 +8f]do.
B4 S3

Here v/ = nu. Equality holds if and only if A%v =0, f(&) = co — log(1 — (20, £)) and
V(&) =ci|l — (z1, &)~ for some constant cg, ¢; € R and points zo, z; € B*.
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— Ifn > 3, then

n—=3 n—1

an< Iflﬂ%dzf)" +an< |w|»%do) '
NE N&

< / ) |Av|2dx+§z§ 21 F12 +4(3 £, F9) — 207 + 26y f¥ + bal £ ] do
Bn Sn
(1.20)

where a,, and b,, are the same as in (1.8), @, = 2/ (n — 1)(I'(n/2)/ ' (n))'/" and
n—3
v=nt+——Ff

Equality holds if and only if A2v = 0, £(§) = coll — (20, €)|""¥/2 and ¥ (£) =
cill = (z1, €)@ D/2 for some constant ¢, c; € R and points 2o, 21 € B,

We also find the explicit forms of extremals of (1.19) and (1.20). It actually suffices to
deal with the case f = 0.

Theorem 1.6 Given any z; € B"T!, we define w; = z1/(1 + /1 — |z112) € B"L. If either
n = 3 and the equality of (1.19) holds for v with f =0and ¢ = |1 — (z1,&)|", orn >3
and the equality of (1.20) holds for v with f = 0 and ¥ = |1 — (z1, £)|~"~D/2, then

A+ o) 'T

&) = l(1 e
v(E) = -5 - [¢] FE oy T

(1.21)
In the proof of the Theorem 1.6, we also pull the equation to the upper half-space and
construct the solution directly. Unfortunately, we do not have a classification result to the
corresponding Euler-Lagrange equation on the upper half space, which is important for most
blow-up analysis leading to such a limiting equation. See the discussions at the end of this
paper.

To deal with the most general case of equalities in (1.19) and (1.20) with arbitrary cq
and ¢y, one needs to combine the results of Theorem 1.1 and Theorem 1.6. More precisely,
Theorem 1.1 (up to a translation/scaling) gives a solution to AZv = 0, f = ¢y — log(l —
(z0, &) or co|l — (zo, £)|~"~3/2 (depending on whether n = 3 orn > 3) and ¢ = 0.
Theorem 1.6 (up to a scaling) gives a solution to A’y = 0, f = 0 and ¥ = ¢(|l —
(z1, &)|~®=D/2_ By the linear property of bi-harmonic functions, the sum of these gives the
solution to the equality with arbitrary co and c;.

Corollary 1.7 The equality of (1.19) holds with

B L+ wol> | (1= [E») [ 1= |wol c1 2, (4|1 %)

V=0t 108 e o 2 [F@,wo)z B 1] U T o
(1.22)

where cg, ¢| € R and wgy, w; € B*. The equality of (1.20) holds with

n=3 n—1
(Tt m) 2 (n=3)(1 — o)A =[] ¢ 2 (o)
"R E w3 [1+ 4F (&, ) }_?“_'E') FE o)1
(1.23)

where cg, ¢; € R and wg, w1 € B"L.
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The paper is organized as follows. In Sect. 2, we first give some preliminary on a Mobius
transformation which maps the upper half space to the unit ball. Sect.2.1 is devoted to finding
the extension of extremals on dimensions five and above and proving Part (2) of Theorem 1.1.
The case of dimension four is studied in the subsequent Sect.2.2, and we prove Part (1) of
Theorem 1.1. In Sect. 3, we prove the classification theorems about a bi-harmonic equation
on R‘_‘,_ with some conformally covariant boundary conditions and an associated integral
equation. Theorem 1.2 and Corollary 1.4 is established in this section. Finally, in the last
section, we prove Theorem 1.6 and Corollary 1.7 by computing the extension of extremals
of Sobolev trace inequalities proved by Case [3].

2 Sobolev trace inequality of order four

Recall that the following Mobius transformation maps the upper half space to the unit ball.

SR = (X =@, 0} B =& = ¢ &)

2(X + ent1) (2.1
X—> ———— —enql
|X + en+l|
where e,4+1 = (0, ---,0, 1) € R"T!. Conversely
— 2(¢ + en+t1)
STHE) =" —en1. 22)
E+eni T
It is well-known that
2 2 ’ 2
S*|dE)? = <7> 1dX|?. 2.3)
|X + ent1 |2
—4 —4¢
x>+ 1% = S 1 +1, EP = 1. (2.4)

TP G + 12 EEES

Lemma 2.1 Forany (a, A) € R"++1, the following identity holds for v = S(a, 1) € B"*!

) A= o) € + et
lx —al?+ |t + A2 4 F(, w)?

2.5)

Proof Denote A = |&|? + |&,41 + 1|2 for short. We plug in (2.2) to the LHS and achieve
L+t +x —al* = A7 [QE+1 + D+ (L — DA + 28" — aAl?]

= %[((A— D%+ a)A? + 4 + DL — DA — 4Aa - £ +4A]

1
= 1O D2+ la»IEP + 2002 + lal* — Dépy1 —4a-& + A+ D? + |al]

A+1 2+ 2

N |€E|2+|; +1|_|C_l|1|2[|w|2|§|2—2a)-§+1]
_ A+ 1?2+ af? £
€1

B |§/|2 + |Sn+l + 1|2

2

— ¢l
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where w = S(a, 1) with
, 2a 20+ 1)

— i - 2.6
OO R T G DT 4 P 20

We also used the following fact
lw|? = = 2.7)

A+ 1%+ al?
Consequently
A _ 1= |l &1 + &40 + 117 2.8)
A+ t12+ |x —al? 4 F(§, w)? '

O

2.1 Ache-Chang inequality in dimension five and above
In this subsection, we shall consider the case n > 3.
Proof of Theorem 1.1 Part (2) Suppose v is the extension. Obviously when zg = 0, v will be

a positive constant. Since v depends continuously on zg uniformly, we can suppose for |zg|
small enough that v > 0 in B"+1.

We define
n—3
S( t))( 2 )T (2.9)
Ux,t) =v(S(x, —_— .
Gx, 1) = v Ix|2 + (1 4+1)?
Then it is easy to see that
2n 2n
/ |U(x,0)|ﬁdx=§£ |v|"=3do (2.10)
Rll Sll
and
2\
U (x,0) = — [S(x,0) - Vu(S(x, 0)) + “Fv(S(x, 0))] (TN) (2.11)
X

Since S(x, 0) is normal to S”, thus S(x, 0) - Vu(S(x, 0)) = nv(S(x, 0)). Therefore nv =

— "53 v is equivalent to 9, U (x, 0) = 0 for V x € R”". After some computation (for instance,

see Ngo et al. [16, Eq. (4.9)1%), we obtain

/ |AU|2dX=/ |Av|2dx+2§1§ |6f|2do+b,,§1§ |f?do. (2.12)
Rn+1 B+l sn sn
+

Consequently (1.8) is equivalent to the sharp trace inequality

-3

an </ |U(x,0)|%dx> ' g/ AU, 1) Pdxdr (2.13)
n R'J‘j

2 The Mébius transformation in [16] is different from ours (see (2.1)) by a negative sign in the £, | coordinate.
However, this difference does not affect the energy identity.
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181  Page8of 21 C.B. Ndiaye, L. Sun

for functions U with 9,U(x,0) = 0. Using (2.9), we know that U is also positive. The
positive extremal function of the above inequality satisfies

AU =0 in R7H,
AU = U3 onR", (2.14)
U =0 on R”,

for some ¢ > 0. The positive solutions to the above equations have been studied by [18]. It
follows from (2.9) that U (x, 1) = o(|x|® + r2). Therefore, one can apply [18, Rmk 1.2] to
achieve that there exists A > 0, a € R3 and

-3

Ux, 1) = 2 nz[l (n = 312 ] (2.15)
x’ _C<(A+r>2+|x—a|2) ot P :

for some constant ¢ > 0. Now we plug in the above equation to

n—3

2 2
= US! < > 2.16
PO =V N Er a8, 210
and using (2.5) and (2.2) to obtain that
n—3
(=) ™ (n =3)(1 = |wo|) (1 = [§]*)
Y8 = TR wgy [” IF (. wn)? } @17

for some ¢ > 0. Here wy = S(a, A) and F is defined in (1.10). One can determine c through
(1 = |an|H) "% = (1 4 |wo*) "~ )/% using v(§) = [1 — (20, §)|®~/2 on §".

Now we want to show that v takes the form in (2.17) for any zo € B"*!, not just for zo
near the origin. Fixing any r € (0, 1), we define

Z, = {z0 € B"t1(0, r) : Part (2) of Theorem 1.1 holds true}.

The previous proof shows that Z, contains a neighborhood of 0, thus it is non-empty. Since
v depends on zp smoothly and is strictly positive, then for any z sufficiently near to zo,
v is also positive. This fact implies that Z, is open. Clearly, Z, is a close set. Therefore
Z, = B"*t1(0, r). Since this holds for any r, then the proof is complete. O

Remark 2.2 There is a geometric interpretation of the extremals for (1.8) (with the Neumann
boundary condition). According to Case [3], the best constant in (1.8) is Y4 B+, smy.
Moreover, the conformal metric § = v/ ("’3)g[Bn+1 will have Q4 =0, H = 0and f33 =
const > 0. There is another way to show the extremals v is positive if one uses the fractional
GIMS operator P3 on S”, which has leading order (—Ag)3/?. The Euler-Lagrange equation
implies P3v > 0. One can apply the result Case and Alice Chang [4, Theorem 1.3] to prove
v > 0. Here we try to avoid citing this deep result and make the proof self-contained.

2.2 Ache-Chang inequality on dimension four

Recall the Paneitz operator defined on a smooth compact Riemannian manifold (X!, g)
forn > 3,

-3
(La)g = (=Ag)" + 8, (4P — (1 = 1)Jgg) (V- ) + ”T (Q4), (2.18)
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Explicit forms for extremals of sharp Sobolev trace... Page9of21 181

where 8 denotes divergence, V denotes gradient on functions, P, the Schouten tensor P, =
L (Ricy — Jgg), J; = 2Ry, Ry is the scalar curvature of the metric g and Q4 is the
Q-curvature

+1
n 72

(Qa)g = —Aglg + _2|Pg|§

In the following, we shall write L4 = (L4), for short when the background metric is under-
stood.
When n = 3, we have the following conformal invariance property of L4 and Q4,

(La); U = e (L), (U),
(Qa)g = " ((La)gT + (Qa)g) .
for any smooth function U on X* and § = ¢*7g.
When X* has boundary M, Chang and Qing [5] derived a conformally covariant boundary
operator P3 and associated T-curvature T3. Suppose 4 is the induced metric of (X*, g) on

M. Let us use A and V denote the Laplacian and connection on (M, h). Assume A is the
second fundamental form of M and H = tr, A is the mean curvature. Then

(2.19)

1 . 2 - 1 -
P (u) = —SnAu = Anu + <A - th, V2u> + g(VH, Vu) — (Ric(n, n) — 2)nu

1 1- 1 1
T3=-nJ —~AH+JH—(R(n,-,n,-),A) — —tr A> + — H.
3= 3 + (R(m, -, m, ), A) 30 +9

Here n = n, is the outward-pointing unit normal to M.
If § = ¢*" g, we have the transformation laws

(P3) U= _3f(P3) U,

(2.20)
(Ty); = ™ <(P3b) T+ (T3)g> .
g
We also have the relation of mean curvature
Hz =e " (Hy + nngr). (2:21)

For the model case (B*, S3, go) where g is the Euclidean metric, one has (for instance,
see [1, (6.6)])

1 _ _
—nA—An—A, (T3 =2, Hg =3. (2.22)

(P)g =35

On B*, there is a special metric g* = el_“?‘zgo which has nice properties. It is called
adapted metric in [4] (also appeared in [8]). Under this metric g, S? is totally geodesic and

(04)g+ = (Q4)g, =0, (2.23)
(T3)gr = (T3)g, = 2. (2.24)
Now we are ready to prove the main theorem of this subsection.

Proof of Theorem 1.1 part (1) Suppose that v is the extension. Then v will be an extremal
function for the (1.6). It is easy to see that the Euler-Lagrange equation of (1.6) is

A =0 in B*,
—nAv —2Av+4 =872 ([g &3 ) eV on S3, (2.25)
nv=20 on S
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181  Page 10 of 21 C. B. Ndiaye, L. Sun

Here A = Ay, and ) = 1. Let g = e?Vg* = ezv+l"€|z|d$|2, here g* is the so-called

adapted metric. Denote T = v + (1 — |&|%)/2. The first line of (2.25) implies (L4)g,T =
2 _ 2 _ . . _ 2 .

Agor = Agov = 0. Then applying (2.19) with 7 = v 4 (1 — |&|7)/2, the first line of (2.25)

is equivalent to

(Q4)g = €T ((La)gyT + (Qa)gy) = 0. (2.26)
Applying (2.20) with 7 = v + (1 — |€]?)/2, the second line of (2.25) is equivalent to
(T3)g = e_3r((P3b)g0‘c + (T3)g) = e (—%ngoAgov — Agv + 2) = const >0
(2.27)

where we have used (2.22), T = v on S* and Ngov = 0. Applying (2.21) with the same 7 as
before, the third line of (2.25) is equivalent to

Hy = ¢ " (Hgy + 31g,7) = ¢ (34 3(ngv — 1)) = 0. (2.28)
Combining the above analysis, (2.25) is equivalent to
(Q4)g =0, (I3)g =const >0, H, =0. (2.29)

Using Mobius transformation (2.1), we can find w such that (B* \ {(0,0,0,—-1)}, g) is
isometric to (R, 2% (|dx|? + dt?)) through

S* (1P g8 12) = ¥ (|dx|? + di?) (2.30)

where v and w are related by

S+1 1|x|2+(t—1)2+1 2 @31)

w=vo - — = 0 s .

2 2P+ 2 R (102

B &1* + log . (2.32)
2 €12 + (1 + &)?

By the isometry, we can think of (2.29) as referring to S*g on Ri. Thus using |dx|? + dt*
as the background metric and the conformal properties of Lg4, P3b and H, we rewrite (2.29)
as the following

A’w=0 inRY,
9 Aw = ce’" on R3, (2.33)
oyw =0 on R3,

for some constant ¢ > 0. Moreover, isometry also implies
/4 D dxdr = vol(BY, g) < oo, /3 AP0 g = vol(S?, gles) < 00, (2.34)
RY :5]

The solution to (2.33) with (2.34) has been studied by Theorem 1.2. Since v is smooth on

@, then (2.31) leads to w(x, 1) = o(|x|* + %) as |x| + r — oco. Therefore, it follows from
Theorem 1.2 that there exists A > 0, a € R and a constant C such that

2\ 2th

c. 2.35
St —al T ot —ar T (2.35)

w(x,t) =1lo
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Plugging in (2.5) with wg = S(a, 1) and (2.2) to (2.32), one obtains

(1= looH(1 =157 1

_ -2 _ _ 2

v(§) = log F(§, wo) " + IFE. on)? SA-EN+C
_ 2, L= P [ 1=l
= —log F(§, wo)” + 5 [F(S,wo)z 1{+C

The precise value of C can be determined through v(§) = —log|l — (z0, &)| for & € S3.
This completes the proof. O

Remark 2.3 The above method also applies to the harmonic case. The proof is simpler in that
case because the adapted metric g* for B"+! is identical to the Euclidean metric go (see [1,
Rmk 2.4]).

3 Classification of the solution to a bi-harmonic equation

In this section, we will prove Theorem 1.2. The strategy is to separate the nonlinear effect,
by subtracting a function constructed from nonlinear boundary conditions. Such trick has
been used by [10, 18]. The resulting linear fourth-order equation can be classified under the
finite volume condition. The proof here is greatly inspired by Lin [13], who initiated the
classification of some conformal bi-harmonic equation on R*.

Given any f € LY (R3), we define v for (x,t) € Ri

IyI?

1
1) = —— log —————dy.
v(x, ) |S3|/R} 1) log —dy

Lemma 3.1 Forany f(y) € C>(R?) N L'(R3), one has

A2y =0 in Ri,
dAv=4f on IRY, 3.1)
v =20 on BRi.

Proof Using the Lebesgue dominating theorem, it is easy to see d;v(x, 0) = 0 and for any
t>0

—4 VAS))
Av(x,t) = — _ 32
) S e 2
1f ()
o Av(x,t) = — —_— 33
BVED =S e T =y + 2 )
A%y =0. (3.4)
Note that \8273\ m is the Possion kernel of A on Ri (see [18, Lemma 2.2]). Then one
has

lim d8;Av(x,1) =4f(y). (3.5)

t—0F
O

@ Springer



181  Page 12 of 21 C. B. Ndiaye, L. Sun

Now suppose that « satisfies the assumptions of Theorem 1.2. In the following, we will denote

1 ; lyI?
) = "0 jog — o dy. 3.6
v(x, 1) |S3|/RSe 0g|x_y|2+t2y (3.6)

Lemma 3.2 For v(x,t) defined in (3.6), there exists some constant C > 0 such that
v(X) > —alog(l+|X|)—C (3.7

where
a= i/ 200y (3.8)
1S3 Jms ' '

Proof The proof is essentially contained in [13, Lemma 2.1 and 2.4] and [15]. For readers’
convenience, we present it here.

For | X| > 4, we decompose R3 = A U Ay, where A| = {yIl(y,0) — X| < |X]|/2} and
Az = {yll(y,0) — X| = |X]|/2}. For y € Ay, one has |y| > [X]| — |X — (y,0)| = |X|/2 =
|X — (v, 0)|. Consequently, we have log |y|/|X — (v, 0)| > 0 and

2
3u(y,0) Lyl
eV jog ——————dy > 0. 3.9
/Al S+ 69

Fory € Ay, one has | X — (y, 0)| < [X||ylif |y| > 2 and log|X — (y,0)| <log|X|+C
if |X| > 4 and |y| < 2. Thus

1 , |y|?
v(x) > —/ MOV g — Ty (3.10)
1S3 J A, lx — y|2 +12
2 1 : lyI?
> — —1og|X|/ A00gy 4 3020 1og dy (3.11)
1S3 A 1S3 Jiy1<2 X — (y,0)?
> —alog|X| - C. (3.12)

For | X| < 4, since v is continuous, we have v(X) > —C for some constant C > 0.
Combining the two cases, we have (3.7). m]

Lemma 3.3 Suppose u satisfies (1.14), (1.15) and (1.16). Then there exists a constant C1 > 0
such that

4 eSu(y,O)

Au(x,t) = —— | —————
“OOD =TS e k=P A 12

dy — C). (3.13)

Moreover, there exist constants ¢, < 0, a; <0, i =1, 2, 3 such that

3
u—v=ct?+ Y aj(x —x))* +co. (3.14)

i=1
Proof Denote w = u — v where v is defined in (3.6). Then w satisfies
A’w=0 in RY,
dAw=0 on IRY, (3.15)
dw=0 on IRY.
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We extend w by w(x, ) = w(x, —1) for 1 < 0. We denote w this new function on R*.
It follows from the mean value property of harmonic functions that AW is smooth is R*.
Consequently, @ is also smooth in R*.

It follows from Lemma 3.2 that for ¢t > O,

wx, 1) =u(x, 1) —vx, 1) <u(x,t) +alog(l+|(x,0)]) +C. (3.16)

Thus w(X) < a(X) + alog(l + |X|) + C, where 7 is the even extension of u to R*. By
Pizzetti’s formula (see [15]), we have

2

L Ad(Xo) = 7[ bdo — i (Xo). (3.17)
8 JaB,(xo)
By Jensen’s inequality
2
exp (LM)(XO)> < o4O gy (4 ][ zi;da> (3.18)
2 3B, (X0)

< ¢ H(X0) ]l edo. (3.19)
9B, (Xo)

Since W(X) < 4(X) + alog(l + |X|) + C and (1.16), then r3~4* exp(éAw(Xo)) €
L'[1, 00). Thus A (Xp) < O for all xo € R*. By Liouville’s Theorem, Aw(X) = —C} in
R* for some constant C; > 0.

For bi-harmonic functions, one has the following fact that (for instance, see [15, eq. (14)])

C
|D*](Xo) < —3][ lildo (3.20)
= J B, (Xo)

holds for some universal constant C. Note that
][ wido 57[ i+ alog(l + |X|)do + C
B, (Xo) B, (Xo)
1 -
< ][ [-e* + Clogrldo + C
B.(Xo) 4

Using (1.16), we have r—3 fBr(XO) wido — 0 asr — oo. Consequently,

C . C . N
= 7[ lwldo = = 7[ 2wy —2wldo
" JB,(Xo) 7 JB,(Xo)

2C
=o(l) — —3][ wdo.
" JB,(Xo)

However, (3.17) and Aw(X) = —C| implies that

|D3W|(Xo)

IA

7[ wdo = 0(r?). (3.21)
Br(Xo)

Inserting this to the previous inequality and letting » — 0o, one must have | D3W|(Xo) = 0.
Therefore w is a polynomial of degree at most 2. By the boundary condition of w and even
symmetry of w, one has w = et + p(x) where p(x) has a degree at most 2.

Since w(X) < u(X)4alog(1+|X|)+C for X € Ri and u satisfies (1.16), then ¢, < 0.

3
aixl.z—i—b,-x,-—i—co.

Moreover, after an orthogonal transformation, we can assume p(x) = Y 7,
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Since ng 30 gy < 0o, then we must have ¢; < 0 and b; = 0 whenever a¢; = 0. Thus

px) =) ailx —x))* +co. (3.22)

The proof is complete. O

Lemma 3.4 Suppose that v(x, t) defined in (3.6). For any ¢ > 0, there exists R = R(¢) such
that for | X| > R,

v(X) < —(a — &) log | X| (3.23)
where o is defined in (3.8).

Proof As in the proof of [13, Lemma 2.4], we can show that for any ¢ > 0 there exists
R = R(e) > 0 such that

2

e
—v(X) > (@ — 5)10g|X| + =]

/ log |X — (v,0)[e* 0 Vdy (3.24)
B (X)NIR*
where B; (X) denotes the ball in R* with center X and radius 1. It suffices to prove that the
last term is bounded from below independent of X.

Applying Lemma 3.3 and letting t — 07 in (3.14), we have

3

2 3u(y,0) yl 0,2

u(x,0) = @/}1&36 4“9 og mdy + E l a;(x; —x;)” + co. (3.25)
1=

One can compute that
2 30,0

Aue.0)= — = [ £
“OOD =TGP

dy +2a + 2a + 2a3. (3.26)
Applying [19, Lemma 3.1], the above equation implies that 0 < —Au(x, 0) < C for x € R3
and some constant C. In fact, although the statement of Lemma 3.1 of [19] is for the case
a; = ay = a3 = 0, the proof still works for all a; < 0,a> < 0, a3 < 0 with mild changes,
as observed in [10, Lemma 18].

Once we have the bound of Au, then using [19, Lemma 3.2], one can conclude that
u(x,0) < C for x € R? and some constant C. Consequently, the last term in (3.24) is
bounded from below independent of X. Thus (3.23) is established. O

Lemma 3.5 Suppose that u satisfies the assumptions of Theorem 1.2. Then limjy|— oo Au(x, 0)
exists and is non-positive, here A is the Laplacian w.r.t. x € R3 onlyIfu(x,0) = o(|x|?) or
Au(x,0) = o(1) as |x| — oo, then there exist .. > 0 and a € R? such that

u(x,0) = uy,5(x,0) =log (m) (3.27)
where ug ; is defined in (1.17). Consequently there exists some ¢ < 0 such that
u(x, 1) = Vo (x, 1) + 1q5.0,0) + ct? (3.28)
where
Vg (X, 1) = L / a0 g P y. (3.29)
’ ISI® Jrs X —yI>+12
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Proof We claim that the first term on the right-hand side of (3.26) converges to 0 when
|x] — oo. In fact, it can be decomposed to

e3u(y,0) e3u(y,0) e3u(y,0)
[ [ [ e
R3 [x — | Bix) X — I R3\ B, (x) 1X — Y

The first term can be bounded as

u0.0) s \1 i
/ 2dy < </ [x — y|_§dy> </ elzu(y’o)dy) (3.30)
Bi(x) |x - y| B (x) Bi(x)

1
<c (/ elzu(y,0)+122?=1a,-(y—xf))2+cody)4 -0 (3.31)
By (x)

as |x|] — oo. Here we have used (3.23) and a¢; < 0 from Lemma 3.3. By the dominated
convergence theorem and (1.15), the second term is going to 0 as |x| — oo,

3u(y.0)
/ ———dy —-> 0 as |x| > oo.
R3O\B, (x) 1X — ¥I?

Thus the claim is proved and consequently

‘ llim Au(x,0) =2(a; +ar +a3z) < 0. (3.32)
X[— 00

Now, if u(x,0) = 0(|x|2),_then clearly a; = a» = a3 = 0. Since Lemma 3.3 says that
a;i <0fori =1,2,3, then if Au(x,0) = o(1), then we also geta; = ap = a3z = 0.

In both cases, we get

2
u(x,0) = 73/ A0 10g gy, (3.33)
IS°] JR3 lx — ¥l

The solutions to such an equation have been studied by Xu [19]. More precisely, under the
condition (1.15), there exist some a € R3 and A > 0 such that u(x, 0) = ug,(x,0) where
ug,; is defined in (1.17). Consequently, taking x = 0 in (3.33), one obtains that

2\
co = ua’)L(O, 0) = log <m> . (3.34)
Noticing (3.6), we introduce the notation v, as defined in (3.29). Since we have derived
that a; = ap = a3 = 0, then (3.14) leads to (3.28). m]

It seems hard to integrate (3.29) out explicitly. We get around this difficulty by constructing
a solution to (1.14) directly.

Lemma3.6 Forany > 0and a € R3, (1.17) satisfies (1.14).

Proof For the convenience of notation, we assume a = 0. The general case follows from the
translation invariance of the equation. Let u = u| + us

22X 2At
w=toe (G ) = G (339
Then it is easy to see
dui(x,0) = 2 = —d;u2(x, 0) (3.36)
A2 + |x|2
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Therefore 9;u(x, 0) = 0 for x € R3. We continue taking derivatives

4 8A(t + 1)
Aup=-—s— Aip=—— (3.37)
(A +1)" + [x] (A +0D2+1xP?)
3, Auy (x, 0) 8 Ay(r, 0) = — (P = 37) (3.38)
tAUu(xX, = > t AU (X, e —— .
(A2 + [x2)° (A2 + [x2)°
Therefore
3223
AU, 0) = ————— =40, (3.39)
(A2 +1x]?)
Last, we have
AZuy(x, 1) = A?us(x, 1) =0 (3.40)

This implies A2y = 0 in R*. Thus u satisfies (1.14). It is easy to see that (1.15) holds. O

Corollary 3.7 One must have u, ) = v + tg..(0,0) where u, 5 is defined in (1.17) and
Vg, I defined in (3.29).

Proof Given any a € R3and A > 0, itis easy to show that u,  satisfies (1.15) and (1.16).
Combining Lemma 3.6, u satisfies the assumption of Theorem 1.2. Apparently u, ; (x,0) =
o(]x|?). Then Lemma 3.5 asserts the existence of a’ € R3, ’ > 0 and ¢ < 0 such that

a0 (X, 1) = Vg (X, 1) + g 30, 0) + .

Applying d; A on the boundary, Lemma 3.1 and (3.29) imply that u, 3 (x, 0) = u, /(x, 0).
Thus @ = a’ and A = X' It is easy to see ¢ = 0 in this case, because both u,_; and v, ;s are
o(|x|? + 2). This completes the proof. ]

Proof of Theorem 1.2 1t follows from (3.32) in Lemma 3.5 that lim |- o Au(x, 0) exists and
is non-positive. If u(x,0) = o(Jx|?) or Au(x,0) = o(1) as |x| — oo, then Lemma 3.5
applies to this case. Consequently, (3.28) and Corollary 3.7 give that u = u,, ; + ct> for some
aeR¥and A > 0. O

Proof of Corollary 1.4 Taking r = 0 in (1.18) implies that u satisfies (3.33), which leads to
(3.27). Then Lemma 3.5 holds with ¢ = 0 in (3.28). The result follows from Corollary 3.7. 0

4 Equality case for more general Sobolev trace inequalities

In this section, we shall study the general Sobolev trace inequalities proved by Case. The result
here is not as rich as Ache-Chang’s inequality. As did before, we shall write the equations
on the upper half space. However, in this general case, we do not have a classification result
for the Euler-Lagrange equations (see the discussion at the end), which plays an important
role in most of the the blow up analysis giving rise to such limit equation. Nevertheless, to
find the extremals it suffices to find a solution with sufficient decay on the upper half space.
When we pull back the solution to the unit ball, it won’t cause a singularity.
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4.1 Extensions of extremals
We shall prove Theorem 1.6 and Corollary 1.7.

Proof of Theorem 1.6 For n > 3, we want to find the solution of

Ay =0 in B,
w5t = 1= (@, H) D on s, (@.1)
v=0 on §"

Note that we do not need to distinguish the cases n = 3 and n > 4.

We will first find the corresponding equations of (4.1) on R’f‘l using Mdbius transforma-

tion. We define

n—3
2 -
U(X, l) = U(S(X, t)) <m) . (42)
It follows from (2.11) that
U (x,0 1 (2T 43
= — — 2 _—
VU x,0) = —|1 — (21, )] <1+|x|2) : 4.3)

For& € §", we have |1 — (z1, &)| = F (w1, £)2(1 + o1 |2) L. Consequently, we use (2.5) to
derive that

n—1

I3 +en+1|2>2

— 2y 15t ~(n—1)
UK, 0 =—-1+]w]) 7 Flor,§) >

4.4)

n—1

A 2
=C((1)l) <|X —a|2+(t+A)2>

1o 2 (n—1)/2 . . )
where c(wy) = — (2 l—\w1|2> and (a, A) = S ' (w1). Thus U satisfies the following
equations

2 : +1
AU =0 y inRY™,
2
8[U = C(a)]) (m) on Rn, (45)
U=0 on R”.

Conversely, if U satisfies the above equation and is smooth, then the following v defined by

n—3

2 2
v(E) =UESE) < ) (4.6)
€12 + (1 + &pq1)?
will satisfy (4.1) on B!\ {—e, 11}
Claim 1 Fixany (a, }) € erl, equations (4.5) have a solution
n—1
A =
Ux,t) = t 4.7
(x,1) = c(wr1) <|x—a|2+(z+x)2) .
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Proof 1t is easy to verify the boundary conditions. We only need to prove AU = 0. This
follows from the direct computation. For instance, one can get

n—1

A2
AUx,t) =21 —n)t + 1) —- 4.8)
(x —alP+ @ +1%) 7
O
Now plugging in (4.7) to (4.6) and using (2.5), we obtain

n—1

1 (14 lwi1?) 7
= (1 — gy~ 7 - 4.9
v(&) 2( 1E17) F & o] 4.9)
Note that this v is smooth on whole B"**!. Thus it is the desired solution. ]

Proof of Corollary 1.7 For any n > 3, if v is the extremal of (1.19) or (1.20), then Case [3]
implies that it satisfies

A%v =0 in B,
nv—i—%v:w on S", (4.10)
v=f on S".

Denote the unique solution to be v . By the linearity, we must have v¢ y = vy 0 + vo,y -
However, vy g is obtained from Theorem 1.1 and Theorem 1.6 finds vg, y . The sum of them
will give v 7y O

4.2 Discussion

In the end, we shall provide some discussion to the Euler-Lagrange equation for the general
Sobolev trace inequality of order four proved by Case. Consider (1.19) and (1.20) for f = 0,

that is
n—1
an (515 |1/,|,%d0> 5/ |Av?dx —2 ¢ ydo. (4.11)
Sn B+l sn

Recall that ¢y = nv if f = 0. Then the Euler-Lagrange equation for the equality (modulo
scaling) is

A*v=0 in B"*1,
V2u(n, n) + (n — 2)nv = Invlﬁnv onS”, (4.12)
v=20 on S".

Again using Mobius transformation and (2.9), we compute that U (x, ¢) satisfies the following
equations on the upper half space ]R’i“ forn > 3.

AU =0 in R
2U = —|3,U[7=19,U onR", (4.13)
U=0 on R”.
It is easy to verify that
A =
U(x’t):w<|x—a|2+(t+)h)2> (4.14)
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satisfies (4.13) for some suitable constant ¢ and any (a, A) € R’f].

It is quite possible that (4.13) has many solutions with d;U changes sign on BRf"_H. An
interesting question is the classification of the solutions of (4.13) assuming 9;U has a fixed
sign on BRTI for n > 3. Here we provide some useful observations. If we in addition

assume that U has sufficient decay (say U € C N W2’2(R1+1)), then one can characterize

d;U on BRT'I. More precisely, we denote v = —U;(x, 0) and assume ¢ > 0. Since AU is
a harmonic function on the upper half space, then we apply the Poisson kernel to get

AU(x,t) =P x Y (X). (4.15)

Since U = 0 on the boundary, then we use Green’s representation on the upper half space
U(X):/ » GX,Y)(P*xy)Y)dY (4.16)
RY
where X = (X, 1), Y = (y, s). Recall that 9;|;=0G(X, Y) = —P(x — y, s). Consequently

Y == 0h=0 = /R (/Rm Pl —y. 9P —z. s)a'yds) EY=rr

:/ (/ P(x —Z,Zs)ds) w(z)%dz 4.17)
n 0

gt

s

[
re X —z|"~

Namely, ¥ satisfies an integral equation. The results in [12] and [6] assert that ¢ must be
()»/[)»2 + |x — a2~ D2 up to some constant for (a, A) € Ri. This coincides with the
rigidity of equality in (1.19) and (1.20) through the observation (4.4).

However, without any decay condition on U, it is easy to see that cz> is also a solution of
(4.13) for any constant c.

Furthermore, one can study the Euler-Lagrange equations of (1.19) and (1.20) for general
f and ¥. The equations will look more complicated but the results should be expected from
some similar analysis in this paper. We shall state the equations and leave the details to the
interested reader. More precisely, using Mobius transformation and the results by [3],ifn > 3
then the inequality (1.20) is equivalent to that the following one holds forany U € C°(R"+1)

13 it
a,,</ |f|n2T"zdx> +d,,</ Ilplr%dx) </ |AU (x, 1)|*dxdt
R" R" RAH

+/ MV f,Vip)dx (4.18)

where f(x) = U(x,0), ¥(x) = —d;U(x,0). The Euler-Lagrange equation of the above
inequality is

AU =0 in R%

8 AU — 289 = 24, (fgu | /1757 |f173f onR", (4.19)

_ 5 2 =12

[U = Af =2ap(fgu W=D T [Y|7=Ty  onR".
providing f # 0 and ¢ # 0. If ¥ = 0, the Euler-Lagrange equation reduces to (2.14)
modulo suitable scaling, and to (4.13) if f = 0 modulo suitable scaling. We know that (4.19)

has explicit solutions which come from the linear combinations of (2.15) and (4.7). We do
not know if there is any other solutions.
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Now let us consider n = 3 case. The Euler-Lagrange equation for (1.19) is

A%v =0 in B*,
—nAv — 280 — 2Anv + 4 = 872 (fis e¥) ' €3 on S, (4.20)
Av —2Av —2pv = (4n)%(%3 |nv|3)_%|nv|nv onS$*

provided nv # 0. Here n = 1y, is the unit outward normal for (B*, g0). If nv = 0, then the
Euler-Lagrange equation reduces to (2.25).

Using the adapted metric g*, one defines g = e?Vg* = 2uHI—lEr |d&|%. As we did in the
Sect. 2.2, the first line of (4.20) is equivalent to (Q4), = 0, and the second line is equivalent
to (T3)g = const > 0. In order to interpret the third line of (4.20), we need to introduce the
boundary operator B;’ and its conformation rule. On a four-dimensional manifold (X4, g)
with boundary M, one can define Bg’u =—Au+ Vzu(n, n) + %Hnu for any u € C*(X)
and its associated curvature T23 =J- P(n,n) + %H 2 (see [3]). Such curvature obeys the
conformal transformation rule for § = 27 g as

(T5) = e 2 ((T5)g + (B3)g ). 4.21)
On (B4, S3, g0), we have
(B)gott = Au—2Au — 2nu, (T5)g, =2

20+1—

Using (4.21), the T23 curvature for the conformal metric g = ¢ 1§ ‘zgo can be computed

as
(T5)g = e 2 (24 B3lv+ (1 — [)]) = e *B3v = &|Hy| H,

for some constant ¢ > 0. Here in the last equality, we have used the third line of (4.20) and
Hy = 3e7Vng,v. Now since S*g = €2V (|dx|* + dr?), then the conformal transformation
rules (2.19), (2.20) and (4.21) imply that w satisfies

A’w =0 in ]Ri,
AW + 20w = 82 ([p, ) e on R3, 4.22)
2w — Aw = —(4m)3 (fps [0w[?) 75 d,w]dw on R3,

We have found some explicit solutions of (4.22), namely, they are the sum of constants,
(1.17) and (4.14). We do not know if there are any other solutions.
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