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Variational theory for the resonant
T -curvature equation
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Abstract. In this paper, we study the resonant prescribed T -curvature
problem on a compact 4-dimensional Riemannian manifold with bound-
ary. We derive sharp energy and gradient estimates of the associated
Euler-Lagrange functional to characterize the critical points at infinity
of the associated variational problem under a non-degeneracy on a nat-
urally associated Hamiltonian function. Using this, we derive a Morse
type lemma at infinity around the critical points at infinity. Using the
Morse lemma at infinity, we prove new existence results of Morse theo-
retical type. Combining the Morse lemma at infinity and the Liouville
version of the Barycenter technique of Bahri–Coron (Commun Pure Appl
Math 41–3:253–294, 1988) developed in Ndiaye (Adv Math 277(277):56–
99, 2015), we prove new existence results under a topological hypothesis
on the boundary of the underlying manifold, the selection map at infinity,
and the entry and exit sets at infinity.
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1. Introduction and statement of the results

On a four-dimensional compact Riemannian manifolds with boundary (M, g),
there exists a fourth-order operator Pg called Paneitz operator discovered by
Paneitz [26] and an associated curvature quantity Qg called Q-curvature intro-
duced by Branson-Oersted [5]. The Paneitz operator Pg and the Q-curvature
Qg are defined in terms of the Ricci tensor Ricg and the scalar curvature Rg

of (M, g) by

P 4
g = Δ2

g − divg

((
2

3
Rgg − 2Ricg

)
∇g

)
, Qg = − 1

12
(ΔgRg − R2

g + 3|Ricg|2),
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where divg is the divergence, ∇g is the covariant derivative, and Δg is the
Laplace-Beltrami operator, all with respect to g.

On the other hand, Chang–Qing [7] have discovered an operator P 3
g which

is associated to the boundary ∂M of M and a curvature quantity Tg naturally
associated to P 3

g . They are defined by the formulas

P 3
g =

1

2

∂Δg

∂ng
+ Δĝ

∂

∂ng
− 2HgΔĝ + Lg(∇ĝ, ∇ĝ) + ∇ĝHg.∇ĝ +

(
Fg − Rg

3

)
∂

∂ng
.

Tg = − 1

12

∂Rg

∂ng
+

1

2
RgHg− < Gg, Lg > +3H3

g − 1

3
trg(L3

g) − ΔĝHg,

where ĝ is the metric induced by g on ∂M , Δĝ is the Laplace-Beltrami operator
with respect to ĝ, ∂

∂ng
is the inward Neuman operator on ∂M with respect to

g, Lg is the second fundamental form of ∂M with respect to g, Hg is the mean
curvature of ∂M with respect to g, Rk

g,ijl is the Riemann curvature tensor of
(M, g), Rg,ijkl = gmiR

m
g,jkl (gij are the entries of the metric g), Fg = Ra

g,nan

(with n denoting the index corresponding to the normal direction in local
coordinates) and < Gg, Lg >= ĝacĝbdRg,anbnLg,cd. Moreover, the notation
Lg(∇ĝ,∇ĝ), means Lg(∇ĝ,∇ĝ)(u) = ∇a

ĝ(Lg,ab∇b
ĝu). We point out that in all

those notations above i, j, k, l = 1, . . . 4 and a, b, c, d = 1, . . . 3, and Einstein
summation convention is used for repeated indices.

As the Laplace–Beltrami operator and the Neumann operator on closed
surfaces with boundary are conformally covariant, we have that P 4

g is confor-
mally covariant of bidegree (0, 4) and P 3

g of bidegree (0, 3). Furthermore, as
they govern the transformation laws of the Gauss curvature and the geodesic
curvature on compact surfaces with boundary, the couple (P 4

g , P 3
g ) does the

same for (Qg, Tg) on a compact four-dimensional Riemannian manifold with
boundary (M, g). In fact, under a conformal change of metric gu = e2ug, we
have {

P 4
gu

= e−4uP 4
g ,

P 3
gu

= e−3uP 3
g ,

and

{
P 4

g u + 2Qg = 2Qgu
e4u in M,

P 3
g u + Tg = Tgu

e3u on ∂M.
(1)

Apart from this analogy, we have also an extension of the Gauss–Bonnet iden-
tity (2) which is known as the Gauss–Bonnet–Chern formula

∫
M

(
Qg +

|Wg|2
8

)
dVg +

∮
∂M

(Tg + Zg)dSg = 4π2χ(M) (2)

where Wg denote the Weyl tensor of (M, g) andZg is given by the following
formula

Zg = RgHg − 3HgRicg,nn + ĝacĝbdRg,anbnLg,cd − ĝacĝbdRg,acbcLg,cd

+ 6H3
g − 3Hg|Lg|2 + trg(L3

g),

with trg denoting the trace with respect to the metric induced on ∂M by g

(namely ĝ) and χ(M) the Euler–Poincaré characteristic of M . Concerning the
quantity Zg, we have that it vanishes when the boundary is totally geodesic
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and
∮

∂M
ZgdVg is always conformally invariant, see [7]. Thus, setting

κ(P 4,P 3) := κ(P 4,P 3)[g] :=
∫

M

QgdVg +
∮

∂M

TgdSg (3)

we have that thanks to (2), and to the fact that |Wg|2dVg is pointwise con-
formally invariant, κ(P 4,P 3) is a conformal invariant (which justifies the nota-
tion used above). We remark that 4π2 is the the total integral of the (Q,T )-
curvature of the standard four-dimensional Euclidean unit ball B

4.
As was asked in [1], a natural question is whether every compact four-

dimensional Riemannian manifold with boundary (M, g) carries a conformal
metric gu for which the corresponding Q-curvature Qgu

is zero, the corre-
sponding T -curvature Tgu

is a prescribed function and such that (M, gu) has
minimal boundary. Thanks to (1), this problem is equivalent to finding a
smooth solution to the following BVP:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

P 4
g u + 2Qg = 0 in M,

P 3
g u + Tg = Ke3u on ∂M,

− ∂u

∂ng
+ Hgu = 0 on ∂M,

where K : ∂M −→ R+ is a positive smooth function on ∂M .
Since we are interested to find a metric in the conformal class of g, then

we can assume that Hg = 0, since this can be always obtained through a
conformal transformation of the background metric. Thus, we are led to solve
the following BVP with Neumann homogeneous boundary condition:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

P 4
g u + 2Qg = 0 in M,

P 3
g u + Tg = Ke3u on ∂M,

∂u

∂ng
= 0 on ∂M.

(4)

Defining H ∂
∂n

as

H ∂
∂n

=
{

u ∈ W 2,2(M) :
∂u

∂ng
= 0 on ∂M

}
,

where W 2,2(M) denotes the space of functions on M which are square inte-
grable together with their first and second derivatives, and

P
4,3
g (u, v) =

〈
P 4u, v

〉
L2(M)

+ 2
〈
P 3

g u, v
〉

L2(∂M)
, u, v ∈ H ∂

∂n
∩ W 4,2(M),

with W 4,2(M) denoting the space of functions on M which are square inte-
grable together with their derivatives up to order 4, we have integration by
part implies

P
4,3
g (u, v) =

∫
M

(
ΔguΔgv +

2
3
Rg∇gu · ∇gv

)
dVg − 2

∫
M

Ricg(∇gu,∇gv)dVg

− 2
∮

∂M

Lg(∇ĝu,∇ĝv)dSg, u, v ∈ H ∂
∂n

∩ W 4,2(M). (5)
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We observe that the right hand side of (5) is well defined for functions which
are just in H ∂

∂n
and extend the definition P

4,3
g to the full space H ∂

∂n
by

P
4,3
g (u, v) =

∫
M

(
ΔguΔgv +

2
3
Rg∇gu · ∇gv

)
dVg

− 2
∫

M

Ricg(∇gu,∇gv)dVg

− 2
∮

∂M

Lg(∇ĝu,∇ĝv)dSg, u, v ∈ H ∂
∂n

. (6)

Hence we have P
4,3
g is a well-defined bilinear form on H ∂

∂n
, and we set

ker P
4,3
g := {u ∈ H ∂

∂n
: P

4,3
g (u, v) = 0, ∀v ∈ H ∂

∂n
}. (7)

On the other hand, standard regularity theory implies that smooth solu-
tions to (4) can be found by looking at critical points of the geometric func-
tional

Eg(u) = P
4,3
g (u, u) + 4

∫
M

QgudVg + 4

∮
∂M

TgudSg − 4

3
κ(P 4,P 3) log

∮
∂M

Ke3udSg,

u ∈ H ∂
∂n

.

As a Liouville type problem, the analytic features of equation (4) and of the
associated Euler-Lagrange functional Eg depend strongly on the conformal
invariant κ(P 4,P 3). Indeed, depending on whether κ(P 4,P 3) is a positive inte-
ger multiple of 4π2 or not, the noncompactness of equation (4) and the way
of finding critical points of Eg changes drastically. As far as existence ques-
tions are concerned, we have that problem (4) has been solved in a work of
Chang–Qing [8] under the assumption that ker P

4,3
g � R, P

4,3
g is non-negative

and κ(P 4, P 3) < 4π2. In [21], we show existence of solutions for (4) under the
assumption ker P

4,3
g � R and κ(P 4, P 3) /∈ 4π2

N
∗.

As a Liouville type problem, the assumption ker P
4,3
g � R and κ(P 4,P 3) /∈

4π2
N

∗ will be referred to as nonresonant case. This terminology is motivated
by the fact that in that situation the set of solutions to some perturbations
of Eq. (7) (including it) is compact. Naturally, we call resonant case when
ker P

4,3
g � R and κ(P 4, P 3) ∈ 4π2

N
∗. With these terminologies, we have that

the works of Chang–Qing [8] and our work in [21] answer affirmatively the
question raised above in the nonresonant case. However, for the resonant case,
there are no known existence results to the best of our knowledge. For related
works dealing with high order conformally invariant equations, see [6–9,11,12,
14,15,19–25] and the references therein.

In this work, beside existence results for (4), we are interested in a com-
plete variational theory for the boundary value problem (4) in the resonant
case, namely when ker P

4,3
g � R and κ(P 4,P 3) = 4π2k for some k ∈ N

∗.
To present the main results of the paper, we need to set first some notation
and make some definitions. We define the Hamiltonian function (at infinity)
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FK : (∂M)k\Fk(∂M) −→ R by

FK((a1, . . . , ak)) :=
k∑

i=1

⎛
⎝H(ai, ai) +

k∑
j=1, j �=i

G(ai, aj) +
2
3

log(K(ai))

⎞
⎠

where Fk(∂M) denotes the fat Diagonal of (∂M)k, namely

Fk(∂M) := {A := (a1, . . . , ak) ∈ (∂M)k : there exists i �= j with ai = aj},

G is the Green’s function defined by (47), and H is its regular defined as in
(49). Furthermore, we define

Crit(FK) := {A ∈ (∂M)k \ Fk(∂M), A critical point of FK}. (8)

Moreover, for A = (a1, . . . , ak) ∈ (∂M)k\Fk(∂M), and i = 1 . . . k, we set

FA
i (x) := e3(H(ai,x)+

∑k
j=1, j �=i G(aj ,x))+ 1

3 log(K(x)), (9)

and define

LK(A) := −
k∑

i=1

(FA
i )

1
2 Lĝ

(
(FA

i )
1
6

)
(ai), (10)

where

Lĝ := −Δĝ +
1
8
Rĝ

is the conformal Laplacian associated to ĝ. We also set

F∞ := {A ∈ Crit(FK) : LK(A) < 0}, (11)
i∞(A) := 4k − 1 − Morse(A, FK), (12)

and define

mk
i :=

1
k!

card{A ∈ Crit(FK) : i∞(A) = i}, i = 0, . . . , 4k − 1, (13)

where Morse(FK , A) denotes the Morse index of FK at A. We point out
that for k ≥ 2, mk

i = 0 for 0 ≤ i ≤ k − 2.
For k ≥ 2, we use the notation Bk−1(∂M) to denote the set of formal

barycenters of order k − 1 of ∂M , namely

Bk−1(∂M) :=

{
k−1∑
i=1

αiδai
, ai ∈ ∂M, αi ≥ 0, i = 1, . . . , k − 1,

k−1∑
i=1

αi = k

}
.

(14)

Furthermore, we define

ck−1
p = dimHp(Bk−1(∂M)), p = 1, . . . 4k − 5, (15)

where Hp(Bk−1(∂M) denotes the p-th homology group of Bk−1(∂M) with
Z2 coefficients. Finally, we say

(ND) holds if FK is a Morse function and for every A ∈ Crit(FK),
LK(A) �= 0. (16)
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Now, we are ready to state our existence results of Morse theoretical type
starting with the critical case, namely when k = 1.

Theorem 1.1. Let (M, g) be a compact 4-dimensional Riemannian manifold
with boundary ∂M and interior M such that Hg = 0, ker P

4,3
g � R and

κ(P 4, P 3) = 4π2. Assuming that K is a smooth positive function on ∂M such
that (ND) holds and the system⎧⎪⎪⎪⎨

⎪⎪⎪⎩

m1
0 = 1 + x0,

m1
i = xi + xi−1, i = 1, . . . , 3,

0 = x3

xi ≥ 0, i = 0, . . . , 3

(17)

has no solutions, then K is the T -curvature of a Riemannian metric on M
conformally related to g with zero Q-curvature in M and zero mean curvature
on ∂M .

The system (17) not having a solution traduces the violation of a strong Morse
type inequalities (SMTI) for the critical points at infinity of Eg. Since (SMTI)
imply Poincare–Hopf type formulas, then we have Theorem 1.1 implies the
following Poincare–Hopf index type result.

Corollary 1.2. Let (M, g) be a compact 4-dimensional Riemannian manifold
with boundary ∂M and interior M such that Hg = 0, ker P

4,3
g � R and

κ(P 4, P 3) = 4π2. Assuming that K is a smooth positive function on ∂M such
that (ND) holds and ∑

A∈F∞

(−1)i∞(A) �= 1, (18)

then K is the T -curvature of a Riemannian metric on M conformally related
to g with zero Q-curvature in M and zero mean curvature on ∂M .

The formula (18) says that the Euler characteristic number of the space of
variations is different from the total contribution of the true critical points at
infinity and is of global character. Localizing the arguments of Corollary 1.2
in the case of the presence of a jump in the Morse index of the critical points
of the Hamiltonian function FK , we have the following extension of Corollary
1.2.

Theorem 1.3. Let (M, g) be a compact 4-dimensional Riemannian manifold
with boundary ∂M and interior M such that Hg = 0, ker P

4,3
g � R and

κ(P 4, P 3) = 4π2 and K be a smooth positive function on ∂M satisfying the
non-degeneracy condition (ND). Assuming that there exists a positive integer
1 ≤ l ≤ 3 such that ∑

A∈F∞, i∞(A)≤l−1

(−1)i∞(A) �= 1

and

∀A ∈ F∞, i∞(A) �= l,
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then K is the T -curvature of a Riemannian metric on M conformally related
to g with zero Q-curvature in M and zero mean curvature on ∂M .

In the supercritical case, i.e k ≥ 2, the Euler-Lagrange functional Eg is not
bounded from below, and taking into account the topological contribution of
very large negative sublevels of Eg, we have the following analogue of Theorem
1.1.

Theorem 1.4. Let (M, g) be a compact 4-dimensional Riemannian manifold
with boundary ∂M and interior M such that Hg = 0, ker P

4,3
g � R, and

κ(P 4,P 3) = 4kπ2 with k ≥ 2. Assuming that K is a smooth positive function
on ∂M such that (ND) holds and the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = x0,

mk
1 = x1,

mk
i = ck−1

i−1 + xi + xi−1, i = 2, . . . , 4k − 4,

mk
i = xi + xi−1, i = 4k − 3, . . . , 4k − 1,

0 = x4k−1,

xi ≥ 0, i = 0, . . . , 4k − 1,

(19)

has no solutions, then K is the T -curvature of a Riemannian metric on M
conformally related to g with zero Q-curvature in M and zero mean curvature
on ∂M .

Remark 1.5. The presence of the number ck−1
i−1 = dimHi−1(Bi−1(∂M)) in

(19) account for the contribution of the topology of very negative sublevels
of Eg. The relation between the topology of very negative sublevels of the
Euler-Lagrange functional of Liouville type problems and the space of formal
barycenters was first observed by Djadli–Malchiodi [11].

As in the critical case, we have that Theorem 1.4 implies the following Poincaré–
Hopf index type criterion for existence.

Corollary 1.6. Let (M, g) be a compact 4-dimensional Riemannian manifold
with boundary ∂M and interior M such that Hg = 0, ker P

4,3
g � R, and

κ(P 4,P 3) = 4kπ2 with k ≥ 2. Assuming that K is a smooth positive function
on ∂M such that (ND) holds and

1
k!

∑
A∈F∞

(−1)i∞(A) �= 1
(k − 1)!

Πk−1
i=1 (i − χ(∂M)), (20)

then K is the T -curvature of a Riemannian metric on M conformally related
to g with zero Q-curvature in M and zero mean curvature on ∂M .

As in the critical case, we have that a localization of the arguments of Corollary
1.6 implies the following jumping index type result.

Theorem 1.7. Let (M, g) be a compact 4-dimensional Riemannian mani-
fold with boundary ∂M and interior M such that Hg = 0, ker P

4,3
g � R,

κ(P 4,P 3) = 4kπ2 with k ≥ 2, and let K be a smooth positive function on ∂M
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satisfying the non degeneracy condition (ND). Assuming that there exists a
positive integer 1 ≤ l ≤ 4k − 1 and Al ∈ F∞ with i∞(Al) ≤ l − 1 such that

1
k!

∑
A∈F∞, i∞(A)≤l−1

(−1)i∞(A) �= 1
(k − 1)!

Πk−1
j=1 (j − χ(∂M))

and

∀A ∈ F∞, i∞(A) �= l,

then K is the T -curvature of a Riemannian metric on M conformally related
to g with zero Q-curvature in M and zero mean curvature on ∂M .

Remark 1.8. As already observed in [2], here also and for the same reasons, k̄
plays no role in the above results.

The Morse theoretical results stated above depend only the Morse Lemma at
infinity around true critical points at infinity (see Lemma 3.24) which justify
the condition LK < 0 in the definition of F∞. However, our existence result
of algebraic topological type are based on the Morse lemma at infinity around
all critical points at infinity. Thus, to state our existence result of algebraic
topological type, we need first to introduce the neighborhood of potential crit-
ical points at infinity of Eg. In order to do that, we first fix ν to be a positive
and small real number, Λ to be a large positive constant, and R to be a large
positive constant too. Next, for ε small and positive, and Θ ≥ 0, we denote
by V (k, ε,Θ) the (k, ε,Θ)-neighborhood of potential critical points at infinity,
namely

V (k, ε, Θ) := {u ∈ H ∂
∂n

: ∃ a1, . . . , ak ∈ ∂M, α1, . . . , αk > 0, λ1, . . . , λk > 0,

β1, . . . , βk̄ ∈ R,

‖u − u(Q,T ) −
k∑

i=1

αiϕai,λi −
k̄∑

r=1

βr(vr − vr(Q,T ))‖P4,3 < ε,

k∑
i=1

αi = k αi ≥ 1 − ν,

λi ≥ 1

ε
, i = 1, . . . , k,

2

Λ
≤ λi

λj
≤ Λ

2
, i, j = 1, . . . , k, |βr| ≤ Θ, r = 1, . . . , k̄,

and λidĝ(ai, aj) ≥ 4CR for i �= j}, (21)

where C is as in (41), the ϕai,λi
’s are as in (45), k̄ is as in (31), the vr’s are

defined as in (32), the (vr)(Q,t)’s are as in (29), and ‖ · ‖P4,3 is defined as in
(35).
As observed by Chen–Lin [10] for Liouville type problems, the minimization
at infinity of Bahri–Coron [3] for Yamabe type problems has the following
analogue for our problem. For Θ ≥ 0, there exists ε0 = ε0(Θ) small and
positive such that ∀ 0 < ε ≤ ε0, we have

∀u ∈ V (k, ε,Θ), the minimization problem min
BΘ

ε

∥∥∥∥∥u − u(Q,T ) −
k∑

i=1

αiϕai,λi

−
k̄∑

r=1

βr(vr − vr(Q,T ))

∥∥∥∥∥∥
P4,3

(22)
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has a unique solution, up to permutations, where BΘ
ε is defined as follows

BΘ
ε :=

{
(ᾱ, A, λ̄, β̄) ∈ R

k
+ × (∂M)k × R

k
+ × R

k̄ :
k∑

i=1

αi = k, αi ≥ 1 − ν, λi ≥ 1

ε
,

i = 1, . . . , k,

|βr| ≤ Θ, r = 1, . . . , k̄, λidĝ(ai, aj) ≥ 4CR, i �= j, i, j = 1, . . . , k

}
.

(23)

The selection map sk is defined by sk : V (k, ε,Θ) −→ (∂M)k/σk as follows

sk(u) := A, u ∈ V (k, ε,Θ), and A is given by (82). (24)

We denote the critical points at infinity of Eg by z∞ and use the notation
M∞(z∞) for their Morse indices at infinity, Wu(z∞) for their unstable man-
ifolds and Ws(z∞) for their stable manifolds, where z is the corresponding
critical point of FK . Furthermore, we denote by x∞ the “true” ones, namely
LK(x) < 0 and the y∞ the “false” ones, namely LK(y) > 0. Moreover, we
define S to be the following invariant set

S := ∪M∞(z∞
1 ), M∞(z∞

2 )≥4k−4+k̄ Wu(z∞
1 ) ∩ Ws(z∞

2 ). (25)

We also define S∞ to be the part of S at infinity, namely

S∞ := ∪M∞(z∞
1 ), M∞(z∞

2 )≥4k−4+k̄ W∞
u (z∞

1 ) ∩ Ws(z∞
2 ), (26)

where W∞
u (z∞

1 ) denotes the restriction of Wu(z∞
1 ) at infinity. Furthermore,

we denote by S∞
− the exit set from S∞ starting from a false critical point at

infinity y∞.
Similarly, we denote by S∞

+ the entry set to S∞ after having exited S∞

through a set contained in S∞
− and entering into S∞ through a true critical

point at infinity x∞.
Finally, to state our result of algebraic topological favor in the spirit of

Bahri–Coron [3] (as in [23]), we first recall the existence of

0 �= O∗
∂M ∈ H3(∂M). (27)

Using (27), we prove

Theorem 1.9. Let (M, g) be a compact 4-dimensional Riemannian manifold
with boundary ∂M and interior M such that Hg = 0, ker P

4,3
g � R, and

κ(P 4,P 3) = 4kπ2 with k ≥ 2. Assuming that K is a smooth positive function
on ∂M such that (ND) holds and either there is no x∞ with M∞(x∞) =
4k − 4 + k̄ or s∗

k(O∗
∂M ) �= 0 in H3(S∞) and s∗

k(O∗
M ) = 0 in H3(S∞

+ ∪ S∞
− ),

then K is the T -curvature of a Riemannian metric conformally related to g
with zero Q-curvature in M and zero mean curvature on ∂M .

As in [23], Theorem 1.9 implies the following collorary.

Corollary 1.10. Let (M, g) be a compact 4-dimensional Riemannian manifold
with boundary ∂M and interior M such that ker P

4,3
g � R and κ(P 4,P 3) =

4kπ2 with k ≥ 2. Assuming that K is a smooth positive function on ∂M
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such that (ND) holds and that every critical point x of FK of Morse index
0 or 1 satisfies LK(x) < 0, then K is the T -curvature of a Riemannian
metric conformally related to g with zero Q-curvature in M and zero mean
curvature ∂M .

Remark 1.11. As in [23], here also and for the same reasons, the assumption
on the Morse indices of Corollary 1.10 imply that the topological assumption
of Theorem 1.9 holds.

We describe briefly our strategy to prove Theorem 1.1–Corollary 1.10. The
arguments of the proof of Theorem 1.1–1.7 follow the one of [2], while the
method of proof of Theorem 1.9 and Corollary 1.10 is the one of [23]. How-
ever, the arguments of Ahmedou and Ndiaye [2] and Ndiaye [23] depend on a
Harnack type inequality around the standard bubble of the variational problem
studied in [2] due to Weinstein–Zhang [27] and its analogue for the problem
under study is not known. Such an issue was present in our work [24] and was
dealt using the integral blow-up method in our work [19] combined with the
argument of Weinstein–Zhang [27]. Here, we use the integral argument in our
work [24] to derive the appropriate Harnack type inequality on the boundary.
This is possible because of the integral representation (48). One of the main
difficulties here is the lack of an explicit formula for the standard bubble of this
variational problem. We bypass this issue by using the fact that the nonlin-
earity is only at the boundary and that an explicit formula for the restriction
of the standard bubble of this variational problem on the boundary is known.

The structure of the paper is as follows. In Sect. 2, we collect some
notation and preliminary results, like a suitable Green’s function G of the
P 4

g (·) + 2
kQg to P 3

g (·) + 1
kTg operator on H ∂

∂n
and the definition of a family

of variational bubbles. In Sect. 3, we carry the blow-up analysis of sequence
of vanishing viscosity solutions to (57) and characterize the critical points at
infinity of the problem under study. We divide Sect. 3 in 4 subsections. In
Sect. 3.1, we recall a local description of blowing-up sequence of solutions of
(57), establish a global description of blowing-up sequence of solutions to (57)
and use the latter to provide a refined analogue of the deformation lemma of
Lucia [16]. In Sect. 3.2, we derive energy and gradient estimates for Eg at
infinity for those u for which their w-part given by (84) is 0. In Sect. 3.3,
we perform a finite-dimensional Lyapunow-Schmidt type reduction by using
the stablity properties of the standard bubble to show that variationally the
w-part in (84) has no contribution. Finally in Sect. 3.4, we use the energy and
gradient estimates of Sect. 3.2 and the finite-dimensional reduction in Sect. 3.3
to construct a pseudo-gradient at infinity for Eg and identify the critical points
at infinity of Eg. Combining this with the energy estimates in Sect. 3.2 and the
finite-dimensional reduction in Sect. 3.3, we derive a Morse type lemma around
the critical points at infinity. In Sect. 4, we present the proof of the existence
theorems. We divide Sect. 4 into 3 subsections. In Sect. 4.1, we characterize the
topology of very high and very negative sublevels of Eg. In Sect. 4.2, we present
the existence results of Morse theoretical type, namely Theorem 1.1-Theorem
1.7. Section 4.3 deals with the proof of the results of algebraic topological type,
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i.e Theorem 1.9 and Corollary 1.10. Finally, in Sect. 5, we collect some technical
lemmas.

2. Notation and preliminaries

In this brief section, we fix our notation, and give some preliminaries. First
of all, we recall that (M, g) and K are respectively the given underlying
compact 4-dimensional Riemannian manifold with boundary ∂M and the
prescribed T -curvature function with the following properties:

ker P
4,3
g � R and κ(P 4,P 3) = 4kπ2 for some k ∈ N

∗,

and K is a smooth positive function on ∂M. (28)

The induced metric on ∂M by g will be denoted by ĝ =: g|∂M .
In the following, for a Riemmanian metric ḡ on ∂M and p ∈ ∂M , we will use
the notation Bḡ

p(r) to denote the geodesic ball with respect to ḡ of radius
r and center p. We also denote by dḡ(x, y) the geodesic distance with respect
to ḡ between two points x and y of ∂M , expḡ

x the exponential map with
respect to ḡ at x ∈ ∂M . injḡ(∂M) stands for the injectivity radius of (∂M, ḡ),
dVḡ denotes the Riemannian measure associated to the metric ḡ. Furthermore,
we recall that ∇ḡ, Δḡ, Rḡ will denote respectively the covariant derivative,
the Laplace-Beltrami operator, and the scalar curvature with respect to ḡ. For
simplicity, we will use the notation Bp(r) to denote Bĝ

p(r), namely Bp(r) =
Bĝ

p(r). (∂M)2 stands for the cartesian product ∂M × ∂M , while Diag(∂M)
is the diagonal of (∂M)2.

Similarly, for a Riemmanian metric g̃ on M , we will use the notation
Bg̃,+

p (r) to denote the half geodesic ball with respect to g̃ of radius r and
center p ∈ ∂M . We also denote by dg̃(x, y) the geodesic distance with re-
spect to g̃ between two points x and y of M , expg̃

x the exponential map
with respect to g̃ at x ∈ ∂M . injg̃(M) stands for the injectivity radius of
(M, g), dVg̃ denotes the Riemannian measure associated to the metric g̃, and
dSg̃ the Riemannian measure associated to ˆ̃g := g̃|∂M , namely dSg̃ = dVˆ̃g.
Furthermore, we recall that ∇g̃, Δg̃, Rg̃ will denote respectively the covari-
ant derivative, the Laplace–Beltrami operator, and the scalar curvature with
respect to g̃. For simplicity, we will use the notation B+

p (r) to denote Bg,+
p (r),

namely B+
p (r) = Bg,+

p (r), p ∈ ∂M

For 1 ≤ p ≤ ∞ and m ∈ N, θ ∈]0, 1[, Lp(M), Wm,p(M), Cm(M), and
Cm,θ(M) stand respectively for the standard Lebesgue space, Sobolev space,
m-continuously differentiable space and m-continuously differential space of
Hölder exponent θ, all with respect g. Similarly, 1 ≤ p ≤ ∞ and m ∈ N,
θ ∈]0, 1[, Lp(∂M), Wm,p(∂M), Cm(∂M), and Cm,θ(∂M) stand respectively
for the standard Lebesgue space, Sobolev space, m-continuously differentiable
space and m-continuously differential space of Hölder exponent θ, all with
respect ĝ.
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Given a function u ∈ L1(M) ∩ L1(∂M), we define ū∂M and u(Q,T ) by

ū∂M =

∮
∂M

u(x)dSg

V olg(∂M)
,

with

V olg(∂M) =
∮

∂M

dSg,

and

u(Q,T ) =
1

4kπ2

(∫
M

QgudVg +
∮

∂M

TgudSg

)
. (29)

For ε > 0 and small, λ ∈ R+, λ ≥ 1
ε , and a ∈ ∂M , Oλ,ε(1) stands for

quantities bounded uniformly in λ, and ε, and Oa,ε(1) stands for quantities
bounded uniformly in a and ε. For l ∈ N

∗, Ol(1) stands for quantities bounded
uniformly in l and ol(1) stands for quantities which tends to 0 as l → +∞. For
ε positive and small, a ∈ ∂M and λ ∈ R+ large, λ ≥ 1

ε , Oa,λ,ε(1) stands for
quantities bounded uniformly in a, λ, and ε. For ε positive and small, p ∈ N

∗,
λ̄ := (λ1, . . . , λp) ∈ (R+)p, λi ≥ 1

ε for i = 1, . . . , p, and A := (a1, . . . , ap) ∈
(∂M)p (where (R+)p and (∂M)p denotes respectively the cartesian product
of p copies of R+ and ∂M), OA,λ̄,ε(1) stands for quantities bounded uniformly
in A, λ̄, and ε. Similarly for ε positive and small, p ∈ N

∗, λ̄ := (λ1, . . . , λp) ∈
(R+)p, λi ≥ 1

ε for i = 1, . . . , p, ᾱ := (α1, . . . , αp) ∈ R
p, αi close to 1 for

i = 1, . . . , p, and A := (a1, . . . , ap) ∈ (∂M)p (where R
p denotes the cartesian

product of p copies of R, Oᾱ,A,λ̄,ε(1) will mean quantities bounded from above
and below independent of ᾱ, A, λ̄, and ε. For x ∈ R, we will use the notation
O(x) to mean |x|O(1) where O(1) will be specified in all the contexts where
it is used. Large positive constants are usually denoted by C and the value
of C is allowed to vary from formula to formula and also within the same line.
Similarly small positive constants are also denoted by c and their value may
varies from formula to formula and also within the same line.
We say μ ∈ R is an eigenvalue of the P 4

g to P 3
g operator on H ∂

∂n
if there

exists 0 �= v ∈ W 2,2(M) such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P 4
g v = 0 in M,

P 3
g v = μv on ∂M,

∂v

∂ng
= 0 on ∂M.

(30)

By abuse of notation, we call v in (30) an eigenfunction associated to μ.
We call k̄ the number of negative eigenvalues (counted with multiplicity) of
the P 4

g to P 3
g operator on H ∂

∂n
. We point out that k̄ can be zero, but it is

always finite. If k̄ ≥ 1, then we will denote by E− ⊂ H ∂
∂n

the direct sum of
the eigenspaces corresponding to the negative eigenvalues of the P 4

g to P 3
g

operator on H ∂
∂n

. The dimension of E− is of course k̄, i.e

k̄ = dim E−. (31)
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On the other hand, we have the existence of a basis of eigenfunctions v1, . . . , vk̄

of E− satisfying ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P 4
g vr = 0 in M,

P 3
g vr = μrvr on ∂M,

∂vr

∂ng
= 0 on ∂M.

(32)

μ1 ≤ μ2 ≤ · · · ≤ μk̄ < 0 < μk̄+1 ≤ · · · , (33)

where μr’s are the eigenvalues of the operator P 4
g to P 3

g on H ∂
∂n

counted

with multiplicity. We define P
4,3
g,+ by

P
4,3
g,+(u, v) = P

4,3
g (u, v) − 2

k̄∑
r=1

μr

(∮
∂M

uvrdSg

)(∮
∂M

vvrdSg

)
. (34)

P
4,3
g,+ is obtained by just reversing the sign of the negative eigenvalue of P

4,3
g .

We set also

‖u‖P4,3 :=
√

P
4,3
g,+(u, u), and 〈u, v〉

P4,3 = P 4,3
g,+(u, v), (35)

where P
4,3
g,+ is defined as in (34). We have 〈·, ·〉

P4,3 is a scalar product on
{u ∈ H ∂

∂n
: u(Q,T ) = 0}. We can choose v1, . . . , vk̄ so that they constitute

a 〈·, ·〉
P4,3-orthonormal basis for E−. We denote by ∇P

4,3
the gradient with

respect to 〈·, ·〉
P4,3 .

For t > 0, we define the following perturbed functional

(Eg)t(u) := P
4,3(u, u) + 4t

∫
M

QgudVg + 4t

∮
∂M

TgudSg

−4
3
tκ(P 4,P 3) log

∮
M

Ke3udSg,

u ∈ H ∂
∂n

. (36)

B̄k̄
r will stand for the closed ball of center 0 and radius r in R

k̄. S
k̄−1 will

denote the boundary of B̄k̄
1 . Given a set X, we define ˜X × B̄k̄

1 to be the
cartesian product X × B̄k̄

1 where the tilde means that X × ∂Bk̄
1 is identified

with ∂Bk̄
1 .

In the sequel also, (Eg)c with c ∈ R will stand for (Eg)c := {u ∈ H ∂
∂n

:
Eg(u) ≤ c}. For X a topological space, H∗(X) will denote the singular ho-
mology of X, H∗(X) for the cohomology, and χ(X) the Euler characteristic
of X, all with Z2 coefficients.

As above, in the general case, namely k̄ ≥ 0, for ε small and positive, β̄ :=
(β1, . . . , βk̄) ∈ R

k̄ with βi close to 0, i = 1, . . . , k̄) (where R
k̄ is the empty

set when k̄ = 0), λ̄ := (λ1, . . . , λp) ∈ (R+)p, λi ≥ 1
ε for i = 1, . . . , p, ᾱ :=

(α1, . . . , αp) ∈ R
p, αi close to 1 for i = 1, . . . , p, and A := (a1, . . . , ap) ∈ (∂M)p,

p ∈ N
∗, w ∈ H ∂

∂n
with ‖w‖P4,3 small, Oᾱ,A,λ̄,β̄,ε(1) will stand quantities
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bounded independent of ᾱ, A, λ̄, β̄, and ε, and Oᾱ,A,λ̄,β̄,w,ε(1) will stand
quantities bounded independent of ᾱ, A, λ̄, β̄, w and ε.
For point b ∈ R

3 and λ a positive real number, we define δb,λ by

δb,λ(y) := log
(

2λ

1 + λ2|y − b|2
)

, y ∈ R
3. (37)

The functions δb,λ verify the following equation

(−ΔR3)
3
2 δb,λ = 2e3δb,λ in R

3. (38)

Using the existence of conformal Fermi coordinates, we have that, for a ∈ ∂M
there exists a function ua ∈ C∞(M) such that

ga = e2uag verifies detga(x) = 1 + O(dga
(x, a)m) for x ∈ Bga,+

a (�a). (39)

with 0 < �a < min{ injga (M)
10 ,

injĝa (∂M)
10 }. Moreover, we can take the families

of functions ua, ga and �a such that

the maps a −→ ua, ga are C1 and �a ≥ �0 > 0, (40)

for some small positive �0 satisfying �0 < min{ injg(M)
10 ,

injĝ(∂M)
10 }, and

‖ua‖C4(M) = Oa(1),
1

C
2 g ≤ ga ≤ C

2
g,

ua(x) = Oa(d2
ĝa

(a, x)) = Oa(d2
ĝ(a, x)) for x ∈ Bĝa

a (�0) ⊃ Ba

(
�0

2C

)
, and

ua(a) = 0, Rĝa
(a) = 0,

∂ua

∂ng
(a) = 0, (41)

for some large positive constant C independent of a. For a ∈ ∂M , and r > 0,
we set

expa
a := expĝa

a and Ba
a(r) := Bĝa

a (r). (42)

Now, for 0 < � < 	0
4 where �0 is as in (40), we define a smooth cut-off

function satisfying the following properties:
⎧⎪⎨
⎪⎩

χ	(t) = t for t ∈ [0, �],
χ	(t) = 2� for t ≥ 2�,

χ	(t) ∈ [�, 2�] for t ∈ [�, 2�].
(43)

Using the cut-off function χ	, we define for a ∈ ∂M and λ ∈ R+ the function
δ̂a,λ as follows

δ̂a,λ(x) := log
(

2λ

1 + λ2χ2
	(dĝa

(x, a))

)
. (44)
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For every a ∈ ∂M and λ ∈ R+, we define ϕa,λ to be the unique solution of⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P 4
g ϕa,λ + 2

kQg = 0 in M,

P 3
g ϕa,λ + 1

kTg = 4π2 e3(δ̂a,λ + ua)∮
M

e3(δ̂a,λ + ua)dSg

in ∂M,

∂ϕa,λ

∂ng
= 0,

φa,λ(Q,T ) = 0.

(45)

Next, let S(a, x), (a, x) ∈ ∂M × M be defined by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P 4
g S(a, ·) + 2

kQg(·) = 0 in M,

P 3
g S(a, ·) + 1

kTg(·) = 4π2δa(·), on ∂M,
∂S(a,·)

∂ng
= 0 on ∂M,∫

M
S(a, x)Qg(x)dVg(x) = 0.

(46)

Then

G(a, ·) = S(a, ·)|∂M . (47)

is a Green’s function of the P 4
g + 2

kQg(·) to P 3
g + 1

kTg(·) operator on H ∂
∂n

.
Thus, we have the integral representation: ∀u ∈ H ∂

∂n
such that P 4

g u + 2
kQg =

0,

u(x) − u(Q,T ) =
1

4π2

∮
∂M

G(x, y)P 3
g u(y), x ∈ ∂M. (48)

Moreover, G decomposes as follows (see [21])

G(a, x) = log
(

1
χ2

	(dĝa
(a, x))

)
+ H(a, x), (49)

where H is the regular part of G. Furthermore, we have

G ∈ C∞((∂M)2 − Diag(∂M)), and H ∈ C3,β((∂M)2) ∀β ∈ (0, 1). (50)

By symmetry of H, we have

∂F(a1, . . . , ak)
∂ai

=
2
3

∇ĝFA
i (ai)

FA
i (ai)

, i = 1, . . . , k. (51)

Next, setting

lK(A) :=
k∑

i=1

(
ΔĝFA

i (ai)
(FA

i (ai))
1
3

− 3
4
Rĝ(ai)(FA

i (ai))
2
3

)
, (52)

we have

lK(A) = 6LK(A), ∀A ∈ Crit(FK). (53)

For k ≥ 2, we denote by Bk(∂M) the set of formal barycenters of ∂M of
order k, namely

Bk(∂M) :=

{
k∑

i=1

αiδai
, ai ∈ ∂M,αi ≥ 0, i = 1, . . . , k,

k∑
i=1

αi = k

}
. (54)
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Finally, we set

Ak,k̄ := ˜Bk(∂M) × B̄k̄
1 , (55)

and

Ak−1,k̄ := ˜Bk−1(∂M) × B̄k̄
1 , (56)

with Bk−1(∂M) as in (14).

3. Blow-up analysis and critical points at infinity

This section deals with the blowup analysis of sequences of vanishing viscosity
solutions of the type⎧⎪⎪⎪⎨

⎪⎪⎪⎩

P 4
g ul + 2tlQg = 0 in M,

P 3
g ul + tlTg = tlKe3u on ∂M,

∂ul

∂ng
= 0 on ∂M.

(57)

with tl → 1 under the assumption ker P
4,3
g � R and κ(P 4,P 3) = 4kπ2 with

k ≥ 1 and their use to characterize the critical points at infinity of Eg.

3.1. Blow-up analysis

The local behaviour of blowing up sequences of solutions of (57) is quite well
understood. In fact, in [21], we prove the following lemma.

Lemma 3.1. Assuming that (ul) is a blowing up sequence of solutions to (57),
then up to a subsequence, there exists k converging sequence of points (xi,l)l∈N,
xi,l ∈ ∂M with limits xi ∈ ∂M , i = 1, . . . , k, k sequences (μi,l)l∈N i =
1, . . . , k of positive real numbers converging to 0 such that the following hold:
(a)

dĝ(xi,l, xj,l)
μi,l

−→ +∞ i �= j i, j = 1, . . . , k and

tlK(xi,l)μ3
i,le

3ul(xi,l)e−3 log 2 = 2.

(b)

vi,l(x) = ul(expg
xi,l

(μi,lx)) − ul(xi,l) + log 2 −→ V (x) in C4
loc(R

4
+),

V |R3(x) := log
(

2
1 + |x|2

)
.

(c) There exists C > 0 such that infi=1,...,k dĝ(xi,l, x)3e3ul(x) ≤ C ∀x ∈ ∂M,
∀l ∈ N.
(d)

tlKe3uldSg → 4π2
k∑

i=1

δxi
in the sense of measure, and

lim
l→+∞

∮
∂M

tlKe3uldSg = 4π2k.
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(e)

ul − (ul)Q,T →
k∑

i=1

G(xi, ·) in C3
loc(∂M − {x1, . . . , xk}), (ul)Q,T → −∞.

As a Liouville type problem, the following Harnack type inequality is sufficient
to get the global description of blowing up sequences of solutions needed to
describe the critical points at infinity of Eg.

Proposition 3.2. Assuming that ul is a blowing up sequence of solutions to
(57), then Lemma 3.1 holds, and keeping the notations in Lemma 3.1, we have
that the points xi,l are uniformly isolated, namely there exists 0 < ηk < 	0

10
[where �0 is as in (40)] such that for l large enough, there holds

dĝ(xi,l, xj,l) ≥ 4Cηk, ∀i �= j = 1, . . . , k. (58)

Moreover, the scaling parameters λi,l := μ−1
i,l are comparable, namely there

exists a large positive constant Λ0 such that

Λ−1
0 λj,l ≤ λi,l ≤ Λ0λj,l, ∀ i, j (59)

Furthermore, we have that the following estimate around the blow up points
holds

ul(y) +
1
3

log
tlKl(xi,l)

2
= log

2λi,l

1 + λ2
i,l(dĝxi,l

(y, xi,l))2

+O(dĝ(y, xi,l)), ∀ y ∈ Bĝ
xi,l

(η). (60)

To prove Proposition 3.2, as it is standard for Liouville type problems, one
starts with the uniform isolation of blowing-up points. Indeed, we have

Lemma 3.3. Assuming that (ul)l∈N is a bubbling sequence of solutions to BVP
(57), then keeping the notations in Lemma 3.1, we have that the points xi,l

are uniformly isolated, namely there exists 0 < ηk < 	0
10 [where �0 is as in (40)]

such that for l large enough, there holds

dĝ(xi,l, xj,l) ≥ 4Cηk, ∀i �= j = 1, . . . , k. (61)

Proof. The proof use the integral method of Step 4 in [19] and hence we will
be skectchy in many arguments. As in [19], we first fix 1

3 < ν < 2
3 , and for

i = 1, . . . , k, we set

ūi,l(r) = V olĝ(∂Bxi
(r))−1

∫
∂Bxi

(r)

ul(x)dσĝ(x), ∀ 0 ≤ r < injĝ(∂M),

and

ψi,l(r) = r4νexp(4ūi,l(r)), ∀ 0 ≤ r < injĝ(∂M).

Furthermore, as in [19], we define ri,l as follows

ri,l := sup
{

Rνμi,l ≤ r ≤ Ri,l

2
such that ψ

′
i,l(r) < 0 in [Rνμi,l, r[

}
; (62)
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where Ri,l := minj �=i dĝ(xi,l, xj,l). Thus, by continuity and the definition of
ri,l, we have that

ψ
′
i,l(ri,l) = 0 (63)

Now, as in [19], to prove (61), it suffices to show that ri,l is bounded below
by a positive constant in dependent of l. Thus, we assume by contradiction
that (up to a subsequence) ri,l → 0 as l → +∞ and look for a contradiction.
In order to do that, we use the integral representation formula (48) and argue
as in Step 4 of Ndiaye [19] to derive the following estimate

ψ
′
i,l(ri,l) ≤ (ri,l)3ν−1exp(ūi,l(ri,l)) (3ν − 2C + ol(1) + Ol(ri,l)) .

with C > 1. So from 1
3 < ν < 2

3 , C > 1 and ri,l −→ 0 as l → +∞, we deduce
that for l large enough, there holds

ψ
′
i,l(ri,l) < 0. (64)

Thus, (63) and (64) lead to a contradiction, thereby concluding the proof of
(61). Hence, the proof of the Lemma is complete. �

The next step to derive Proposition 3.2 is to establish its weak O(1) -version.

Lemma 3.4. Assuming that (ul)l∈N is a bubbling sequence of solutions to BVP
(57), then keeping the notations in Lemmas 3.1 and 3.3, we have that for l
large enough, there holds

ul(x) +
1
3

log
tlK(xi)

2
= log

2λi,l

1 + λ2
i,l(dĝxi

(x, xi))2

+O(1), ∀x ∈ Bxi
xi

(ηk), (65)

up to choosing ηk smaller than in Lemma 3.3.

Remark 3.5. We point out that the comparability of the scaling parameters
λi,l’s follows directly from Lemma 3.4.

Proof. We are going to use the method of Ndiaye [24], hence we will be sketchy
in many arguments. Like in [24], thanks to Lemma 3.3, we will focus only on
one blow-up point and called it x ∈ ∂M . Thus, we are in the situation where
there exists a sequence xl ∈ ∂M such that xl → x with xl local maximum
point for ul on ∂M and ul(xl) → +∞. Now, we recall gx = e2uxg and choose
η1 such that 20η1 < min{�0, �k, d} with 4d ≤ ri,l where ri,l is as in the
proof of Lemma 3.3. Next, we let ŵx be the unique solution of the following
boundary value problem⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P 4
gx

ŵx = P 4
ĝ ux in M,

P 3
gx

ŵx = P 3
ĝ ux on ∂M,

∂ŵx

∂ngx

= 0 on ∂M,

ŵ(Q,T ) = 0.

(66)
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Using standard elliptic regularity theory and (41), we derive

ŵx(y) = O(dg(y, x)) in Bgx,+
x (2η1). (67)

On the other hand, using the conformal covariance properties of the Paneitz
operator and of the Chang–Qing one, see (1), we have that ûl := ul − ŵx

satisfies ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P 4
gx

ûl + 2Q̂l = 0 in M,

P 3
gx

ûl + T̂l = tlKe3ûl on ∂M,

∂ûl

∂ngx

= 0 on ∂M.

with

Q̂l = tle
−4ŵQg +

1
2
P 4

ĝ ŵ and T̂l = tle
−3ŵTg + P 3

ĝ ŵ.

Next, as in [24], we are going to establish the classical sup+inf-estimate for
ûl, since thanks (67) all terms coming from ŵx can be absorbed on the right
hand side of (65). Now, we are going to rescale the functions ûl around the
points x. In order to do that, we define ϕl : BR

3

0 (2η1μ
−1
l ) −→ Bĝx

x (2η1) by
the formula ϕl(z) := μlz and μl is the corresponding scaling parameter given
by Lemma 3.1. Furthermore, as in [24], we define the following rescaling of
ûl

vl := ûl ◦ ϕl + log μl +
1
3

log
tlK(x)

2
.

Using the Green’s representation formula and the method of [24], we get

vl(z) + 2 log |z| = O(1), for z ∈ B̄R
3

0

(
η1

μl

)
− BR

3

0 (− log μl). (68)

Now, we are going to show that the estimate (68) holds also in B̄R
3

0 (− log μl).
To do so, we use Lemma 3.1 and the same arguments as in [24] to deduce

vl(z) + 2 log |z| = O(1), for z ∈ B̄R
3

0 (− log μl). (69)

Now, combining (68) and (69), we obtain

vl(z) + 2 log |z| = O(1), for z ∈ B̄R
3

0

(
η1

μl

)
. (70)

Thus scaling back, namely using y = μlz and the definition of vl, we obtain
the desired O(1)-estimate. Hence the proof of the Lemma is complete. �

Proof of formula (60) of Proposition 3.2. We are going to use the method of
Ndiaye [24], hence we will be sketchy in many arguments. Now, let V0 be the
unique solution of the following conformally invariant integral equation

V0(z) =
1

2π2

∫
R3

log
|y|

|z − y|e
3V0(y)dy + log 2, z ∈ R

3,

V0(0) = log 2,∇V0(0) = 0.
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Next, we set wl(z) = vl(z)−V0(z) for z ∈ BR
3

0 (η1μ
−1
l ), and use Lemma 3.4 to

infer that

|wl| ≤ C in BR
3

0 (η1μ
−1
l ) (71)

On the other hand, it is easy to see that to achieve our goal, it is sufficient to
show

|wl| ≤ Cμl|z| in BR
3

0 (η1μ
−1
l ). (72)

To show (72), we first set

Λl := max
z∈Ωl

|wl(z)|
μl(1 + |z|)

with

Ωl = B
R

3

0 (η1μ
−1
l )

We remark that to show (72), it is equivalent to prove that Λl is bounded.
Now, let us suppose that Λl → +∞ as l → +∞, and look for a contradiction.
To do so, we will use the method of [24]. For this, we first choose a sequence
of points zl ∈ Ωl such that Λl = |wl(zl)|

μl(1+|zl|) . Next, up to a subsequence, we have
that either zl → z∗ as l → +∞ (with z∗ ∈ R

3) or |zl| → +∞ as l → +∞.
Now, we make the following definition

w̄l(z) :=
wl(z)

Λlμl(1 + |zl|) ,

and have

|w̄l(z)| ≤
(

1 + |z|
1 + |zl|

)
, (73)

and

|w̄l(zl)| = 1. (74)

Now, we consider the case where the points zl escape to infinity.
Case 1 : |zl| → +∞
In this case, using the integral representation (48) with respect to gx and the
method of [24], we obtain

w̄l(zl) =
1

2π2

∫
Ωl

log
|ξ|

|zl − ξ|
(

O(1)(1 + |ξ|)−5

(1 + |zl|) +
O(1)(1 + |ξ|)−5

Λl(1 + |zl|)
)

dξ + o(1).

Now, using the fact that |zl| → +∞ as l → +∞, one can easily check that

w̄l(zl) =
1

2π2

∫
Ωl

log
|ξ|

|zl − ξ|
(

O(1)(1 + |ξ|)−5

(1 + |zl|) +
O(1)(1 + |ξ|)−5

Λl(1 + |zl|)
)

dξ = o(1).

Hence, we reach a contradiction to (74).
Now, we are going to show that, when the points zl → z∗ as l → +∞, we
reach a contradiction as well.
Case 2: zl → z∗
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In this case, using the assumption zl −→ z∗, the Green’s representation for-
mula, and the method of Ndiaye [24], we obtain that up to a subsequence

w̄l → w in C1
loc(R

3) as l → +∞, (75)

and

w̄l(z) =
1

2π2

∫
Ωl

log
|ξ|

|z − ξ|
K ◦ ϕl(ξ)
K ◦ ϕl(0)

e3ϑl(ξ)w̄(ξ)dξ

+
1

Λlμl(1 + |zl|)2π2

∫
Ωl

log
|ξ|

|z − ξ|O(μl(1 + |ξ|)−5)dξ

+
O(1) + O(|z|)
Λl(1 + |zl|) , (76)

where e3ϑl :=
∫ 1

0
e3(svl+(1−s)V0)ds. Thus, appealing to (75) and (76), we infer

that w satisfies

w(z) =
1

2π2

∫
R3

log
|ξ|

|z − ξ|e
3V0(ξ)w(ξ)dξ (77)

Now, using (73), we have that w satisfies the following asymptotics

|w(z)| ≤ C(1 + |z|). (78)

On the other hand, from the definition of vl, it is easy to see that

w(0) = 0, and ∇w(0) = 0. (79)

So, using (77)–(79), and observing that Lemma 3.7 in [24] holds for dimension
3, we obtain

w = 0.

However, from (74), we infer that w satisfies also

|w(z∗)| = 1 (80)

So we reach a contradiction in the second case also. Hence the proof of the
lemma is complete.

Because of the lack of understanding of the blowing PS-sequences for Louiville
type problems, the role of the PS-sequences can be replaced by the vanishing
viscosity solutions of the type of (57) via the following Bahri-Lucia’s deforma-
tion type lemma.

Lemma 3.6. Assuming that a, b ∈ R such that a < b and there is no critical
values of Eg in [a, b], then there are two possibilities

(1) Either

(Eg)a is a deformation retract of (Eg)b.

(2) Or there exists a sequence tl → 1 as l → +∞ and a sequence of critical
point ul of (Eg)tl

verifying a ≤ Eg(ul) ≤ b for all l ∈ N
∗, where (Eg)tl

is as in (36) with t replaced by tl.
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On the other hand, setting

VR(k, ε, η) :=
{

u ∈ H ∂
∂n

: ∃a1, . . . , ak ∈ ∂M, λ1, . . . , λk > 0, ‖u − uQ,T

−
k∑

i=1

ϕai,λi
‖P4,3 < ε

λi ≥ 1
ε
,

2
Λ

≤ λi

λj
≤ Λ

2
, and dĝ(ai, aj) ≥ 4Cη for i �= j

}
,

(81)

where C is as in (41), L as in (21), O(1) := OA,λ̄,u,ε(1) meaning bounded
uniformly in λ̄ := (λ1, . . . , λk), A := (a1, . . . , ak), u, ε, we have as in [24] that
Proposition 3.2 implies the following one.

Lemma 3.7. Let ε and η be small positive real numbers with 0 < 2η < � where
� is as in (43). Assuming that ul is a sequence of blowing up critical point of
(Eg)tl

with (ul)Q,T = 0, l ∈ N and tl → 1 as l → +∞, then there exists lε,η
a large positive integer such that for every l ≥ lε,η, we have ul ∈ VR(k, ε, η),
and for the definition of VR(k, ε, η), see (81).

Finally, as in [24], we have that Lemmas 3.6 and 3.7 implies the following one.

Lemma 3.8. Assuming that ε and η are small positive real numbers with 0 <
2η < �, then for a, b ∈ R such that a < b, we have that if there is no critical
values of Eg in [a, b], then there are two possibilities

(1) Either

(Eg)a is a deformation retract of (Eg)b.

(2) Or there exists a sequence tl → 1 as l → +∞ and a sequence of critical
point ul of (Eg)tl

[for its definition see (36)] verifying a ≤ Eg(ul) ≤ b
for all l ∈ N

∗ and lε,η a large positive integer such that ul ∈ VR(k, ε, η)
for all l ≥ lε,η, and for the definition of VR(k, ε, η), see (81).

3.2. Energy and gradient estimates at infinity

In this subsection, we present energy and gradient estimates needed to char-
acterize the critical points at infinity of Eg. We start with a parametrization
of infinity. Indeed, as a Liouville type problem, we have that for η a small
positive real number with 0 < 2η < �, there exists ε0 = ε0(η) > 0 such that
∀ 0 < ε ≤ ε0, we have

∀u ∈ VR(k, ε, η), the minimization problem min
Bε,η

∥∥∥∥∥u − uQ,T

−
k∑

i=1

αiϕai,λi
−

k̄∑
r=1

βr(vr − vr(Q,T ))

∥∥∥∥∥
P4,3

(82)

has a unique solution, up to permutations, where Bε,η is defined as follows
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Bε,η :=

{
(ᾱ, A, λ̄, β̄) ∈ R

k × (∂M)k × (0, +∞)k × R
k̄ : |αi − 1|

√
log λi

≤ Cε, λi ≥ 1

ε
, i = 1, . . . , k, dĝ(ai, aj) ≥ 4Cη, i �= j, |βr| ≤Cε, r = 1, . . . , k̄

}
.

(83)

Moreover, using the solution of (82), we have that every u ∈ VR(k, ε, η) can
be written as

u − u(Q,T ) =
k∑

i=1

αiϕai,λi
+

k̄∑
r=1

βr(vr − vr(Q,T )) + w, (84)

where w verifies the following orthogonality conditions

w(Q,T ) = 〈ϕai,λi
, w〉

P4,3 =

〈
∂ϕai,λi

∂λi
, w

〉
P4,3

=

〈
∂ϕai,λi

∂ai
, w

〉
P4,3

= 〈vr, w〉
P4,3 = 0,

i = 1, . . . , k,

r = 1, . . . , k̄ (85)

and the estimate

‖w‖P4,3 = O(ε), (86)

where here O (1) := Oᾱ,A,λ̄,β̄,w,ε (1). Furthermore, the concentration points ai,
the masses αi, the concentrating parameters λi and the negativity parameter
βr in (84) verify also

dĝ(ai, aj) ≥ 4Cη, i �= j = 1, . . . , k,
1
Λ

≤ λi

λj
≤ Λ i, j = 1, . . . , k, λi ≥ 1

ε
, and

k̄∑
r=1

|βr| +
k∑

i=1

|αi − 1|
√

log λi = O(ε) (87)

with still O (1) as in (86).
Because of the translation invariant property of Eg and the parametriza-

tion (84), to derive energy estimate in VR(k, ε, η) we start with the following
lemma.

Lemma 3.9. Assuming that η is a small positive real number with 0 < 2η < �
where � is as in (43), and 0 < ε ≤ ε0 where ε0 is as in (82), then for ai ∈ M
concentration points, αi masses, λi concentration parameters (i = 1, . . . , k),
and βr negativity parameters (r = 1, . . . , k̄) satisfying (87), we have

Eg

⎛
⎝ k∑

i=1

αiϕai,λi
+

k̄∑
r=1

βr(vr − vr(Q,T ))

⎞
⎠ = Ck

0 − 8π2FK(a1, . . . , ak)

+2
k̄∑

r=1

μrβ2
r +

k∑
i=1

(αi − 1)2
[
16π2 log λi + 8π2H(ai, ai) + Ck

1

]

+ 8π2
k∑

i=1

(αi − 1)

⎡
⎣ k̄∑

r=1

2βr(vr − vr(Q,T ))(ai) +

k∑
j=1,j �=i

(αj − 1)G(ai, aj)

⎤
⎦
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− c18π2

9

k∑
i=1

1

λ2
i

(
Δĝai

FA
i (ai)

FA
i (ai)

− 3

4
Rĝ(ai)

)

+
c18π2

9

k∑
i=1

τ̃i

λ2
i

(
Δĝai

FA
i (ai)

FA
i (ai)

− 3

4
Rĝ(ai)

)

+
16π2

3

k∑
i=1

log(1 − τ̃i) + O

⎛
⎝ k∑

i=1

|αi − 1|2 +

k̄∑
r=1

|βr|3 +

k∑
i=1

1

λ3
i

⎞
⎠ ,

where O (1) means here Oᾱ,A,λ̄,β̄,ε (1) with ᾱ = (α1, . . . , αk), A := (a1, . . . , ak),
λ̄ := (λ1, . . . , λk), β̄ := (β1, . . . , βk̄) and for i = 1, . . . , k,

τ̃i := 1 − kγ̃i

Γ
, Γ :=

k∑
i=1

γ̃i, γ̃i := c̃iλ
6αi−3
i FA

i (ai)Gi(ai),

with

c̃i :=
∫
R3

1
(1 + |y|2)3αi

dy

Gi(ai) :=e3((αi−1)H(ai,ai)+
∑k

j=1,j �=i(αj−1)G(aj ,ai))e
3
2

∑k
j=1,j �=i

αj

λ2
j
Δgaj

G(aj ,ai)

e
3
2

αi
λ2

i
Δgai

H(ai,ai) × e3
∑k̄

r=1 βrvr(ai),

Ck
0 is a real number depending only on k, Ck

1 is a real number depending only
on k and c1 is a positive real number and for the meaning of Oᾱ,A,λ̄,β̄,ε (1).

Proof. The proof is the same as the one Lemma 4.1 in [2] replacing Lemma
10.1–10.4 in [2] by Lemmas 5.1–5.4. �

Concerning the gradient estimates of Eg in VR(k, ε, η), we have in the direc-
tions of the scaling parameters:

Lemma 3.10. Assuming that η is a small positive real number with 0 < 2η < �
where � is as in (43), and ε ≤ ε0 where ε0 is as in (82), then for ai ∈ ∂M
concentration points, αi masses, λi concentration parameters (i = 1, . . . , k)
and βr negativity parameters (r = 1, . . . , k̄) satisfying (87), we have that for
every r = 1, . . . , k, there holds〈

∇P
4,3Eg

⎛
⎝ k∑

i=1

αiϕai,λi
+

k̄∑
r=1

βr(vr − vr(Q,T ))

⎞
⎠ , λj

∂ϕaj ,λj

∂λj

〉

P4,3

= 16π2αjτj − c28π2

3λ2
j

(
Δĝaj

FA
j (aj)

FA
j (aj)

− 3
4
Rĝ(aj)

)
− 16π2

λ2
j

τjΔĝaj
H(aj , aj)

− 16π2

λ2
j

k∑
i=1,i �=j

τiΔĝaj
G(aj , ai) +

c28π2

λ2
j

τj

(
Δĝaj

FA
j (aj)

FA
j (aj)

− 3
4
Rĝ(aj)

)

+ O

⎛
⎝ k∑

i=1

|αi − 1| +
k̄∑

r=1

|βr|2 +
k∑

i=1

1
λ3

i

⎞
⎠ ,
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where A := (a1, . . . , ak), O (1) is as in Lemma 3.9, c2 is a positive real num-
ber, and for i = 1, . . . , k,

τi := 1 − kγ̃i

D
, D :=

∮
∂M

K(x)e3(
∑k

i=1 αiϕai,λi
(x)+

∑k̄
r=1 βrvr(x))dSg(x),

with γ̃i as in Lemma 3.9.

Proof. The proof is the same as the one Lemma 5.1 in [2] replacing Lemma
10.1–10.4 in [2] by Lemmas 5.1–5.4. �

As in [2], Lemma 3.10 implies the following corollary.

Corollary 3.11. Assuming that η is a small positive real number with 0 <
2η < � where � is as in (43), and 0 < ε ≤ ε0 where ε0 is as in (82), then
for ai ∈ ∂M concentration points, αi masses, λi concentration parameters
(i = 1, . . . , k), and βr negativity parameters (r = 1, . . . , k̄) satisfying (87), we
have

〈
∇P

4,3Eg

⎛
⎝ k∑

i=1

αiϕai,λi
+

k̄∑
r=1

βr(vr − vr(Q,T ))

⎞
⎠ ,

k∑
i=1

λi

αi

∂ϕai,λi

∂λi

〉

P4,3

=
k∑

i=1

c38π2

λ2
i

(
Δĝai

FA
i (ai)

FA
i (ai)

− 3
4
Rĝ(ai)

)

+ O

⎛
⎝ k∑

i=1

|αi − 1| +
k̄∑

r=1

|βr|2 +
k∑

i=1

τ2
i +

k∑
i=1

1
λ3

i

⎞
⎠ ,

where A := (a1, . . . , ak), O (1) is as in Lemma 3.9, c3 is a positive real number,
and for i = 1, . . . , k, τi is as in Lemma 3.10.

Proof. The proof uses the strategy of the proof of Corollary 5.2 in [2] replacing
Lemma 5.1 in [2] by its counterpart Lemma 3.10. �

For the gradient estimate in the directions of mass concentrations, we have:

Lemma 3.12. Assuming that η is a small positive real number with 0 < 2η < �
where � is as in (43), and 0 < ε ≤ ε0 where ε0 is as in (82), then for ai ∈ ∂M
concentration points, αi masses, λi concentration parameters (i = 1, . . . , k),
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and βr negativity parameters (r = 1, . . . , k̄) satisfying (87), we have that for
every j = 1, . . . , k, there holds
〈

∇P
4,3Eg

⎛
⎝ k∑

i=1

αiϕai,λi
+

k̄∑
r=1

βr(vr − vr(Q,T ))

⎞
⎠ , ϕaj,λj

〉

P4,3

= (2 log λj + H(aj , aj) − C2)
1

αj〈
∇P

4,3Eg

⎛
⎝ k∑

i=1

αiϕai,λi
+

k̄∑
r=1

βr(vr − vr(Q,T ))

⎞
⎠ , λj

∂ϕaj,λj

∂λj

〉

P4,3

+

k∑
i=1,i�=j

G(aj , ai)

〈
∇P

4,3Eg

⎛
⎝ k∑

i=1

αiϕai,λi
+

k̄∑
r=1

βr(vr − vr(Q,T ))

⎞
⎠ , λi

∂ϕai,λi

∂λi

〉

P4,3

+ 32π2(αj − 1) log λj + O

⎛
⎝ k∑

i=1

|αi − 1| +

k̄∑
r=1

|βr| +

k∑
i=1

|τi| +

k∑
i=1

log λi

λ3
i

⎞
⎠ ,

where O (1) as as in Lemma 3.9 and C2 is a real number.

Proof. It follows from the same arguments as in Lemma 5.3 in [2]. �

Concerning the gradient estimate in the directions of points of concentrations,
we have:

Lemma 3.13. Assuming that η is a small positive real number with 0 < 2η < �
where � is as in (43), and 0 < ε ≤ ε0 where ε0 is as in (82), then for ai ∈ ∂M
concentration points, αi masses, λi concentration parameters (i = 1, . . . , k),
and βr negativity parameters (r = 1, . . . , k̄) satisfying (87), we have that for
every j = 1, . . . , k, there holds

〈
∇P

4,3Eg

⎛
⎝ k∑

i=1

αiϕai,λi
+

k̄∑
r=1

βr(vr − vr(Q,T ))

⎞
⎠ ,

1
λj

∂ϕaj ,λj

∂aj

〉

P4,3

= −c232π2

λj

∇ĝFA
j (aj)

FA
j (aj)

+ O

(
k∑

i=1

|αi − 1|2 +
k∑

i=1

|τi|2
)

+ O

⎛
⎝ k∑

i=1

1
λ2

i

+
k̄∑

r=1

|βr|2
⎞
⎠ ,

where A := (a1, . . . , ak), O(1) is as in Lemma 3.9, c2 is as in Lemma 3.10
and for i = 1, . . . , k, τi is as in Lemma 3.10.

Proof. The proof is the same as the one of Lemma 5.4 in [2]. �

Concerning the gradient estimate in the directions of the negativity parame-
ters, we have:
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Lemma 3.14. Assuming that η is a small positive real number with 0 < 2η < �
where � is as in (43), and 0 < ε ≤ ε0 where ε0 is as in (82), then for ai ∈ ∂M
concentration points, αi masses, λi concentration parameters (i = 1, . . . , k),
ad βr negativity parameters (r = 1, . . . , k̄) satisfying (87), we have that for
every l = 1, . . . , k̄, there holds〈

∇P
4,3Eg

⎛
⎝ k∑

i=1

αiϕai,λi
+

k̄∑
r=1

βr(vr − vr(Q,T ))

⎞
⎠ , vl − (vl)Q,T

〉

P4,3

= 4μlβl + O

(
k∑

i=1

|αi − 1| +
k∑

i=1

|τi|
)

+ O

⎛
⎝ k∑

i=1

1
λ2

i

+
k̄∑

r=1

|βr|2
⎞
⎠ ,

where O(1) is as in Lemma 3.9 and for i = 1, . . . , k, τi is as in Lemma 3.10

Proof. It follows from the same arguments as in the proof of Lemma 5.5 in [2].
�

3.3. Finite-dimensional reduction

In this subsection, we complete the energy estimate of Eg on VR(k, ε, η) via
Lyapunov finite dimensional type reduction and second variation arguments.
First of all, we have:

Proposition 3.15. Assuming that η is a small positive real number with 0 <
2η < � where � is as in (43), and 0 < ε ≤ ε0 where ε0 is as in (82) and
u = uQ,T +

∑k
i=1 αiϕai,λi

+
∑k̄

r=1 βr(vr − vr(Q,T )) + w ∈ VR(k, ε, η) with w,
the concentration points ai, the masses αi, the concentrating parameters λi

(i = 1, . . . , k), and the negativity parameters βr (r = 1, . . . , k̄) verifying (85)–
(87), then we have

Eg(u) = Eg

⎛
⎝ k∑

i=1

αiϕai,λi
+

k̄∑
r=1

βr(vr − (vr)(Q,T ))

⎞
⎠

− f(w) + Q(w) + o(‖w‖2
P4,3), (88)

where

f(w) := 16π2k

∮
∂M

Ke3
∑k

i=1 αiϕai,λi
+3
∑k̄

r=1 βrvrwdSg∮
∂M

Ke3
∑k

i=1 αiϕai,λi
+3
∑k̄

r=1 βrvrdSg

, (89)

and

Q(w) := ‖w‖2
P4,3 − 24π2k

∮
∂M

Ke3
∑k

i=1 αiϕai,λi
+3
∑k̄

r=1 βrvrw2dSg∮
∂M

Ke3
∑k

i=1 αiϕai,λi
+3
∑k̄

r=1 βrvrdSg

. (90)

Moreover, setting

Eai,λi :=

{
w ∈ H ∂

∂n
: 〈ϕai,λi , w〉P4,3 =

〈
∂ϕai,λi

∂λi
, w

〉
P4,3

=

〈
∂ϕai,λi

∂ai
, w

〉
P4,3

= 0,
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w(Q,T ) = 〈vr, w〉P4,3 = 0, r = 1, . . . , k̄, and ‖w‖P4,3 = O (ε)

}
, (91)

and

A := (a1, . . . , ak), λ̄ = (λ1, . . . , λk), EA,λ̄ := ∩k
i=1Eai,λi

, (92)

we have that, the quadratic form Q is positive definite in EA,λ̄. Furthermore,
the linear part f verifies that, for every w ∈ EA,λ̄, there holds

f(w) = O

[
‖w‖P4,3

(
k∑

i=1

|∇ĝFA
i (ai)|
λi

+

k∑
i=1

|αi − 1| log λi +

k̄∑
r=1

|βr| +

k∑
i=1

log λi

λ2
i

)]
,

(93)

where here o(1) = oᾱ,A,β̄,λ̄,w,ε(1) and O (1) := Oᾱ,A,β̄,λ̄,w,ε (1).

As in [2], to prove Proposition 3.15, we will need the following three coming
lemmas. We start with the following one:

Lemma 3.16. Assuming the assumptions of Proposition 3.15 and γ ∈ (0, 1)
small, then for every q ≥ 1, there holds the following estimates

∮
∂M

Ke3
∑k

i=1 αiϕai,λi
+3
∑k̄

r=1 βrvr |w|q = O

(
‖w‖q

P4,3(
k∑

i=1

λ3+γ
i )

)
, (94)

∮
∂M

Ke3
∑k

i=1 αiδ̂ai,λi
+3
∑k̄

r=1 βrvr |w|q = O

(
‖w‖q

P4,3(
k∑

i=1

λγ
i )

)
, (95)

∮
∂M

e3δ̂ai,λi
+3
∑k̄

r=1 βrvr dĝai
(ai, ·)|w|q = O

(
‖w‖q

P4,3

1

λ1−γ
i

)
, i = 1, . . . , k,

(96)∮
∂M

Ke3
∑k

i=1 αiϕai,λi
+3
∑k̄

r=1 βrvr e3θww|w|q = O

(
‖w‖q

P4,3

(
k∑

i=1

λ3+γ
i

))
, (97)

where θw ∈ [0, 1], and
∮

∂M

Ke3
∑k

i=1 αiϕai,λi
+3
∑k̄

r=1 βrvr

(
e3w − 1 − 3w − 9

2
w2

)
dVg

= o

(
‖w‖2

P4,3

(
k∑

i=1

λ3
i

))
(98)

where here o(1) and O (1) are as in Proposition 3.15.

Proof. The proof is the same as the one of Lemma 6.2 in [2] replacing Lemma
10.1 by its counterpart Lemma 5.1. �

Still as in [2], the second lemma that we need for the proof of Proposition 3.15
read as follows:



NoDEA Variational theory for the resonant T -curvature equation Page 29 of 43 63

Lemma 3.17. Assuming the assumptions of Proposition 3.15, then there holds
the following estimate
∮

∂M
Ke3

∑k
i=1 αiϕai,λi

+3
∑k̄

r=1 βrvr wdSg∮
∂M

Ke3
∑k

i=1 αiϕai,λi
+3
∑k̄

r=1 βrvr dSg

= O

(
‖w‖P4,3

(
k∑

i=1

|∇ĝFA
i (ai)|
λi

+
k∑

i=1

|αi − 1| log λi +
k̄∑

r=1

|βr| +
k∑

i=1

log λi

λ2
i

))
.

(99)

Proof. It follows from the same arguments as in the proof of Lemma 6.3 in [2]
replacing Lemma 10.1 by its counterpart Lemma 5.1. �

Finally, as in [2], the third and last lemma that we need for the proof of
Proposition 3.15 is the following one.

Lemma 3.18. Assuming the assumptions of Proposition 3.15, then for every
i = 1, . . . , k, there holds

τi = O(ε). (100)

Proof. The proof is the same as the one Lemma 6.4 in [2] replacing Lemma
5.1 by Lemma 3.10. �

Proof of Proposition 3.15. It follows from the same arguments as in the proof
of Lemma 6.1 in [2] replacing Lemma 6.2–6.4 in [2] by Lemmas 3.16–3.18 and
Lemma 10.1 in [2] by Lemma 5.1. Furthermore, Lemma 10.6 and Lemma 10.7
in [2] are replaced by Lemma 5.9 and Lemma 5.10. �

Now, as in [2], we have that Proposition 3.15 implies the following direct
corollaries.

Corollary 3.19. Assuming that η is a small positive real number with 0 <
2η < � where � is as in (43), 0 < ε ≤ ε0 where ε0 is as in (82) and
u :=

∑k
i=1 αiϕai,λi

+
∑k̄

r=1 βr(vr − vr(Q,T )) with the concentration points ai,
the masses αi, the concentrating parameters λi (i = 1, . . . , k) and the nega-
tivity parameters βr (r = 1, . . . , k̄) satisfying (87), then there exists a unique
w̄(ᾱ, A, λ̄, β̄) ∈ EA,λ̄ such that

Eg

(
u + w̄(ᾱ, A, λ̄, β̄)

)
= min

w∈EA,λ̄,u+w∈VR(k,ε,η)
Eg(u + w), (101)

where ᾱ := (α1, . . . , αk), A := (a1, . . . , ak), λ̄ := (λ1, . . . , λk) and β̄ :=
(β1, . . . , βk).
Furthermore, (ᾱ, A, λ̄, β̄) −→ w̄(ᾱ, A, λ̄, β̄) ∈ C1 and satisfies the following
estimate

1
C

‖w̄(ᾱ, A, λ̄, β̄)‖2
P4,3 ≤ |f (w̄(ᾱ, A, λ̄, β̄)

) | ≤ C‖w̄(ᾱ, A, λ̄, β̄)‖2
P4,3 , (102)

for some large positive constant C independent of ᾱ, A, λ̄, and β̄, hence
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‖w̄(ᾱ, A, λ̄, β̄)‖P4,3

= O

⎛
⎝ k∑

i=1

|∇ĝFA
i (ai)|
λi

+
k∑

i=1

|αi − 1| log λi +
k̄∑

r=1

|βr| +
k∑

i=1

log λi

λ2
i

⎞
⎠ .

(103)

Corollary 3.20. Assuming that η is a small positive real number with 0 <
2η < � where � is as in (43), 0 < ε ≤ ε0 where ε0 is as in (82), and u0 :=∑k

i=1 α0
i ϕa0

i ,λ0
i
+
∑k̄

r=1 β0
r (vr − vr(Q,T )) with the concentration points a0

i , the
masses α0

i , the concentrating parameters λ0
i (i = 1, . . . , k) and the negativity

parameters β0
r (r = 1, . . . , k̄) satisfying (87), then there exists an open neigh-

borhood U of (ᾱ0, A0, λ̄0, β̄0) (with ᾱ0 := (α0
1, . . . , α

0
k), A0 := (a0

1, . . . , a
0
k),

λ̄ := (λ0
1, . . . , λ

0
k) and β̄0 := (β0

1 , . . . , β0
k̄
)) such that for every (ᾱ, A, λ̄, β̄) ∈ U

with ᾱ := (α1, . . . , αk), A := (a1, . . . , ak), λ̄ := (λ1, . . . , λk), β̄ := (β1, . . . , βk̄),
and the ai, the αi, the λi (i = 1, . . . , k) and the βr (r = 1, . . . , k̄) satisfying
(87), and w satisfying (87) with

∑k
i=1 αiϕai,λi

+
∑k̄

r=1 βr(vr −vr(Q,T ))+w ∈
VR(k, ε, η), we have the existence of a change of variable

w −→ V (104)

from a neighborhood of w̄(ᾱ, A, λ̄, β̄) to a neighborhood of 0 such that

Eg

⎛
⎝ k∑

i=1

αiϕai,λi
+

k̄∑
r=1

βr(vr − vr(Q,T )) + w

⎞
⎠

= Eg

⎛
⎝ k∑

i=1

αiϕai,λi
+

k̄∑
r=1

βr(vr − vr(Q,T )) + w̄(ᾱ, A, λ̄, β̄)

⎞
⎠

+
1

2
∂2Eg

⎛
⎝ k∑

i=1

α0
i ϕa0

i ,λ0
i
+

k̄∑
r=1

β0
r (vr − vr(Q,T )) + w̄(ᾱ0, A0, λ̄0, β̄0)

⎞
⎠ (V, V ),

(105)

Thus, as in [2], with this new variable, it is easy to see that in VR(k, ε, η)
we have a splitting of the variables (ᾱ, A, λ̄, β̄) and V , namely that one can
decrease the Euler-Lagrange functional Eg in the variable V without touching
the variable (ᾱ, A, λ̄, β̄) by considering just the flow

dV

dt
= −V. (106)

So, as in [2], and for the same reasons, to develop a Morse theory for Eg is
equivalent to do one for the functional

Ēg(ᾱ, A, λ̄, β̄) := Eg

⎛
⎝ k∑

i=1

αiϕai,λi
+

k̄∑
r=1

βr(vr − vr(Q,T )) + w̄(ᾱ, A, λ̄, β̄)

⎞
⎠ ,

(107)

where ᾱ = (α1, . . . , αk), A = (a1, . . . , ak), λ̄ = (λ1, . . . , λk) and β̄ = β1, . . . , βk̄

with the concentration points ai, the masses αi, the concentrating parameters
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λi (i = 1, . . . , k) and the negativity parameters βr (r = 1, . . . , k̄) satisfying
(87), and w̄(ᾱ, A, λ̄, β̄) is as in Corollary 3.19.
Finally, we have the following energy estimate of Eg on VR(k, ε, η).

Lemma 3.21. Under the assumptions of Proposition 3.15, ∀u = u(Q,T ) +
∑k

i=1

αiϕai,λi
+
∑k̄

r=1 βr(vr − vr(Q,T )) + w ∈ VR(k, ε, η), we have

Eg(u) = Eg

(
k∑

i=1

αiϕai,λi +

k̄∑
r=1

βr(vr − vr(Q,T )) + w

)
= Ck

0 − 8π2FK(a1, . . . , ak)

+ 2

k̄∑
r=1

μrβ
2
r +

k∑
i=1

(αi − 1)2
[
16π2 log λi + 8π2H(ai, ai) + Ck

1

]

− c18π2

9

k∑
i=1

1

λ2
i

(
Δĝai

FA
i (ai)

FA
i (ai)

− 3

4
Rĝ(ai)

)

+
1

2
∂2Eg

(
k∑

i=1

α0
i ϕa0

i ,λ0
i

+
k̄∑

r=1

β0
r (vr − vr(Q,T )) + w̄(ᾱ0, A0, λ̄0, β̄0)

)
(V, V )

+ 8π2
k∑

i=1

(αi − 1)

[
k̄∑

r=1

2βr

(
vr − vr(Q,T )

)
(ai) −

k∑
j=1,j �=i

(αj − 1)G(ai, aj)

]

+
c18π2

9

k∑
i=1

τ̃i

λ2
i

(
Δĝai

FA
i (ai)

FA
i (ai)

− 3

4
Rĝ(ai)

)

+
16π2

3

k∑
i=1

log(1 − τ̃i) + O

(
k∑

i=1

|αi − 1|2 +
k̄∑

r=1

|βr|3 +
k∑

i=1

1

λ3
i

+ ‖w̄(ᾱ, A, λ̄, β̄)‖2
P4,3

)
,

where O (1) means here Oᾱ,A,λ̄,β̄,ε (1) with ᾱ = (α1, . . . , αk), A := (a1, . . . , ak),
λ̄ := (λ1, . . . , λk), β̄ := (β1, . . . , βk̄) and for i = 1, . . . , k, τ̃i is as in Lemma
3.9. where w̄(ᾱ, A, λ̄, β̄) is as in Corollary 3.19.

Proof. It follows directly from Lemma 3.9, formula (105) and Proposition 3.15.
�

3.4. Morse lemma at infinity

In this subsection, we derive a Morse Lemma at infinity for Eg. As in [2], in
order to do that, we first construct a pseudo-gradient for Ēg(ᾱ, A, λ̄, β̄), where
Ēg(ᾱ, A, λ̄, β̄) is defined as in (107) exploiting the gradient estimates derived
previously. Indeed, we have:

Proposition 3.22. Assuming that η is a small positive real number with 0 <
2η < � where � is as in (43), and 0 < ε ≤ ε0 where ε0 is as in (82), then
there exists a pseudogradient Wg of Ēg(ᾱ, A, λ̄, β̄) such that

(1) For every u :=
∑k

i=1 αiϕai,λi
+
∑k̄

r=1 βr(vr −vr(Q,T )) ∈ VR(k, ε, η) with
the concentration points ai, the masses αi, the concentrating parame-
ters λi (i = 1, . . . , k) and the negativity parameters βr (r = 1, . . . , k̄)
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satisfying (87), there holds

〈
−∇P

4,3Eg(u), Wg

〉
P4,3

≥ c

(
k∑

i=1

1
λ2

i

+
k∑

i=1

|∇ĝFA
i (ai)|
λi

+
k∑

i=1

|αi − 1|
)

+ c

⎛
⎝ k∑

i=1

|τi| +
k̄∑

r=1

|βr|)
⎞
⎠ , (108)

and for every u :=
∑k

i=1 αiϕai,λi
+
∑k̄

r=1 βrλ(vr−vr(Q,T ))+w̄(ᾱ, A, λ̄, β̄)
∈ VR(k, ε, η) with the concentration points ai, the masses αi, the con-
centrating parameters λi (i = 1, . . . , k) and the negativity parameters
βr (r = 1, . . . , k̄) satisfying (87), and w̄(ᾱ, A, λ̄, β̄) is as in (101), there
holds 〈

−∇P
4,3Eg(u + w̄), Wg +

∂w̄

∂(ᾱ, A, λ̄, β̄)

〉
P4,3

≥ c

(
k∑

i=1

1
λ2

i

+
k∑

i=1

|∇ĝFA
i (ai)|
λi

+
k∑

i=1

|αi − 1|
)

+c

⎛
⎝ k∑

i=1

|τi| +
k̄∑

r=1

|βr|
⎞
⎠ , (109)

where c is a small positive constant independent of A := (a1, . . . , ak),
ᾱ = (α1, . . . , αk), λ̄ = (λ1, . . . , λk), β̄ = (β1, . . . , βk̄) and ε.

(2) Wg is a ‖ · ‖P4,3-bounded vector field and is compactifying outside the
region where A is very close to a critical point B of FK satisfying
LK(B) < 0.

Proof. It follows from the same arguments as in the proof of Proposition 8.1 in
[2] replacing formulas (52)–(54), Lemma 5.1, Corollary 5.2 and Lemmas 5.3–
5.5 in [2] with (51)–(53), Lemma 3.10, Corollary 3.11 and Lemmas 3.12–3.14.
Furthermore, Lemmas 4.1, 7.1, and 0.5 in [2] are replaced by Lemmas 3.9, 3.15
and 5.5 �

Now, as in [2], we have that Proposition 3.22 implies the following characteri-
zation of the critical points at infinity of Eg.

Corollary 3.23. (1) The critical points at infinity of Eg correspond to the
“configurations” αi = 1, λi = +∞, τi = 0 i = 1, . . . , k, βr = 0,
r = 1, . . . , k̄, A is a critical point of FK and V = 0, and we denote
them by z∞ with z being the corresponding critical point of FK .

(2) The “true” critical points at infinity of Eg are the z∞ satisfying LK(z) <
0 and we denote them by x∞ with x being the corresponding critical
point of FK .

(3) The “false” critical points at infinity of Eg are the z∞ satisfying LK(z) >
0 and we denote them by y∞ with y being the corresponding critical
point of FK .
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(4) The Eg-energy of a critical point at infinity z∞ denoted by Jg(z∞) is
given by

Jg(z∞) = Ck
0 − 8π2FK(z1, . . . , zk) (110)

where z = (z1, . . . , zk) and Ck
0 is as in Lemma 3.9.

Proof. Point (1)–(3) follow from (53), Lemma 3.8, the discussions right after
(105), and Proposition 3.22, while Point (4) follows from Point (1) combined
with (103) and Lemma 3.21. �

Finally, we are going to conclude this subsection by establishing an analogue of
the classical Morse lemma for both “true” and “false” critical points at infinity.
In order to do that, we first remark that, as in [2], the arguments of Proposition
3.22 implies that V− := {u ∈ VR(k, ε, η) : lK(A) < 0, ∀r ∈ {1, . . . , k̄} |βr| ≤
2C̃0

(∑k
i=1

|∇ĝFA(ai)|
λi

+
∑k

i=1 |αi − 1| +
∑k

i=1 |τi| +
∑k

i=1
1
λ2

i

)
, ∀ i ∈ {1, . . . , k}

|τi| ≤ 2 Ĉ0
λ2

i
, and ∀i ∈ {1, . . . , k} |∇ĝFA

i (ai)|
λi

≤ 4C0
λ2

i
} and V+ := {u ∈ VR(k, ε, η) :

lK(A) > 0,∀r ∈ {1, . . . , k̄} |βr| ≤ 2C̃0

(∑k
i=1

|∇ĝFA(ai)|
λi

+
∑k

i=1 |αi − 1|
+
∑k

i=1 |τi| +
∑k

i=1
1
λ2

i

)
, ∀ i ∈ {1, . . . , k} |τi| ≤ 2 Ĉ0

λ2
i
, and ∀i ∈ {1, . . . , k}

|∇ĝFA
i (ai)|
λi

≤ 4C0
λ2

i
} (where C̃0, Ĉ0 and C0 are large positive constants) are

respectively a neighborhood of the “true” and “false” critical points at infinity
of the variational problem. Hence, as in [2], (103), Corollary 3.20, Lemma 3.21
and classical Morse lemma imply the following Morse type lemma for a “true”
critical point at infinity.

Lemma 3.24. (Morse lemma at infinity near a “true” one) Assuming that η
is a small positive real number with 0 < 2η < � where � is as in (43),
0 < ε ≤ ε0 where ε0 is as in (82) and u0 :=

∑k
i=1 α0

i ϕa0
i ,λ0

i
+
∑k̄

r=1 β0
r (vr −

vr(Q,T )) + w̄(ᾱ0, A0, λ̄0, β̄0) ∈ V−(k, ε, η) (where ᾱ0 := (α0
1, . . . , α

0
k), A0 :=

(a0
1, . . . , a

0
k), λ̄ := (λ0

1, . . . , λ
0
k) and β̄0 := (a0

1, . . . , β
0
k̄
)) with the concentration

points a0
i , the masses α0

i , the concentrating parameters λ0
i (i = 1, . . . , k) and

the negativity parameters β0
r (r = 1, . . . , k̄) satisfying (87) and furthermore

A0 ∈ Crit(FK), then there exists an open neighborhood U of (ᾱ0, A0, λ̄0, β̄0)
such that for every (ᾱ, A, λ̄, β̄) ∈ U with ᾱ := (α1, . . . , αk), A := (a1, . . . , ak),
λ̄ := (λ1, . . . , λk), β̄ := (β1, . . . , βk̄), and the ai, the αi, the λi (i = 1, . . . , k)
and the βr (r = 1, . . . , k̄) satisfying (87), and w satisfying (87) with u =
u(Q,T ) +

∑k
i=1 αiϕai,λi

+
∑k̄

r=1 βr(vr − (vr)(Q,T )) + w ∈ V−(k, ε, η), we have
the existence of a change of variable

αi −→ si, i = 1, . . . , k,

A −→ Ã = (Ã−, Ã+)
λ1 −→ θ1,

τi −→ θi, i = 2, . . . , k,

βr −→ β̃r

V −→ Ṽ , (111)
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such that

Eg(u) = Eg

⎛
⎝ k∑

i=1

αiϕai,λi
+

k̄∑
r=1

βr

(
vr − (vr)(Q,T )

)
+ w

⎞
⎠

= −|Ã−|2 + |Ã+|2 +
k∑

i=1

s2
i

−
k̄∑

r=1

β̃2
r + θ2

1 −
k∑

i=2

θ2
i + ‖Ṽ ‖2 (112)

where Ã = (Ã−, Ã+) is the Morse variable of the map Jg : (∂M)k\F ((∂M)k)
−→ R which is defined by the right hand side of (110). Hence a “true“ critical
point at infinity x∞ of Eg has Morse index at infinity

M∞(x∞) = i∞(x) + k̄,

with i∞ as in (12).

Similarly, and for the same reasons as above, we have the following analogue
of the classical Morse lemma for a ”false“ critical point at infinity.

Lemma 3.25. (Morse lemma at infinity near a “false” one) Assuming that η
is a small positive real number with 0 < 2η < � where � is as in (43),
0 < ε ≤ ε0 where ε0 is as in (82) and u0 :=

∑k
i=1 α0

i ϕa0
i ,λ0

i
+
∑k̄

r=1 β0
r (vr −

vr(Q,T )) + w̄(ᾱ0, A0, λ̄0, β̄0) ∈ V+(k, ε, η) (where ᾱ0 := (α0
1, . . . , α

0
k), A0 :=

(a0
1, . . . , a

0
k), λ̄ := (λ0

1, . . . , λ
0
k) and β̄0 := (a0

1, . . . , β
0
k̄
)) with the concentration

points a0
i , the masses α0

i , the concentrating parameters λ0
i (i = 1, . . . , k) and

the negativity parameters β0
r (r = 1, . . . , k̄) satisfying (87) and furthermore

A0 ∈ Crit(FK), then there exists an open neighborhood U of (ᾱ0, A0, λ̄0, β̄0)
such that for every (ᾱ, A, λ̄, β̄) ∈ U with ᾱ := (α1, . . . , αk), A := (a1, . . . , ak),
λ̄ := (λ1, . . . , λk), β̄ := (β1, . . . , βk̄), and the ai, the αi, the λi (i = 1, . . . , k)
and the βr (r = 1, . . . , k̄) satisfying (87), and w satisfying (87) with u =
u(Q,T ) +

∑k
i=1 αiϕai,λi

+
∑k̄

r=1 βr(vr − (vr)Qn) + w ∈ V+(k, ε, η), we have the
existence of a change of variable

αi −→ si, i = 1, . . . , k,

A −→ Ã = (Ã−, Ã+)
λ1 −→ θ1,

τi −→ θi, i = 2, . . . , k,

βr −→ β̃r

V −→ Ṽ , (113)

such that

Eg(u) = Eg

⎛
⎝ k∑

i=1

αiϕai,λi
+

k̄∑
r=1

βr

(
vr − (vr)(Q,T )

)
+ w

⎞
⎠ = −|Ã−|2 + |Ã+|2
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+
k∑

i=1

s2
i −

k̄∑
r=1

β̃2
r −

k∑
i=1

θ2
i + ‖Ṽ ‖2, (114)

where Ã = (Ã−, Ã+) is the Morse variable of the map Jg : (∂M)k\F ((∂M)k)
−→ R which is defined by the right hand side of (110). Hence a “false“ critical
point at infinity y∞ of Eg has Morse index at infinity

M∞(y∞) = i∞(y) + 1 + k̄.

4. Proof of existence theorems

In this section, we show how the Morse lemma at infinity implies the main
existence results via strong Morse type inequalities or Barycenter technique of
Bahri–Coron.

4.1. Topology of vey high and negative sublevels of Eg

We study the topology of very high sublevels of Eg and its every negative
ones. We start with the very high sublevels of Eg and first derive the following
lemma.

Lemma 4.1. Assuming that η is a small positive real number with 0 < 2η < �
where � is as in (43), then there exists Ĉk

0 := Ĉk
0 (η) such that for every

0 < ε ≤ ε0 where ε0 is as in (82), there holds

V (k, ε, η) ⊂ (Eg)Ĉk
0 \ (Eg)−Ĉk

0 .

Proof. It follows directly from (84)–(87), Proposition 3.15, Lemmas 3.18 and
3.21. �

Next, combining Proposition 3.7 and the latter lemma, we have the following
corollary.

Corollary 4.2. There exists a large positive constant Ĉk
1 such that

Crit(Eg) ⊂ (Eg)Ĉk
1 \ (Eg)−Ĉk

1 .

Proof. It follows, via a contradiction argument, from the fact that Eg is in-
variant by translation by constants, Proposition 3.7, and Lemma 4.1. �

Now, we are ready to characterize the topology of very high sublevels of Eg.
Indeed, as in [2] and for the same reasons, we have that Lemma 3.8, Lemma
4.1 and Corollary 4.2 imply the following one which describes the topology of
very high sublevels of the Euler-Lagrange functional Eg.

Lemma 4.3. Assuming that η is a small positive real number with 0 < 2η < �
where � is as in (43), then there exists a large positive constant Lk := Lk(η)
with Lk > 2max{Ĉk

0 , Ĉk
1 } such that for every L ≥ Lk, we have that (Eg)L is

a deformation retract of H ∂
∂n

, and hence it has the homology of a point, where

Ĉk
0 is as in Lemma 4.1 and Ĉk

1 is as in Lemma 4.2.
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Next, we turn to the study of the topology of very negative sublevels of Eg

when k ≥ 2 or k̄ ≥ 1. Indeed, as in [2] and for the same reasons, we have
that the well-know topology of very negative sublevels in the nonresont case
(see [21]), Proposition 3.7, Lemma 4.1 and Corollary 4.2 imply the following
lemma which gives the homotopy type of the very negative sublevels of the
Euler-Lagrange functional Eg.

Lemma 4.4. Assuming that k ≥ 2 or k̄ ≥ 1, and η is a small positive real
number with 0 < 2η < � where � is as in (43), then there exists a large positive
constant Lk,k̄ := Lk,k̄(η) with Lk,k̄ > 2max{Ĉk

0 , Ĉk
1 } such that for every

L ≥ Lk,k̄, we have that (Eg)−L has the same homotopy type as Bk−1(∂M) if
k ≥ 2 and k̄ = 0, asAk−1,k̄ if k ≥ 2 and k̄ ≥ 1 and as Sk̄−1 if k = 1 and
k̄ ≥ 1, where Ĉk

0 is as in Lemma 4.1 and Ĉk
1 as in Lemma 4.2.

However, as in [23], to prove Theorem 1.9, we need a further information about
the topology of very negative sublevels of Eg. In order to derive that, we first
make some definitions. For p ∈ N

∗ and λ > 0, we define

fp(λ) : Bp(∂M) −→ H ∂
∂n

as follows

fp(λ)

(
p∑

i=1

αiδai

)
:=

p∑
i=1

αiϕai,λ, σ =
p∑

i=1

αiδai
∈ Bp(∂M), (115)

with the ϕai,λ’s defined by (45). Furthermore, when k̄ ≥ 1, for Θ > 0, we
define

Ψp,k̄(λ,Θ) : Ap,k̄ −→ H ∂
∂n

(116)

as follows

Ψp,k̄(λ,Θ)(σ, s)

:=

⎧⎪⎨
⎪⎩

ϕs + fp(λ)(σ) for |s| ≤ 1
4 , σ ∈ Bp(∂M),

ϕs + fp(2λ − 1 + 4(1 − λ)|s|)(σ) for 1
4 ≤ |s| ≤ 1

2 , σ ∈ Bp(∂M),
ϕs + 2(1 − fp(1)(σ))|s| + 2fp(1) − 1 for |s| ≥ 1

2 , σ ∈ Bp(∂M),

(117)

where ϕs is defined by the following formula

ϕs = Θ
k̄∑

r=1

sr(vr − (vr)(Q,T )), (118)

with s = (s1, . . . , sk̄). As in [23], concerning the fp(λ)’s, we have the following
estimates.

Lemma 4.5. Assuming that p ∈ N
∗, then we have

(1) If p < k, then for every L > 0, there exists λL
p > 0 such that for all

λ ≥ λL
p , we have

fp(λ)(Bp(∂M)) ⊂ (Eg)−L.
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(2) If p = k, then there exist Ĉk > 0 and λk > 0 such that for all λ ≥ λk,
we have

fk(λ)(Bk(∂M)) ⊂ (Eg)Ĉk .

(3) There exists Ĉk > 0 such that up to taking ε0 smaller, where ε0 is
given by (82), we have that for every 0 < ε ≤ ε0, there holds

V (k, ε) ⊂ (Eg)Ĉk

.

Proof. It follows from the same arguments as in the proof of Lemma 3.1 in
[23] by using Lemmas 5.1, 5.3 and 5.6–5.8. �

Still, as in [23], we have the following estimates for the Ψp(λ,Θ)’s when k̄ ≥ 1.

Lemma 4.6. Assuming that p ∈ N
∗, then we have

(1) If 1 ≤ p < k, then for every L > 0, there exists λL
p,k̄

> 0 and ΘL
p,k̄

> 0
such that for all λ ≥ λL

p,k̄
, we have

Ψp,k̄(λ,ΘL
p,k̄)(Ap,k̄) ⊂ (Eg)−L.

(2) If p = k and Θ > 0, then there exists CΘ
k,k̄

> 0, λΘ
k,k̄

> 0, such that for
every λ ≥ λΘ

k,k̄
, we have

Ψk,k̄(λ,Θ)(Ak,k̄) ⊂ (Eg)CΘ
k,k̄ .

(3) If Θ > 0, then there exists Ck,k̄
Θ > 0 such that up to taking ε0 smaller,

where ε0 is given by (82), we have that for every 0 < ε ≤ ε0, there
holds

V (k, ε,Θ) ⊂ (Eg)Ck,k̄
Θ .

Proof. It follows from the same arguments as in the proof of Lemma 4.1 in
[23] by using Lemma 4.5. �

On the other hand, as in [23], Lemma 4.4 and Lemma 4.5 imply the following
one:

Lemma 4.7. Assuming that k ≥ 2, k̄ = 0, and L ≥ Lk.0, then there exists
λL

k−1 such that for all λ ≥ λL
k−1, we have

fk−1(λ) : Bk−1(∂M) −→ (Eg)−L

is well defined and induces an isomorphism in homology.

Furthermore, still as in [23], we have also that Lemmas 4.4 and 4.5 imply the
following one:

Lemma 4.8. Assuming that k ≥ 2, k̄ ≥ 1, L ≥ Lk,,k̄, then there exists λL
k−1,k̄

>

0 and ΘL
k−1,k̄

> 0 such that for all λ ≥ λL
k−1,k̄

, we have

Ψk−1,k̄(λ,ΘL
k−1,k̄) : Ak−1,k̄ −→ (Eg)−L

is well defined and induces an isomorphism in homology.
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4.2. Morse theoretical type results

Proof of Theorems 1.1–1.7. The proof is the same as the one of Theorem 1.1-
Theorem 1.6 in [2] by using Lemma 3.8, Proposition 3.22, Corollary 3.23,
Lemmas 3.24, 4.1, Corollary 4.2, Lemmas 4.3, 4.4 combined with the works of
Bahri–Rabinowitz [4], Karell–Karoui [13] and Malchiodi [18]. �

4.3. Algebraic topological type results

In order to carry the algebraic topological argument for existence, as in [23],
we need the following lemma.

Lemma 4.9. Assuming that (ND) holds, s∗
k(O∗

∂M ) �= 0 in H3(S∞) and
s∗

k(O∗
∂M ) = 0 in H3(S∞

+ ∪ S∞
− ), then there exists 0 �= Õ∗

∂M ∈ H3(S) such
that

i∗(Õ∗
∂M ) = s∗

k(O∗
∂M ),

where i : S∞ −→ S is the canonical injection.

Proof. It follows from the same arguments as in the proof of Lemma 3.6 in
[23] by using the analysis of Sect. 3. �

Proof of Theorem 1.9. The proof is the same as the one of Theorem 1.1 in
[23] by using the algebraic topological tools (54)–(56), characterization of the
critical points at infinity of Eg established in Sect. 3, and Lemma 4.9. �

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive
rights to this article under a publishing agreement with the author(s) or other
rightsholder(s); author self-archiving of the accepted manuscript version of
this article is solely governed by the terms of such publishing agreement and
applicable law.

5. Appendix

Lemma 5.1. Assuming that ε is positive and small, a ∈ ∂M and λ ≥ 1
ε , then

(1)

ϕa,λ(·) = δ̂a,λ(·) + log
λ

2
+ H(a, ·) +

1
2λ2

Δĝa
H(a, ·) + O

(
1
λ3

)
on ∂M

(2)

λ
∂ϕa,λ(·)

∂λ
=

2
1 + λ2χ2

	(dĝa
(a, ·)) − 1

λ2
Δĝa

H(a, ·) + O

(
1
λ3

)
on ∂M,

(3)

1
λ

∂ϕa,λ(·)
∂a

=
χ	(dĝa

(a, ·))χ′
	((dĝa

(a, ·))
dĝa

(a, ·)
2λexp−1

a (·)
1 + λ2χ2

	(dĝa
(a, ·)) +

1
λ

∂H(a, ·)
∂a
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+O

(
1
λ3

)
; on ∂M,

where O(1) means Oa,λ,ε(1) and for it meaning see Sect. 2.

Lemma 5.2. Assuming that ε is small and d positive, a ∈ M , λ ≥ 1
ε , and

0 < 2η < � with � as in (43), then there holds

ϕa,λ(·) = G(a, ·) +
1

2λ2
Δĝa

G(a, ·) + O

(
1
λ3

)
on ∂M \ Ba

a(η),

λ
∂ϕa,λ(·)

∂λ
= − 1

λ2
Δĝa

G(a, ·) + O

(
1
λ3

)
on ∂M \ Ba

a(η),

and
1
λ

∂ϕa,λ(·)
∂a

=
1
λ

∂G(a, ·)
∂a

+ O

(
1
λ3

)
on ∂M \ Ba

a(η),

where O(1) means Oa,λ,ε(1) and for it meaning see Sect. 2.

Lemma 5.3. Assuming that ε is small and positive, a ∈ ∂M and λ ≥ 1
ε , then

there holds

P
4,3
g (ϕa,λ, ϕa,λ) = 16π2 log λ − 8π2C0 + 8π2H(a, a) +

8π2

λ2
Δĝa

H(a, a)

+O

(
1
λ3

)
,

P
4,3
g

(
ϕa,λ, λ

ϕa,λ

∂λ

)
= 8π2 − 8π2

λ2
Δĝa

H(a, a) + O

(
1
λ3

)
,

P
4,3
g

(
ϕa,λ,

1
λ

ϕa,λ

∂a

)
=

8π2

λ

∂H(a, a)
∂a

+ O

(
1
λ3

)
,

where C0 is a positive constant,O(1) means Oa,λ,ε(1) and for its meaning
see Sect. 2.

Lemma 5.4. Assuming that ε is small and positive ai, aj ∈ ∂M , dĝ(ai, aj) ≥
4Cη, 0 < 2η < �, 1

Λ ≤ λi

λj
≤ Λ, and λi, λj ≥ 1

ε , C as in (41), and � as in (43),
then there hold

P
4,3
g

(
ϕai,λi

, ϕaj ,λj

)
=8π2G(aj , ai) +

4π2

λ2
i

Δĝai
G(ai, aj) +

4π2

λ2
j

Δĝaj
G(aj , ai)

+ O

(
1
λ3

i

+
1
λ3

j

)
,

P
4,3
g

(
ϕai,λi

, λj

∂ϕaj ,λj

∂λj

)
= −8π2

λ2
j

Δĝaj
G(aj , ai) + O

(
1
λ3

j

)
,

and

P
4,3
g

(
ϕai,λi

,
1
λj

∂ϕaj ,λj

∂aj

)
=

8π2

λj

∂G(aj , ai)
∂aj

+ O

(
1
λ3

j

)
,
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where O(1) means here OA,λ̄,ε(1) with A = (ai, aj) and λ̄ = (λi, λj) and
for the meaning of OA,λ̄,ε(1), see Sect. 2.

Lemma 5.5. Assuming that ε > 0 is very small, we have that for a ∈ ∂M ,
λ ≥ 1

ε , there holds ∥∥∥∥λ∂ϕa,λ

∂λ

∥∥∥∥
P4,3

= Õ(1), (119)
∥∥∥∥ 1

λ

∂ϕa,λ

∂a

∥∥∥∥
P4,3

= Õ(1), (120)

and ∥∥∥∥ 1√
log λ

ϕa,λ

∥∥∥∥
P4,3

= Õ(1), (121)

where here Õ(1) means bounded by positive constants form below and above
independent of ε, a, and λ.

Lemma 5.6. (1) If ε is small and positive, a ∈ ∂M , p ∈ N
∗, and λ ≥ 1

ε , then
there holds

C−1λ6p−3 ≤
∮

∂M

e3pϕa,λdSg ≤ Cλ6p−3, (122)

where C is independent of a, λ, and ε.
(2) If ε is positive and small, ai, aj ∈ ∂M , λ ≥ 1

ε and λdĝ(ai, aj) ≥ 4CR,
then we have

P
4,3
g (ϕai,λ, ϕaj ,λ) ≤ 8π2G(ai, aj) + O(1), (123)

where O(1) means here OA,λ,ε(1) with A = (ai, aj), and for the mean-
ing of OA,λ,ε(1), see Sect. 2.

(3) If ε is positive and small, ai, aj ∈ ∂M , λi, λj ≥ 1
ε ,

1
Λ ≤ Λi

λj
≤ Λ and

λidĝ(ai, aj) ≥ 4CR, then we have

P
4,3
g (ϕai,λ, ϕaj ,λ) ≤ 8π2G(ai, aj) + O(1), (124)

where O(1) means here OA,λ̄,ε(1) with A = (ai, aj) and λ̄ = (λi, λj)
and for the meaning of OA,λ̄,ε(1), see Sect. 2.

Lemma 5.7. Let p ∈ N
∗, R̂ be a large positive constant, ε be a small positive

number, αi ≥ 0, i = 1, . . . , p,
∑p

i=1 αi = k, λ ≥ 1
ε and u =

∑p
i=1 αiϕai,λ.

Assuming that there exist two positive integer i, j ∈ {1, . . . , p} with i �= j such
that λdĝ(ai, aj) ≤ R̂

4C
, where C is as in (41), then we have

Eg(u) ≤ Eg(v) + O(log R̂), (125)

with

v :=
∑

k≤p,k �=i,j

αkϕak,λ + (αi + αj)ϕai,λ.

where here O(1) stand for Oᾱ,A,λ,ε(1), with ᾱ = (α1, . . . , αp) and
A = (a1, . . . , ap), and for the meaning of Oᾱ,A,λ,ε(1), we refer the reader
to Sect. 2.
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Lemma 5.8. (1) If ε is positive and small, ai, aj ∈ ∂M , λ ≥ 1
ε and λdĝ(ai, aj)

≥ 4CR, then

ϕaj ,λ(·) = G(aj , ·) + O(1) in Bai
ai

(
R

λ

)
,

where here O(1) means here OA,λ,ε(1), with A = (ai, aj), and for the
meaning of OA,λ,ε(1), see Sect. 2.

(2) If ε is positive and small, ai, aj ∈ ∂M , λi, λj ≥ 1
ε ,

1
Λ ≤ Λi

λj
≤ Λ, and

λidĝ(ai, aj) ≥ 4CR, then

ϕaj ,λj
(·) = G(aj , ·) + O(1) in Bai

ai

(
R

λi

)
,

where here O(1) means here OA,λ̄,ε(1), with A = (ai, aj), λ̄ = (λi, λj)
and for the meaning of OA,λ,ε(1), see Sect. 2.

Lemma 5.9. There exists Γ0 and Λ̃0 two large positive constant such that for
every a ∈ ∂M , λ ≥ Λ̃0, and w ∈ Fa,λ := {w ∈ H ∂

∂n
, w(Q,T ) = 〈ϕa,λ, w〉

P4,3 =
〈vr, w〉

P4,3 = 0, r = 1, . . . , k̄}, we have∮
∂M

e3δ̂a,λw2dVga
≤ Γ0‖w‖2

P4,3 . (126)

Lemma 5.10. Assuming that η is a small positive real number with 0 < 2η < �
where � is as in (43), then there exists a small positive constant c0 := c0(η)
and Λ0 := Λ0(η) such that for every ai ∈ ∂M concentrations points with
dĝ(ai, aj) ≥ 4Cη where C̄ is as in (41), for every λi > 0 concentrations
parameters satisfying λi ≥ Λ0, with i = 1, . . . , k, and for every w ∈ E∗

A,λ̄
=

∩k
i=1E

∗
ai,λi

with A := (a1, . . . , ak), λ̄ := (λ1, . . . , λk) and E∗
ai,λi

= {w ∈ H ∂
∂n

:

〈ϕai,λi
, w〉

P4,3 =
〈

∂ϕai,λi

∂λi
, w
〉
P4,3

=
〈

∂ϕai,λi

∂ai
, w
〉
P4,3

= w(Q,T ) = 〈vr, w〉
P4,3 =

0, r = 1, . . . , k̄}, there holds

‖w‖2
P4,3 − 6

k∑
i=1

∮
∂M

e3δ̂ai,λi w2dSgai
≥ c0‖w‖2

P4,3 . (127)
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