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Variational theory for the resonant
T-curvature equation

Cheikh Birahim Ndiaye

Abstract. In this paper, we study the resonant prescribed T-curvature
problem on a compact 4-dimensional Riemannian manifold with bound-
ary. We derive sharp energy and gradient estimates of the associated
Fuler-Lagrange functional to characterize the critical points at infinity
of the associated variational problem under a non-degeneracy on a nat-
urally associated Hamiltonian function. Using this, we derive a Morse
type lemma at infinity around the critical points at infinity. Using the
Morse lemma at infinity, we prove new existence results of Morse theo-
retical type. Combining the Morse lemma at infinity and the Liouville
version of the Barycenter technique of Bahri-Coron (Commun Pure Appl
Math 41-3:253-294, 1988) developed in Ndiaye (Adv Math 277(277):56—
99, 2015), we prove new existence results under a topological hypothesis
on the boundary of the underlying manifold, the selection map at infinity,
and the entry and exit sets at infinity.
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1. Introduction and statement of the results

On a four-dimensional compact Riemannian manifolds with boundary (M, g),
there exists a fourth-order operator P, called Paneitz operator discovered by
Paneitz [26] and an associated curvature quantity @, called Q-curvature intro-
duced by Branson-Oersted [5]. The Paneitz operator P, and the Q-curvature
Qg are defined in terms of the Ricci tensor Ric, and the scalar curvature R,
of (M,g) by

2 1
P} = A} — divg ((5399 - 2Ricg) vg) o Qu=—15(8gRy — R + 3|Ricg|?),
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where div,is the divergence, V,is the covariant derivative, and A, is the
Laplace-Beltrami operator, all with respect to g.

On the other hand, Chang—Qing [7] have discovered an operator Pg3 which
is associated to the boundary OM of M and a curvature quantity T} naturally
associated to Pg?’. They are defined by the formulas

s 10A B R,\ @
Py =3 6‘n§ +A987ng —2HgAg+ Lg(V, V) + VgHg Vg + | Fy — ?g Oy
1 0R, 1 s 1 5
Ty = {5 g+ g RaHla= < s Ly > +3H; = 5try(L5) — Ay Hy,

where ¢ is the metric induced by gon 0M, Ay is the Laplace-Beltrami operator
with respect to g, ainq is the inward Neuman operator on M with respect to
g, Ly is the second fundamental form of &M with respect to g, H, is the mean
curvature of M with respect to g, R’;,iﬂ is the Riemann curvature tensor of
(M, g), Ryijki = gmiR}'j1 (gij ave the entries of the metric g), Fy = Ry .,
(with n denoting the index corresponding to the normal direction in local
coordinates) and < Gg,Ly >= §%°§" "Ry anpnLg,ca- Moreover, the notation
Ly(V,V;), means Ly(Vy, Vy)(u) = Vg(Lg,angu). We point out that in all
those notations above 4,j,k,l = 1,...4 and a,b,c,d = 1,...3, and Einstein
summation convention is used for repeated indices.

As the Laplace—Beltrami operator and the Neumann operator on closed
surfaces with boundary are conformally covariant, we have that P; is confor-
mally covariant of bidegree (0,4) and P; of bidegree (0,3). Furthermore, as
they govern the transformation laws of the Gauss curvature and the geodesic
curvature on compact surfaces with boundary, the couple (P;,P;) does the
same for (Qg,T,) on a compact four-dimensional Riemannian manifold with
boundary (M, g). In fact, under a conformal change of metric g, = e?g, we
have

Py =e P}, . Plu+2Q, =2Qg, ™ in M, O
P;’u + T, =T,,e*" on OM.

Apart from this analogy, we have also an extension of the Gauss—Bonnet iden-
tity (2) which is known as the Gauss-Bonnet—Chern formula

/M (Qg * 'Wg'Q) vy + ]gM(Tg + Z4)dS, = 4m*x (M) 2)

where W, denote the Weyl tensor of (M, g)and Z, is given by the following
formula
Zg = RgHg - 3HgRicg,nn + gacgbng,anang,cd - gacgbng,acbch,cd
+6H) — 3Hy|Ly|* + try(LY),
with t¢ry, denoting the trace with respect to the metric induced on OM by ¢

(namely ¢) and x(M) the Euler—Poincaré characteristic of M. Concerning the
quantity Zg, we have that it vanishes when the boundary is totally geodesic
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and 3% A ZgdVy is always conformally invariant, see [7]. Thus, setting

K(p+,psy = K(p4,ps)[g] ::/ QqdV, Jrfg T,dS, (3)
M M

we have that thanks to(2), and to the fact that |Wy|>dVj is pointwise con-
formally invariant, £(ps ps)is a conformal invariant (which justifies the nota-
tion used above). We remark that 472 is the the total integral of the (Q,T)-
curvature of the standard four-dimensional Euclidean unit ball B%.

As was asked in [1], a natural question is whether every compact four-
dimensional Riemannian manifold with boundary (M, g) carries a conformal
metric g, for which the corresponding Q-curvature @, is zero, the corre-
sponding T-curvature Tj, is a prescribed function and such that (M, g,) has
minimal boundary. Thanks to (1), this problem is equivalent to finding a
smooth solution to the following BVP:

Plu+2Q, =0 in M,

Pg?’u—&—Tg =Ke*  on OM,
0

—i—Fng:O on OM,
Ong

where K : OM — Ry is a positive smooth function on OM.

Since we are interested to find a metric in the conformal class of g, then
we can assume that H, = 0, since this can be always obtained through a
conformal transformation of the background metric. Thus, we are led to solve
the following BVP with Neumann homogeneous boundary condition:

Pju+2Qy =0 in M,
3 _ 3u
Piu+T, = Ke on OM, (4)
a—UZO on OM.
Ong

Defining H o as

H :{u€W2’2(M): ﬁ:0 onaM},

Ong

where W?22(M) denotes the space of functions on M which are square inte-
grable together with their first and second derivatives, and

4,3 _ /pd 3 4,2
P, (u,v)—<P u,v>L2(M)+2<Pgu,v>L2(aM), u,veH% NW52(M),

9
an

with W*2(M) denoting the space of functions on M which are square inte-
grable together with their derivatives up to order 4, we have integration by
part implies

2
Py (u, v) = /]V ) <AguAgU + 3Ry Vgu- vgv> dVy —2 /]V ) Ricy(V4u, Vgv)dV,

9 7§ Ly(Vgu, Vgo)dSy, w0 € H o N WH2(M). (5)
oM "
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We observe that the right hand side of (5) is well defined for functions which
are just in H o and extend the definition P;L’?’ to the full space H o by

2
P33 (u,v) = / (AguAgv + gRngu : ng) avj
M
- 2/ Ricy(V gu, V4v)dV,
M
9 f Ly(Vyu, Vy0)dSy, w,v e Ho. (6)
OM on
Hence we have IE”‘;’?’ is a well-defined bilinear form on H o, and we set
ker Pp3 == {u € Ho Py (u,v) =0, Vv € Mol (7)

On the other hand, standard regularity theory implies that smooth solu-
tions to (4) can be found by looking at critical points of the geometric func-
tional

Eg(u) = Py (u,u) + 4/ QqudV, + 4% TyudSy — én(vas) 1ogj[ Ke*'dS,,
M oM 3 oM

u€EHos .
an

As a Liouville type problem, the analytic features of equation (4) and of the
associated Euler-Lagrange functional &, depend strongly on the conformal
invariant k(ps ps). Indeed, depending on whether r(ps psy is a positive inte-
ger multiple of 472 or not, the noncompactness of equation (4) and the way
of finding critical points of &, changes drastically. As far as existence ques-
tions are concerned, we have that problem (4) has been solved in a work of
Chang-Qing [8] under the assumption that ker Py* ~ R, P{-* is non-negative
and K (ps, psy < 472 In [21], we show existence of solutions for (4) under the
assumption kerPy? ~ R and k(ps, ps) ¢ 4m°N*.

As a Liouville type problem, the assumption ker ]P’3’3 ~Rand k(ps ps) ¢
47°N* will be referred to as nonresonant case. This terminology is motivated
by the fact that in that situation the set of solutions to some perturbations
of Eq. (7) (including it) is compact. Naturally, we call resonant case when
kerPy3 ~ R and k(ps, ps) € 4n°N*. With these terminologies, we have that
the works of Chang-Qing [8] and our work in [21] answer affirmatively the
question raised above in the nonresonant case. However, for the resonant case,
there are no known existence results to the best of our knowledge. For related
works dealing with high order conformally invariant equations, see [6-9,11,12,
14,15,19-25] and the references therein.

In this work, beside existence results for (4), we are interested in a com-
plete variational theory for the boundary value problem (4) in the resonant
case, namely when ker]P";’3 ~ R and K(pa ps)y = 47?k for some k € N*.
To present the main results of the paper, we need to set first some notation
and make some definitions. We define the Hamiltonian function (at infinity)
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K - (aM)k\Fk(aM) — R by

k k

Fr((ar,...,a)) := Z (a;,a;) + Z G(ai, aj) glog(K(ai))

i=1 j=1,j#i
where F},(0M) denotes the fat Diagonal of (9M)*, namely
FL(OM) == {A:= (ay,...,ax) € (OM)" : there exists i # j with a; = a;},

G is the Green’s function defined by (47), and H is its regular defined as in
(49). Furthermore, we define

Crit(Fg) == {A € (OM)* \ Fp(OM), A critical point of Fg}. (8)

Moreover, for A = (ay,...,ax) € (OM)¥\F,(OM), and i = 1...k, we set
FA(z) = e3(H (ai,2)+35 4 (am:))+%log(K(f':))7 (9)
and define
k
Lx(A) = = 3 FHL ((FHE) (a0, (10)
i=1
where
1
—-Ay+ gRg
is the conformal Laplacian associated to §. We also set
Foo :i={A € Crit(Fk): Lk(A) <0}, (11)
ico(A) =4k — 1 — Morse(A, Fk), (12)
and define
1
my = ycard{A € Crit(Fk) : io(A) =1}, i=0,...,4k — 1, (13)

where Morse(Fk,A) denotes the Morse index of Fx at A. We point out
that for k22,m§:0for0§i§k:—2.

For k > 2, we use the notation Bj_1(90M) to denote the set of formal
barycenters of order k — 1 of M, namely

k—1 k—1
By_1(0M) : {ZOLZ a;y i €OM, a; >0,i=1,. I,Zai—k}.
i=1 i=1

(14)
Furthermore, we define
i~ = dim Hy(By—1(0M)), p=1,...4k — 5, (15)
where H,(Bj_1(0M) denotes the p-th homology group of Bjy_1(0M) with
Zso coefficients. Finally, we say

(ND) holds if Fg is a Morse function and for every A € Crit(Fk),
Li(4) £0. (16)
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Now, we are ready to state our existence results of Morse theoretical type
starting with the critical case, namely when k = 1.

Theorem 1.1. Let (M, g) be a compact 4-dimensional Riemannian manifold
with boundary OM and interior M such that Hy; = 0, kerIP’g’?’ ~ R and
K(p1, ps) = 4%, Assuming that K is a smooth positive function on OM such
that (ND) holds and the system

1 _
mg = 1+ o,

m%:xi—&—xi,l, 1=1,...,3, (17)
0:1‘3

z; >0, i=0,...,3

has no solutions, then K is the T-curvature of a Riemannian metric on M
conformally related to g with zero Q-curvature in M and zero mean curvature

on OM.

The system (17) not having a solution traduces the violation of a strong Morse
type inequalities (SMTI) for the critical points at infinity of &,. Since (SMTI)
imply Poincare-Hopf type formulas, then we have Theorem 1.1 implies the
following Poincare-Hopf index type result.

Corollary 1.2. Let (M, g) be a compact 4-dimensional Riemannian manifold
with boundary OM and interior M such that Hy = 0, kerPy® ~ R and
K(pa, p3) = 42, Assuming that K is a smooth positive function on OM such
that (ND) holds and

> (=, (18)
A€F

then K is the T-curvature of a Riemannian metric on M conformally related
to g with zero Q-curvature in M and zero mean curvature on OM.

The formula (18) says that the Euler characteristic number of the space of
variations is different from the total contribution of the true critical points at
infinity and is of global character. Localizing the arguments of Corollary 1.2
in the case of the presence of a jump in the Morse index of the critical points
of the Hamiltonian function Fj, we have the following extension of Corollary
1.2.

Theorem 1.3. Let (M, g) be a compact 4-dimensional Riemannian manifold
with boundary OM and interior M such that H, = 0, kerPy?® ~ R and

K(p1, p3) = 472 and K be a smooth positive function on OM satisfying the
non-degeneracy condition (ND). Assuming that there exists a positive integer

1 <1 <3 such that
PR C s |
AEF oo, ino (A)<I—1
and
VA € Foo, ioo(A) £ 1,
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then K is the T-curvature of a Riemannian metric on M conformally related
to g with zero Q-curvature in M and zero mean curvature on OM .

In the supercritical case, i.e & > 2, the Euler-Lagrange functional &, is not
bounded from below, and taking into account the topological contribution of
very large negative sublevels of &;, we have the following analogue of Theorem
1.1.

Theorem 1.4. Let (M, g) be a compact 4-dimensional Riemannian manifold
with boundary OM and interior M such that Hy = 0, kerPy?® ~ R, and
K(p1,ps) = 4km? with k > 2. Assuming that K 1is a smooth positive function
on OM such that (ND) holds and the following system

0 = xo,

m’fle,

mb=clda b, i=2,...,4k 4, (19)
mf:xi—l—xi_l, i =4k —3,...,4k — 1,

0=2z4p1,

x; >0, i=0,...,4k -1,

has no solutions, then K is the T-curvature of a Riemannian metric on M
conformally related to g with zero Q-curvature in M and zero mean curvature
on OM.

Remark 1.5. The presence of the number c]~c 1 = dimH;_1(B;—1(0M)) in
(19) account for the contribution of the topology of very negative sublevels
of &;. The relation between the topology of very negative sublevels of the
Euler-Lagrange functional of Liouville type problems and the space of formal
barycenters was first observed by Djadli-Malchiodi [11].

Asin the critical case, we have that Theorem 1.4 implies the following Poincaré—
Hopf index type criterion for existence.

Corollary 1.6. Let (M, g) be a compact 4-dimensional Riemannian manifold
with boundary OM and interior M such that Hy = 0, kerIP’g’3 ~ R, and
K(p1,p3) = 4km? with k > 2. Assuming that K 1is a smooth positive function
on OM such that (ND) holds and

1 1

X (W # e x(o), (20)
AcF

then K is the T-curvature of a Riemannian metric on M conformally related

to g with zero Q-curvature in M and zero mean curvature on OM.

As in the critical case, we have that a localization of the arguments of Corollary
1.6 implies the following jumping index type result.

Theorem 1.7. Let (M, g) be a compact 4-dimensional Riemannian mani-
Jfold with boundary OM and interior M such that Hy = 0, kerP}? ~ R,
K(p1,p3) = 4km? with k> 2, and let K be a smooth positive function on OM
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satisfying the non degeneracy condition (ND). Assuming that there exists a
positive integer 1 <1 <4k —1 and A' € Foo with ioo(Al) <1 —1 such that

1 . 1 L

7 Z (=1 WH;?:%(J —x(0M))
D AEF oo, ioo (A)<I—1 ’

and

VA € Fooy, ioo(A) #1,

then K is the T-curvature of a Riemannian metric on M conformally related
to g with zero Q-curvature in M and zero mean curvature on OM .

Remark 1.8. As already observed in [2], here also and for the same reasons, k
plays no role in the above results.

The Morse theoretical results stated above depend only the Morse Lemma at
infinity around true critical points at infinity (see Lemma 3.24) which justify
the condition Lx < 0 in the definition of F,,. However, our existence result
of algebraic topological type are based on the Morse lemma at infinity around
all critical points at infinity. Thus, to state our existence result of algebraic
topological type, we need first to introduce the neighborhood of potential crit-
ical points at infinity of &;. In order to do that, we first fix v to be a positive
and small real number, A to be a large positive constant, and R to be a large
positive constant too. Next, for ¢ small and positive, and © > 0, we denote
by V(k,e,0©) the (k, €, O)-neighborhood of potential critical points at infinity,
namely

V(k,e,0) := {uEHai :3ar,...,ar € OM,an, ..., >0, A1,..., g >0,

Bly"'75E€R7
k

k k
lu — T, — ZaiwahAi - Zﬁr(’ur —Uro,1))llprs <e, Zai =k a>1—v,
i=1 r=1

i=1

1 2 Ai A -
’i>77‘: ety 77§7§775 =LK TS ) =LK
/\_ez 1 k AS, 5 0J 1 k, 16 <©,r=1 k
and \idg(a;,a;) > 4CR fori # j}, (21)

where C' is as in (41), the ¢,, »,’s are as in (45), k is as in (31), the v,’s are

defined as in (32), the (v.) g 4 ’s are as in (29), and || - [[pss is defined as in
(35).

As observed by Chen-Lin [10] for Liouville type problems, the minimization
at infinity of Bahri-Coron [3] for Yamabe type problems has the following
analogue for our problem. For © > 0, there exists ¢y = ¢(0) small and
positive such that V0 < € < ¢p, we have

k
Yu € V(k,¢€,0©), the minimization problem mi@)n u— Q) — Z QiPa; \;
B
< i=1
k
- Z Br (Ur - Tr(Q,T)) (22)
r=1

P4,3
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has a unique solution, up to permutations, where B® is defined as follows

B k
BE = {(a,A,A,ﬁ) ERE x (OM)* x RE xR* - Y s =k, as > 1— v, A > =,
€

=1

i=1,...k

1B <O,r =1,...,k, \idg(ai,aj) > 4CR, i# j, i,j:lw..?k}.

(23)
The selection map s, is defined by s, : V(k,€,0) — (OM)¥ /oy, as follows
sp(u) ==A, ueV(k,e,0), and A is given by (82). (24)

We denote the critical points at infinity of £, by 2°° and use the notation
Moo (2°°) for their Morse indices at infinity, W, (2*°) for their unstable man-
ifolds and W(2°°) for their stable manifolds, where z is the corresponding
critical point of Fg. Furthermore, we denote by x* the “true” ones, namely
Ly (r) < 0 and the y> the “false” ones, namely Lg(y) > 0. Moreover, we
define S to be the following invariant set

S 1= U (259), Moo (25) 2 ak—a+& Wa(217) N Wis(25°). (25)
We also define S to be the part of S at infinity, namely
S% 1= Upp (209), Mo (259) > ak—a+k Wa (277) N Wi(257), (26)

where W2°(2°) denotes the restriction of W, (29°) at infinity. Furthermore,
we denote by S the exit set from S°° starting from a false critical point at
infinity y°°.

Similarly, we denote by S$° the entry set to S* after having exited S
through a set contained in S°° and entering into S* through a true critical
point at infinity x>°.

Finally, to state our result of algebraic topological favor in the spirit of
Bahri—Coron [3] (as in [23]), we first recall the existence of

0 # O}y € H3(OM). (27)
Using (27), we prove

Theorem 1.9. Let (M, g) be a compact 4-dimensional Riemannian manifold
with boundary OM and interior M such that Hy = 0, kerP}? ~ R, and
K(p4,p3) = 4km? with k > 2. Assuming that K is a smooth positive function
on OM such that (ND) holds and either there is no x°° with Mo (x™) =
4k —4+k or sp(Ohy) #0 in H3(S*) and s;(03;) =0 in H3(S°US>™),
then K s the T-curvature of a Riemannian metric conformally related to g
with zero Q-curvature in M and zero mean curvature on OM.

As in [23], Theorem 1.9 implies the following collorary.

Corollary 1.10. Let (M, g) be a compact 4-dimensional Riemannian manifold
with: boundary OM and interior M such that kerPy? ~ R and k(ps ps) =
4km? with k > 2. Assuming that K is a smooth positive function on OM
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such that (ND) holds and that every critical point x of Fx of Morse index
0 or 1satisfies Lx(x) < 0, then K s the T-curvature of a Riemannian
metric conformally related to g with zero Q-curvature in M and zero mean
curvature OM .

Remark 1.11. As in [23], here also and for the same reasons, the assumption
on the Morse indices of Corollary 1.10 imply that the topological assumption
of Theorem 1.9 holds.

We describe briefly our strategy to prove Theorem 1.1-Corollary 1.10. The
arguments of the proof of Theorem 1.1-1.7 follow the one of [2], while the
method of proof of Theorem 1.9 and Corollary 1.10 is the one of [23]. How-
ever, the arguments of Ahmedou and Ndiaye [2] and Ndiaye [23] depend on a
Harnack type inequality around the standard bubble of the variational problem
studied in [2] due to Weinstein—-Zhang [27] and its analogue for the problem
under study is not known. Such an issue was present in our work [24] and was
dealt using the integral blow-up method in our work [19] combined with the
argument of Weinstein—Zhang [27]. Here, we use the integral argument in our
work [24] to derive the appropriate Harnack type inequality on the boundary.
This is possible because of the integral representation (48). One of the main
difficulties here is the lack of an explicit formula for the standard bubble of this
variational problem. We bypass this issue by using the fact that the nonlin-
earity is only at the boundary and that an explicit formula for the restriction
of the standard bubble of this variational problem on the boundary is known.

The structure of the paper is as follows. In Sect. 2, we collect some
notation and preliminary results, like a suitable Green’s function G of the
P+ 2Qq to P3() + +T, operator on 'H o and the definition of a family
of variational bubbles. In Sect. 3, we carry the blow-up analysis of sequence
of vanishing viscosity solutions to (57) and characterize the critical points at
infinity of the problem under study. We divide Sect. 3 in 4 subsections. In
Sect. 3.1, we recall a local description of blowing-up sequence of solutions of
(57), establish a global description of blowing-up sequence of solutions to (57)
and use the latter to provide a refined analogue of the deformation lemma of
Lucia [16]. In Sect. 3.2, we derive energy and gradient estimates for &, at
infinity for those wu for which their w-part given by (84) is 0. In Sect. 3.3,
we perform a finite-dimensional Lyapunow-Schmidt type reduction by using
the stablity properties of the standard bubble to show that variationally the
w-part in (84) has no contribution. Finally in Sect. 3.4, we use the energy and
gradient estimates of Sect. 3.2 and the finite-dimensional reduction in Sect. 3.3
to construct a pseudo-gradient at infinity for £, and identify the critical points
at infinity of £;. Combining this with the energy estimates in Sect. 3.2 and the
finite-dimensional reduction in Sect. 3.3, we derive a Morse type lemma around
the critical points at infinity. In Sect. 4, we present the proof of the existence
theorems. We divide Sect. 4 into 3 subsections. In Sect. 4.1, we characterize the
topology of very high and very negative sublevels of £,. In Sect. 4.2, we present
the existence results of Morse theoretical type, namely Theorem 1.1-Theorem
1.7. Section 4.3 deals with the proof of the results of algebraic topological type,
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i.e Theorem 1.9 and Corollary 1.10. Finally, in Sect. 5, we collect some technical
lemmas.

2. Notation and preliminaries

In this brief section, we fix our notation, and give some preliminaries. First
of all, we recall that (M, g) and K are respectively the given underlying
compact 4-dimensional Riemannian manifold with boundary OM and the
prescribed T-curvature function with the following properties:

kerIP’é"n’ ~R and K(ps ps) = 4kn? for some k € N*,

and K is a smooth positive function on OM. (28)

The induced metric on M by ¢ will be denoted by g =: g|ans.

In the following, for a Riemmanian metric g on M and p € M , we will use
the notation BJ(r) to denote the geodesic ball with respect to g of radius
rand center p. We also denote by dz(x,y) the geodesic distance with respect
to g between two points zand y of OM, exp? the exponential map with
respect to g at x € OM. injz(OM) stands for the injectivity radius of (0M, g),
dVy denotes the Riemannian measure associated to the metric g. Furthermore,
we recall that Vg, Az, R; will denote respectively the covariant derivative,
the Laplace-Beltrami operator, and the scalar curvature with respect to g. For
simplicity, we will use the notation B,(r) to denote Bi(r), namely By (r) =
Bi(r). (OM)?stands for the cartesian product M x M, while Diag(0M)
is the diagonal of (GM)?.

Similarly, for a Riemmanian metric § on M, we will use the notation
B3I (r) to denote the half geodesic ball with respect to g of radius rand
center p € OM. We also denote by dg(z,y) the geodesic distance with re-
spect to § between two points zand y of M, expd the exponential map
with respect to § at @ € M. injz(M)stands for the injectivity radius of
(M, g), dV; denotes the Riemannian measure associated to the metric g, and
dS; the Riemannian measure associated to § = §lom, namely dS; = dVﬁ.
Furthermore, we recall that V5, Az, Rz will denote respectively the covari-
ant derivative, the Laplace-Beltrami operator, and the scalar curvature with
respect to g. For simplicity, we will use the notation B, (r) to denote B (r),
namely B, (r) = BJ™*(r), p€ OM

For 1 <p<oo and m €N, 6 €]0,1[, LP(M), W™P(M), C™(M), and
C™9(M) stand respectively for the standard Lebesgue space, Sobolev space,
m-continuously differentiable space and m-continuously differential space of
Holder exponent 6, all with respect g. Similarly, 1 < p < oo and m € N,
0 €]0,1[, LP(OM), W™P(OM), C™(OM), and C™%(OM) stand respectively
for the standard Lebesgue space, Sobolev space, m-continuously differentiable
space and m-continuously differential space of Holder exponent 6, all with
respect g.
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Given a function u € L'(M) N L' (OM), we define tgpn and T ) by

o gy ula)is,
Voly(0M) ’
with
Vo@(aAl):(%‘ ds,,
oM
and
i 1
Q) = ) (/M QqudVy + jiM Tgung> . (29)

For ¢ > 0 and small, A € Ry, A > %, and a € M, Oy (1) stands for
quantities bounded uniformly in A, and ¢, and O, (1) stands for quantities
bounded uniformly in a and €. For | € N*, O;(1) stands for quantities bounded
uniformly in [ and 0;(1) stands for quantities which tends to 0 as [ — +oo. For
€ positive and small, a € OM and A € R, large, A > %, Og.x,e(1) stands for
quantities bounded uniformly in a, A, and €. For € positive and small, p € N*|
A= (A1, 0) € (RPN > % fori=1,...,p, and A := (a1,...,ap) €
(OM)P (where (R1)? and (OM)P denotes respectively the cartesian product
of p copies of Ry and OM), O 4 5 .(1) stands for quantities bounded uniformly
in A, \, and e. Similarly for € positive and small, p € N*, X := (A\1,...,\,) €
(Rp)P, N > % for i =1,...,p, @ = (a1,...,0p) € RP, «; close to 1 for
i=1,...,p, and A := (as,...,ap) € (OM)P (where RP denotes the cartesian
product of p copies of R, O 4 5 (1) will mean quantities bounded from above
and below independent of &, A, \, and e. For € R, we will use the notation
O(z) to mean |2|O(1) where O(1) will be specified in all the contexts where
it is used. Large positive constants are usually denoted by C and the value
of C'is allowed to vary from formula to formula and also within the same line.
Similarly small positive constants are also denoted by ¢ and their value may
varies from formula to formula and also within the same line.

We say p € R is an eigenvalue of the P; to P3 operator on H o if there

g
exists 0 # v € W22(M) such that

Pg4v =0 in M,
3, —
Pjv=pv ondM, (30)
& =0 on OM.
ong

By abuse of notation, we call v in (30) an eigenfunction associated to .

We call k£ the number of negative eigenvalues (counted with multiplicity) of

the P; to Pg’ operator on Hag. We point out that & can be zero, but it is
always finite. If k& > 1, then we will denote by E_ C H 2 the direct sum of
the eigenspaces corresponding to the negative eigenvalues of the P; to P;’

operator on H o . The dimension of E_ is of course k,ie
o

k=dimE_. (31)
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On the other hand, we have the existence of a basis of eigenfunctions v, ..., vz
of E_ satisfying

Plv, =0 in M,
3, _
, Plv, = prv, on oM, (32)
Ur =0 on OM.
ong
pr <po <o Spp <0 <ppyg <cee (33)

where p,’s are the eigenvalues of the operator P; to Pg?’ on ‘H 2 counted

with multiplicity. We define Péji by

k
]P’gii(m v) =Py (u,v) — 2 Zur <% uvrd5g> <% Wrd59> - (34)
oM oM

r=1

Pg:i is obtained by just reversing the sign of the negative eigenvalue of IP’;}*B.
We set also

Jullpas = \/Po5 (u,u), and  (u,0)pas = Py} (u,0), (35)

where Pgii is defined as in (34). We have (-, )pss is a scalar product on
{u € Ho : uqm = 0}. We can choose wy,...,v; so that they constitute

a (-, -)pss-orthonormal basis for E_. We denote by VE" the gradient with
respect to (-, -)pas-
For t > 0, we define the following perturbed functional

(Eg)t(u) = }}D473(u,u) + 4t/ qudVg + 4tj{ Tgung
M OM

4 ]
**tl{(p4 P3) 1ng KeS“ng,
3 ’ M

uceHo. (36)

an

BE will stand for the closed ball of center 0 and radius r in RF. SF=1 will

denote the boundary of B{“. Given a set X, we define X x Bf to be the
cartesian product X X B{“ where the tilde means that X X 8B{7C is identified
with OBF.

In the sequel also, (£,)¢ with ¢ € R will stand for (£,)° :=={u € Ho :
E,(u) < c}. For X a topological space, H,(X) will denote the singular ho-
mology of X, H*(X) for the cohomology, and x(X) the Euler characteristic
of X, all with Zs coefficients.

As above, in the general case, namely k>0, for € small and positive, B =
(B1,---,B5) € R with 3; close to 0,4 = 1,...,k) (where R* is the empty
set when k = 0), A := (A,...,Ay) € (Ry)P, A\ > L fori=1,....p, a:=
(o1,...,ap) ERP ;closetolfori=1,...,p,and A := (a1,...,a,) € (OM)P,
peN,weHa with lwllpss small, Og 45 5.(1) will stand quantities
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bounded independent of &, A, A, 8, and ¢, and O 45 5.w.(1) will stand
quantities bounded independent of &, A, A, 3, w and e.
For point b € R® and A a positive real number, we define &, by

2
b (y) := log ( b|2> , yeR’ (37)

1+ Ny —
The functions dp 5 verify the following equation
(—Aps) 30 = 263 in R3 (38)

Using the existence of conformal Fermi coordinates, we have that, for a € M
there exists a function u, € C°°(M) such that

ga = €% g verifies detg,(v) = 1+ O(d,, (v,a)™) for € B9 (0,). (39)

with 0 < 04 < mln{m]"”(M), m]“"i(()aM)

of functions u,, g, and g, such that

}. Moreover, we can take the families

the maps a — uq, gq are C and g, > 09 > 0, (40)

for some small positive gg satisfying oo < mm{w, M}, and

1 —2
[tallosary = Oal(1), ?9 <g.<Cy,

fe) = 0u(d} (0.2) = Ou( o)) for w€ Ble(e) > Bu (22 ). and
Oa () — 0, (41)

ua(a) =0, Ry.0)=0, 3
g9

for some large positive constant C' independent of a. For a € OM, and r > 0,
we set

exp? := expls and B(r) := B (r). (42)

Now, for 0 < ¢ < % where gy is as in (40), we define a smooth cut-off

function satisfying the following properties:
Xo(t) =1 for t €10, 0],
Xe(t) =20 for ¢ > 2o, (43)
Xo(t) € [0,20]  for t € [o,20].

Using the cut-off function x,, we define for a € 9M and A € Ry the function
0q,x as follows

) 2
da,\(2) := log (1 + A%x5 (g, (=, a))) ' .
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For every a € OM and A € Ry, we define ¢, » to be the unique solution of
Pg"%pa,)\ + %Qg =0 in M,

e3Ba,x T va)

P3gos + T, =42 —<_ 2" in 9M,

g Pa, B9 §,, 2Bax +ualgg, (45)
OPa,x — 0

Ing ’
ParQr) = -

Next, let S(a,z), (a,x) € M x M be defined by
P}S(a,) + 2Qq(-) =0 in M,

8%52’ ) — 0 on oM, (46)
fM S(a,z)Qq(x)dVy(z) =0
Then
G(a,-) = S(a,)|onm- (47)

is a Green’s function of the P} + 2Qq(1) to P? + +T,(-) operator on Ho.

Thus, we have the integral representation: Vu € H o such that Pg4u + %Q 9 —
on
0,

1
u(r) =g = ool j(lgM G(x, y)Pgu(y), x € OM. (48)

Moreover, G decomposes as follows (see [21])

G(a,z) = log < ) + H(a, ), (49)

1
X3(dg, (a, 7))
where H is the regular part of G. Furthermore, we have

G € C=((OM)? — Diag(dM)), and H € C*P((9M)*) Vj € (0,1). (50)
By symmetry of H, we have
OF(ai,...,ar) ng}'iA(ai)

o =3 ) i=1,... k. (51)
Next, setting
e (A F e 3 A e
Ik (A) = ; (W - ZRé(ai)(]:i (ai))® |, (52)
we have
Ik(A) =6Lk(A), VAe Crit(Fk). (53)

For k > 2, we denote by By(OM) the set of formal barycenters of OM of
order k, namely

k k
B(OM) := {Zaiéai,ai €OM,a; > 0,i=1,... .k Y o= k} (54)
=1

i=1
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Finally, we set

Ay g = B(0M) x B}, (55)
and
Ay_y = By_1(0M) x BY, (56)

with Bg_1(OM) asin (14).

3. Blow-up analysis and critical points at infinity

This section deals with the blowup analysis of sequences of vanishing viscosity
solutions of the type

Plug+26Q, =0 in M,
3 o 3u
I;q u + 4T, =t Ke on OM, (57)
g 0 on OM.
ong

with # — 1 under the assumption kerP4? ~ R and k(ps psy = 4kn? with
k > 1 and their use to characterize the critical points at infinity of &,.

3.1. Blow-up analysis

The local behaviour of blowing up sequences of solutions of (57) is quite well
understood. In fact, in [21], we prove the following lemma.

Lemma 3.1. Assuming that (u;) is a blowing up sequence of solutions to (57),
then up to a subsequence, there exists k converging sequence of points (x;1)ien,
iy € OM with limits ©; € OM, 1 = 1,....k, k sequences ({i1)ien ¢ =
1,...,k of positive real numbers converging to 0 such that the following hold:
(a)
dg (i1, 1)
il

— 400 i #ji,j=1,...,k and

th(l‘z l)ug’l€3uz(3¢ri,1)e—310g2 —9
(b)
via(x) = wlexpd, (piix)) — w(ziy) +log2 — V(z) in Cp.(RY),
2
Vs — ] _2 )

(c) There exists C' > 0 suchthat inf,—; dg(xi7l,x)3e3“l(x) < C Ve oM,
Vi € N.
(d)

k
t K e dsy — 42 Z 0z, inthesenseof measure, and
i=1
lim thegulng = 47°k.

l—+o0 oM
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(e)
k
uy 7@Q,T - ZG(‘TZ’ ) n C?oc(aM - {xla s 7xk})v mQ,T - —0.

=1

As a Liouville type problem, the following Harnack type inequality is sufficient
to get the global description of blowing up sequences of solutions needed to
describe the critical points at infinity of &,.

Proposition 3.2. Assuming that w; is a blowing up sequence of solutions to
(57), then Lemma 3.1 holds, and keeping the notations in Lemma 3.1, we have
that the points x;; are uniformly isolated, namely there exists 0 < n < f—g
[where gy is as in (40)] such that for | large enough, there holds

dg(xi,laxj,l) 2467]]67 VZ#]:lavk (58)

Moreover, the scaling parameters \;; := ,ui_ll are comparable, namely there
exists a large positive constant Ay such that

Agt N < Xig < Aodja, Vi (59)

Furthermore, we have that the following estimate around the blow up points
holds

1. Ky (2,) 2Mi
+ < log 2AUTL) :
Ul (y) 3 Og 2 Og 1 + )\?}l(délll (y7 xi7l))2
+0(dy(y, i), Vye BI, (n).  (60)

To prove Proposition 3.2, as it is standard for Liouville type problems, one
starts with the uniform isolation of blowing-up points. Indeed, we have

Lemma 3.3. Assuming that (u;)en is a bubbling sequence of solutions to BVP
(57), then keeping the notations in Lemma 3.1, we have that the points x;
are uniformly isolated, namely there exists 0 < ny, < 75 [where go is as in (40)]
such that for [ large enough, there holds

dg(zig,wjy) > 4Cng, Yi#j=1,... k. (61)
Proof. The proof use the integral method of Step 4 in [19] and hence we will
be skectchy in many arguments. As in [19], we first fix % <v< %, and for

i=1,...,k, we set

@i (r) = Voly(0Bg, (r))*1/ w(z)dog(x), V0 <r <inj;(OM),
0By, (r)
and
Pi(r) = r4”e:1:p(4ﬂiyl(r)), V0 <r <inj;(OM).

Furthermore, as in [19], we define r;; as follows

R; / .
i, = Sup {Ryui,l <r< TI such that ¢, ;(r) <0 in [Rl,,ui’l,r[} ; (62)
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where R;; := min;x; dg(x;,x;,;). Thus, by continuity and the definition of
751, we have that

by i(rig) =0 (63)

Now, as in [19], to prove (61), it suffices to show that r;; is bounded below
by a positive constant in dependent of [. Thus, we assume by contradiction
that (up to a subsequence) r;; — 0 as | — +oo and look for a contradiction.
In order to do that, we use the integral representation formula (48) and argue
as in Step 4 of Ndiaye [19] to derive the following estimate

Gy i(rig) < (rig)® " eap(aii (i) (3v — 20 + 0(1) + Oi(riy)) -

with C' > 1. So from% <v< %, C>1land r;; — 0 as | — 400, we deduce
that for [ large enough, there holds

Vra(rig) <0, (64)
Thus, (63) and (64) lead to a contradiction, thereby concluding the proof of
(61). Hence, the proof of the Lemma is complete. O

The next step to derive Proposition 3.2 is to establish its weak O(1) -version.

Lemma 3.4. Assuming that (u;);en is a bubbling sequence of solutions to BVP
(57), then keeping the notations in Lemmas 3.1 and 3.3, we have that for 1
large enough, there holds

1. K (z;) 2Ai
21 =1 :
wle) + glog T <o e
+0(1), Yae B (m), (65)

up to choosing ny smaller than in Lemma 3.3.

Remark 3.5. We point out that the comparability of the scaling parameters
Ai,’s follows directly from Lemma 3.4.

Proof. We are going to use the method of Ndiaye [24], hence we will be sketchy
in many arguments. Like in [24], thanks to Lemma 3.3, we will focus only on
one blow-up point and called it x € M. Thus, we are in the situation where
there exists a sequence x; € M such that x; — 2 with z; local maximum
point for u; on M and wu;(x;) — +oo. Now, we recall g, = e2"= g and choose
m such that 20m; < min{go, o, d} with 4d < r;; where r;; is as in the
proof of Lemma 3.3. Next, we let w, be the unique solution of the following
boundary value problem

P} iy = Pju, — in M,
P iy = Pju, on OM,

i 66
Oy =0 on OM, (66)
Ing,
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Using standard elliptic regularity theory and (41), we derive

W, (y) = O(dy(y, x)) in B (2m). (67)
On the other hand, using the conformal covariance properties of the Paneitz
operator and of the Chang-Qing one, see (1), we have that 4; = u; — W,
satisfies
Py iy +2Q, =0 in M,
P2 iy + T, =t Ke*™  on 0M,
i
S on OM.
ong,
with

~ . 1 . N
Q= tie”""Q, + inuA) and 1) =t;e*"T, + Pg’w.

Next, as in [24], we are going to establish the classical sup+inf-estimate for
iy, since thanks (67) all terms coming from @, can be absorbed on the right
hand side of (65). Now, we are going to rescale the functions @; around the
points . In order to do that, we define ¢y : Bélfs (2mu; ') — Bi=(2m1) by
the formula ¢;(z) := 2z and g is the corresponding scaling parameter given
by Lemma 3.1. Furthermore, as in [24], we define the following rescaling of
Uy
v = U oy + log g + %log th2(ac).

Using the Green’s representation formula and the method of [24], we get

v (z) +2log|z| = O(1), for z € B](l){g (Zl) - B%QB(—log ). (68)
l

Now, we are going to show that the estimate (68) holds also in B%QS(— log p1).
To do so, we use Lemma 3.1 and the same arguments as in [24] to deduce

v(z) +2log|z| = O(1), for z € BE (—log ). (69)
Now, combining (68) and (69), we obtain
v (z) +2log|z| = O(1), for z € Bg@ <Z1> . (70)
!
Thus scaling back, namely using y = p;z and the definition of v;, we obtain
the desired O(1)-estimate. Hence the proof of the Lemma is complete. O

Proof of formula (60) of Proposition 3.2. We are going to use the method of
Ndiaye [24], hence we will be sketchy in many arguments. Now, let Vj be the
unique solution of the following conformally invariant integral equation

=535 [ |Z|Z’l|y|e3v(’(y)dy+log2, z € R3,
- _

Vo(0) = log2,VV;(0) = 0.

Vo(z) log
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Next, we set w;(z) = v(z) — Vo(z) for z € Bélf3 (nip; "), and use Lemma 3.4 to
infer that

lwe| <C in BE (it (71)

On the other hand, it is easy to see that to achieve our goal, it is sufficient to
show

. 3 p—
lwi| < Cpule] in By (mp ). (72)
To show (72), we first set
A; := max 7|wl(z)\
z€EQ M[(l + |Z|)

with
—R3 _
=By (mp ")
We remark that to show (72), it is equivalent to prove that A; is bounded.
Now, let us suppose that A; — 400 as | — +oo, and look for a contradiction.

To do so, we will use the method of [24]. For this, we first choose a sequence

of points z; € ; such that A; = % Next, up to a subsequence, we have

that either z; — 2* as | — +oo (with 2* € R3) or |z| — +oc0 as | — +o0.
Now, we make the following definition

_ o wy(z)
2 = Rt + T
and have
B 1+ |z
)< (152, (73)
and
|[wi(21)] = 1. (74)

Now, we consider the case where the points z; escape to infinity.

Case 1: |z| — 400

In this case, using the integral representation (48) with respect to g, and the
method of [24], we obtain

[ (0MAt DT oMt )Y
wl(z”‘2w2/mlg|zz—s|( At ) T A+ )d“ -

Now, using the fact that |z;| — 400 as | — 400, one can easily check that

A (0Ot oWt
wz(zz)—QWZ/Qllg|Zl_€|( M, oG ED >df(1)~

Hence, we reach a contradiction to (74).

Now, we are going to show that, when the points z; — 2* as | — +o00, we
reach a contradiction as well.

Case 2: zj — z*
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In this case, using the assumption z; — z*, the Green’s representation for-
mula, and the method of Ndiaye [24], we obtain that up to a subsequence

w; — w in CL,(R?) as | — 400, (75)

and

NN 1€ Kowi(€) 30, -
U}l(Z) - 272 o log ‘Z — §| Kogol(())e U}(f)dg

1 e .

+Azm(1 + |z1|) 272 /Qz log 2 — ¢ O(m (1 + [€])77)d€
0(1) +0(z)
A1+ 1z])

where €37t 1= fol e3sut(1=9)V0) ds. Thus, appealing to (75) and (76), we infer
that w satisfies

(76)

1 €]

==/ 1 BV gy (¢)d 77
w(z) = g [ lor g e e (77)

Now, using (73), we have that w satisfies the following asymptotics
lw(z)] < C(1+[2]). (78)

On the other hand, from the definition of v;, it is easy to see that
w(0) =0, and Vw(0) = 0. (79)

So, using (77)—(79), and observing that Lemma 3.7 in [24] holds for dimension
3, we obtain

w = 0.
However, from (74), we infer that w satisfies also
jw(z")[ =1 (80)

So we reach a contradiction in the second case also. Hence the proof of the
lemma is complete.

Because of the lack of understanding of the blowing PS-sequences for Louiville
type problems, the role of the PS-sequences can be replaced by the vanishing
viscosity solutions of the type of (57) via the following Bahri-Lucia’s deforma-
tion type lemma.

Lemma 3.6. Assuming that a, b € R such that a < b and there is no critical
values of &, in [a,b], then there are two possibilities

(1) Either
(£,)% is adeformation retract of (&,)°.

(2) Or there exists a sequence t; — 1 as | — +o0o and a sequence of critical
point u; of (Eg)y, verifying a < E,(w) < b for all | € N*, where (£,)q,
is as in (36) with t replaced by t;.
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On the other hand, setting

VR(k‘,G,’r]) = {UEHBQI dai,...,ar € OM, M,...,\p >0, ||U—HQ7T

k
=D Panles <e
i=1

1 2 Ai A —
A > iy < )\—J < oY and dg(a;,a;) > 4Cn fori %j},
(81)
where C' is as in (41), L as in (21), O(1) := O4 5,,.(1) meaning bounded
uniformly in A := (A1,..., ), A:= (a1,...,ax), u, €, we have as in [24] that

Proposition 3.2 implies the following one.

Lemma 3.7. Let € and n be small positive real numbers with 0 < 2n < o where
0 is as in (43). Assuming that u; is a sequence of blowing up critical point of

(Eg)t, with (w)gr=0,l €N and t; — 1 as | — +oo, then there exists I,

a large positive integer such that for every | > lc,, we have w; € Vr(k,€,1n),
and for the definition of Vgr(k,e€,n), see (81).

Finally, as in [24], we have that Lemmas 3.6 and 3.7 implies the following one.

Lemma 3.8. Assuming that € and 1 are small positive real numbers with 0 <
2n < g, then for a,b € R such that a < b, we have that if there is no critical
values of & in [a,b], then there are two possibilities

(1) Fither
(£,)* is a deformation retract of (€,)°.

(2) Or there exists a sequence t; — 1 asl — 400 and a sequence of critical
point w; of (Eg)y, [for its definition see (36)] verifying a < Eg(w;) < b
for all 1 € N* and I, a large positive integer such that u; € Vr(k, e, n)
for all 1 > 1. ,, and for the definition of Vr(k,€,n), see (81).

3.2. Energy and gradient estimates at infinity

In this subsection, we present energy and gradient estimates needed to char-
acterize the critical points at infinity of &£;. We start with a parametrization
of infinity. Indeed, as a Liouville type problem, we have that for n a small
positive real number with 0 < 2n < p, there exists ey = €p(n) > 0 such that
V0 < € < €y, we have

Vu € Vg(k,€,n), the minimization problem glin U —UQ,T

€n

(82)

k k
- Z az@u“)\l - Z ﬂr(vr - W(QvT))
i=1 r=1

has a unique solution, up to permutations, where B, is defined as follows

P4.3
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Be = {(a,A,A,g) € R* x (M)* x (0, +00)" x RF : |a; — 1]1/log A\;

. i=1,...,kdy(ai,a;) > 4Cn,i # 4, |- <Ce,r = 1,...,15}.

(83)

Moreover, using the solution of (82), we have that every u € Vg(k,¢e,n) can
be written as

U, = Z%%M +Zﬁr Vr = V(1)) + W, (84)

where w verifies the followmg orthogonahty conditions

_ 89011,;,)\,, 890%,)\7,
ven = <¢a“)\“w>m4)3 - < O 7,w>]11’4,3 - < Oa; o P4.3 - <'Ur'7w>p4,3 =0,

i=1,...,k,
r=1,...,k (85)

and the estimate

[w][ps.s = O(e), (86)

where here O (1) := O4 4 x 3w, (1). Furthermore, the concentration points a;,
the masses «;, the concentrating parameters \; and the negativity parameter
B, in (84) verify also

dy(as,a;) >4Cn, i #j=1,...,k,

< Ai)jzly"'7k7 /\zZ

==
>|>
IA

k k
216,14 D lei = 1]/ log s = O(e) (87)

with still O (1) as in (86).

Because of the translation invariant property of £; and the parametriza-
tion (84), to derive energy estimate in Vi (k, €,7) we start with the following
lemma.

Lemma 3.9. Assuming that n is a small positive real number with 0 < 2n < o
where ¢ is asin (43), and 0 < € < ey where € is as in (82), then for a; € M
concentration points, o;; masses, \; concentration parameters (i =1,...,k),
and (3, negativity pammeters (r=1,....k) satisfying (87), we have

Z%Q%HA +Zﬁr(vr Ur(Q,T)) =CF — 87 Fk(ay,...,ax)

i=1

k k
+2 Z w32+ Z(ai —1)? [1671'2 log \i + 872 H (ai, a;) + Cﬂ

k

k k
+872) (i — 1) | Y 28, (vr —Tro)(a) + Y, (a Glai, a;)
=1

r=1 Jj=1,j#1i
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192 F Ay Fiai
oo > iQ e o) % Ry(ar)
o &\ Fia) 4
8% = 7 (Do, Fi @) 3
P e\ Ay e
1672 k k k k 1
+ Zlogl—n Zai_1|2+Z|BT|S+ZF ,
=1 =1 r=1 i=1 "1

) with & = (ozl,.. yap), A= (a1,...,ax),

where O (1) means here Oy 4 5 5. (1
) and for i =1,...,k,

5\5:()\1,.. ) ﬁ—(ﬁl,..

XG,e
» Br
kA k

7~—i =1- 'Yz Z 6a7_3-7_—A(al)gz(al)

with

- / 1 J
C; 1= T ovaa. Y
s (1+ [y[?)3

. 3k %A, Glaj,a;
gl(al) ::eg((‘li*1)H(aiyai)+zsz1,j¢i(O‘j*1)G(ajaai))e2ZJ:I’]#l Y (a5,a:)

304 o z
R Ag,, H(ai,a;) » eng:l mwh(ai)7

Ck is a real number depending only on k, C¥ is a real number depending only
on k and ' is a positive real number and for the meaning of Og a5 5. (1).

Proof. The proof is the same as the one Lemma 4.1 in [2] replacing Lemma
10.1-10.4 in [2] by Lemmas 5.1-5.4. O

Concerning the gradient estimates of £; in Vg(k,€,n), we have in the direc-
tions of the scaling parameters:

Lemma 3.10. Assuming that n is a small positive real number with 0 < 2n < o
where o is as in (43), and € < ey where €y is as in (82), then for a; € OM
concentration points, «; masses, \; concentration parameters (i = 1,...,k)
and (3, negativity parameters (r = 1,....k) satisfying (87), we have that for
everyr =1,...,k, there holds

4, 3 880(1,-,)\,
<V]Pj Zaﬁoal i +Zﬂr (%8 UT(QT ) 7)‘]-8)?J>
J

P43
A” .7: (a) 3 16 2
¢ 9a; ¥ g\ T
= 167T2aj7'j - 3)\5 < ]_jjA(a]) - ZRg(aj) — vTjAﬁaj H(a;,a;)
1672 k 2872 A?]m}—f(aj) 3
RYE g, Glaz 0 |\ —F ~ 2Ry(a
)\? i:%:#jT Ga; (aj,a;) + )\? Tj ( f]A(aj) 1 a(aj)

k k k 1
Z|m—1\+z|ﬁ,¢|2+zF :
i=1 r=1 i=1 "7
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where A := (ai,...,ax), O (1) is as in Lemma 3.9, ¢* is a positive real num-
ber, and for i=1,... k,

nm1-M p g (@) e @+TE, B 49, (),
D oM

with 4; as in Lemma 3.9.

Proof. The proof is the same as the one Lemma 5.1 in [2] replacing Lemma
10.1-10.4 in [2] by Lemmas 5.1-5.4. O

As in [2], Lemma 3.10 implies the following corollary.

Corollary 3.11. Assuming that 1 is a small positive real number with 0 <
2n < o where o is as in (43), and 0 < € < ¢y where €y is as in (82), then
for a; € OM concentration points, «; masses, A\; concentration parameters
(i=1,...,k), and B, negativity parameters (r = 1,...,k) satisfying (87), we
have

k
<V]P’4 3 20[290117,)\ + Zﬂr Up — W(Q,T)) ’Z 2;%>
i=1 " g

P43
38 Ay .fi a; 3
= Z - 27T galA () Ry(ai)
—~ A Fiai) 4
k
+0 Z 71|+Z\ﬁr|2+27 +ZA3 :
where A := (ay ax), O (1) is as in Lemma 3.9, ¢ is a positive real number,
and for i =1,. k T; 18 as in Lemma 3.10.

Proof. The proof uses the strategy of the proof of Corollary 5.2 in [2] replacing
Lemma 5.1 in [2] by its counterpart Lemma 3.10. O

For the gradient estimate in the directions of mass concentrations, we have:

Lemma 3.12. Assuming that n is a small positive real number with 0 < 2n < o
where o is asin (43), and 0 < € < €y where €y is as in (82), then for a; € OM
concentration points, o;; masses, \; concentration parameters (i =1,...,k),
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and 3, negativity parameters (r = 1,... k) satisfying (87), we have that for
every j=1,...,k, there holds

k k
<VJP v3€g (Z AiPa; \; + Z Br(vr _'UT(Q,T))> aﬂoa],)\]>

=1 r=1 P4.3

1
= (2logA; + H(aj, a5) = C2) —
J

43 . aéan,A]
< vF (Z AiPa; N, T Zﬁr U —Ur<Q,T))> 7>\jm>
J

P43

k
4& 0 ais N
S a<aj,ai)<vﬂm (zwa N +zmm-v,(@ T)>> w"w>

i=1,i#j i=1 g pis

+ 321%(a; —1)log A; + O (Zlou—lJrZIBrnLZmHZlOgA )

i=1 r=1 i=1
where O (1) as as in Lemma 3.9 and Cy is a real number.
Proof. Tt follows from the same arguments as in Lemma 5.3 in [2]. O

Concerning the gradient estimate in the directions of points of concentrations,
we have:

Lemma 3.13. Assuming that n is a small positive real number with 0 < 2n < o
where o is as in (43), and 0 < € < ey where € is as in (82), then for a; € OM
concentration points, a;; masses, \; concentration parameters (i =1,...,k),
and f3, mnegativity parameters (r = 1,... k) satisfying (87), we have that for
every j=1,...,k, there holds

]P4 3 — 1 a(paj)‘j
Qi Pa;,\; + ﬁr Ur — Up T ) N o
(578, (S + 30— am) ) - 2

23271'2 V .7'} ( j)
Ao Fiay)

+O< |O‘2_1| +Z|TZ|2>

P4,3

L

k
1
+0 =+t S
i=1 "7 r=1
where A := (ay,...,a), O(1) is as in Lemma 3.9, ¢® is as in Lemma 3.10
and for i =1,...,k, 7 is as in Lemma 3.10.
Proof. The proof is the same as the one of Lemma 5.4 in [2]. O

Concerning the gradient estimate in the directions of the negativity parame-
ters, we have:
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Lemma 3.14. Assuming that n is a small positive real number with 0 < 2n < o
where o is as in (43), and 0 < € < ¢y where €y is as in (82), then for a; € OM
concentration points, a; masses, \; concentration parameters (i = 1,...,k),
ad B, negativity parameters (r = 1,...,k) satisfying (87), we have that for
every 1 =1,...,k, there holds

<VIP>43 ZOMPaNA +Zﬂr Uy QT)) ’vl(vl)Q,T>

r=1 P43

k k
=4N551+O<Z|%‘—1+Z|Ti|>

= i=1
+0 Z +Z|ﬂrl2 :

i=1 2
where O(1) is as in Lemma 3.9 and for i =1,... k, 7; is as in Lemma 3.10

Proof. Tt follows from the same arguments as in the proof of Lemma 5.5 in [2].
O

3.3. Finite-dimensional reduction

In this subsection, we complete the energy estimate of £, on Vg(k,e,n) via
Lyapunov finite dimensional type reduction and second variation arguments.
First of all, we have:

Proposition 3.15. Assuming that n is a small positive real number with 0 <
2n < o where ¢ is as in (43), and 0 < € < ¢y where ¢y is as in (82) and
u=Tqgr + Zf:l QiPa; Ny T 25:1 Br(vr — Ur(q,1)) +w € Vr(k, e,m) with w,
the concentration points a;, the masses «;, the concentrating parameters \;
(i=1,...,k), and the negativity parameters 3, (r =1,..., k) verifying (85)—
(87), then we have

Z%@a“)\ +Zﬁr Uy vr (QT))

— f(w) + Q(w) + o(|[wl[Fs.5), (88)

where

E  iPa. s E_ B,
f(w) := 1672k Fops P21 0¥ 7”M+3Z'flﬁ wdS, (89)
§8M K@S PR QiPa;,x;+3 Zf-:l ﬁ“’rds’g
and
K 32?:1 O‘i‘»"ﬂri‘*i+325:1ﬁrvr QdS

Q(w) = [[w|2es — a4y Jor K %% (90)

3% @ipa; i +35F_, Bror
$ons Ke L ERRRNES dSg

Moreover, setting

a(pa. pV a(pa. pV
Eon, i =qweHoao : a; Ny W 4,3=< 2w =( — w =0,
{ on (o e o\ P43 da; P43
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Wo,r) = (vr,w)pas =0, r=1,...,k, and |lw|pss = O (e) }, (91)

and
A= (ay,...,ax), A= (A1,..., ), Eyx = ﬁleEa,h)\i, (92)

we have that, the quadratic form @Q is positive definite in E 4 5. Furthermore,
the linear part f verifies that, for every w € E, 5, there holds

lelles.s (Z Vo7 as) +Z|az—1|log)\ +Z|ﬁr|+zlogA )]

i=1 03)

flw)=0

where here o(1) = Oa,A,B,?\,w,e(D and O (1) := Oa.A B3 w.e (1).

As in [2], to prove Proposition 3.15, we will need the following three coming
lemmas. We start with the following one:

Lemma 3.16. Assuming the assumptions of Proposition 3.15 and v € (0,1)
small, then for every q > 1, there holds the following estimates

k
L . k v
KT e 135 B s~ (Hwnaa,s(Z *?”’> ™
oM i=1
k
Ke3Tizt @ida; x, 3T By |w|? = (Hwh%ms(z AZ)), (95)
oM i=1
) P oo 1 .
F e (el = 0 (el s | i= 1k
oM A;

N k
Ke3 Sk i, A 3TN ﬁrvr639ww|w‘q -0 <|w|§4v3 (Z )\i’>+“/>> 7 (97)
=1

where 6, € [0,1], and

oM

KeB3Xhot aia; x+355 Bror [ Bw _ 1 _ gy _ ng v,
M 2

k
=0 <||w|ﬂ%4,3 (Z A?)) (98)
=1

where here o(1) and O (1) are as in Proposition 3.15.

Proof. The proof is the same as the one of Lemma 6.2 in [2] replacing Lemma
10.1 by its counterpart Lemma 5.1. 0

Still as in [2], the second lemma that we need for the proof of Proposition 3.15
read as follows:
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Lemma 3.17. Assuming the assumptions of Proposition 3.15, then there holds
the following estimate

k k
4, Kt T apa s 4358 Aoy g,

oy KePTim1 cipain #3500 o g

:O(W”H""B (ZWJT 2 +ZlawlllogA +Z|ﬁr|+zlogA>>.

i=1 (99)

Proof. Tt follows from the same arguments as in the proof of Lemma 6.3 in [2]
replacing Lemma 10.1 by its counterpart Lemma 5.1. O

Finally, as in [2], the third and last lemma that we need for the proof of
Proposition 3.15 is the following one.

Lemma 3.18. Assuming the assumptions of Proposition 3.15, then for every
i1=1,...,k, there holds

7 = O(e). (100)

Proof. The proof is the same as the one Lemma 6.4 in [2] replacing Lemma
5.1 by Lemma 3.10. U

Proof of Proposition 3.15. It follows from the same arguments as in the proof
of Lemma 6.1 in [2] replacing Lemma 6.2-6.4 in [2] by Lemmas 3.16-3.18 and
Lemma 10.1 in [2] by Lemma 5.1. Furthermore, Lemma 10.6 and Lemma 10.7
in [2] are replaced by Lemma 5.9 and Lemma 5.10. O

Now, as in [2], we have that Proposition 3.15 implies the following direct
corollaries.

Corollary 3.19. Assuming that n is a small positive real number with 0 <
2n < o where p is as in (43), 0 < € < €y where € is as in (82) and
U= Zle 0iPa; n; Zle B (v — TT(Q’T)) with the concentration points a;,
the masses «;, the concentrating parameters \; (i = 1,...,k) and the nega-
tivity parameters B, (r =1,...,k) satisfying (87), then there exists a unique
w(a, A\, B) € Ey 5 such that

& (u+w(a, AN B)) = e, Jflifévﬁ(k . Eg(u+w), (101)

where & = (a1,...,a1), A = (ai,...,a1), X\ = (A1,..., ) and [ =
(Br, -, Br).- L .

Furthermore, (a, A, X\, 3) — w(a, A, X\, 3) € C' and satisfies the following
estimate

*Hw(a AN B)Bas < 1S (0(a, AN B)) | < Cllw(@, A, A, B)|[Fas, (102)

for some large positive constant C independent of &, A, X, and 3, hence
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lo(a, A, X, B)lless

=0 Z|v}— @) +Z|alfl|log)\ +Z|ﬁr|+210g>\ .

(103)

Corollary 3.20. Assuming that n is a small positive real number with 0 <
21 < o where o is as in (43), 0 < e < ey where €y is as in (82), and ug :=

Zf La? <pao a0+ ZI: L B (vr — Trg 1)) with the concentration points af, the
masses af, the concentrating parameters N0 (i = 1,...,k) and the negativity
pammeters B (r=1,...,k) satzsfymg (87) then there exists an open neigh-
borhood U of (& AO )\0 ,B°) (with @° = (of,...,af), A° = (df,...,a),
A= (A9,...,09) and ﬂo (BY,...,B2)) such that for every (a, A, B) eU
with & := (a1,...,a), A:=(ay,... ak) A=A, ), 8= (B, .-, BR),
and the a;, the o, the N; (i =1,...,k) and the (3, (r =1,...,k) satisfying
(87), and w satisfying (87) with Zle QiPa; s —I—Zle Br(vr =Tr(g,1y) +w €
Vr(k, e, ), we have the existence of a change of variable

w—V (104)

from a neighborhood of w(a, A, )\, 3) to a neighborhood of 0 such that

k k
&g (Z Qia; n; + Z Br(vr —r(q,1)) + w)
=1 r=1
k k o
:gg Zaigpazﬁ)\i +Zﬂf’(v7‘ _W(Q,T)) +u_)(& )‘ B)
=1 r=1

k k
1, 0 0 _ 070 7
+50°& (Zlaicpa%,\g +§_‘15T(ur —Tr ) + (@, A% X%, B )) (V,V),

(105)

Thus, as in [2], with this new variable, it is easy to see that in Vg(k,€,n)
we have a splitting of the variables (@, A4, \,3) and V, namely that one can
decrease the Euler-Lagrange functional £, in the variable V' without touching
the variable (&, A, \, 3) by considering just the flow

av

dt
So, as in [2], and for the same reasons, to develop a Morse theory for &; is
equivalent to do one for the functional

=V (106)

59( 5‘ B _8 ZazSOa“/\ +Zﬁr Uy TT‘(Q’T))JF’LD(EY’A

\}/\
@\

(107)

where & = (ay,...,a1), A= (ai,...,a1), A= (A\1,...,\x) and B = Bi,..., 0%
with the concentration points a;, the masses «;, the concentrating parameters
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Ai (1 =1,...,k) and the negativity parameters 3, (r = 1,..., k) satisfying
(87), and w(a, A, A, 3) is as in Corollary 3.19.
Finally, we have the following energy estimate of £, on Vg(k,¢€,n).

Lemma 3.21. Under the assumptions of Proposition 3.15, Yu = Uq 1)+ Zle
QitPa; n + Sogey Br(vr = Triq.r)) + w € Va(k, €,m), we have

=& (f: QiPa; n; + iﬁT(vr —vrm)) + w) =CF — 81 Fx(ar,. .., ax)
n QZ/JTBT +Z - [167r log \i + 8 H(az,az)—FCl}
g (o )

Loe, <Z

k
+ 0% P00 + DB (vr — Vrgm) + (@’ A% N, B°)> (V,V)
=1

C

k

k
+ 87° Z(a —
1=1 r=
82 G~ A Do, Fitai) 3
NP 35l ST e

167r k ) k . a1
Zlogl—rz)+0<2|ai—1| + B +Y 5
1=1 r=1 i=1 %

i=1

k
2ﬁr( Ur QT) Z azaaj)
1

J=Lj#i

+ Hu_)(a7 A7 5‘7 B)”]ﬁ‘lv?') s

where O (1) means here Og 4 5 5. (1) with & = (aq,..., 1), A:=(ay,...,a),
A= (A1, ), 5::? (B1,-..,0%) and for i =1,...,k, 7; is as in Lemma
3.9. where w(a, A, A, ) is as in Corollary 3.19.

Proof. Tt follows directly from Lemma 3.9, formula (105) and Proposition 3.15.
O

3.4. Morse lemma at infinity

In this subsection, we derive a Morse Lemma at infinity for &£;. As in [2], in
order to do that, we first construct a pseudo-gradient for &,(a, 4, A, 3), where
Ey(a, A, X\, B) is defined as in (107) exploiting the gradient estimates derived
previously. Indeed, we have:

Proposition 3.22. Assuming that n is a small positive real number with 0 <
2n < o where g is as in (43), and 0 < e < €9 where € is as in (82), then
there exists a pseudogradient Wy of E4(a, A, X, B) such that

k k _ .
(1) For every w:= ), aiPa; x; + D p_q Br(vr —Vro1)) € Vr(k,€,1) with
the concentration points a;, the masses «;, the concentrating parame-
ters \; (i = 1,...,k) and the negativity parameters (3. (r = 1,...,k)
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satisfying (87), there holds

k IV FA (4 b
(V" e W)z (Z % +3 |9A7(“)‘ 3 o 1|>
i=1 v i=1

(2)

i=1 "1
k k
tc Z'Tzl"i_Z'ﬁr‘) ’ (108)
=1 r=1

and for every u := Zle ozz-go%)\i—kz:f:l B Mvr =07 (g, 1)) +w(a, A, A, B)
€ Vr(k,e,n) with the concentration points a;, the masses oy, the con-
centrating parameters X\; (i = 1,...,k) and the negalivity parameters
Br (r=1,...,k) satisfying (87), and w(a, A, X\, 3) is as in (101), there
holds

<—V‘P’4’359(u ), Wy >
p4,3

o(a, A\, B)
k k k
1 Vs Ff (ai)]
> . gv 1 i — 1
(S hr
k k
+e | Yo Iml+ D18 | (109)
=1 r=1
where ¢ is a small positive constant independent of A := (a1,...,ak),
o= (ala“'yak)} A= (Ala"'v)\k)} /8: (617"'76}}) and €.
Wy is a | - ||pss-bounded vector field and is compactifying outside the

region where A is very close to a critical point B of Fx satisfying
£K(B) < 0.

Proof. Tt follows from the same arguments as in the proof of Proposition 8.1 in
[2] replacing formulas (52)—(54), Lemma 5.1, Corollary 5.2 and Lemmas 5.3
5.5 in [2] with (51)—(53), Lemma 3.10, Corollary 3.11 and Lemmas 3.12-3.14.
Furthermore, Lemmas 4.1, 7.1, and 0.5 in [2] are replaced by Lemmas 3.9, 3.15
and 5.5 O

Now, as in [2], we have that Proposition 3.22 implies the following characteri-
zation of the critical points at infinity of &,.

Corollary 3.23. (1) The critical points at infinity of £, correspond to the

(2)

“configurations” «; = 1, \j = 400, 7, =0 ¢ =1,....k, B =0,

r=1,...,k, A is a critical point of Fx and V = 0, and we denote

them by z°° with z being the corresponding critical point of Fi .

The “true” critical points at infinity of £, are the 2°° satisfying L (2) <
0 and we denote them by x°° with = being the corresponding critical

point of Fi.

The “false” critical points at infinity of £, are the 2™ satisfying Lx(z) >
0 and we denote them by y> with y being the corresponding critical

point of Fi.
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(4) The E,-energy of a critical point at infinity z°° denoted by J,(2°°) is
given by

Ty(2°°) = C¥ — 87 Fre (21, ..., 1) (110)
where z = (21,...,2;) and C§ is as in Lemma 3.9.

Proof. Point (1)—(3) follow from (53), Lemma 3.8, the discussions right after
(105), and Proposition 3.22, while Point (4) follows from Point (1) combined
with (103) and Lemma 3.21. O

Finally, we are going to conclude this subsection by establishing an analogue of
the classical Morse lemma for both “true” and “false” critical points at infinity.
In order to do that, we first remark that, as in [2], the arguments of Proposition
3.22 implies that V_ := {u € Vr(k,e,n) : Ix(A) <0,Vr € {1,...,k} |5, <

~ CFA(a .

2Cy (Z'-l FaZZell 4 28 oy = 1+ Sy Iml + X ) Vi€ {1, k)

7l <258, and Vi€ {1, k} FZEO <4 yand Vy = {u € Valk,e,n)
. 5 (xok [VoFA@)] | sk

Ic(A) > 0,9r € {1,....k} |8,] < 20 (X, Maflil L 57k o, 1

+3F R 1%) Vi€ {1k} |n| < 25, and Vi € {1,....k}

w < 400 } (where éo, Co and Cy are large positive constants) are

respectlvely a nelghborhood of the “true” and “false” critical points at infinity
of the variational problem. Hence, as in [2], (103), Corollary 3.20, Lemma 3.21
and classical Morse lemma imply the following Morse type lemma for a “true”
critical point at infinity.

Lemma 3.24. (Morse lemma at infinity near a “true” one) Assuming that 1
is a small positive real number with 0 < 2n < o where o is as in (43),

0 < e <€ where ¢ 1is as in (82) and ug = Zle g0 zo + Z:f:l B (v, —

o)) + 0@ A% X0, 3%) € V_(k,e,n) (where a° := (af,...,af), A® =
(@f,...,a0), A= (\Y,...,A)) and B° := (af,...,Y)) with the concentration
points aO the masses o, the concentrating parameters A\ (i =1,...,k) and

the negativity pammeters B (r =1,...,k) satisfying (87) and furthermore
A € Crit(Fr), then there exists an open neighborhood U of (a°, A%, \°, 39)
such that for every (a, A, \, ) € U with @ := (ay,...,a), A= (al7 cey k),
A= (A1, M), Bi=(Bi1,...,5%), and the a;, the oy, the \; (i=1,....k)
and the B, (r = 1,...,k) satisfying (87), and w satisfying (87) with u =
ﬂ(QvT) + Zf:l QiPa;n; T Zf:l ﬂr(vr - (vr)(Q,T)) +w € V_(k, 6,7]), we have
the existence of a change of variable

ap — 8, 1=1,...,k,
A— A= (A_ A))

A — b1,

T —0; i=2,...,k,
By — B

V—V, (111)
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such that

Zach%,)\ +Zﬂr( (% Ur (Q, T))

—\fl-l2+|ﬁ+l2+Zs§

=1
k ~ k ~
=Y BT =Y VI (112)
r=1 =2

where A= (A_, A,) is the Morse variable of the map J, : (9M)*\F((dM)*)
— R which is defined by the right hand side of (110). Hence a “true“ critical
point at infinity x> of €, has Morse index at infinity

Moo (2%°) = ino(z) + k,
with is as in (12).

Similarly, and for the same reasons as above, we have the following analogue
of the classical Morse lemma for a ”false“ critical point at infinity.

Lemma 3.25. (Morse lemma at infinity near a “false” one) Assuming that 7
is a small positive real number with 0 < 2n < o where ¢ is as in (43),
0 < e <€ where € is as in (82) and ug := Zf 1 az a0 20 + Ele B (v, —
W(Q’T)) +w( 0/4% 00, 3% € Vi(k,e,n) (where a° := (af,...,a?), A =
(a,...,a0), X:= ()\[1), A and BO = (dd . ,B2)) with the concentration
points ao the masses of, the concentrating parameters \? (i =1,... k) and
the negativity pammeters B (r = 1,...,k) satisfying (87) and furthermore
A% € Crit(Fr), then there exists an open neighborhood U of (a°, A%, \°, 3°)
such that for every_(a,A,)\,ﬂ) eU with @ := (a1,...,a;), A:= (c117 ceyag),
A= (A1, M), Bi= (By---,Bg), and the a;, the oy, the N; (i =1,...,k)
and the B, (r = 1,...,k) satisfying (87), and w satisfying (87) with u =
U,y + Zle OiPa; n; + Zle B (v — (’UT)QH) +w € Vi (k,€e,m), we have the
existence of a change of variable

o — 8, 1=1,...k,

A A (A A,

A1 — by,

—0;, i=2,...,k,

Br — B

V—V, (113)

such that

Zaz@al i + Z/Br ( (%3 U'r‘ (Q T)) = _|f1*|2 + |A+|2
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k k k
+Y st Y B VI (114)
i=1 r=1 i=1
where A = (A_, A) is the Morse variable of the map J, : (9M)*\F((dM)*)
— R which is defined by the right hand side of (110). Hence a “false“ critical
point at infinity y> of £, has Morse index at infinity

Moo (y™) = iso(y) + 1 + k.

4. Proof of existence theorems

In this section, we show how the Morse lemma at infinity implies the main
existence results via strong Morse type inequalities or Barycenter technique of
Bahri—Coron.

4.1. Topology of vey high and negative sublevels of &,

We study the topology of very high sublevels of £, and its every negative
ones. We start with the very high sublevels of &, and first derive the following
lemma.

Lemma 4.1. Assuming that 1 is a small positive real number with 0 < 2n < o
where o is as in (43), then there exists Cf := CF(n) such that for every
0 <e<e¢ where €y is as in (82), there holds

V(k,e,) C ()50 \ (E,) 0.

Proof. Tt follows directly from (84)—(87), Proposition 3.15, Lemmas 3.18 and
3.21. 0

Next, combining Proposition 3.7 and the latter lemma, we have the following
corollary.

Corollary 4.2. There exists a large positive constant C'f such that
Crit(€,) © ()74 \ (€))7

Proof. 1t follows, via a contradiction argument, from the fact that &, is in-
variant by translation by constants, Proposition 3.7, and Lemma 4.1. 0

Now, we are ready to characterize the topology of very high sublevels of &,.
Indeed, as in [2] and for the same reasons, we have that Lemma 3.8, Lemma
4.1 and Corollary 4.2 imply the following one which describes the topology of
very high sublevels of the Euler-Lagrange functional &,.

Lemma 4.3. Assuming that 1 is a small positive real number with 0 < 2n < o
where o is as in (43), then there exists a large positive constant L* := L*(n)
with L* > 2max{C¥, CF} such that for every L > L*, we have that (E,)" is
a deformation retract of Ha%, and hence it has the homology of a point, where

C'(’)“ 15 as in Lemma 4.1 and (i'{“ s as in Lemma 4.2.
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Next, we turn to the study of the topology of very negative sublevels of &,
when k > 2 or k > 1. Indeed, as in [2] and for the same reasons, we have
that the well-know topology of very negative sublevels in the nonresont case
(see [21]), Proposition 3.7, Lemma 4.1 and Corollary 4.2 imply the following
lemma which gives the homotopy type of the very negative sublevels of the
Euler-Lagrange functional &,.

Lemma 4.4. Assuming that k > 2 or k > 1, and 1 is a small positive real
number with 0 < 2n < o where g is as in (43), then there exists a large positive
constant Ly y = Ly p(n) with Ly > 2max{Ck,CF} such that for every
L > Ly, 5, we have that (£5)~" has the same homotopy type as Bj_1(OM) if
k>2 and k=0, asAy_1 5 if k>2 and k>1 and as S¥1 if k=1 and
k> 1, where O{; is as in Lemma 4.1 and C’f as in Lemma 4.2.

However, as in [23], to prove Theorem 1.9, we need a further information about

the topology of very negative sublevels of &;. In order to derive that, we first
make some definitions. For p € N* and A > 0, we define

fo(A) : Bp(OM) — H%
as follows
P p P
A) (Z aiéai> = Zai@%,\, o= Z a;04, € B,(OM),  (115)
i=1 i=1 i=1

with the ¢4, \’s defined by (45). Furthermore, when k > 1, for © > 0, we
define

\I/p’,;()v@) : Ap,fc — 'H% (116)
as follows
v, 5(A,0)(0,5)
@s + fp(A)(0) for [s| < %v €B (3M)
= ot FEA 141 Ns)(0)  ford <[s| <1, o€ B, (M)
po+20— f(1)@)ls| +2£,(1) — 1 for [s| > L, o € B,(OM),
(117)

where g is defined by the following formula

—@ZST v — (o) i) (118)
with s = (s1,...,83). Asin [23], concerning the f,(A)’s, we have the following
estimates.

Lemma 4.5. Assuming that p € N*, then we have
(1) If p < k, then for every L > 0, there exists )\5 > 0 such that for all
A > )\L, we have

Fo(N)(By(0M)) C (£5)7"
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(2) If p=k, then there exist Cr >0 and Ay > 0 such that for all X > Ay,
we have

FeO)(Br(0M)) C (£)*.
(3) There exists C* > 0 such that up to taking €y smaller, where €y is
given by (82), we have that for every 0 < e < €q, there holds
V(k,e) C (£)".

Proof. 1t follows from the same arguments as in the proof of Lemma 3.1 in
[23] by using Lemmas 5.1, 5.3 and 5.6-5.8. O

Still, as in [23], we have the following estimates for the W,,(\,©)’s when &k > 1.

Lemma 4.6. Assuming that p € N*, then we have
(1) If 1 <p<k, then for every L >0, there exists )\1’;‘/5 >0 and 951} >0

such that for all X\ > /\515, we have

\Ilp,l;()ﬁeﬁ’]})(Ap,fc) - (5_@)7[/'
(2) If p=k and © > 0, then there exists C,?ZC >0, )\?,—C > 0, such that for

every A > )‘SE’ we have

Uy 2 (X, ©) (A1) C (E)CFF.
(3) If © >0, then there exists Cg’E >0 such that up to taking eg smaller,

where €y 1is given by (82), we have that for every 0 < e < €, there
holds

V(k,e,0) C (£,)%".
Proof. Tt follows from the same arguments as in the proof of Lemma 4.1 in

[23] by using Lemma 4.5. O

On the other hand, as in [23], Lemma 4.4 and Lemma 4.5 imply the following
one:

Lemma 4.7. Assuming that k > 2, k = 0, and L > Ly, then there exists
AE | such that for all X > AL || we have

fee1(A) t Br1(0M) — (&) "
is well defined and induces an isomorphism in homology.
Furthermore, still as in [23], we have also that Lemmas 4.4 and 4.5 imply the
following one:

Lemma 4.8. Assuming that k > 2, k> 1, L > Lk”,;, then there exists )\5_1 P>

0 and @ﬁ—l,ﬁ > 0 such that for all X > /\5_1%, we have

Uy 1 k(A ®£71,}}) CAp g — (&))"

is well defined and induces an isomorphism in homology.
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4.2. Morse theoretical type results

Proof of Theorems 1.1-1.7. The proof is the same as the one of Theorem 1.1-
Theorem 1.6 in [2] by using Lemma 3.8, Proposition 3.22, Corollary 3.23,
Lemmas 3.24, 4.1, Corollary 4.2, Lemmas 4.3, 4.4 combined with the works of
Bahri-Rabinowitz [4], Karell-Karoui [13] and Malchiodi [18]. O

4.3. Algebraic topological type results

In order to carry the algebraic topological argument for existence, as in [23],
we need the following lemma.

Lemma 4.9. Assuming that (ND) holds, s;(O}%,,) # 0 in H?*(S*) and
s1(O5p) = 0 in H3(S3° U S), then there exists 0 # Op,, € H3(S) such
that

i*(Opn) = 51 (Opm);
where 1 : S°° — S is the canonical injection.

Proof. 1t follows from the same arguments as in the proof of Lemma 3.6 in
[23] by using the analysis of Sect. 3. O

Proof of Theorem 1.9. The proof is the same as the one of Theorem 1.1 in
[23] by using the algebraic topological tools (54)—(56), characterization of the
critical points at infinity of &£, established in Sect.3, and Lemma 4.9. O
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5. Appendix

Lemma 5.1. Assuming that € is positive and small, a € OM and \ > %, then

S
8
>
=
-
I

N A 1 1
dan(-) + log§ + H(a,") + WAgaH(a, J+0 ()\3> on OM

Opar() 2 1 1
A o\ 14+ )‘2X§(d§1a (a, )) 22 AgaH(a, ) +0 3 on OM,
(3)

19an() _ Xeldga(a,)xp((dg(a,7))  2Xewpy () 1 0H((a, -)

N oo dy. (a,) 1+ 052(dg.(a,)) A da
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1
+0 ()\3> ;on OM,

where O(1) means Og (1) and for it meaning see Sect. 2.

Lemma 5.2. Assuming that ¢ is small and d positive, a € M, A > %, and

0 <2n < o with o as in (43), then there holds

1 1
Panlt) = Glaw) + 55580, Gla. )+ 0 (5 ) on 0N\ B2,
Oparl) _ 1A, 1 .
A I\ __/\QAgaG(aa')+O 3 on aM\Ba(n)>

and

10pan() _ 10G(a,) 1 a
N o0 a aa T 9\) om oM B),

where O(1) means Og (1) and for it meaning see Sect. 2.

Lemma 5.3. Assuming that € is small and positive, a € OM and X\ > %, then

there holds
2

8
]ID‘;’3 (Pars Par) = 167%log A — 872Co + 87°H (a, a) + LA%H(a7 a)

>\2
1
*O(»)v

Pa,\ 872 1
P;’S (()0@7)\, )\ a)\ ) = 8772 — FAQQH(G,G) + O <)\3> y

1 @ 872 OH (a,a) 1
pi3 1 ®Par ) _ O ) =
g <‘P‘“’ X aa> N oa 9\ w)

where Cy is a positive constant, O(1) means Og (1) and for its meaning
see Sect. 2.

Lemma 5.4. Assuming that € is small and positive a;,a; € OM, dg(a;, a;) >
4Cn, 0 < 2n < o, % < % <A, and X\, \j > %, C as in (41), and o as in (43),
then there hold ’

2 471'2

BVE
>‘j

4
P;,?’ (Soai,)\i; Qoaj,)\j) :871—2G(aj7 ai) + VAga,iG(aii a’j) +

1 1
o).
i J

a‘)oaj,kj 87‘[’2 1
Pg’?’ (Soai,/\z‘a )\j (9)\] ) = —7AQ%G(%‘»G¢) +0 F ,
J J

and
1 0pa; a, 872 0G (a;,a;) 1
P4’3 2 iy — Rl _ 0 Jo o =
g <§0 i) Aj 8aj ) )‘j 3a]— + )\3 ’

A, Glaj, a;)
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where O(1) means here O 45 (1) with A = (a;,a;) and X = (X, ;) and
for the meaning of O 4 5 (1), see Sect. 2.

Lemma 5.5. Assuming that ¢ > 0 is very small, we have that for a € OM,
A > %, there holds

H 2|l 5, (119)
1 acpm)\ A
|52 o, (120)
and
1 ~
—F—=®a = 1), 121
| =00 (121)

where here O(1) means bounded by positive constants form below and above
independent of €, a, and \.

Lemma 5.6. (1) Ife is small and positive, a € OM, p € N*, and A > %, then
there holds

C™INP=3 < f{ ePeardS, < CAP~3, (122)
oM

where C' is independent of a, \, and €. -
(2) If € is positive and small, a;,a; € OM, X > % and Mdg(a;,a;) > 4CR,
then we have
P53 (ains Pa;0) < 81°Glag,a5) + O(1), (123)
where O(1) means here Oa (1) with A = (a;,a;), and for the mean-
ing of O xe(1), see Sect. 2.
(3) If € is positive and small, a;,a; € OM, X\i, \j > %, % < f\‘—; < A and
Nidg(ai,a;) > ACR, then we have
P53 (a,ns Pa;n) < 81°Glag,a5) + O(1), (124)

where O(1) means here O 45 (1) with A = (a;,a;) and X = (A, ;)
and for the meaning of O 4 5 (1), see Sect. 2.

Lemma 5.7. Let p € N*, R be a large positive constant, € be a small positive
number, a; > 0, i =1,...,p, Db oy =k, A > i and u = Y0 @ipa;r-
Assuming that there exist two positive integer i,j € {1,...,p} with i # j such

that Mdy(a;,a;) < L where C is as in (41), then we have

C’
£,(u) < &,(v) + Olog R), (125)
with
V= Z kPay,n + (i + ) Pa;,x-
k<p,k#i,j
where here O(1) stand for Ogaxc(l), with & = (o,...,q,) and
A = (a1,...,ap), and for the meaning of Og,axe(1), we refer the reader

to Sect. 2.
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Lemma 5.8. (1) Ife is positive and small, a;,a; € OM, X > % and Ady(ai, a;)
> 4CR, then

pus () = Glas.) + 001 in B2 ().

where here O(1) means here Oaz (1), with A = (a;,a;), and for the
meaning of Oa (1), see Sect. 2.

(2) If € is positive and small, a;,a; € OM, X\, \j > %, % < f\\— < A, and
Nidg(ai,a;) > ACR, then

o a (R
bur, () = Glaz) +001) n B (57).
where here O(1) means here O, 5 (1), with A = (a;,a;), A = (Ai, A))
and for the meaning of Oa (1), see Sect. 2.

Lemma 5.9. There exists I'g and Ay two large positive constant such that for
every a € OM, X > Ay, and w € F, 5 :={w € HBL,E(Q’T) = (Qar, Wpas =

(Up, WYpss =0, 7 =1,...,k}, we have
f 35 2dV,, < Tollw|2ss. (126)
oM

Lemma 5.10. Assuming thatn is a small positive real number with 0 < 2n < o
where g is as in (43), then there exists a small positive constant co = co(n)
and Ao = Ao(n) such that for every a; € OM concentrations points with
dy(a;,a;) > 4Cn where C is as in (41), for every \; > 0 concentrations
parameters satisfying \; > Ao, with i = 1,...,k, and for every w € E;/—\ =
ﬂleE*W\j with A := (a1,...,a), X :== (M\1,...,\x) and By ={we Ho

a

O%a;n; _ [ 9a;x; — 5 — —
<S0ai’/\i’w>]1]’4‘3 = < 8)\1-A ’w>P413 - < aai/\ 7w>]P413 - w(QvT) - </U""’w>]P’4’3 -
0,7 =1,...,k}, there holds

k
||’w||1%>4,3 - GZ‘éM e36%>*iw2ngai > co||w||1%4,s. (127)
i=1
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