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Abstract

Model calibration consists of using experimental or field data to estimate the un-

known parameters of a mathematical model. The presence of model discrepancy and

measurement bias in the data complicates this task. Satellite interferograms, for in-

stance, are widely used for calibrating geophysical models in geological hazard quan-

tification. In this work, we used satellite interferograms to relate ground deformation

observations to the properties of the magma chamber at Kı̄lauea Volcano in Hawai‘i.

We derived closed-form marginal likelihoods and implemented posterior sampling pro-

cedures that simultaneously estimate the model discrepancy of physical models, and the

measurement bias from the atmospheric error in satellite interferograms. We found that

model calibration by aggregating multiple interferograms and downsampling the pixels

in the interferograms can reduce the computation complexity compared to calibration

approaches based on multiple data sets. The conditions that lead to no loss of infor-

mation from data aggregation and downsampling are studied. Simulation illustrates

that both discrepancy and measurement bias can be estimated, and real applications

demonstrate that modeling both effects helps obtain a reliable estimation of a physical

model’s unobserved parameters and enhance its predictive accuracy. We implement

the computational tools in the RobustCalibration package available on CRAN.



1 Introduction

Mathematical models are often used to describe various phenomena in science and engi-

neering. To predict complex processes, one often first needs to estimate the unobserved

parameters in the model using experimental observations or field data – a process generally

known as model calibration. Denote the mathematical model by fM(x,θ), where x is a

px-vector of observed input and θ is a pθ-vector of calibration parameters, both assumed to

be real-valued. The superscript ‘M’ denotes the model. As the mathematical model may not

represent reality perfectly, accurately estimating the difference between the mathematical

model and reality can improve the predictive accuracy. In Kennedy and O’Hagan (2001),

a Gaussian stochastic process (GaSP) defined on the observed input space, δ(x), was pro-

posed to model the discrepancy between the mathematical model and reality. Modeling the

discrepancy using a GaSP was subsequently examined in a number of other applications

(Bayarri et al., 2007; Higdon et al., 2008; Arendt et al., 2012a).

In this work, we focus on spatially correlated patterns of measurement error from the data

acquisition process, which we term measurement bias. We study interferometric synthetic

aperture radar (InSAR) interferograms which, over the last 25 years, have made it possible

to map deformation over broad swathes of the Earth’s surface to sub-centimeter accuracy

from space, revolutionizing scientists’ understanding of Earth processes (Massonnet et al.,

1995; Bürgmann et al., 2000; Pinel et al., 2014). InSAR interferograms are most often

obtained using data from orbiting microwave-band radar satellites. By interfering two radar

images of the surface taken from a satellite at different times, changes in the radar phase

track temporal changes in the position of the Earth’s surface along the oblique line-of-sight

(LoS) vector between the satellite and ground. Because only fractional phase change can

be measured directly, while the number of complete phase cycles between the satellite and

ground is unknown, these images are wrapped by the radar’s wavelength. Unwrapping an

image by spatial integration of the phase gradient – relative to a point believed to be non-

deforming or having zero ground displacement – yields relative LoS deformation in units of
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distance change (Chen and Zebker, 2001).

Despite these advances, the interpretation of InSAR data is often greatly complicated by

noise and bias. After removing the phase due to elevation of Earth’s surface, the processed (or

wrapped) phase for each pixel on the ground contains ground displacement, measurement

bias, satellite orbital error, and look angle error. Measurement biases, in particular, are

known to strongly affect many interferograms, caused most importantly by propagation

delays due to atmospheric conditions, which yield spatially correlated noise which varies in

time and space (e.g., Zebker et al., 1997; Hooper et al., 2007; Gong et al., 2016). Much work

remains for mitigating and characterizing these uncertainties.

These observations motivate modeling the random measurement bias that can vary across

different data sources due to environmental conditions or properties of devices, as well as a

discrepancy function invariant across other data sources, to explain the difference between

reality and model outcomes. The framework can be extended to integrate different types of

observations, such as satellite radar interferograms, GPS, and tiltmeter observations (An-

derson et al., 2019).

We utilize data from Kı̄lauea Volcano, one of the world’s most active volcanoes. Kı̄lauea

is located on the Island of Hawai‘i and erupted semi-continuously from 1983-2018. In 2018,

a historically unprecedented rift eruption destroyed more than 700 homes and displaced

thousands of residents (Neal et al., 2019). Figure 1 shows ground displacements at Kı̄lauea

from October 2011 to May 2012, as the volcano’s summit inflated due to magma storage

(Anderson and Poland, 2016). This data was recorded from a satellite orbiting roughly north

to south, which recorded LoS deformation along a vector oblique to the Earth’s surface –

roughly east to west and downward at an angle of 41 degrees. This image thus resolves

a combination of predominantly vertical and east-west ground deformation. In Figure 1d,

the image was subsampled by the quadtree algorithm for computational efficiency (Jonsson

et al., 2002).

Of the sources of uncertainty in InSAR observations, the spatially correlated atmospheric
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Figure 1: a) Overview maps showing the location of Kı̄lauea Volcano on the Island of Hawai‘i,
with background photo of Halema‘uma‘u Crater at the volcano’s summit roughly as it ap-
peared during the time of this study (USGS photo). (b) Wrapped InSAR interferogram from
the COSMO-SkyMed satellite, spanning 20 Oct 2011 to 15 May 2012. The inset box shows
the flight path of the satellite (arrow) and the downward look direction of the satellite at
41◦. White areas have no data due to radar decorrelation. Number of data points is around
1.5 × 105. (c) Same data as in (b), but unwrapped. (d) Quadtree-processed interferogram.
Thick black lines in panels b-d show cliffs and other important topographic features at the
volcano; the large elliptical feature is Kı̄lauea Caldera.

term is usually the most important; spatial and temporal changes of just 20% in relative

humidity can lead to errors of 10 cm in estimated ground deformation in some scenarios

(Zebker et al., 1997). Figure 1b shows the wrapped InSAR phase at Kı̄lauea Volcano. A

“bullseye” pattern near the center is due to real ground deformation, while most of the
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remaining fringes are due to atmospheric conditions.

We highlight a few contributions of this study to address the main challenges involved

in calibrating models using data from multiple sources. First, although discrepancy func-

tions have been studied extensively for model calibration, discrepancy and measurement bias

are rarely studied together. In this work, we simultaneously model both discrepancy and

measurement bias functions and estimate their effects using multiple InSAR interferograms.

This approach allows one to estimate geophysical model discrepancy and measurement bias

due to distinct atmospheric conditions recorded in each InSAR interferogram. Furthermore,

we derive the marginal likelihood and posterior distributions of the model parameters, which

are useful for efficient posterior sampling. Third, InSAR interferograms can contain millions

of pixels, so downsampling schemes such as the quadtree algorithm (Simons et al., 2002) are

often applied, or multiple interferograms are averaged prior to modeling in order to reduce

computational cost. However, the implications of modeling a single averaged interferogram

rather than jointly modeling multiple individual interferograms has not been well-studied.

Here we discuss the conditions under which these two approaches are equivalent and scenarios

in which modeling individual data sets leads to more precise estimation. Simulated studies

demonstrate these findings and confirm that multiple data sources can estimate the shared

discrepancy function and source-dependent measurement bias. Finally, the new method has

been implemented in the RobustCalibration package available on CRAN (Gu, 2022).

The rest of the paper is organized as follows. Section 2 introduces our approach that

includes models of both the discrepancy function and measurement bias, as well as poste-

rior sampling for Bayesian inference. Connections and differences between jointly model-

ing individual data sets and downsampled data, as well as different models of discrepancy

functions, are also discussed. Simulated and real examples comparing several models are

given in Section 3 and Section 4, respectively. We provide a short conclusion in Section

5. Lastly, supplementary materials contain extensive derivations of marginal likelihood

functions, posterior distributions, theoretical results regarding the consistency of model
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calibration, and numerical comparisons of different models of discrepancy functions and

downsampling approaches. The code and data used in this article are publicly available:

https://github.com/UncertaintyQuantification/MultiCalibration.

2 Model calibration by multiple sources of data

Let us consider the model of the lth source of real-valued field measurement, yFl (x), with

superscript ‘F’ meaning ‘field,’ to calibrate an imperfect model with the observable input

x ∈ Rpx and unobservable calibration parameters θ ∈ Rpθ ,

yFl (x) = fM(x,θ) + δ(x) + δl(x) + µl + εl(x). (1)

Here, µl, δl(x), and εl(x) ∼ N(0, σ2
0l) are the source-specific mean parameter, random mea-

surement bias, and noise, respectively, for source l = 1, ..., k. δ(x) is a discrepancy term

between reality and the computer model shared across data sources, which is independent

of computer models and thus only depends on the observed input, as advocated in Kennedy

and O’Hagan (2001). In our application, x is the spatial coordinates of an InSAR interfer-

ogram, θ are physical model parameters listed in Table 1, and k is the number of InSAR

interferograms. The satellite interferograms are taken at slightly different start and end dates

to measure the ground deformation, and the true ground deformation is approximately the

same in different interferograms. This motivates the inclusion of a discrepancy function δ(x)

shared across all sources. On the other hand, the measurement bias δl(x) is distinct in each

interferogram, as the atmospheric conditions were different when each of the interferograms

were taken.

For a set of observable inputs {x1, ...,xn}, let us first assume that the marginal distribu-

tions of model discrepancy δ = (δ(x1), ..., δ(xn))T and measurement bias δl = (δl(x1), ..., δl(xn))T

follow multivariate normal distributions: δ ∼ MN(0, τ 2R) and δl ∼ MN(0, σ2
l Rl), respec-

tively. The covariance matrix of the discrepancy is denoted as τ 2R, which contains the
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variance parameter τ 2; the (i, j)th entry of the correlation matrix R is parameterized by a

kernel function K(xi,xj), while the (i, j)th entry of covariance matrix of the lth measure-

ment bias is σ2
lKl(xi,xj). Here, σ2

l is the variance parameter for l = 1, .., k. We postpone

the discussion of kernel functions and other models of discrepancy functions to Section 2.3.

In model (1), the physical reality, denoted as yR(x) at any coordinate x, can be ex-

pressed as a summation of the mathematical model and discrepancy function, i.e., yR(x) =

fM(x,θ) + δ(x), which follows the framework in Kennedy and O’Hagan (2001). The in-

novation in (1) is to explicitly model the measurement bias (spatially correlated pattern)

contained in different sources of observations. Here we have two goals. The first goal is

to estimate the calibration parameters, discrepancy function, and measurement bias. The

second goal is to predict physical reality by combining the calibrated physical model with

the discrepancy function.

InSAR measures ground displacements relative to a point assumed to be non-deforming,

i.e., a spatial location assumed to have zero ground deformation, which introduces uncer-

tainty. We therefore include an unknown mean parameter µl for each interferogram l in

model (1) and estimate it using data. InSAR images may also contain long-wavelength

“ramp” artifacts due to errors in satellite orbits, which may be corrected independently (for

instance, using data from GPS sensors) (Simons and Rosen, 2007) or by estimation of linear

or quadratic ramp parameters together with geophysical model parameters. For our case

study, however, the geographic area of interest is relatively small, so we neglect these errors.

The closed-form marginal distributions and predictive distributions of the discrepancy,

measurement bias, and the reality of model (1) are given in Section S2 of the supplementary

materials. Since the computational complexity of each evaluation of the likelihood increases

linearly to k, images are often averaged before modeling in geoscience studies to reduce

computational cost. We first study the difference between these two ways of inference.
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2.1 Model equivalence based on aggregated data and full data

First, let us consider the data with no correlated measurement bias δl(.), that is yFl (x) =

yR(x) + εl(x). Here, yR(x) is the unknown reality. The data can be modeled below

yFl (x) = fM(x,θ) + δ(x) + µ+ εl(x), (2)

where the independent noise follows εl(x) ∼ N(0, σ2
0) for each x, and l = 1, ..., k. We include

the mean parameter µ here for scenarios where the mean of the reality is not directly mod-

eled in the physical model fM . Model (2) has been widely used in calibration of repeated

experimental responses (Bayarri et al., 2007; Arendt et al., 2012b).

Denote ȳF (x) =
∑k

l=1 y
F
l (x)/k as the average value of the field data at the input x.

When (2) is assumed, the model of the aggregated data follows

ȳF (x) = fM(x,θ) + δ(x) + µ+ ε̄(x), (3)

where the noise independently follows ε̄(x) ∼ N(0, σ2
0/k) for each x. In our real application,

the InSAR interferograms are aligned on the same spatial coordinates {x1, ...,xn}. Since the

number of spatial coordinates is large, the uncertainty in aligning the spatial coordinates of

InSAR interferograms is approximately negligible. Also, denote yFl = (yFl (x1), ..., yFl (xn))T

as the observations in source l and ȳF = (
∑k

l=1 y
F
l (x1)/k, ...,

∑k
l=1 y

F
l (xn)/k)T as the aggre-

gated data. In Lemma 1 below, we show the logarithm of the likelihood of the full data and

the reduced data only differs by a constant relevant to the variance of the noise. The proof

is given in Section S1 in the supplementary materials.

Lemma 1. Integrating out δ ∼ MN(0, τ 2R), the natural logarithm of the marginal likelihood

in model (2) follows

`(θ, µ, σ2
0, τ,R) = cσ2

0
+ ¯̀(θ, µ, σ2

0, τ,R), (4)

where cσ2
0

= −n(k−1)
2

log(2πσ2
0)− n

2
log(k)−

∑k
l=1

∑n
i=1(yFl (xi)−ȳF (xi))

2

2σ2
0

and ¯̀(θ, µ, σ2
0, τ,R) is the

7



natural logarithm of the marginal likelihood model from (3):

¯̀(θ, µ, σ2
0, τ,R) = −n

2
log(2π)− 1

2
log
∣∣∣Σ̃∣∣∣− (ȳF − µ1− fMθ )T Σ̃−1(ȳF − µ1− fMθ )

2
,

with Σ̃ = τ 2R +
σ2
0

k
In and fMθ = (fMθ (x1,θ), ..., fMθ (xn,θ))T .

When the variance of the noise σ2
0 is known, equation (4) implies that the estimation of

calibration parameters, mean parameters, and discrepancy function based on the aggregated

data and full data is the same, as the aggregated data ȳF is the sufficient statistics of these

parameters (Casella and Berger, 2002). When σ2
0 is unknown, the sufficient statistics are ȳF

and s2, where s2 =
∑k

l=1

∑n
i=1(yFl (xi) − ȳF (xi))

2. This result was previously discussed in

Bayarri et al. (2007). However, the efficiency of the estimators based on full and aggregated

data was not compared. For instance, if the reality yR(·) is a deterministic function, the usual

unbiased estimator of σ2
0 based on the full data is the sample variance s2/(n(k − 1)). Also,

the variance when estimating σ2
0 would be 2σ4

0/(n(k − 1)). For aggregated data modeled

in (3), even if the reality yR(·) is known, the estimator of the variance σ2
0 based on the

sample variance is k
∑n

i=1(ȳF (xi)− yR(xi))
2/(n− 1), which has a variance of 2nσ4

0/(n− 1)2.

This is larger than the sample variance 2σ4
0/(n(k − 1)) based on full data. Since reality

yR(·) is unknown, the variance of the estimator of σ2
0 based on the aggregated data typically

becomes even larger. Thus, modeling aggregated data in (3) is less efficient in estimating

σ2
0, compared to modeling the full data in (2).

Second, for model (1) that contains the measurement bias, we have a similar result as

Lemma 1. The logarithm of the likelihood of model (1) can be decomposed into two parts

as in equation (4), where the first part contains individual data vectors y1, ...,yk, a weighted

mean data vector ȳw =
∑k

l=1(yl− δl−µl1n)/(k
√
σ0l), and variances of the noises σ2

01, ...σ
2
0k.

The second part contains aggregated data ȳw, calibration parameters θ, and covariance

parameters. Thus, when the variances of the noises are known, parameter estimation based

on the aggregated data ȳw and individual data sets is the same when the measurement

bias is included. However, note that ȳw is different from the average ȳ and is generally not
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observable. In our real application, this result indicates that using the averaged interferogram

can lead to the loss of information if each interferogram contains distinct atmospheric errors,

mean parameters, or unknown noise variance. Simulated studies in Section 3 further confirm

this result.

2.2 Downsampling satellite interferograms

A single InSAR image is often composed of hundreds of thousands of pixels. Even for very

simple geophysical models, the expense of computing deformation at all these points can

be prohibitive, and subsampling techniques are typically employed. One approach is to

uniformly sample a subset of pixels for calibration and prediction (Pritchard et al., 2002).

As a result, posterior distributions of calibration parameters are often stable, with responses

at only a few hundred pixels (Gu and Wang, 2018).

Another method of downsampling is the quadtree algorithm, in which one computes the

average (or median) of groups of pixels (“boxes”), whose sizes are based on gradients in the

image (Simons et al., 2002), the resolution of the forward model (Lohman and Simons, 2005),

or both (Wang et al., 2014). The quadtree algorithm clusters the pixels in smaller boxes

for regions with rapid changes in pixel values, while areas with less change are clustered in

larger boxes. These algorithms have become widely used for modeling InSAR data (e.g.,

Montgomery-Brown et al., 2015; Anderson et al., 2019). The quadtree algorithm reduces the

data from around a million pixels to a few hundred boxes, effectively reducing the number

of observations by more than a thousand times. The quadtree algorithm may be considered

a type of supervised data reduction method where the output values on the pixels are used

for clustering. Other supervised algorithms for data reduction, such as those discussed in

Joseph and Mak (2021), could also be useful.

Because the boxes in a quadtree-processed image, such as in Figure 1d, are computed

from different numbers of pixels, in a calibration problem it is therefore important to consider

the boxes’ size (Simons et al., 2002; Lohman and Simons, 2005). However, this seems to have
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been overlooked in many previous studies using quadtree-processed InSAR data for model

calibration and prediction.

Suppose the lth quadtree-processed image is composed of Jl boxes, each box computed

from nj,l pixels, for j = 1, ..., Jl and l = 1, ..., k. Denote the lth quadtree-processed image by

yF,Ql := {yF,Q1,l , ..., y
F,Q
Jl,l
}, where yF,Qj,l is the average of the pixels of the jth quartree box for

j = 1, ..., Jl. Let µQl , fM,Q
j,l (θ), δQj,l, and δQj,l denote the corresponding mean parameter, outputs

of the mathematical model, discrepancy function, and measurement bias function evaluated

at the centroid of the jth quadtree box at the lth quadtree-processed image. Consider the

model of the quadtree-processed image l:

yF,Qj,l = fM,Q
j,l (θ) + µQl + δQj,l + δj,l + εQj,l, (5)

where εQj,l is a zero-mean Gaussian noise with variance
σ2
0

ωj,l
and ωj,l is the weight for the jth

image and lth source of data. Here we suppress the notation of spatial inputs as the point

process data are compressed to areal data, and the correlation structure is defined between

a finite set of areal units. Denote Sj,l as the index set of pixels, where the pixels in this set

belong to the jth quadtree box in the lth data source. The likelihood of model (5) of the

quadtree-processed image is the same as that for model (1) of the original image if

∑
i∈Sj,l

(yFl (xi)− fM(xi,θ)− δ(xi)− δl(xi)− µl)2

= ωj,l(y
F,Q
j,l − f

M,Q
j,l (θ)− δQj − δ

Q
j,l − µ

Q
l )2.

(6)

Other physical measurements may be useful for estimating discrepancy and measurement

bias; however, in other cases, one may not know the discrepancy and measurement bias

functions apriori. Some weighting schemes utilize the estimated covariance structure of the

InSAR data (Lohman and Simons, 2005). In this work, we follow Simons et al. (2002) and

Anderson and Poland (2016) by letting the weight of each quadtree box be proportional to

the number of pixels in the box, i.e., ωj,l ∝ nj,l for j = 1, ..., Jl. A quadtree box with a larger
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size has a larger weight because it is averaged with more pixels.

2.3 Statistical models of discrepancy and measurement bias

We discuss specific discrepancy and measurement bias functions in this subsection. The

discrepancy function is often modeled as a GaSP (Kennedy and O’Hagan, 2001):

δ(·) ∼ GaSP(0, τ 2K(·, ·)), (7)

where τ 2K(·, ·) is a covariance function with variance τ 2. The identifiability issue, however,

has been widely observed in modeling spatially correlated data, where the spatial random

effect was confounded with a linear fixed effect, i.e., fM(x,θ) being a linear model of θ (Reich

et al., 2006; Hodges and Reich, 2010; Zhang, 2004). Wang et al. (2020), for example, show

that the variance of generalized least squares estimator of the linear coefficients is bounded

above zero under infill asymptotics. The non-identifiability of the calibration parameters

was also recently observed when the discrepancy function was modeled by a GaSP (Arendt

et al., 2012a; Tuo and Wu, 2015, 2016; Plumlee, 2017; Wong et al., 2017), where the calibrated

physical models can be far away from reality in terms of L2 distance.

Previous studies (Bayarri et al., 2007; Arendt et al., 2012b) suggest that repeated ob-

servations help identifiability as estimation accuracy of the variance of the data improves,

which coincides with our discussion in Section 2.1. However, when the discrepancy is sam-

pled from the true model, the MLE of the calibration parameter may not be consistent even

if we have infinite repeated measurements, i.e., k →∞. An example is provided in Example

S1 in the supplementary materials to illustrate this finding. This means that the repeated

measurements are helpful in estimating the variance of the noise in the data, yet it cannot

solve the identifiability issue.

When we model the discrepancy function by a GaSP with commonly used covariance func-

tions, such as power exponential covariance or Matérn covariance (Rasmussen, 2006), the L2
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loss between the mathematical model and reality is L2(θ) =
∫
x∈X (yR(x) − fM(x,θ))2dx =∫

x∈X δ
2(x)dx. L2(θ) is a random variable whose measure is induced by the covariance func-

tion of the GaSP. The distribution of L2(θ) can have a substantial probability mass at a

large L2 loss when the correlation in the data is large. In Gu and Wang (2018), this random

L2 loss is scaled to have more probability mass near zero. The construction of the discretized

S-GaSP is summarized in S4 in the supplementary materials.

Starting from a GaSP model with any reasonable covariance function τ 2K(·, ·), and inte-

grating out Z, the marginal distribution of the discretized GaSP δz := (δz(x1), ..., δz(xn))T

follows a multivariate normal distribution with the following transformed covariance matrix:

δz | τ,Rz ∼ MN(0, τ 2Rz), (8)

where Rz =
(
R−1 + λz

n
In
)−1

and the (i, j)th term of R is K(xi,xj) with range parame-

ters γ = (γ1, ..., γpx)
T . Note that Rz is different from a covariance matrix with a nugget

parameter.

A larger λz assigns more prior probability on the smaller sum of squares of the discrepancy

function. Under some regularity conditions, a suitable choice of λz guarantees the predictive

distribution in the S-GaSP model converges to the reality as fast as in the GaSP model.

The estimation of the calibration parameters in the S-GaSP model minimizes the L2 loss

between the reality and mathematical model when the sample size goes to infinity. In

numerical examples, we let λz = C
√
n, with C = 100, which guarantees two convergence

properties under common regularity conditions (Gu et al., 2022).

Furthermore, the measurement biases are spatially correlated, which can be modeled as

a spatial random effect via a GaSP,

δl(·) ∼ GaSP(0, σ2
lKl(·, ·)), (9)

where Kl(·, ·) is the kernel function for l = 1, ..., k. For any {x1, ...,xn}, the marginal
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distribution of δl follows a multivariate normal distribution with covariance σ2
l Rl, for l =

1, ..., k, with the (i, j)th term of Rl being Kl(xi,xj). For any inputs xa := (xa1, ..., xap) and

xb := (xb1, ..., xbp), we assume a product covariance (Bayarri et al., 2007)

Kl(xa,xb) =

px∏
t=1

Kl,t(xat, xbt), (10)

where each Kl,t(·, ·) is a one-dimensional kernel function for the correlation between the

tth coordinate of any two inputs for the source l, l = 1, ..., k. Denote dt = |xat − xbt|.

One popular choice is the Matérn correlation, which has a closed form expression with the

roughness parameter α = (2k + 1)/2 for k ∈ N. That is, the Matérn correlation function

with α = 5/2 (Handcock and Stein, 1993) has the expression below,

Kl,t(dt) =

(
1 +

√
5dt
γl,t

+
5d2

t

3γ2
l,t

)
exp

(
−
√

5dt
γl,t

)
. (11)

A desirable feature of the Matérn correlation is that the sample path of the process is bαc

differentiable. Concerning the present scientific goal, we also note that previous works have

argued that Matérn correlation functions are suitable for modeling atmospheric noise in

InSAR data (Knospe and Jonsson, 2010). However, we do not limit ourselves to any specific

correlation function, and the methods discussed in this work apply to all such functions.

2.4 Prior distributions and posterior sampling

We assume the calibration model follows (1) with data sets from multiple sources, where

users can choose either GaSP or S-GaSP to model the discrepancy function. The marginal

likelihood and predictive distributions are provided in Section S2 in the supplementary mate-

rials. Here, the parameters contain the calibration parameters, mean parameters, range and

variance parameters of the discrepancy and measurement bias. For computational purposes,

we define the nugget parameter ηl := σ2
0l/σ

2
l , the inverse range parameters βt = 1/γt, and
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βl,t = 1/γl,t, for l = 1, ..., k and t = 1, ..., px.

We assume the prior of the parameters below:

π(θ,µ,β1:k,η,σ
2,β, τ 2) ∝ π(θ)π(β)

τ 2

k∏
l=1

{
π(βl, ηl)

σ2
l

}
, (12)

where the prior of the calibration parameters θ often depends on experts’ knowledge, as the

calibration parameters have scientific meanings. For the simulated examples and the real

example of calibrating the geophysical model of Kı̄lauea Volcano, we assume π(θ) is a uniform

distribution on the domain of the calibration parameters. The mean and scale parameters

are assigned a usual location-scale prior in (12), i.e., π(τ 2) ∝ 1/τ 2 and π(µl, σ
2
l ) ∝ 1/σ2

l ,

for l = 1, ..., k. Furthermore, we assume a jointly robust prior for the range and nugget

parameters in the measurement bias functions and discrepancy function (Gu, 2018).

We have implemented the posterior sampling for Bayesian model calibration and pre-

diction using single or multiple data sets in the RobustCalibration R package, available

on CRAN. Users can specify the model with or without the measurement bias. Both the

GaSP and discretized S-GaSP discrepancy models are implemented for users to choose as

well. Furthermore, the geophysical model used in this study is computationally inexpensive,

but that is often not the case (e.g., Anderson and Segall, 2011). In such cases, a statistical

emulator can be used to approximate the expensive computer model. The GaSP emulator

from the RobustGaSP package is implemented in the RobustCalibration package for emu-

lating costly computer models with scalar or vectorized outputs. These tools can be used

for different applications of model calibration and prediction.

3 Simulated examples

We study simulated examples of model calibration and prediction in this section. An example

comparing the GaSP and S-GaSP models of the discrepancy function is provided in Section

S5 of the supplementary materials, where the reality is from a deterministic function. Here
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we discuss an example where the discrepancy function and measurement bias are sampled

from GaSPs, and we compare model calibration based on full and aggregated data.

Example 1. Assume data is sampled from model (1), where fM(x, θ) = sin(θx), with θ =

π/2. The model discrepancy and measurement bias are sampled from δ ∼ MN(0, τ 2R) and

δl ∼ MN(0, σ2
l Rl), where τ = 0.2 and σl = 0.4 + 0.4(l − 1)/(k − 1). R and Rl are both

parameterized by the Matérn kernel in (11) with γ = 0.1 and γl = 0.02, respectively. The

standard deviation of the noise is σ0l = 0.05, and the observations are equally spaced at

xi ∈ [0, 1] for i = 1, ..., n and l = 1, ..., k. We let n = 100 and implement N = 200

experiments at three configurations with k = 5, k = 10, and k = 15.

Example 1 illustrates that modeling the individual data is more accurate than the ag-

gregated data when measurement bias exists. We record the performance of three models.

The first and second approaches are the GaSP calibration and S-GaSP calibration based on

the full data, where the discrepancy function is modeled by GaSP in (7) and the discretized

S-GaSP model with the marginal distribution in (8), respectively. Here the GaSP calibration

model is the true sampling model, as the discrepancy is sampled from a GaSP. We include

S-GaSP calibration model to illustrate that the S-GaSP model has comparable performance

to the GaSP model even if the true discrepancy function is sampled from the GaSP cali-

bration. Also included is the GaSP calibration using aggregated data, i.e., the averages of

all sources of data. We draw 20, 000 posterior samples of the parameters for each approach,

with the first 4, 000 posterior samples used as the burn-in samples. To reduce storage space,

we thin posterior samples by ten times.

The mean square error (MSE) of measurement bias, discrepancy functions, reality, and

the squared error (SE) of the calibration parameter of each experiment using different ap-

proaches for Example 1 are shown in Figure 2. First, even though the data is sampled from

the GaSP calibration model, the MSEs of the S-GaSP calibration and GaSP calibration are

similar in estimation. We are not trying to show S-GaSP calibration can outperform GaSP

calibration in this example, as the GaSP calibration model is the true sampling model. We
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Figure 2: MSE of measurement bias discrepancy function, reality and SE of the calibration
parameters for Example 1. In each panel, the first three boxes, the middle three boxes, and
the right three boxes are the results when k = 5, k = 10, and k = 15, respectively. The MSE
of GaSP calibration, S-GaSP calibration based on the full data, and the GaSP calibration
based on the aggregated data are colored as red, blue, and green.

include a simulated study in Example S2 in the supplementary materials, to illustrate the

identifiability problem of GaSP prior of the discrepancy function and the better performance

of the S-GaSP calibration model. Second, both methods based on the full data are better

than the GaSP calibration based on the aggregated data, as averaging different sources of

data causes loss of information due to the presence of the measurement bias and the unknown

variance of the noise, discussed in Section 2.1. The estimation of the calibration parameter

by the three methods is similar. When the number of sources of data increases, all methods

become more accurate in estimation. The decrease of SEs of the calibration parameter is

small when the number of sources of the observations increases because of the relatively large

variance and correlation in the measurement bias.
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Figure 3: The measurement bias in the first two sources, the model discrepancy function,
and the reality in the first experiment of Example 1 when k = 10 are graphed in the upper
panels, lower left panel, and lower right panel, respectively. The truth and the estimation
by the GaSP and S-GaSP calibrations based on the full data are graphed as the black
solid lines, the red dashed lines, and blue dotted lines, respectively. The estimation of the
GaSP calibration based on aggregated data, denoted as GaSP Stack, is graphed as the green
dotted and dashed lines. The 95% posterior credible intervals from the S-GaSP calibration
is graphed as the shaded area. The observations from the first two sources are graphed as
black triangles and dots, respectively, in the lower right panel. The black, red, and blue lines
almost overlap in all panels, indicating higher accuracy based on individual data than the
aggregated data, when the observations contain measurement bias.

We graphed the measurement bias, the model discrepancy, reality, and their estimations

in the first simulated experiment of Example 1 with k = 10 in Figure 3. All methods

seem to capture the patterns of the measurement bias, model discrepancy, and reality. The

estimation conducted by the GaSP and S-GaSP calibrations based on the full data are more

accurate than the GaSP calibration using the aggregated data. This is because the true model

contains the measurement bias and unknown variance of the noise. The inference based on
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Table 1: Input variables, calibration parameters of the geophysical model, and other model
parameters in calibration.

Input variables (x) Description
x1 East-west spatial coordinate
x2 North-south spatial coordinate
Calibration parameters (θ) Description
θ1 ∈ [−2000, 3000] East-west spatial coordinate of chamber centroid (m)
θ2 ∈ [−2000, 5000] North-south spatial coordinate of chamber centroid (m)
θ3 ∈ [500, 6000] Depth of the chamber (m)
θ4 ∈ [0, 0.15] Volume change rate of the reservoir (m3/s)
θ5 ∈ [0.25, 0.33] Poisson’s ratio (host rock property)
Model parameters Description
µ = (µ1, ..., µk) Mean parameters
β1:k = (β1,1, β1,2, ..., βk,1, βk,2) Inverse range parameters of the measurement bias
η = (η1, ..., ηk) Nugget parameters of the measurement bias
σ2 = (σ2

1, ..., σ
2
k) Scale parameters of the measurement bias

β = (β1, β2) Range parameters of the model discrepancy
τ 2 Scale parameter of the model discrepancy

the full data is thus more precise in this scenario. Furthermore, Example 1 indicates that

we can estimate the measurement bias and model discrepancy functions based on multiple

sources of data.

4 Model calibration by multiple InSAR interferograms

InSAR data have been widely used at Kı̄lauea and other volcanoes to estimate the locations

and volume changes of magma reservoirs and intrusions (e.g., Poland et al., 2014; Anderson

et al., 2019). In this section, we study the performance of the aforementioned approaches in

calibrating a geophysical model of Kı̄lauea Volcano using interferograms spanning late-2011

to mid-2012 (Figure 4). During this time, the summit of the volcano inflated due to the

storage of magma supplied from the Earth’s mantle (Anderson and Poland, 2016). Our goal

is to use InSAR observations to obtain an improved characterization of the location of the

magma reservoir and its volume change, which is important for hazard assessments and for

resolving the rate of magma supply to the volcano. Our work extends previous analysis
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Figure 4: Five COSMO-SkyMed satellite interferograms spanning the following time periods:
1) 17 Oct 2011 - 04 May 2012; 2) 21 Oct 2011 - 16 May 2012; 3); 20 Oct 2011 to 15 May
2012; 4) 28 Oct 2011 to 11 May 2012; 5) 12 Oct 2011 - 07 May 2012. Interferograms 1 and 2
have an ascending-mode look angle, while the rest are descending-mode. Horizontal position
is in meters relative to a chosen point in Kı̄lauea Caldera; vertical scale is m/yr. The last
figure shows the stack (average) of 6 images.

(Anderson and Poland, 2016) by utilization of additional interferograms and consideration

of spatially correlated data, noise, and discrepancy functions.

Consistent with past work, we model the InSAR data by a geophysical model of volume

change of a spherical magma reservoir embedded in an elastic medium (Mogi, 1958; Anderson

and Poland, 2016), parameterized by the 3D location of its centroid (east distance, north

distance, and depth), its volume change, and the Poisson’s ratio of the elastic medium. The

input variables, calibration parameters, and other model parameters are listed in Table 1 for

calibrating the geophysical model of Kı̄lauea Volcano using multiple interferograms.

Ground deformation velocities computed from five interferograms captured by the COSMO-
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SkyMed satellite spanning late 2011 to mid-2012 are shown in Figure 4 (in our model, the

rate of ground deformation is assumed constant over the complete time range, and the small

misalignment between the start and end dates across different interferograms should have

only negligible effects). We notice a relatively large measurement bias from the atmospheric

error in interferograms, which makes using multiple interferograms necessary for model cal-

ibration.

We use model (1), which includes the measurement bias term and the discrepancy func-

tion, and we compare the difference between using a GaSP and an S-GaSP model for the

discrepancy function. The range of the calibration parameters using GaSP and S-GaSP

calibrations are given in Table 1. In both models, 50,000 posterior samples are drawn with

the first 10,000 posterior samples used as the burn-in samples. The posterior samples in

every 10th step are saved to reduce storage space and autocorrelation in Markov chains. We

present the results based on 400 uniformly sampled pixels here, and the results using quadtree

subsampling and stacked interferograms in Section S6 in the supplementary materials.

Figure 5 graphs the posterior samples of the model calibration parameters. Estimates of

the chamber depth (θ3) and volume change rate (θ4) are larger when the discrepancy function

is modeled using a GaSP than with an S-GaSP. This is because, for a given variance, the

GaSP prior places a large probability mass on smooth discrepancy functions. Here the

deeper magma chamber and larger volume change rate from the GaSP calibration yield a

discrepancy function with relatively smooth ground deformation over a large region. In

comparison, the estimated depth and volume change rate by S-GaSP is more consistent with

other studies using different sources of data (Poland et al., 2014), as the S-GaSP prior has

more probability mass on smaller L2 loss between reality and the computer model.

The MSE of the predictions on each interferogram based on 400 uniformly sampled pixels

are given in Table 2. The mean parameters µ are treated as a part of the geophysical model

for making predictions. As shown in Figure 6 and Figure S3, the predictive mean using

both the calibrated computer model, discrepancy, and measurement bias terms is accurate
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Figure 5: The posterior samples of θ in the GaSP and S-GaSP calibrations. The range of
the parameter θ5 (Poisson’s ratio) is consistent with many rock types, but the geophysical
model is relatively insensitive to this parameter (Mogi, 1958).

in both GaSP and S-GaSP calibration. However, the computer model calibrated by S-GaSP

is more accurate than the GaSP, as shown in Figure S6 in the supplementary materials. In S-

GaSP calibration, the prior of the discrepancy has more probability mass near zero, allowing

the calibrated geophysical model to explain more variability in the observations than GaSP

calibration. Consequently, the calibrated geophysical model by S-GaSP is more accurate in

prediction (at points not used for calibration) than the GaSP-calibrated model, shown in

the first two rows of Table 2. Furthermore, we also explored other pioneering methods, such

as LS and L2 calibration (Tuo and Wu, 2015; Wong et al., 2017). However, the convergence

of numerical optimization seems to be a challenging issue when there are multiple sources of

data. In addition, the measurement bias, which is the focus of this work, was not considered

in previous methods.

The predictive mean of each interferogram and stacked (averaged) interferogram from the

S-GaSP calibration is shown in Figure 6. Predictions are very close to the real interferogram
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Table 2: Predictive mean squared error (MSE) in the prediction of the full interferograms
using the GaSP and S-GaSP models based on 400 uniformly sampled pixels in each inter-
ferogram. MSEfM is the MSE using the calibrated geophysical model for prediction, and
MSEfM+δ+δl is the MSE using the combined calibrated geophysical model, discrepancy func-
tion, and measurement bias for prediction. The number is by 10−4. Bold font indicates a
smaller error.

MSEfM image 1 image 2 image 3 image 4 image 5
GaSP 1.26 1.63 7.80 4.33 1.97
S-GaSP 1.21 1.45 7.66 4.05 1.76
MSEfM+δ+δl image 1 image 2 image 3 image 4 image 5
GaSP 0.116 0.115 0.264 0.134 0.120
S-GaSP 0.109 0.112 0.267 0.131 0.123

(with around 99% of pixels held out), and performance is better than the GaSP calibration

method. In the supplementary materials, we provide estimated measurement bias and model

discrepancy for GaSP and S-GaSP calibrations, a detailed comparison between GaSP and

S-GaSP, and trace plots of all the parameters.

Finally, we compare our results with previous studies of Kı̄lauea Volcano. The second and

third interferograms shown in Figure 4 were also used for calibrating the same geophysical

model as part of a broader geophysical study (Anderson and Poland, 2016). However, that

work did not consider spatially correlated noise in the data or a discrepancy function. The

same two interferograms were used in Gu and Wang (2018) for calibration with a discrepancy

function, but the interferogram measurement bias was neglected. Of all the images, the ones

used in the previous studies show the largest apparent volcanic ground displacement. As a

result, the reservoir volume change rate (θ4) we estimate here in the S-GaSP calibration using

all five images is smaller than in those studies (0.02 m3/s vs. 0.04–0.05 m3/s, respectively).

The estimated reservoir position depends on the spatial pattern of displacement but not

the rate. We estimate a reservoir location ∼500 m east and ∼800 m north of the reference

position (southeast rim of Halema‘uma‘u Crater) at 1.9 km depth. Many previous studies

have examined reservoir locations using a variety of data sets over many years. Despite

the relatively low signal-to-noise ratio in the data, our estimated depth is consistent with

these studies (e.g., Poland et al. (2014)). The horizontal position of our most likely reservoir
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Figure 6: Predictive mean of each interferogram and stack image in S-GaSP calibration.

centroid is several hundred meters north of the most commonly accepted location near the

east rim of Halema‘uma‘u Crater. However, it is closer than the position estimated previously

in Anderson and Poland (2016) and Gu and Wang (2018) using two interferograms without

modeling the measurement bias; this confirms the importance of addressing the uncertainty

in the measurement bias. Future studies may combine not only multiple measurements of a

single type but also multiple types of data (for instance, GPS or ground tilt), and may also

utilize more sophisticated geophysical models with larger numbers of calibration parameters.

Furthermore, advanced sampling algorithms and design techniques (e.g., Mak and Joseph

(2018)) may be used to represent the posterior distribution.
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5 Concluding remarks

We have introduced a statistical framework to estimate measurement bias, model discrep-

ancy, and calibration parameters using multiple sources of data. In addition, we studied data

reduction by aggregating different sources of data and reducing the number of observations

in one source of data. We have shown that modeling the full data is more efficient than the

aggregated data when either variance of the noise or measurement bias is unknown. We have

also shown that certain data reduction approaches, such as the quadtree algorithm, can be

very useful for reducing the computational cost of modeling the InSAR interferograms for

volcanic hazard quantification. Numerical results based on simulated experiments and real

observations validate these findings.

There are several possible future extensions. First, the computation based on the full

data scales linearly with the number of data sources when the inputs (i.e., spatial coordinates

in InSAR interferograms) are aligned. When the inputs are misaligned, it will be helpful to

design an algorithm for scalable computation. Second, quadtree processing is used widely

to downsample satellite interferograms. A theoretical study on how to model quadtree

images that properly takes into account the size of the boxes and the measurement bias

will be beneficial. It will also be interesting to study whether quadtree-processed images

improve calibration and prediction accuracy compared to alternate designs (e.g., Fukushima

et al., 2005). Lastly, for volcanological applications, more work is required to fuse diverse

data types, such as gas emissions, GPS data, and InSAR data, with geophysical models for

Bayesian inversion.

Supplementary materials

The supplementary materials contain 6 sections. Section S1 and S2 give the proof of Lemma

1 and derivations of the marginal likelihood and predictive distribution of the calibration

model, respectively. An example to illustrate the inconsistent maximum likelihood estima-
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tion of the GaSP calibration model is discussed Section S3. We introduce the discretization

of S-GaSP calibration model in Section S4, and provide additional numerical results for

simulation studies and real data analysis in Section S5 and Section S6, respectively.
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Supplement of “Calibration of imperfect geophysical

models by multiple satellite interferograms with

measurement bias”

All the formulas in the supplementary materials are cross-referenced in the main body

of the article.

S1 Proof of Lemma 1

Proof of Lemma 1. Note that the likelihood of the model for the full data in (2) follows

p(y | δ,θ, µ, σ2
0) = (2πσ2

0)−nk/2 exp

(
−
∑k

l=1(yl − δ − fMθ − µ1n)T (yl − δ − fMθ − µ1n)

2σ2
0

)

= (2πσ2
0)−n(k−1)/2k−n/2 exp

(
−
∑k

l=1(yl − ȳ)T (yl − ȳ)

2σ2
0

)

× (2πσ2
0/k)−n/2 exp

(
−k(ȳ − δ − fMθ − µ1n)T (ȳ − δ − fMθ − µ1n)

2σ2
0

)

1



Marginalizing out δ based on prior δ ∼ MN(0, τ 2R), we have

p(y | θ, µ, σ2
0, τ

2,R)

=(2πσ2
0)−n(k−1)/2k−n/2 exp

(
−
∑k

l=1(yl − ȳ)T (yl − ȳ)

2σ2
0

)

× (2π)−n/2
∣∣∣∣τ 2R +

σ2
0

k
In

∣∣∣∣−1/2 exp

(
−

(ȳ − fMθ − µ1n)T (τ 2R +
σ2
0

k
In)−1(ȳ − fMθ − µ1n)

2

)

=(2πσ2
0)−n(k−1)/2k−n/2 exp

(
−
∑k

l=1(yl − ȳ)T (yl − ȳ)

2σ2
0

)
p̄(ȳ | θ, µ, σ2

0, τ
2,R)

where p̄(ȳ | θ, µ, σ2
0, τ

2,R) is the marginal density of aggregated data after integrating out

δ, from which we have concluded the proof.

S2 Marginal distribution and predictive distribution of

the multi-calibration model

The observations from the lth source of data are denoted as yFl =
(
yFl (x1), ..., y

F
l (xn)

)T
at {x1, ...,xn}, for l = 1, ..., k. For the InSAR interferograms, each entry of yFl represents

a line-of-sight displacement at a point on the Earth’s surface. The following lemma gives

the marginal distribution of model (1) after integrating out the random measurement bias

functions.

Lemma S1. After integrating out δl in model (1), l = 1, ..., k, one has the following distri-

butions:

1. For each source l = 1, ..., k, the marginal distribution of the field data follows a multi-

variate normal distribution

(yFl | δ, θ, σ2
l ,Rl, µl, σ

2
0l) ∼ MN(fMθ + µl1n + δ, σ2

l Rl + σ2
0lIn), (S1)

2



where fMθ = (fM(x1,θ), ..., fM(xn,θ))T and δ = (δ(x1), ..., δ(xn))T , with In being an

n× n identity matrix.

2. The marginal posterior distribution of the discrepancy function follows a multivariate

normal distribution

(
δ | {yFl , σ2

l ,Rl, σ
2
0l, µl}kl=1,θ, τ

2,R
)
∼ MN(δ̂, Σ̂), (S2)

where

Σ̂ =

(
k∑
l=1

Σ̃−1l + (τ 2R)−1

)−1
and δ̂ = Σ̂

k∑
l=1

Σ̃−1l ỹl,

with

ỹl = yl − fMθ − µl1n and Σ̃l = σ2
l Rl + σ2

0lIn.

Proof of Lemma S1. Marginalizing out δl, by the laws of the total expectation and total

variance, the marginal distribution of yFl is a multivariate normal distribution with the

mean

E[yFl | δ, θ, σ2
l ,Rl, µl, σ

2
0l] =E[E[yFl | δ, θ, σ2

l ,Rl, µl, σ
2
0l, δl]]

=E[fMθ + µl1n + δ + δl | δ, θ, σ2
l ,Rl, µl, σ

2
0l]

=fMθ + µl1n + δ,

3



and the covariance matrix

V[yFl | δ, θ, σ2
l ,Rl, µl, σ

2
0l]

=V[E[yFl | δ, θ, σ2
l ,Rl, µl, σ

2
0l, δl]] + E[V[yFl | δ, θ, σ2

l ,Rl, µl, σ
2
0l, δl]]

=V[fMθ + µl1n + δ + δl | δ, θ, σ2
l ,Rl, µl, σ

2
0l] + σ2

0lIn

=σ2
l Rl + σ2

0lIn,

from which (S1) follows.

After marginalizing out {δl}kl=1, the posterior distribution of δ follows a multivariate

normal distribution with the mean and covariance matrix given in (S2), from which the

proof is complete.

Further marginalizing out δ, the marginal distribution of the field data YF
v := ((yF1 )T , ..., (yFk )T )T

is given in the following lemma.

Lemma S2. After integrating out both δ and δl, l = 1, ..., k, the marginal distribution of the

field data follows a multivariate normal distribution

(
YF
v | {σ2

l ,Rl, σ
2
0l, µl}kl=1,θ, τ

2,R
)
∼ MN(1k ⊗ fMθ + µ⊗ 1Tn , τ

21k1
T
k ⊗R + Λ), (S3)

where ⊗ denotes the Kronecker product, µ = (µ1, ..., µk)
T , and Λ is a kn×kn block diagonal

matrix, with the lth diagonal block being Σ̃l defined in Lemma S1, l = 1, ..., k. The density

4



of (S3) can be expressed as

p
(
YF
v | {σ2

l ,Rl, σ
2
0l, µl}kl=1,θ, τ

2,R
)

(S4)

= (2π)−
nk
2 τ−n|R|−

1
2 |Σ̂|

1
2

k∏
l=1

|Σ̃l|−
1
2

× exp

{
−1

2

(
k∑
l=1

ỹTl Σ̃−1l ỹl − (
k∑
l=1

Σ̃−1l ỹl)
T Σ̂−1(

k∑
l=1

Σ̃−1l ỹl)

)}
,

where Σ̂, ỹl, and Σ̃l are defined in Lemma S1, for l = 1, ..., k.

Proof of Lemma S2. After marginalizing out δl, l = 1, ..., k, one has

(
YF
v | {σ2

l ,Rl, σ
2
0l, µl}kl=1, δ,θ, τ

2,R
)
∼ MN(1k ⊗ fMθ + µ⊗ 1n + 1k ⊗ δ, Λ), (S5)

where Λ is a block diagonal matrix with the lth diagonal block being Σ̃l, l = 1, ..., k.

Note (δ | τ 2,R) ∼ MN(0, τ 2R). Further marginalizing out δ, the marginal distribution

of (YF | {σ2
l ,Rl, σ

2
0l, µl}kl=1,θ, τ

2,R) follows a multivariate normal distribution, with the

mean

E[YF
v | {σ2

l ,Rl, σ
2
0l, µl}kl=1,θ, τ

2,R] = E[E[YF
v | {σ2

l ,Rl, σ
2
0l, µl}kl=1, δ,θ, τ

2,R]]

= 1k ⊗ fMθ ,

and the posterior variance

V[YF
v | {σ2

l ,Rl, σ
2
0l, µl}kl=1,θ, τ

2,R]

=V[E[YF
v | {yFl , Σ̃l, µl}kl=1, δ,θ, τ

2,R]] + E[V[YF
v | {yFl , Σ̃l, µl}kl=1, δ,θ, τ

2,R]]

=V[1k ⊗ fMθ + µ⊗ 1n + 1k ⊗ δ | {σ2
l ,Rl, σ

2
0l, µl}kl=1,θ, τ

2,R] + Λ

=1k1
T
k ⊗ (τ 2R) + Λ,

5



from which (S3) follows. Note that the density of (YF
v , δ) follows

p
(
YF
v , δ | {σ2

l ,Rl, σ
2
0l, µl}kl=1,θ, τ

2,R
)

=
k∏
l=1

{
(2π)−

n
2 |Σ̃l|−

1
2 exp

(
−(ỹl − δ)T Σ̃−1l (ỹl − δ)

2

)}

× (2πτ 2)−
n
2 |R|−

1
2 exp

(
−δTR−1δ

2τ 2

)
.

Marginalizing out δ from the above equation yields the density of (YF
v | {σ2

l ,Rl, σ
2
0l, µl}kl=1,θ, τ

2,R).

Both Lemma S1 and Lemma S2 can be used for computing the likelihood given the

other parameters in the full Bayesian analysis. Lemma S2 may be used to develop the

maximum likelihood estimator, as both the random model discrepancy and measurement

bias functions are marginalized out explicitly. Note that the computational complexity of

the marginal density of the field data is O((k + 1)n3) in both lemmas, from inverting k + 1

covariance matrices each with the size n × n, rather than O((kn)3); this is the case even if

the covariance matrix in (S3) is nk × nk in Lemma S2. Such simplification is the key to

proceeding without approximations to compute the likelihood if n is not very large. Note

that the simplifications of computation rely on the aligned measurements of each source of

field data. When the measurements are misaligned, approximations might be needed when

the number of sources is large.

Since the discrepancy function between the mathematical model and reality is often

scientifically important, one can draw and record δ using Lemma S1 in the posterior sampling.

The following theorem gives the predictive distribution at any input x, given the parameters

and posterior samples of δ.

Theorem S1. For any x∗ ∈ X , one has the following predictive distributions for model (1):

1. The predictive distribution of the model discrepancy at any input x∗ follows a normal

6



distribution

(δ(x∗) | δ, {yFl , σ2
l , Kl(·, ·), σ2

0l, µl}kl=1,θ, τ
2, K(·, ·)) ∼ N(δ̂(x∗), τ 2K̂∗∗),

where δ̂(x∗) = r(x∗)TR−1δ, r(x∗) = (K(x∗,x1), ..., K(x∗,xn))T , and K̂∗∗ = K(x∗,x∗)−

r(x∗)TR−1r(x∗).

2. For each source l, l = 1, ..., k, the predictive distribution of the measurement bias at

any input x∗ follows a normal distribution

(δl(x
∗) | δ, {yFl , σ2

l , Kl(·, ·), σ2
0l, µl}kl=1,θ, τ

2, K(·, ·)) ∼ N(δ̂l(x
∗), σ2

l K̂
∗∗
l ),

where δ̂l(x
∗) = σ2

l rl(x
∗)T Σ̃−1l (ỹFl − δ) and K̂∗∗l = Kl(x

∗,x∗) − σ2
l rl(x

∗)T Σ̃−1l rl(x
∗),

with rl(x
∗) = (Kl(x

∗,x1), ..., Kl(x
∗,xn))T , ỹFl and Σ̃−1l being defined in Lemma S1, for

l = 1, ..., k.

3. For each source l, l = 1, ..., k, the predictive distribution of the field data at any input

x∗ follows a normal distribution

(yFl (x∗) | δ, {yFl , σ2
l , Kl(·, ·), σ2

0l, µl}kl=1,θ, τ
2, K(·, ·))

∼ N(ŷFl (x∗), τ 2K̂∗∗ + σ2
l K̂
∗∗
l + σ2

0l),

where ŷFl (x∗) = δ̂(x∗) + δ̂l(x
∗) + fM(x∗,θ) + µl.

Proof of Theorem S1. We only verify the third claim, and the previous two claims can be

7



verified similarly. For the third claim, the mean follows

E
[
yFl (x∗) | δ, {yFl , σ2

l , Kl(·, ·), σ2
0l, µl}kl=1,θ, τ

2, K(·, ·)
]

=E
[
δ(x∗) + δl(x

∗) + fM(x∗.θ) + µl | δ, {yFl , σ2
l , Kl(·, ·), σ2

0l, µl}kl=1,θ, τ
2, K(·, ·)

]
=r(x∗)TR−1δ + σ2

l rl(x
∗)Σ̃−1l (yFl − fMθ − µl1n − δ) + fM(x∗,θ) + µl

=δ̂(x∗) + δ̂l(x
∗) + fM(x∗,θ) + µl,

and the variance is

V
[
yFl (x∗) | δ, {yFl , σ2

l , Kl(·, ·), σ2
0l, µl}kl=1,θ, τ

2, K(·, ·)
]

=V
[
E
[
yFl (x∗) | δ, {yFl , σ2

l , Kl(·, ·), σ2
0l, µl}kl=1,θ, τ

2, K(·, ·), δ(x∗), δl(x∗)
]]

+ σ2
l0

=V
[
δ(x∗) + δl(x

∗) + fM(x∗,θ) + µl | δ,yFl , σ2
l , Kl(·, ·), σ2

0l, µl,θ, τ
2, K(·, ·)

]
+ σ2

l0

=τ 2K̂∗∗ + σ2
l K̂
∗∗
l + σ2

l0.

The claim soon follows by noticing the predictive distribution is a multivariate normal dis-

tribution.

S3 Inconsistent estimation of MLE when discrepancy

function is modeled as a GaSP

Here we provide a closed-form example of inconsistent estimation when the discrepancy

function is modeled as a GaSP.

Example S1. Assume field data of the source l at input xi follows

yFl (xi) = fM(xi, θ) + δ(xi) + εl(xi),

where fM(xi, θ) = θ, δ(·) ∼ GaSP (0, τ 2K(·, ·)), with K(xi, xj) = exp(−|xi − xj|/γ), and

8



εl(xi) ∼ N(0, σ2
0) is an independent Gaussian noise for each xi, i = 1, ..., n, and for l =

1, ..., k. Assume the observations yFl (xi) are equally spaced from [0, 1], i.e. xi = (i−1)/(n−1),

for i = 1, ..., n and l = 1, ..., k. Further assume γ, τ 2 and σ2
0 are known and finite.

The following results show that MLE is an inconsistent estimator of θ in this scenario.

Lemma S3. Assume τ 2 > 0 and γ > 0 are both finite. When n → ∞ and k → ∞, after

integrating out δ, the MLE of θ in Example S1 has the limiting distribution:

θ̂MLE
d−→ N(θ,

2τ 2γ

2γ + 1
). (S6)

Proof of Lemma S3. First, after marginalizing out δ, the marginal likelihood is given by

equation (4), with µ = 0 and fM(x, θ) = θ. Thus, the MLE of the calibration parameter is

the same as using the full data or the aggregated data ȳF .

When k →∞, the limiting distribution of ȳF in model (1) of the aggregate data follows

(
ȳF | µ,θ, τ 2,R

)
∼ MN

(
fMθ + µ1n, τ

2R
)
. (S7)

Thus the MLE of the calibration parameter is θ̂MLE = (1TnR−11n)−11TnR−1ȳF with the

sampling distribution when k →∞ follows

θ̂MLE ∼ N(θ, τ 2(1TnR−11n)−1).

Denote ρn = exp(− 1
nγ

). The inverse correlation matrix can be computed explicitly (Gu

9



et al., 2018)

R−1 =
1

1− ρ2n



1 −ρn 0 0 ... 0

−ρn 1 + ρ2n −ρn 0 ... 0

0 −ρn 1 + ρ2n −ρn ... 0

...
...

...
. . .

...
...

0 0 ... −ρn 1 + ρ2n −ρn

0 0 ... 0 −ρn 1


.

When n→∞, the variance of the sampling distribution of θ̂MLE is

V[θMLE] = lim
n→∞

τ 2(1TnR−11n)−1

= lim
n→∞

τ 2
1− exp(− 2

nγ
)

(1− exp(− 1
nγ

))(n− (n− 2) exp(− 1
nγ

))

=
2τ 2γ

2γ + 1
,

where the last line follows from the Taylor expansion. This completes the proof.

The result in Lemma S3 is surprising as both k and n go to infinity, yet reasonable, be-

cause the discrepancy function is shared across all experiments. Thus, even if the estimation

of the summation of the model output and discrepancy (i.e., the reality) is consistent, the

estimation of the calibration parameters or discrepancy function is often inconsistent.

The MSE between the MLE of θ and truth in Example S1 is graphed as the red triangles

at different number of observations in Figure S1 when k → ∞. In the left panel, when

γ = 0.1, the MSE quickly converges when the sample size increases. In the right panel, the

MSE converges to a smaller value when γ = 0.02, because the correlation is smaller. Both

MSEs converge to the limiting value, 2τ2γ
2γ+1

(black horizontal line), found in Lemma S3.

Though the closed-form expression of the limiting distribution of the MLE of the param-

eter in Lemma S3 relies on the exponential kernel function, the MLE is inconsistent for the

10
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Figure S1: Mean squared error (MSE) of the MLE of θ in Example S1 for different numbers of
observations when k is large. The limiting variance of the MLE for GaSP data in Lemma S3
is graphed as the black horizontal lines. 105 simulations are implemented to calculate each
value. The range parameter is assumed to be γ = 0.1 and γ = 0.02 in the left and right
panels, respectively, both assuming τ 20 = 1.

mean parameter of the GaSP model with many other kernel functions, such as the Matérn

kernel. We refer the reader to Chapter 4.2 in Stein (2012) for the detailed discussion on this

topic. Example S1 points out that even an infinite number of repeated samples cannot solve

the identifiability problem between calibration parameters and discrepancy function.

S4 Discretized S-GaSP

The discretized S-GaSP of the discrepancy function can be modeled below Gu and Wang

(2018):

δz(x) =

{
δ(x) | 1

n

n∑
i=1

δ2(xi) = Z

}
,

δ ∼ GaSP(0, τ 2K(·, ·)), Z ∼ pδz(·),

(S8)

where pδz(·) is the density of the random squared error between the reality and mathematical

model. Given Z = z, S-GaSP is a GaSP constrained at the space
∑n

i=1
δ2(xi)
n

= z. The idea is

to assign more probability mass on the small squared error by pδz(·). Denote pδ(Z = z | γ, τ 2)

11



the density of Z = z induced by the GaSP model in (7), where τ 2 and γ are the variance

and range parameters in the covariance function, respectively. We let pδz(·) proportional to

pδ(·), but scaled by a exponential function:

pδz(Z = z|γ, τ 2, λz) =
exp

(
− λzz

2τ2Vol(X )

)
pδ (Z = z | γ, τ 2)∫∞

0
exp

(
− λzz

2τ2Vol(X )

)
pδ (Z = t | γ, τ 2) dt

, (S9)

where λz is a positive scaling parameter and Vol(X ) is the volume of the input domain X .

The GaSP with any covariance function is a special case of S-GaSP when fZ(·) is a constant

function, or equivalently λz = 0.

S5 A simulated example to compare different models

of discrepancy

Here we discuss an example to compare the identifiability issue between GaSP and S-GaSP

models of discrepancy function.

Example S2. Assume yF (x) = yR(x)+ ε(x) where x = (x1, x2) ∈ [0, 1]2, ε(x) ∼ N(0, 0.052)

is an independent Gaussian noise for each x and reality is assumed to be (Lim et al., 2002):

yR(x) =
1

6
{(30 + 5x1 sin(5x1))(4 + exp(−5x2))− 100} .

Let fM(x,θ) = θ1 + θ2 sin(5x1), where θ = (θ1, θ2) are unknown calibration parameters.

Field data yF (xi) at xi, i = 1, ..., 30, is drawn from the maximin Latin hypercube design

(Santner et al., 2003). The goal is to estimate θ and predict the reality at all x ∈ [0, 1]2.

For Example S2, the true values of the calibration parameters are not well-defined because

the discrepancy function is a deterministic function. We thus compare GaSP and S-GaSP

calibrations based on two criteria of predictions on yR(x∗i ) at the held-out x∗i , uniformly

12



Table S1: Predictive mean squared errors and the MLE of the parameters in GaSP and
S-GaSP calibration models in Example S2.

MSEfM MSEfM+δ θ̂ τ̂ 2 γ̂ σ̂2
0

GaSP 152 0.0100 {16.0, 2.06} 81.8 {1.52, 2.02} 0.00297
S-GaSP 1.58 0.0102 {3.76, 1.89} 349 {1.52, 2.13} 0.00815
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Figure S2: Predictive mean squared errors of Example S2 when τ 2 is fixed (lower x coor-
dinate) in the GaSP and S-GaSP calibrations. The upper x coordinate is the estimated
median value of the correlation matrix R for each τ 2 in the GaSP calibration model.

sampled from [0, 1]2 for i = 1, ..., 1000 below:

MSEfM =
1

n∗

n∗∑
i=1

(fM(x∗i , θ̂)− yR(x∗i ))
2 and MSEfM+δ =

1

n∗

n∗∑
i=1

(ŷR(x∗i )− yR(x∗i ))
2,

where θ̂ are estimated calibration parameters and ŷR(x∗i ) is the prediction of the reality

combining mathematical model and discrepancy function. Only the calibrated mathematical

model is used to predict the reality in calculating MSEfM , whereas both the calibrated

mathematical model and discrepancy function for predictions can used to calculate MSEfM+δ.

The predictive error of Example S2 using two models is given in Table S1, where pa-

rameters are estimated by the MLE via the low-storage quasi-Newton optimization method

(Nocedal, 1980) with 10 different initializations. The MSEfM+δ is similar using both GaSP

and S-GaSP calibration, while MSEfM by S-GaSP is much smaller than the one by GaSP.

Denote ρ as the median value in the correlation matrix R, and let ρ̂ be the estimated value

in the GaSP calibration model. After plugging in γ̂ in Table S1, we found ρ̂ ≈ 0.92 indicating

13



relatively large estimated correlation. To further explore the cause of the large MSEfM in the

GaSP calibration, we fix the scale parameter τ 2 at different values and estimate the rest of

the parameters by the MLE in the GaSP calibration. We use the same range parameters in

the covariance matrix in the S-GaSP calibration, and compute the MLE for the calibration

parameters. The MSEfM and MSEfM+δ due to the change of τ 2 are shown in Figure S2.

When τ 2 is fixed at a small value, the median estimated correlation in the GaSP calibration,

shown in the upper x coordinate in Figure S2, is small. When the correlation is small, the

MSEfM is small (left panel), whereas the MSEfM+δ is comparatively large (right panel).

When τ 2 is fixed at a large value, the MSEfM+δ becomes small by both models, whereas

the MSEfM becomes incredibly large in the GaSP calibration due to the large estimated

correlation. The MSEfM is always small in the S-GaSP model, shown in Figure S2.

Example S2 shows that the calibrated mathematical model can be far from the reality

in the GaSP model when the estimated correlation is large. When the correlation is small,

the predictive distribution of the mathematical model and discrepancy function may some-

times be less precise to predict the reality in this scenario. In comparison, the calibrated

mathematical model by the S-GaSP calibration is still close to reality when the correlation

is large. Thus the small MSEfM and MSEfM+δ may not be simultaneously obtained in the

GaSP calibration with some frequently used kernel functions, but they can be achieved at

the same time in the S-GaSP calibration.

S6 Additional results for real data analysis

We give more results of the real data analysis in this Section. The predictive mean of each

interferogram and stack image in GaSP calibration is shown in Figure S3. They are also

close to the truth, but they have larger predictive errors than those from S-GaSP.

14



Figure S3: Predictive mean of each interferogram and stack image in GaSP calibration.

Figure S4: Estimated measurement bias and model discrepancy in the GaSP calibration.15



Figure S5: Estimated measurement bias and model discrepancy in the S-GaSP calibration.
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Figure S6: The calibrated geophysical model by the GaSP and S-GaSP are given in the left
and right panels.
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Estimated measurement bias and model discrepancy for GaSP and S-GaSP calibrations

are shown in Figures S4 and S5, respectively. The calibrated computer models by the GaSP

and S-GaSP calibration models of the interferograms with measurement bias are shown in

Figure S6. The estimated model discrepancy in the GaSP calibration suggests that the

calibrated geophysical model may underestimate the ground displacement in the southeast

region. However, this is likely caused by the atmospheric artifact appearing in the first,

second and fifth panels in Figure 5. In comparison, the atmospheric artifact seems to be

properly explained as measurement bias in the S-GaSP calibration shown in Figure S5.

Although stacked images can reduce the measurement bias and noise in the observations,

one usually loses some information in estimating the measurement bias and discrepancy

function using aggregated data. Among all approaches, the S-GaSP calibration based on the

full data seems to be both robust in estimating the calibration parameters, and accurate in

separating measurement bias and model discrepancy from the observations.

For Figure S7 and Figure S8, the first row and second row are the trace plots of the

calibration parameters and mean parameters, respectively. The trace plots of the inverse

range parameters of the measurement bias are shown in the third and fourth rows. The fifth

and sixth rows show the trace plots of the nugget and scale parameters of the measurement

bias, respectively. The last three panels in the last row give the trace plots of the inverse

range parameters and the scale parameters in the discrepancy function. Finally, the trace

plots of all the parameters in the GaSP calibration and S-GaSP calibration are given in

Figure S7 and Figure S8, respectively. Most of the posterior samples seem to mix reasonably

well.
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Figure S7: The trace plots of the parameters in the GaSP calibration.
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Figure S8: The trace plots of the parameters in the S-GaSP calibration.
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