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AbstractÐClustered federated learning is a popular paradigm
to tackle data heterogeneity in federated learning, by training
personalized models for groups of users with similar data distri-
butions. A critical challenge is to protect the privacy of individual
user updates, as the latter can reveal extensive information about
sensitive local datasets. To do so, a recent promising approach is
information-theoretic secure aggregation, where parties learn the
aggregate (sum) of user updates, but no further information is
revealed about the individual updates. In this work, we present
the first secure aggregation frameworks in the context of clustered
federated learning, to learn the aggregate of user updates for
any clustering of users, but without learning any information
about the local updates or cluster identities. Our frameworks
can achieve linear communication complexity under formal
information-theoretic privacy guarantees, while providing key
trade-offs between communication and computation complexity,
adversary tolerance, and resilience to user dropouts.

I. INTRODUCTION

Federated learning (FL) is a distributed learning framework

to train machine learning models over the data stored and

processed locally across a large number of wireless devices

(users) [1]. Unlike traditional centralized training architectures,

where all data is collected by a central party who performs

training, FL keeps the data on device. Instead, each user

updates the trained model locally on their local data, and

then the local updates (e.g., gradients) are aggregated (often

by a server) to form a global model. In doing so, users

always keep the data on device, and send only the intermediate

computations (e.g., local gradients).

Due to this on-device learning architecture (data never

leaves the device, but only the local updates), FL has

been highly popular in privacy-sensitive applications, such as

healthcare. On the other hand, recent gradient inversion attacks

have shown that the local updates sent by the users (such as

gradients) can still reveal extensive information about the local

datasets [2]±[4]. Secure aggregation (SA) protocols have been

introduced to address this challenge, by revealing only the sum

of the local updates to the server during training, while hiding

the contents of individual updates sent from each user using

information-theoretic or cryptographic tools [5]±[11]. In doing

so, SA ensures that no further information is revealed beyond

the sum of the local updates, preventing the server from
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associating the aggregated updates with any particular user.

SA can further be combined with complementary privacy-

preserving mechanisms such as differential privacy [12], [13]

and can even benefit the latter [14], [15].

A major challenge of FL is the severe data heterogeneity

across the users, which slows down training, and degrades

model accuracy [16]. More importantly, training a single

model (across the entire network) may disproportionately

penalize the performance of underrepresented users [17]. Clus-

tered FL is a recent approach to tackle this challenge by

training multiple models, each adapted to a group of users

with similar data distributions [18]±[23]. The training process

alternates between clustering the users with respect to their

data distributions, and training a distinct model within each

cluster. For the latter, the server collects and aggregates the

local updates (gradients) from the users assigned to each

cluster, to update the model designated for that cluster. Several

complementary approaches also explore addressing data het-

erogeneity by designing a personalized model for each user

through fine-tuning or meta-learning [24]±[27]. In contrast,

clustered FL targets group-level personalization, where the

server maintains personalized models to serve groups of users

with similar characteristics, while avoiding excessive memory

and storage costs to handle a large number of models.

In this work, our goal is to develop an SA framework for

clustered FL. A naive approach is to leverage conventional SA

protocols to aggregate the local gradients of the users assigned

to each cluster (independently from other clusters). On the

other hand, doing so requires the server to learn the cluster

identity of each user, which itself is highly sensitive infor-

mation, revealing which users have similar data distributions

[21]. An adversarial user can further infer sensitive information

about the characteristics of honest users assigned to the

same cluster, simply by leveraging the similarity between the

distributions. Importantly, underrepresented users are the most

vulnerable to this type of attack, due to the lack of a large

number of users with similar data distributions, i.e., same

cluster identity. Moreover, clusters may vary throughout the

training, using which one may reveal the local gradients by

comparing the aggregated updates received at different training

rounds [28]. As such, here we ask the following question:

• How can we enable SA for clustered FL, for the server

to learn the aggregate of local gradients for each cluster,

but without learning any information about the local
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communication/computation overhead, round complexity, and

dropout resilience, which will be detailed in Section IV.

Similar to [5], [7], [9], our frameworks are bound to

finite field computations, where each user converts their local

gradient gi(t) ∈ R
d from the real domain to a finite field

Fq of integers modulo a large prime q. We refer to [7], [29],

[30] for the details of this conversion. In the sequel, we use

gi(t) ∈ F
d
q to denote the finite field representation of gi(t).

We next present the details of the proposed frameworks.

III. CLUSTERED SECURE AGGREGATION

We next present three approaches to secure aggregation for

clustered FL. For notational clarity, we omit the time index t.

A. Clustered Secret Gradient Sharing (Clustered-GS)

In this framework, users first agree on N distinct public

parameters α1, . . . , αN from Fq . Then, each user i ∈ [N ]
partitions its local gradient gi into L equal-sized shards,

gi =
[
gT
i1 · · · gT

iL

]T
, (8)

and generates T independent (uniformly) random vectors

vi1, . . . ,viT ∈ F
d

L

q to form a degree KL+T − 1 polynomial,

fi(α) ≜

L∑

l=1

α(ci−1)L+l−1gil +

T∑

l=1

αKL+l−1vil, (9)

and sends to each user j ∈ [N ] a coded gradient,

g̃ij ≜ fi(αj). (10)

To recover the aggregate of the local gradients, the server

requests the aggregate of the coded gradients,

g̃i ≜
∑

j∈U

g̃ji (11)

from each user i ∈ [N ]. The computations from (11) can be

viewed as evaluations of a degree KL+ T − 1 polynomial,

f(α) ≜
∑

j∈U

fj(α) (12)

at an interpolation point α = αi, where g̃i = f(αi). Since

any polynomial f of degree deg f can be reconstructed from

at least deg f +1 evaluation points, the server can reconstruct

for each cluster k ∈ [K], the aggregate of the local gradients,

∑

j∈Sk∩U

gj =
[∑

j∈Sk∩U gT
j1 · · ·

∑
j∈Sk∩U gT

jL

]T
, (13)

using polynomial interpolation, upon receiving (11) from any

set of at least KL+T users. Parameter L controls a trade-off

between communication and dropout resilience. The commu-

nication overhead is O(dN
L
) per user, inversely proportional to

L, whereas the maximum number of user dropouts tolerated

is D ≤ N−(KL+T ), which increases by using a smaller L.

B. Clustered Masked Gradient Aggregation (Clustered-MA)

Our second framework builds on an online-offline trade-off,

by dividing the communication into online (data-dependent)

and offline (data-agnostic) phases. The former depends on the

datasets, hence can only be carried out after training starts.

The latter is independent from data (such as randomness

generation), and can be carried out in advance when the

network load is low. The key intuition is to transfer the

intensive communication overhead incurred by large N to the

offline phase, by increasing the number of communication

rounds. As demonstrated next, one can achieve an online

communication overhead of O(dK) (independent from the

number of users) while keeping the offline overhead as O(dN
L
).

We next describe the details of each phase.

Offline. In the offline phase, users first agree on N distinct

public parameters α1, . . . , αN from Fq . User i ∈ [N ] then

generates K random masks {rik}k∈[K] of size d uniformly at

random from Fq , each partitioned into L shards,

rik =
[
rT
ik1 · · · rT

ikL

]T
(14)

Next, user i constructs a polynomial of degree KL+ T − 1,

fi(α) ≜

K∑

k=1

L∑

l=1

α(k−1)L+l−1rikl +

T∑

l=1

αKL+l−1vil, (15)

where vil ∈ F
d

L

q are generated uniformly at random for all

l ∈ [T ], and sends an encoded mask,

r̃ij ≜ fi(αj) (16)

to each user j ∈ [N ]. The masks {rik}k∈[K] will be used to

hide the true content of the local gradients in the online phase,

whereas the random vectors {vil}l∈[T ] will hide the true value

of the masks against up to T adversaries.

Online. In the online phase, each user i ∈ [N ] sends to the

server a masked gradient,

xik ≜

{
gi + rik if i ∈ Sk

rik otherwise
, (17)

for each cluster k ∈ [K]. The server then aggregates the

received masked gradients
∑

i∈U xik for each cluster k ∈ [K].
On the other hand, to recover the aggregate of the true

gradients
∑

i∈Sk∩U gi, the server has to remove the random

masks
∑

i∈U rik from the masked gradients
∑

i∈U xik. To do

so, the server requests the aggregate of the coded masks,

r̃i ≜
∑

j∈U

r̃ji (18)

from each user i ∈ [N ]. The computations from (18) can be

viewed as evaluations of a degree KL+ T − 1 polynomial,

f(α) ≜
∑

j∈U

fj(α) (19)

at an interpolation point α = αi, where r̃i = f(αi). Hence,

upon receiving the evaluations (18) from any set I of at least

|I| = KL+ T users, the server can reconstruct the aggregate

of the random masks,∑

i∈U

rik =
[∑

i∈U rT
ik1 · · ·

∑
i∈U rT

ikL

]T
for k ∈ [K] (20)

via polynomial interpolation. Then, the server can recover the

aggregate of true gradients for each cluster, by removing the

(aggregated) random masks in (20) from the masked gradients,
∑

i∈Sk∩U

gi =
∑

i∈U

xik −
∑

i∈U

rik for k ∈ [K] (21)
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Clustered-MA achieves a per-user online communication over-

head of O(dK), by offloading the O(dN
L
) (online) overhead

of Clustered-GS to the offline phase, while providing equal

resilience against user dropouts D ≤ N − (KL + T ). On

the other hand, when the number of clusters K is large, as is

often the case in highly heterogeneous networks, the O(dK)
overhead is still significant. Our next framework overcomes

this challenge by reducing the online overhead to O(d+K),
by trading-off communication with tolerance to user dropouts.

C. Secure Aggregation with Masked Clusters (Clustered-SA)

Our last framework also builds on an online/offline trade-

off, where we offload the communication intensive operations

to the latter. On the other hand, instead of aggregating the

masked gradients for each cluster, each user now sends a one-

shot masked gradient along with a masked cluster identity.

The two are then combined with encoded random masks

generated in the offline phase, in a way that the server can

correctly recover the sum of the true gradients for each cluster,

without learning any information about their true value. We

next describe the details of each phase.

Offline. In this phase, users generate three Lagrange polyno-

mials, where the first two are used to mask the local gradients

and cluster identities in the online phase, while the third one

is used to ensure the information theoretic privacy during the

final reconstruction of the sum of local gradients. Initially,

users agree on 2(N +KL+T )− 1 distinct public parameters

{αi}i∈[N ], {βm}m∈[KL+T ], {θm}m∈{KL+1,...,2(KL+T−1)+1},

{λm}m∈[N−T ] from Fq . Next, each user i ∈ [N ] generates a

random mask,

ri ≜
[
rT
i1 · · · rT

iL

]T
, (22)

where ril ∈ F
d

L

q for all l ∈ [L] are generated uniformly at

random (and independently from other elements), and then

forms a Lagrange polynomial of degree KL+ T − 1,

fi(α) ≜
∑

l∈[L]

ril

∑

k∈[K]

∏

m∈[KL+T ]
\{(k−1)L+l}

α− βm

β(k−1)L+l − βm

+

KL+T∑

l=KL+1

vil

∏

m∈[KL+T ]\{l}

α− βm

βl − βm
, (23)

where vil ∈ F
d

L

q are uniformly random vectors for all l ∈
{KL+1,. . . ,KL+T}. Then, user i sends an encoded mask,

r̃ij ≜ fi(αj) (24)

to each user j ∈ [N ]. In addition, user i generates K random

masks zi1, . . . , ziK ∈ Fq (uniformly at random), forms a

Lagrange polynomial of degree KL+ T − 1,

hi(α) ≜
∑

k∈[K]

zik
∑

l∈[L]

∏

m∈[KL+T ]
\{(k−1)L+l}

α− βm

β(k−1)L+l − βm

+

KL+T∑

l=KL+1

uil
∏

m∈[KL+T ]\{l}

α− βm

βl − βm
, (25)

where uil ∈ Fq are generated uniformly random for l ∈ {KL+
1, . . . ,KL+T}, and sends an encoded mask,

z̃ij ≜ hi(αj) (26)

to user j ∈ [N ]. Finally, user i generates a third Lagrange

polynomial of degree 2(KL+ T − 1):

vi(α) ≜

2(KL+T−1)+1∑

l=KL+1

nil

∏

m∈[2(KL+T−1)+1]\{l}

α− θm

θl − θm
(27)

where θl ≜ βl for l ∈ [KL], and nil is a uniformly random

vector of size d
L(N−T ) for l∈{KL+1, . . . , 2(KL+T−1)+1}.

User i then sends an encoded vector,

ñij ≜ vi(αj) (28)

to user j ∈ [N ]. After receiving {ñji}j∈[N ], user i computes:

ñi ≜

[∑
j∈[N ] λ

j−1
1 ñT

ji · · ·
∑

j∈[N ] λ
j−1
N−T ñ

T
ji

]T

(29)

where (29) can be viewed as evaluations of a Lagrange

polynomial v(α) of degree 2(KL+ T − 1),

v(α) ≜

2(KL+T−1)+1∑

l=KL+1

nl

∏

m∈[2(KL+T−1)+1]\{l}

α− θm

θl − θm
(30)

such that ñi = v(αi), whereas v(θl) = 0 for l ∈ [KL], and

v(θl)=nl≜

[∑
j∈[N ] λ

j−1
1 nT

jl · · ·
∑

j∈[N ] λ
j−1
N−Tn

T
jl

]T

(31)

for all l ∈ {KL+ 1, . . . , 2(KL+ T − 1) + 1}.

Online. In the online phase, each user i ∈ [N ] initially

broadcasts a masked local gradient,

xi ≜ gi − ri (32)

along with a masked cluster indicator for each cluster k,

yik ≜ bik − zik, (33)

where k ∈ [K], and

bik ≜

{
1 if i ∈ Sk

0 otherwise
(34)

is a binary indicator variable representing whether user i is

assigned to cluster k ∈ [K]. To reconstruct the aggregate of

the local gradients, the server requests from all users i ∈ [N ],

ãi ≜
∑

j∈U

( ∑

k∈[K]

yjk
∑

l∈[L]

∏

m∈[KL+T ]
\{(k−1)L+l}

αi−βm
β(k−1)L+l−βm

+z̃ji

)

×
( ∑

l∈[L]

xjl

∑

k∈[K]

∏

m∈[KL+T ]
\{(k−1)L+l}

αi−βm
β(k−1)L+l−βm

+r̃ji

)
−ñi (35)

where xj = [xT
j1 · · ·x

T
jL]

T is partitioned into L shards of size
d
L

. Note that the computations from (35) can be viewed as

evaluations of a degree 2(KL+ T − 1) polynomial,

f(α) ≜
(∑

j∈U

φj(α)ψj(α)
)
− v(α) (36)
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TABLE I
COMPARISON OF COMMUNICATION COMPLEXITY (PER-USER) AND

DROPOUT RESILIENCE (MAXIMUM NUMBER OF USER DROPOUTS).

Communication complexity Dropout resilience

Clustered-GS
online O(dN/L)

D ≤ N − (KL+ T )
offline −

Clustered-MA
online O(dK)

D ≤ N − (KL+ T )
offline O(dN/L)

Clustered-SA
online O(d+K)

D ≤ N − 2(KL+ T ) + 1
offline O(dN/L)

where ãi = f(αi), such that

φj(α) ≜
∑

k∈[K]

bjk
∑

l∈[L]

∏

m∈[KL+T ]
\{(k−1)L+l}

α− βm

β(k−1)L+l − βm

+
KL+T∑

l=KL+1

ujl
∏

m∈[KL+T ]\{l}

α− βm

βl − βm
, (37)

ψj(α) ≜
∑

l∈[L]

gjl

∑

k∈[K]

∏

m∈[KL+T ]
\{(k−1)L+l}

α− βm

β(k−1)L+l − βm

+

KL+T∑

l=KL+1

vjl

∏

m∈[KL+T ]\{l}

α− βm

βl − βm
(38)

where gj =
[
gT
j1 · · · gT

jL

]T
denotes the local gradi-

ent of user j partitioned into L equal-sized shards. Since

f(β(k−1)L+l) =
∑

j∈U bjkgjl =
∑

j∈Sk∩U gjl corresponds to

the true sum of the local gradients for each cluster k ∈ [K] and

shard l ∈ [L], after receiving the evaluations (35) from a set

of at least 2(KL+T −1)+1 users, the server can reconstruct

f(α) through polynomial interpolation, and recover the sum,
∑

j∈Sk∩U

gj =
[
f(β(k−1)L+1)

T · · · f(β(k−1)L+L)
T
]T

(39)

of the local gradients for each cluster k ∈ [K].

Remark 1. Clustered-SA reduces the per-user online com-

munication overhead to O(d + K) (down from the O(Kd)
overhead of Clustered-MA), while keeping the offline over-

head the same. This is achieved by a trade-off between

communication overhead and dropout resilience; Clustered-SA

slashes the online communication complexity, while requiring

a larger number of surviving users for correct recovery of

the aggregated gradients. A comparison of the communication

complexity and dropout resilience of the three frameworks are

demonstrated in Table I, which will be detailed in Section IV.

Remark 2. The key intuition behind the polynomial v(α)
in (36) is to ensure privacy during the reconstruction of the

final outcomes by the server. Since v(β(k−1)L+l) = 0 for all

k ∈ [K], l ∈ [L], in principle, the final outcomes in (39) can be

recovered by interpolating the polynomial
∑

j∈U φj(α)ψj(α)
directly, by collecting the evaluations

∑
j∈U φj(αi)ψj(αi)

from the users, however, additional information may be leaked

(beyond the desired outcomes) from the intermediate polyno-

mial coefficients. The masking with ñi = v(αi) prevents such

information leakage, as will be demonstrated in Theorem 4.

IV. THEORETICAL ANALYSIS

We first present the per-user communication/computation

complexity, adversary robustness, and resilience to user

dropouts. The dropout resilience of a given framework is

quantified by the recovery threshold, defined as the minimum

number of surviving users required for correct recovery of the

aggregate of local gradients.

Theorem 1. Clustered-GS has a per-user communication

complexity of O(dN
L
), per-user computation complexity of

O(dN
L

log2(KL+T ) log log(KL+T )), and a recovery thresh-

old of N −D ≥ KL+ T .

Theorem 2. Clustered-MA has a per-user communication

complexity of O(dK) online and O(dN
L
) offline, per-user com-

putation complexity of O(N d
L
) online and O(dN

L
log2(KL+

T ) log log(KL + T )) offline, and a recovery threshold of

N −D ≥ KL+ T .

Theorem 3. Clustered-SA has a per-user communication

complexity of O(d + K) online and O(dN
L
) offline, per-

user computational complexity of O(N(K + d)) online and

O(dN
L

log2(KL+T ) log log(KL+T )) offline, and a recovery

threshold of N −D ≥ 2(KL+ T )− 1.

Remark 3. The three frameworks provide a trade-off among

the online/offline communication complexity, computation cost,

and the recovery threshold. Clustered-MA reduces the online

communication overhead of Clustered-GS by introducing an

additional offline phase. Clustered-SA reduces the online com-

munication by a factor of K compared to Clustered-MA, while

increasing the recovery threshold by a constant factor.

We next present the privacy guarantees from (7).

Theorem 4. (Information-theoretic privacy) Clustered-

GS, Clustered-MA, and Clustered-SA all guarantee the

information-theoretic privacy of honest users from (7) against

any set T of up to |T | ≤ T adversaries,

I
(
{gi, ci}[N ]\T ;MT

∣∣∣
{ ∑

i∈Sk∩U

gi

}

k∈[K]
,{gi, ci}i∈T ,GT

)
= 0

(40)

where MT denotes the collection of all messages received by

the server and adversarial users, and GT is the set of ran-

domness generated by the adversarial users during training.

Proof. (Sketch) The proof follows from comparing the entropy

of the masked/encoded gradients observed by the adversaries

with respect to the entropy of the uniform distribution.

V. CONCLUSION

This work is the first study of secure aggregation for

clustered federated learning, to aggregate the local gradients

for any cluster of users without learning the local gradients or

cluster identities. Our frameworks achieve a linear online com-

munication overhead, while ensuring formal guarantees for

information-theoretic privacy and resilience to user dropouts.

2023 IEEE International Symposium on Information Theory (ISIT)

190
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:55:23 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
ªCommunication-efficient learning of deep networks from decentralized
data,º in Int. Conf. on Artificial Int. and Stat. (AISTATS), 2017, pp.
1273±1282.

[2] M. Fredrikson, S. Jha, and T. Ristenpart, ªModel inversion attacks
that exploit confidence information and basic countermeasures,º in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, 2015, pp. 1322±1333.

[3] L. Zhu, Z. Liu, and S. Han, ªDeep leakage from gradients,º in Advances

in Neural Information Processing Systems 32: Annual Conference on

Neural Information Processing Systems (NeurIPS), 2019, pp. 14 747±
14 756.

[4] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, ªInverting
gradients - how easy is it to break privacy in federated learning?º
in Advances in Neural Information Processing Systems 33: Annual

Conference on Neural Information Processing Systems (NeurIPS), 2020.

[5] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, ªPractical secure aggregation
for privacy-preserving machine learning,º in Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175±1191.

[6] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
ªSecure single-server aggregation with (poly) logarithmic overhead,º in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and

Communications Security, 2020, pp. 1253±1269.

[7] J. So, B. Güler, and A. S. Avestimehr, ªTurbo-aggregate: Breaking the
quadratic aggregation barrier in secure federated learning,º IEEE Journal

on Selected Areas in Information Theory, 2021.

[8] Y. Zhao and H. Sun, ªInformation theoretic secure aggregation with user
dropouts,º in IEEE International Symposium on Information Theory,

ISIT’21, 2021.

[9] J. So, C.-S. Yang, S. Li, Q. Yu, R. E Ali, B. Guler, and S. Avestimehr,
ªLightsecagg: a lightweight and versatile design for secure aggregation
in federated learning,º Proceedings of Machine Learning and Systems,
vol. 4, pp. 694±720, 2022.

[10] T. Jahani-Nezhad, M. A. Maddah-Ali, S. Li, and G. Caire, ªSwiftagg:
Communication-efficient and dropout-resistant secure aggregation for
federated learning with worst-case security guarantees,º in IEEE In-

ternational Symposium on Information Theory, ISIT. IEEE, 2022, pp.
103±108.

[11] ÐÐ, ªSwiftagg+: Achieving asymptotically optimal communica-
tion load in secure aggregation for federated learning,º CoRR, vol.
abs/2203.13060, 2022.

[12] C. Dwork, F. McSherry, K. Nissim, and A. D. Smith, ªCalibrating noise
to sensitivity in private data analysis,º J. Priv. Confidentiality, vol. 7,
no. 3, pp. 17±51, 2016.

[13] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Tal-
war, and L. Zhang, ªDeep learning with differential privacy,º in ACM

SIGSAC Conference on Computer and Communications Security, 2016,
pp. 308±318.

[14] P. Kairouz, Z. Liu, and T. Steinke, ªThe distributed discrete gaussian
mechanism for federated learning with secure aggregation,º in Interna-

tional Conference on Machine Learning. PMLR, 2021, pp. 5201±5212.

[15] W. Chen, C. A. Choquette-Choo, P. Kairouz, and A. T. Suresh, ªThe
fundamental price of secure aggregation in differentially private feder-
ated learning,º in International Conference on Machine Learning, ICML,
vol. 162. PMLR, 2022, pp. 3056±3089.

[16] P. Kairouz and H. B. McMahan, ªAdvances and open problems in
federated learning,º Foundations and Trends in Machine Learning,
vol. 14, no. 1, 2021.

[17] T. Li, M. Sanjabi, A. Beirami, and V. Smith, ªFair resource allocation
in federated learning,º in International Conference on Learning Repre-

sentations, 2020.

[18] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, ªThree approaches
for personalization with applications to federated learning,º CoRR, vol.
abs/2002.10619, 2020.

[19] C. Briggs, Z. Fan, and P. Andras, ªFederated learning with hierarchical
clustering of local updates to improve training on non-iid data,º in 2020

International Joint Conference on Neural Networks (IJCNN), 2020, pp.
1±9.

[20] F. Sattler, K.-R. Müller, and W. Samek, ªClustered federated learn-
ing: Model-agnostic distributed multitask optimization under privacy
constraints,º IEEE Trans. on Neural Networks and Learning Systems,
vol. 32, no. 8, pp. 3710±3722, 2021.

[21] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, ªAn efficient
framework for clustered federated learning,º IEEE Transactions on

Information Theory, vol. 68, no. 12, pp. 8076±8091, 2022.
[22] M. Nafea, E. Shin, and A. Yener, ªProportional fair clustered federated

learning,º in 2022 IEEE International Symposium on Information Theory

(ISIT), 2022, pp. 2022±2027.
[23] Y. Ruan and C. Joe-Wong, ªFedsoft: Soft clustered federated learning

with proximal local updating,º in Thirty-Sixth AAAI Conference on

Artificial Intelligence, AAAI. AAAI Press, 2022, pp. 8124±8131.
[24] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, ªFederated

multi-task learning,º in Advances in Neural Information Processing

Systems (NeurIPS), 2017.
[25] A. Fallah, A. Mokhtari, and A. E. Ozdaglar, ªPersonalized federated

learning with theoretical guarantees: A model-agnostic meta-learning
approach,º in Advances in Neural Information Processing Systems

(NeurIPS), 2020.
[26] C. T. Dinh, N. H. Tran, and T. D. Nguyen, ªPersonalized federated

learning with moreau envelopes,º in Advances in Neural Information

Processing Systems (NeurIPS), 2020.
[27] K. Singhal, H. Sidahmed, Z. Garrett, S. Wu, J. Rush, and S. Prakash,

ªFederated reconstruction: Partially local federated learning,º in Ad-

vances in Neural Information Processing Systems (NeurIPS), 2021.
[28] J. So, R. E. Ali, B. Guler, J. Jiao, and S. Avestimehr, ªSecuring

secure aggregation: Mitigating multi-round privacy leakage in federated
learning,º CoRR, vol. abs/2106.03328, 2021.

[29] J. So, B. Güler, and S. Avestimehr, ªA scalable approach for privacy-
preserving collaborative machine learning,º in Advances in Neural Infor-

mation Processing Systems: Annual Conference on Neural Information

Processing Systems, NeurIPS, Dec. 2020.
[30] J. So, B. Güler, and A. S. Avestimehr, ªByzantine-resilient secure

federated learning,º IEEE Journal on Selected Areas in Communications,
vol. 39, no. 7, pp. 2168±2181, 2021.

2023 IEEE International Symposium on Information Theory (ISIT)

191
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 30,2024 at 20:55:23 UTC from IEEE Xplore.  Restrictions apply. 


