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ABSTRACT

Data-driven modeling is useful for reconstructing nonlinear dynamical systems when the underlying process
is unknown or too expensive to compute. Having reliable uncertainty assessment of the forecast enables tools
to be deployed to predict new scenarios unobserved before. In this work, we first extend parallel partial
Gaussian processes for predicting the vector-valued transition function that links the observations between the
current and next time points, and quantify the uncertainty of predictions by posterior sampling. Second, we
show the equivalence between the dynamic mode decomposition and the maximum likelihood estimator of
the linear mapping matrix in the linear state space model. The connection provides a probabilistic generative
model of dynamic mode decomposition and thus, uncertainty of predictions can be obtained. Furthermore, we
draw close connections between different data-driven models for approximating nonlinear dynamics, through
a unified view of generative models. We study two numerical examples, where the inputs of the dynamics are
assumed to be known in the first example and the inputs are unknown in the second example. The examples
indicate that uncertainty of forecast can be properly quantified, whereas model or input misspecification can

degrade the accuracy of uncertainty quantification.

1. Introduction

Dynamical systems are ubiquitously used for describing natural
phenomena, such as passive motions driven by thermodynamics [1]
and phase transition from flocking [2,3], and social behaviors, such
as epidemiological processes [4]. As mathematical models typically
contain unknown parameters, observations are often used for calibrat-
ing the models and filtering the noises to estimate the latent state
of the dynamical system. Kalman filter [5] and Rauch-Tung-Striebel
smoother [6], for instance, produce fast estimation of latent states
for linear dynamical systems with additive Gaussian fluctuations and
noises, at a computational cost linearly increasing with the number of
time points. When dynamical systems are nonlinear or non-Gaussian,
approximate approaches, such as extended Kalman filter [7], particle
filters [8] and ensemble Kalman filter [9], were developed to ap-
proximate the posterior distributions of latent states. However, these
approaches require underlying data-generating models to be known,
whereas models that exactly reproduce the reality may be unavailable
or too costly to compute in some applications.

Data-driven approaches become useful for estimating dynamical
systems when the true data-generating mechanism is unknown. For

* Corresponding author.

instance, orthogonal basis is estimated in proper orthogonal decom-
position [10,11] to reconstruct the covariance between each of the
output coordinates by treating temporal observations as independent
measurements. Dynamic mode decomposition [12,13] reconstructs the
output vector through linearizing the one-step-ahead transition oper-
ator between the input and output pairs, where the eigenpairs of the
linear mapping matrix produce a finite-dimensional approximation of
the Koopman modes and eigenvalues [14,15]. Extensive variants of
Koopman operator have been proposed, such as utilizing longer tempo-
ral lag of observations through Hankel method or higher order dynamic
mode decomposition [16], and utilizing nonlinear basis functions for
lifting the process by the extended dynamic mode decomposition [17].
A few recent techniques, such as sparse regression [18,19], model
predictive control [20], and Koopman eigenfunctions [21], were stud-
ied for designing the nonlinear basis and estimating the lifted state
in extended dynamic mode decomposition. Other nonlinear methods
employ neural networks to model differential equations [22-24]. The
uncertainty of the estimation by the dynamic mode decomposition and
other machine learning approaches, however, may not be available, as
the generative models were not well-studied.
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Deploying data-driven models to forecast or extrapolate the input
space requires reliable uncertainty assessments of predictions. We eval-
uate the precision of uncertainty quantification by the percentage of
held-out observations covered by the 1 — a predictive intervals, with
0 < a < 1. An efficient approach should have around 1 — a of the held-
out samples covered by a short predictive interval. Gaussian processes
have been applied in emulating expensive computer simulations [25-
271, and calibrating computer models [28-30]. However, uncertainty
assessment of these approaches is typically assessed for interpolating
physical input space, while forecast or extrapolation is required in
various real-world applications, such as optimizing chemical reaction
conditions through Bayesian optimization [31] and controlling the
predictive error by active learning [32].

The goal of this paper is to quantify the uncertainty from probabilis-
tic forecasts by different approaches. Our contributions are three-fold.
First, we extend a recent approach, called the parallel partial Gaussian
process (PP-GP) [33], to forecast dynamical systems with multivari-
ate outputs through predicting the one-step-ahead transition function,
and the uncertainty of the forecast can be assessed through posterior
sampling. Predicting the one-step-ahead transition function with a
finite-dimensional space allows one to transform the forecast problem
to an interpolation problem, and under regularity conditions, Gaussian
process regression converges to the truth with a minimax rate [34].
Furthermore, the assessed uncertainty from the PP-GP can alert when
the forecast becomes less accurate, which allows for timely interven-
tions to control predictive error. The PP-GP is particularly suitable
for dynamical systems with massive outputs, as the computational
complexity of the PP-GP is linear to the number of outputs at each
time point. Second, we introduce a general two-step approach to
derive a probabilistic generative model. Based on this approach, we
show the estimation of dynamic mode decomposition is equivalent to
the maximum likelihood estimator of a linear mapping matrix in a
linear state space model, which produces uncertainty assessment from
the sampling model. Third, we draw connections between different
approaches, including Gaussian processes, proper orthogonal decompo-
sition and dynamic mode decomposition. These connections allow one
to examine the inherent generative models of different approaches, and
to develop a suitable predictive model for real-world problems.

We compare the approaches for forecasting and uncertainty quan-
tification by two numerical examples. In the first example, we assume
the inputs of the process are known, whereas we do not have prior
knowledge of the functional form of the process. Hence we cannot use
the exact form of the function to form the nonlinear basis. Rather we
aim to test default or generic kernels or basis, which can be used for
other scenarios. We test this scenario by the Lorenz 96 system [35],
a benchmark approach of modeling atmospheric quantities at equally
spaced locations along a cycle that induces chaotic behaviors. The PP-
GP can detect the time when the predictive error becomes large, based
on its internal uncertainty assessment of the forecast.

In the second example, we do not assume the true inputs are known,
which is unconventional in designing data-driven approaches, but not
uncommon in practice [36]. We consider one of the most challenging
problems in condensed matter physics: simulating quantum many-body
systems far from equilibrium. Many problems in quantum dynamics,
such as the motion of atoms or charge carriers, cannot be modeled
by well-established equilibrium methods, including density functional
theory (DFT) for the electronic ground state or the GW plus Bethe—
Salpeter equation [37,38] which describes excited-state properties in
the equilibrium linear response regime. This limits, for example, the
understanding of systems under irradiation by ultrafast or intense laser
pulses for obtaining information about the electronic structure of a
system [39]. Therefore, nonequilibrium simulations that describe how
a system responds to an external perturbation and how it evolves from
one configuration to another under these circumstances are crucial
for a complete understanding of electronic and optical properties of
molecules and solids.
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A rigorous approach to simulating materials’ nonequilibrium dy-
namics lies in propagating the nonequilibrium Green’s function as a
two-point correlator of the creation and annihilation field operators
on the Keldysh contour [40-42]. This approach has been recently
applied to compute various nonlinear and nonequilibrium optical re-
sponses from first principles in the adiabatic limit, which limits the
time-evolution to a single average time, neglecting memory effects [43—
47]. However, even in the adiabatic approximation, the numerical
evaluation is far from trivial, requiring millions of CPU hours for
systems of only a few atoms. Thus, models that can forecast the time-
evolution without the need of the simulator are urgently needed.
Recent work [48,49] uses dynamic mode decomposition to approx-
imate the Green’s functions where the system is assumed to start
from a known non-interacting state, and it is driven by an arbitrary
external electromagnetic field. Different representations of the Green’s
function encode spectroscopic information, which may be measured in
experiments. In this work, inputs such as the external field and many-
electron interactions are not used in constructing data-driven models to
test uncertainty quantification of forecast for the scenario when inputs
are misspecified.

The article is organized as follows. In Section 2, we extended the
PP-GP for forecasting nonlinear dynamical processes. We introduce a
general approach to derive a generative model, and apply this ap-
proach to derive a sampling model of the dynamic mode decomposition
and its predictive distribution in Section 3. PP-GP, dynamic mode
decomposition and proper orthogonal decomposition are compared
in Section 4, focusing on generative models of these approaches. In
Section 5, we numerically compare different approaches for forecast,
and discuss the scenarios when reliable forecast can be constructed
even at reasonably long trajectory. We conclude this study and outline
future directions in Section 6. The data and code used in this work
are publicly available (https://github.com/UncertaintyQuantification/
forecast_dynamical_systems).

2. Probabilistic forecast and uncertainty quantification through
parallel partial Gaussian processes

The parallel partial Gaussian process (PP-GP) emulator was orig-
inally designed as a fast surrogate model to approximate computa-
tionally expensive computer models with massive observations [33].
Emulating computer models typically starts with running the computer
simulation at a set of ‘space-filling’ designs, such as Latin hypercube
designs [25], for building the emulator. For any other inputs untested
before, the predictive distribution of the emulator is used for predic-
tions and quantifying the uncertainty of the predictions. Most of the
computer model emulation tasks deal with interpolation for a design
space, meaning that the distance between the test input and some
training inputs is close, as the ‘space-filling’ inputs fill the input space.
However, many scientific tasks, such as designing a new molecule or
forecasting dynamical systems, inevitably require extrapolation from the
existing design space, where reliable uncertainty quantification of the
predictions is needed. Here we extend the PP-GP model for forecasting
nonlinear dynamical systems that enables uncertainty of the forecast to
be quantified in a probabilistic way, which was not studied before.

Suppose we have collected n vectors of real-valued outputs or snap-
shots, each having m dimensions, where the tth output vector is denoted
as y(x,) = (X)), ..., yu(x)T, with x, being a p-dimensional input
that contains the observations in the prior time points and additional
physics input, for = 1,...,n. When the observational vector in the
prior time point is used as the input, we have x, = y(x,_;) and thus
p = m. In general, the dimensions of the input and output vectors can
be different.

In the PP-GP model, we assume a distinct mean parameter y; and
variance parameter a% at each coordinate of the output y;(), for j =
1, ..., m, which makes it flexible to capture the scale difference in output
coordinates. The correlation of the output at any two coordinates j and
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J', on the other hand, is assumed to be the same, i.e. Cor(y;(x), y;(x")) =
Cor(y; (x), y j,(x’ )), which greatly simplifies the computation. The obser-
vations from dynamical systems may contain noises, due to numerical
or measurement errors. Thus, for any input x, we define the PP-GP
model of the jth coordinate below:

yj(x):fj(x)+€j’ (@]

where x is p-dimensional input variable, f;(-) follows a Gaussian pro-
cess prior with mean y ; and covariance GJ?K (-,-), and € ; is an indepen-
dent Gaussian noise with variance no-j?. For any p X n input matrix X =
[xy,...,x,], integrating the latent Gaussian process f;(-), the marginal
distribution y, = [yj(x]),...,yj(xn)]T follows a multivariate normal
distribution:

W) 1 Xty 02 m.0) ~ MA (1)1, 07K) @

where MW denotes the multivariate normal distribution, u; is an
unknown mean parameter, K = (K + #I,,) with K being a correlation
matrix and 5 being a nugget parameter due to noises in observations.
The (1,7 )th entry of K follows K, , = K(x,,x,) with K(-,-) being a kernel
function containing a j-dimensional range parameter y, and I, denotes
an identity matrix. With a nugget parameter, the prediction of GP will
be dragged towards to the mean compared to a noise-free GP [50].
Additional trend or mean basis functions can be included in the mean
of the PP-GP model.

Frequently used covariance functions include isotropic covariance
and product covariance [25]. The isotropic covariance is a function of
Euclidean distance between two inputs: d = ||x —x’|| with || - || denoting
the L, norm. For instance, the isotropic power exponential covariance
function follows

O'?K(d) = aj? exp <—$> s 3)

where the roughness parameter 0 < a < 2 is typically held fixed and y
is a positive range parameter controlling the correlation length, which
is often estimated by data. Here the number of range parameters is 1,
ie.p=1.

Another widely used isotropic covariance is the Matérn covari-
ance [51]:

2 _ o2l 2ad \" 2ad
ajK(d)—ajr(a)< S )xa< ” ) @

where d = ||x — x'|| is the distance between inputs, I'(-) is the gamma
function and K,(-) is the modified Bessel function of the second kind
with a positive parameter «. The Matérn covariance has a closed-form
expression with an integer roughness parameter « = 2! with z € N.
When a = 2.5, for example, the Matérn covariance function has the
following expression

2
U?K(d):g?(1+@+i>exp(—@>. 5)

Y 3y2

The GP model having a Matérn covariance with a roughness parameter
a is |a — 1| mean squared differentiable, an appealing property as
the smoothness of the process is directly controlled by the roughness
parameter a.

When the input variables have different scales, a product correlation
function is more frequently used, as it allows one to have a distinct
correlation length parameter for each of the input coordinates:

P
Kx,x) =[] KiGxp x)). 6)
=1
where K;(x;, x;) is a kernel function, such as power exponential kernel
or Matérn kernel, with range parameter y, for / = 1, ..., p and we have
p = p range parameters. The product form of the kernel in Eq. (6) is
widely used for computer model emulation [52-54] and often treated
as the default setting in statistical emulator software packages [55,
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56], as inputs variable can contain completely different scales and
physical meanings, thus requiring distinct correlation lengthscales. In
practice, isotropic covariance may be used when Euclidean distance
is meaningful for characterizing the distance between two inputs. The
product covariance may yield better predictive performance, whereas
more range parameters are needed to be estimated.

In the PP-GP model, we have m mean parameters g = (4, ..., )" ,
m variance parameters ¢ = (alz, ...,62)T, p covariance range parame-
ters y = (yy, ... ,yﬁ)T and a nugget parameter n. We follow the Bayesian
procedure to define the prior of parameters. As most of the parameters
can be integrated out explicitly, meaning that the uncertainty from the
estimates of these parameter is quantified during the Bayesian inference
with almost no extra computational cost, whereas a plug-in estimator of
the parameters may ignore the uncertainty from parameter estimation.
We assume an objective Bayesian prior [33,57] of the parameters below

z(y.n)
m 2’
I1 j=19j
where z(y,n) is a prior of the range and nugget parameters. Denote
the m x n matrix of observations by Y = [y(x,),...,y(x,)]. Integrating
out the mean and variance parameters, the predictive distribution for

x,. follows a noncentral Students’ t distributions with n — 1 degrees of
freedom [33]:

m(p, 6%, 7, 1) %)

(v, (%) | X, Y, Xy, 7,11) ~ T(pj (%) . 62K"n - 1), (8)

where the predictive mean and scale parameters follow

P (xp) = + K (xR (y; — 3;1,) )
2= L (- 1) K (3 - a1, a0

(1= 17K k(x,0))

K*=1+n-k'(x: )K" 'k(x,+) + -
n t t IZ,"K_ll,,

) an
with K = K+7l,, fi; = (lnTIN(‘lln)fl 17Ky, being the generalized least
square estimator of the mean, 1, is an n-vector of ones and k(x,:) =
(K(xy,Xp), ..., K(x,,%X))T being an n-vector of the covariance between
the training inputs and the test input.

The PP-GP model has been implemented in different computational
platforms such as MATLAB, Python and R [56]. The predictive mean
from distribution in Eq. (8) is typically used for prediction. The uncer-
tainty of the prediction can be quantified by the predictive interval.
A few recent studies approximate the transition operator of dynami-
cal systems through kernel flows [58,59]. In comparison, the PP-GP
provides a distinct mean and variance for each coordinates, and these
parameters are integrated out for calculating the predictive distribution
in Eq. (8), making the model more flexible in uncertainty assessment.
We will discuss the computational issue and compare PP-GP with other
vector-valued GP approaches in Section 2.3.

2.1. Predictions as weighted averages of basis functions and output vectors

The predictive mean or median J;(x;+) is often used for one-step-
ahead prediction of output coordinate j for any test input x,, for
j = 1,...,m. The corollary below shows that the prediction of the PP-
GP model can be written as a weighted average of the observations and
kernel functions.

Corollary 1. The predictive mean vector §(X,) = (;(Xp)s - » P X )T
from Eq. (9) follows
¥xp) = YV = i+ Wk(x,), 12)

where v is an n-dimensional row vector and W = [wlT, whT s amxon
matrix with w; being an n-dimensional row vector defined below:

(1=K (x K11, )1TK-!
) (7K'1,)

+ kT (x K™, 13
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N T 55—
w; = (v, - a;1,) K (14)
forj=1,...,m.

From Corollary 1, the prediction of a test input at the jth coordinate
of the output from the PP-GP model can be written as a weighted
average of the observations at the jth coordinate, (X)) = vy Further-
more, the residuals can be written as a weighted average of the kernel
function between the test input and training input set, §;(x,+) — fi; =
w;k(x;+), as outlined by the second equality in Eq. (12). When 2; = 0,
the predictive mean estimator in Eq. (9) at each output coordinate is
equivalent to the kernel ridge regression separately for each coordinate
J [60]:

§;() = argming oy { i D) = £ + %IIf,- ||;} . (15)
=1

where H is the reproducing kernel Hilbert space (RKHS) [61] attached
to the kernel K(-,-) and || - || is the associated native norm. The
loss function in Eq. (15) penalizes the fitting error and complexity of
the model simultaneously, which helps avoid the overfitting problem
automatically. Compared to the kernel ridge regression in Eq. (15), the
uncertainty of the prediction of PP-GP can be quantified based on the
predictive distribution in Eq. (8).

Here the range and nugget parameters (y,n) can be estimated by
maximum marginal posterior distribution described in the Appendix
and then these parameters will be plugged into Eq. (8) for computing
the predictive distribution. Here the uncertainty of the mean and
variance parameters are taken into account in the analysis, whereas
the uncertainty in estimating the range and nugget parameters was not
considered due to computational feasibility, and confounding issues
between kernel parameters [62]. Sampling the parameters from the
posterior distribution or residual bootstrap approach [63] can be used
for estimating the uncertainty of these kernel parameters.

2.2. Forecast by parallel partial Gaussian processes

Here we focus on estimating the one-step-ahead transition function
that maps the input x, to the output y(x,) at any time point 7. Consider
a simple scenario, where the previous snapshot is used for predicting
the output at the current time step: x, = y(x,_;) for any ¢ > 1. Since the
function is nonlinear, we may iteratively use the predictive distribution
to sample .S chains for forecasting from r* = n+1, ..., n+n*. Let the input
be XEXl = y(x,) for any chain s, s = 1, ..., .S. For each of the chain s, we
simulate a new output from the predictive distribution sequentially for
tf“=n+1,...,n+n*:

YO )~ pr O ) 1Y.XxE Ly, (16)

where p(y“)(xfjll) | Y.X, xff)ﬂ,y, n) is the predictive distribution of
y(s)(xt*+1)~

As directly sampling from the joint predictive distribution at all out-
put coordinates can be computationally intensive, one may sample the
Jjth coordinate of the output from the marginal predictive distribution
p(y;S)(x,* 1Y, X,xfi'il,y, n) in Eq. (8) as an approximation. After we
obtain predictive samples yii?j for s = 1,...,.5, we can use mean or
median for predictions, and the lower and upper « quantiles of the
samples for constructing the 1 — « predictive interval for any 0 < a < 1.
Furthermore, the predictive mean y(x,.,;) may be approximated by
using a plug-in estimator of the input x.,; = §(x) by Eq. (9). The
assessed uncertainty from PP-GP can alert when the forecast becomes
less accurate, which allows for timely interventions to control the
predictive error, whereas the uncertainty assessment may not be not
available in some other machine learning approaches [18,22,23].

Here we transform the forecast problem to predict the one-step-
ahead transition function with a finite-dimensional input space. Under
regularity conditions, the minimax convergence rate of Gaussian pro-
cess regression to the truth was studied [34]. We should note that
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convergence is obtained when the training inputs fill a bounded input
domain, whereas sequentially sampled inputs in forecast could move
outside the training input domain in practice. When the inputs ap-
proach the boundary of input space, the quantified uncertainty becomes
large, which can give alert for refining the prediction by expanding
the input domain and training the PP-GP emulator with inputs in the
expanded input domain. It is of interest to study the convergence of
PP-GP forecast in different dynamical systems.

2.3. Computational complexity

Compared with other GP approaches for emulating vectorized out-
put, one advantage of the PP-GP model comes with the computational
scalability when the number of output coordinates m is large. Comput-
ing the predictive mean of m output coordinates in Eq. (9) requires
O(nm) + O(n®) operations, and to obtain S predictive samples of m
output vectors at n* time points for uncertainty quantification requires
O(n*n* S)+O(n*m) operations. The largest cost of PP-GP typically comes
from estimating the range and nugget parameters, which requires
O(Sn® + Sn’*m) operations for S iterations in numerical optimization.
When the number of time points »n is large, approximation methods,
such as the inducing point method [64] and the Vecchia approach [65],
may be used for approximating the likelihood function of Gaussian
processes.

The computational advantage of PP-GP comes from two assump-
tions. First, the outputs at different coordinates are assumed to be
independent. In Theorem 1 in [33], the authors show that the predictive
mean of PP-GP is exactly the same as the predictive mean of a separable
Gaussian process of the vectorized output, with the covariance X, ®K,
where X is the covariance of output at different coordinates, and the
variance between the two models is similar. The inverse of covari-
ance between output coordinates X, generally takes O(m?) operations
in computing the likelihood function of separable Gaussian process,
whereas the complexity of predictions by PP-GP is linear to the number
of coordinates (m). Second, the correlation of the output at different
inputs x is shared across output coordinates. Allowing the correlation
parameters to differ at each spatial coordinate makes the computational
complexity become O(n*m) for computing the predictive mean, which
is higher than O(nm)+©(n?). Furthermore, separably estimating m(j5+ 1)
range and nugget parameters can be less stable as PP-GP.

3. Probabilistic generative models of dynamic mode decomposi-
tion

Mathematical and machine learning approaches often minimize a
loss function for estimating parameters. Many loss-minimization ap-
proaches can be shown to be equivalent to statistical estimators from
probabilistic generative models. We summarize a two-step procedure
of building a generative model.

1. Build a probabilistic generative model of untransformed data
with parameters that can be identified from data. Generalize the
model as much as possible to the extent that the parameters can
still be identified from the data.

2. Show equivalence between the estimator that minimizes a loss
function and a statistical estimator, such as the maximum like-
lihood estimator or maximum marginal likelihood estimator, of
the probabilistic generative model.

The generative model helps us understand the underlying assumptions
from the loss-minimization estimator. A more efficienct estimator can
be derived based on the generative model if the loss-minimization es-
timator is not optimal. We follow this procedure to derive a generative
model of the dynamic mode decomposition that enables uncertainty
assessment of the estimation.

3.1. Dynamic mode decomposition

Dynamic mode decomposition (DMD) is a data-driven approach to
obtain a reduced rank representation of data from complex dynamical
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systems [12], which quickly gains popularity for approximating dynam-
ical systems [66]. Here we summarize DMD and derive a generative
model of DMD.

Let us split the mxn real-valued observational matrix at n time points
Y into two matrices, Yi.(,_;y = [y(X;),¥(X2),...,y(X,_] and Y.,
[¥(X5),¥(X3), ..., ¥(x,)]. DMD relies on the approximation: y(x,,;) =~
Ay(x,) for t = 1,...,n — 1, where A is an m X m matrix. In DMD, A
is estimated by minimizing the loss between the observations and the
linear dynamics constructed from previous time steps:

A = arg{{nin ||Y2:n - AYl:n—l ”= Y2:n(Yl :n—l)+’ (17)

where || - || is the L, norm or Frobenius norm and (Y;.,_)" is the
Moore-Penrose pseudo-inverse of Y;.,_;.

We first introduce the lemma that connects the DMD estimation to
the maximum likelihood estimator (MLE) of the linear mapping matrix
in a dynamic linear model [67] or linear state space model [68].

Lemma 1 (Equivalence Between the MLE of the Linear Mapping Matrix in
a Linear State Space Model and the DMD Estimation). The DMD estimator
A in Eq. (17) is the MLE of A of the following linear state space model

Y(Xpp1) = Ay(X) + £y, (18)

where €,,, ~ MN(0,X,) is a vector of Gaussian distributions with a
positive definite covariance matrix X, for any t = 1,2, ..., n and we assume
the marginal distribution of initial state y(x,) does not depend on A. We refer
the linear state model by Eq. (18) the DMD-induced process.

Proof. The log-likelihood of A and X, is:

LAS,) = log{p(y<x. ) [T pore) 1y, A, za}
=2
Y(X1)TEE_IY(X1)
2
& (y(x) — Ay, ) BN y(x,) — Ay(x,_1))

-y .

t=2

n
I3 -3 log(|3%,]) —

Taking the derivative of log-likelihood with respect to A and X, we
obtain the maximum likelihood estimator of A and X,:

n n +
A = <Z Y(Xt)Y(Xt—l)T> <z Y(Xt—l)Y(Xt—l)T>

=2 =2
= Yz:nYlT;,,_l(len—lYlT;,,_l)+ =Y,.,(Y, :n—l)+’

5 YOOYGDT + FL00) — Ay o)) - Ay )

3

n

The last equality in the equation of A can be derived by performing the
singular value decomposition (SVD) to Y;.,_; and connecting the SVD
with Moore-Penrose pseudo-inverse. []

We notice that the maximum likelihood estimator of A is equiva-
lent to the solution of DMD shown in Eq. (17). Here Y1+: (1) €an be
computed by the SVD of Y,.(,_;,=UDV* as Y, = =VD~'U*, where
U* and V* denote the conjugate transpose of U and V, respectively,
and D € R™D is a rectangular diagonal matrix of non-negative
singular values. In practice, one can keep the r largest singular values
for approximation: Y,.,,_;, # U,D,V?, where U, is the first » columns
of U, D, is a r x r diagonal matrix containing the first r largest singular
values, with r < min(m,n — 1), and V, is the first r columns of V.
Consequently, A can be approximated by

A~Y,,V,.D]'U. 19

As some singular values may be small, the approximation from the
right-hand side of Eq. (19) is typically more stable as it avoids numer-
ical error in computing the diagonal terms in D!

A primary goal of DMD is to identify the nonzero eigenvalues and

their corresponding eigenvectors of A, denoted as {4;, ¢, };:1’ which can
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approximate the Koopman eigenvalues and modes, respectively [15].
However, directly computing the eigenvalues and eigenvectors of a
m X m matrix A in Eq. (19) can be costly when m is large. To reduce
the computational cost, we may project A onto the column space of U,
and define A as

A =U*AU, » U'Y,.,V,D]'UU, = U'Y,.,V,D . (20)

Denote {1;, ®; }:=1 to be the eigenpairs of A such that A,-A = Am,-. In [13],
the authors show that 4, is the DMD eigenvalue, and the corresponding
eigenvector of A, also known as the DMD mode, can be calculated

below

1

¢ = Yo,V 0, @1
1
fori=1,...,r.

The snapshots at any ¢ can be approximated by DMD modes and
eigenvalues with a smaller dimension. Denote @ = [¢,...,¢,] and
A = diag(4,,...,4,), for any ¢ > 1, the reconstructed snapshots y(x,)
can be represented as

§(x,) = A ly(x,) = ®A b, (22)

where b= [b, ... ,b,]T = &'y(x,) represents the mode amplitudes with
@* being the pseudo-inverse of @. As y(x;) may contain measurement
error, an alternative way is to minimize the squared error loss below:

n
b=argmin Y’ [|@A™"b —y(x)I. (23)
b =1
where || - || is the L, norm or Frobenius norm.

Eq. (22) can be applied to any ¢, including those t* > n with n
being the number of observed time points, and thus it can be used for
forecasts. When the observations are noise-free, a more straightforward
way is to let §(x,) = y(x,) and forecast output vector on any r* > n by

§(xp) = ATy (x,). 24
From the DMD-induced process in Eq. (18), we have the following

lemma, which gives the posterior distribution for forecast.

Lemma 2. Conditional on the observations Y with plug-in estimators of
A and £, the posterior distribution of the output vector of DMD-induced
process in Eq. (18) at any x,. follows a multivariate normal distribution

t*—n—1
(y&) 1 Y.A 2, ) ~ MN <y(x,*), Y A tg(ATy>’ (25)
i=0
where §(x,«) follows Eq. (24) for any t* > n.

Proof. We prove this by induction. For * = n + 1, we have
Elyx) | Y. A, £.] = Ay(x,).

Viyx:) | Y.A, 2,1=2,.

Assume for * > n+ 1, we have

Ely(x.) | Y.A, £.1=A""y(x,),

*—n—1

VIyx:) | Y,A,£,1= ) A'Z @A"Y
i=0
For any t* + 1, by the sampling model in Eq. (18) and the law of
total expectation, the posterior mean follows:
Ely(Xe41) | Y. A, £.] =E[Ely(xq 1) | Y. ¥(x). A, £,1]
=E[Ay(x:) | Y.A, £,]
=Aj(x.) = ATy (x,).

By the sampling model in Eq. (18) and the law of total covariance, for
any t* + 1, the posterior covariance follows

Vyxpqy1) | YA, 2]
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=VIElyXpey) | Y.y ), A, Z 01+ E[VIy(xpe, ) | Y, y(x). A, 2,01
=V[Ay(x,) | Y,A, 2,1+ %,

t*—n—1 t*—n
=A< D A"tb(AT)") AT+, =Y AEA". O
i=0 i=0

Although we can assess the uncertainty of the forecast by DMD
from the predictive distribution in Eq. (25), the linear state space
model can be restrictive to approximate nonlinear dynamical systems.
Furthermore, the uncertainty in estimating A and X, is not propagated
for predictions. Finally, choosing the rank r in DMD is an open problem
as it represents one’s belief on the degree of the model is misspecified,
which could be hard to be quantified precisely. Typical ways of choos-
ing r include letting the summation of DMD eigenvalues explain a large
proportion of the output variability, while this choice could potentially
misfit the data, as minimizing the L, loss in Eq. (17) cannot avoid
overfitting the data.

3.2. Higher order dynamic mode decomposition

One limitation of the DMD approach is that only the observation
from the prior time point is used, equivalently inducing a first-order
Markov model in Eq. (18). Variants of DMD approaches, such as
Higher Order Dynamic Mode Decomposition (HODMD) [16] or Hankel
DMD [69], use more observations from longer time lag to construct the
dynamics:

y(Xr+q) = AIY(XI) + A2y(xt+1) +oe AqY(X,+q_1), (26)

where ¢ > 1 is a tunable parameter that determines the number of
time-lagged snapshots to be included in the model.

The estimation accuracy from HODMD can be higher than the
conventional DMD as multiple time-lagged snapshots are used. For
scenarios where the number of time points is larger than the number of
output coordinates, including more time-lagged snapshots can increase
the upper bound of the number of nonzero singular values, thus po-
tentially capturing complex dynamics in a higher dimensional space.
From the theoretical point of view, the eigenfunctions and eigenvalues
of HODMD are guaranteed to converge to the Koopman eigenfunctions
and eigenvalues for ergodic systems [69].

Let us define y™8(x,) = (yx)7.yX41)7.....¥(Xy,—)))T, an aug-
mented vector of mg dimensions that contain ¢ snapshots. The lin-
ear mapping matrix AHOPMD in HODMD can be obtained by mini-
mizing the Frobenius or L, norm between the observations and lin-
ear dynamics constructed from the previous time steps: AHODMD —
argminwoowo [| Y58 — AHODMDY?'?(gn _pll, where YA = [yaus(xy),
y28(x,)] and YT?(g,H) = [y™8(xy), ..., Yy E(x,_ )]

However, concatenating ¢ consecutive snapshots increases the num-
ber of rows in Y??ﬁl_l) from m to mg, and the cost of a singular
value decomposition for YT‘:l(gn _y,» leading to higher computational
cost. To overcome this limitation, one can use a subsampled version
of the data instead of the entire dataset. For instance, one might
skip At time steps when constructing the data matrices, i.e., S?"lmg =

LY 0e). Y8 (X1 ) oo YUE (R a2 )] and Y58 = [yU8(x,), Y28 (Xa ),

. yaug(x2+L 12 4)]- The estimator of AHOPMD capn be computed below
Ar
AHOPMD — argmin || V5" — AHOPMDYTU8 ||, (27)
AHODMD

The HODMD contains two prespecified parameters: the number of time-
lagged snapshots ¢ to be included in any given time, and the number
of skipped time steps 4t in estimation. Note that the estimated AHOPMD
does not preserve the model structure in Eq. (26). Instead, let us
consider the following generative model for HODMD with parameters
(g, 41)

au;
Y8 (Xg4iar) = AHODMDyaug(XHiAt) + EZ+§A[’ 28)
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for i = 1,...,[(n — 2)/4t] with €% ~~ MA@, Z#¢). In practice,
the model performance depends on the choice of (g, 4r), since the
underlying data-generating model may rely on multiple time-lagged
snapshots and using observations from longer time lag make the model
more accurate. The HODMD estimator in Eq. (27) is equivalent to the
MLE of AHOPMD ip the generative model in Eq. (28).

3.3. Extended dynamic mode decomposition

The generative model of the DMD algorithm in Eq. (18) is a linear
state space model, while some dynamical systems cannot be accurately
approximated by linear dynamics. The extended dynamic mode decom-
position (EDMD) [17] aims to define a dictionary of m nonlinear basis
functions k(-) = (k; ("), ..., k()T to lift the observations to a system that
can be approximated by linear dynamics. Denote the linear mapping
matrix AFPMD to be an approximation of the Koopman operator. In
EDMD, the linear mapping matrix AFPMD is obtained by minimizing
the squared error loss function

n—1
AEDMD _ a:nglli)n ; k(Y (x4 1)) — APMPK(y(x, )13 29)

Similar to the DMD-induced process, the estimator of EDMD is
equivalent to the maximum likelihood estimator of the linear mapping
matrix in a linear state space model defined in the lifted space for
t=1,....,n—1:

K(y(x,41) = APPYPK(y(x)) + 1", (30)

EDMD . MAN(0, ZEPMD) where XEPMP js a positive definite

w1th.e ol
matrix.

After estimating the linear mapping matrix between the linear
state space model, we need to transform it back to predict the future
states [20], which may be achieved by defining y(x,) = Pk(y(x,)), where
P is a m x i matrix and can be estimated by P = argminp Y., [ly(x,) —
PK(y(x,))||.

Choosing an appropriate set of basis functions is crucial for the
EDMD method. A few generic basis functions, such as Hermite poly-
nomials, radial basis functions, and discontinuous spectral elements,
were suggested in [17]. The selection of basis functions depends on
the context of the problem and domain knowledge may be used as
well, whereas misspecifying basis functions can degrade the estimation
efficiency of the model. PP-GP is closely connected to EDMD. Assuming
the mean is zero, we can write the predictive mean of PP-GP in a
matrix form Y = WK, where Y is a m x n observational matrix of n
snapshots, and W = [w!,...,wl]" is an mx n weight matrix given from
Corollary 1. This means the prediction from PP-GP uses the same kernel
basis to represent the output for each coordinate, whereas the weights
are estimated by solving the linear system of equations with shared
coefficients, separately for the output at each coordinate. Compared to
EDMD, the PP-GP does not project the output onto the lifted space, and
hence we do not need to transform the lifted states back for forecasting.
The PP-GP is a flexible model, as the mean and variance parameters
are distinct for each coordinate, which can be marginalized out by
computing the predictive distribution. Besides, the covariance matrix
contains range and nugget parameters, and they are estimated by the
maximum marginal posterior distribution, discussed in Appendix.

3.4. Computational complexity

The computational complexity of estimating the transition and
covariance matrices in DMD are O(min(m?n,mn?)) and O(m%n), re-
spectively. Obtaining the n*-step forecast with uncertainty quantifi-
cation by DMD requires O(m*rn*), where r is the rank of the ob-
servation matrix Y;.,_;. Similarly, for HODMD with time lag ¢ and
thinking parameter Ars, the computational complexity of parameter
estimation and n*-step forecast with uncertainty quantification are
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Table 1

Computational complexity for parameter estimation and forecast of »* time points in
DMD, HODMD, EDMD, and PP-GP, where m is the dimension of an output, n is the
number of observations, r is the rank of data matrix, ¢ is the number of snapshots
stacked in HODMD, 4t is the number of skipped time points in HODMD, 7 is the
number of basis functions in EDMD, T is the number of iterations in K-means, § and
S are the iterations of numerical optimization and samples for forecast in PP-GP.

Forecast and UQ

Parameter estimation

DMD O(m?*n) O(m*rn*)
HODMD O((mq)? [i]) O(m*q*rn*)
EDMD O(mninT) O(mmn*)
PP-GP O(Sn® + 8n? m) O(Smn?n* + n®)

O(miﬂ((MQ)zliJaWltZ(LiJ)z)) + @((MQ)ZL%J) and O((mg)*rn*), respec-
tively. For EDMD using / radial basis functions to lift the data where
the centers are determined by the K-means clustering approach, trans-
forming the data and estimating the parameters in the lifted space
require O(mnmT), where T is the number of iterations in K-means.
Obtaining the predictions needs O(mmn*). For simplicity, here we
assume m > n > m. The computational complexity for estimating the
parameters as well as providing forecast with uncertainty assessment
by DMD, HODMD, EDMD, and PP-GP are summarized in Table 1.

4. Connection of different data-driven approaches of modeling
dynamical systems with respect to the generative models

Here we compare three classes of data-driven models, namely the
proper orthogonal decomposition (POD) [11], DMD and PP-GP ap-
proaches. To simplify the notations, we assume the data are properly
centered, meaning that the m X n real-valued output matrix Y has zero
mean.

In POD, the data are decomposed by SVD Y = UyDny, where U,
and V, are m X m and n X n unitary matrix, respectively, and D, is a
m X n rectangle diagonal matrix with non-negative singular values in
the diagonals. The first » < m columns of U, associated with the largest
r singular values provide the orthogonal basis of a linear subspace to
reconstruct the covariance of output at different coordinates by treating
the temporal observations as independent measurements: YY” /(n—1) =
U,D2UT /(n — 1). This approach is known as the principal component
analysis (PCA) [70], which is widely used in unsupervised learning
and dimension reduction. The SVD basis from the PCA can be shown
to have the same linear subspace to the maximum marginal likelihood
estimator of the linear mapping matrix B after marginalizing out z(x,)
in the following generative model [71]:

y(x,) = Bz(x;) + €;, (31

where €, ~ MN(0, aglm) and z(x,) ~ MWN(0,1,) is a r-dimensional
latent factors independently following standard normal distributions.
Under such model, the covariance of the data at each time follows
VIy(x,)] = BBT + ngm' However, the generative model assumes inde-
pendence between the observations at different time points, which is
restrictive. In [72], z,(-) is modeled as a GP for each / = 1,...,r, and
the maximum marginal likelihood estimator of B under the assumption
B”B =1, is derived.

Second, the generative model of DMD is given in Eq. (18), where
the noise of the data is not modeled. Assuming the initial states follow
a multivariate normal distribution with zero mean and covariance X,.
It is not hard to show that E[y(x,)] = 0 and the covariance between
any two output vectors at two time points follows: Cov[y(x,),y(x,)] =
Al Z;;(') A'X_(ATY for ' > 1. Specifically, the covariance of output at
any time point 7 > 1 follows V[y(x,)] = Z:;(]) A'X_(AT). Compared with
the sampling model in POD, the generative model in the DMD-induced
process in Eq. (18) are correlated over time and the strength of the
correlation is captured by the linear mapping matrix A between output
vectors at the consecutive time points. The DMD-induced process may
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not be differentiable with respect to time and the assumption of homo-
geneous variance at each output coordinate may also be restrictive for
applications where the output has different scales.

Third, the PP-GP model in Eq. (9) has the same predictive mean as
modeling the output matrix Y by a matrix-normal distribution [33],
with a separable covariance V[Y] = Zy®K, where Z,is the covariance
between output coordinates with the jth diagonal term being 0'/2, for
j = 1,...,m and K is the correlation matrix between inputs with ®
denoting the Kronecker product. In comparison, the generative model
by DMD in Eq. (18) is a linear state space model, which has a semi-
separable covariance structure. The PP-GP induces nonlinear dynamics
when using the observations from previous time points as the inputs,
and the differentiability of the nonlinear processes induced by PP-GP
can be controlled by the choice of kernel function. When the underlying
dynamic is smooth, a differentiable GP prior of the nonlinear dynamics
may be preferred to have a better convergence rate compared to a
nondifferential GP prior [34]. Another advantage of PP-GP is that the
range parameters can be estimated by the MLE or maximum marginal
posterior mode, which is more flexible than using fixed nonlinear
basis functions in EDMD. Lastly, the variance of the output coordinate
is distinct and the variance estimator of PP-GP has a closed form
expression in Eq. (10), whereas the induced processes by DMD and its
variants typically have homogeneous variance. The different variance
terms make PP-GP particularly suitable when the output has different
scales, which are common in practice.

5. Numerical results

We compare different data-driven forecast approaches for nonlinear
dynamical systems, focusing on uncertainty quantification of the fore-
cast. We consider two scenarios. In the first scenario, we assume the
underlying dynamical system is modeled by a map from R? — R™:
dy/dt = f(x,), where the input variables x, is a subset of y,. Here
the vector-valued function f is treated as unknown and required to be
approximated, whereas the inputs x, are known. For all approaches, we
do not include the vector-valued function f(-) in nonlinear basis func-
tions. Instead, we test uncertainty quantification with generic kernels or
nonlinear basis functions that provide default ways of approximation.
In the second scenario, the dynamical system is described by dy/dt =
f(x,,u,), where we can only observe x,, whereas the external inputs u,
and the vector-valued function f(-) are unobserved.

For both scenarios, we forecast held-out data y(x) = (y;(X), ...,
YuXe)T at t* = n+1,n+2,...,n+ n*. The autoregressive model with
lag order 1 (AR(1)) separately fitted for each coordinate is used as a
benchmark prediction model [73]. Also included are DMD, HODMD
and PP-GP. Note that the generative model of the DMD method is
equivalent to a noise-free vector autoregressive (VAR) model with lag
order 1 [74] and hence we do not include other VAR models for com-
parison. The criteria include the predictive root of mean squared error
(RMSE), the average length of the 95% predictive intervals (L(95%)),
and the proportion of the samples covered in the 95% predictive
interval (P(95%)):

1
m  n+n* 2
RMSE = (Z PIRCHC) —yj(x,*))2> : (32)

Jj=11t=n+1
1 m  n*+n
LO5%) = — Z Y length {CI,.(95%)}, (33)
Jj=1t*=n+1
1 m  n+n
PO5%) = — z{ Z 1 Ly aepeC; = 05%> (€2)
j=1t*=n+

where j;(x.) is the prediction of the output at coordinate j with
input x,, CI;«(95%) is the 95% predictive interval of the output at
coordinate j and time #*, length {CI; .(95%)} denotes the length of the
predictive interval, and j = Z;.';l Y, ¥;(x,)/(mn) is the mean of the
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Fig. 1. Forecast of the Lorenz 96 systems for 900 steps by AR(1) (pink dashed curves), DMD (brown dashed curves), HODMD (yellow dashed curves) and PP-GP (blue dashed
curve). The 95% predictive interval by PP-GP is graphed as blue shaded area. The blue dashed curves (PP-GP) and black curves (held-out truth) overlap for around the first 500

held-out time steps.

observations in the training data set. An accurate method should have
small predictive error quantified by RMSE, short average length of 95%
predictive interval (L(95%)) and the proportion of the sample covered
by the 95% predictive interval (P(95%)) should be close to the 95%
nominal level.

5.1. Lorenz 96 system

We first discuss the Lorenz 96 system for modeling the atmospheric
quantities at equally spaced locations along a cycle [35]:

dy;@)

dt
for j =1,...,m, where m = 40 and F = 8 are typically used for testing.
Here f;(x;) = (v;41(®) — y;20®)y;_1 (1) — y;(®), where the 4 dimensional
input is X, = {y;_(1,y;_1(0,¥;®), y;:1 )} The Lorenz 96 system is
often used for demonstrating the effectiveness of nonlinear filtering
approaches, such as ensemble Kalman filter in data assimilation [75],
where the function f;(-) is typically assumed to be known. Here we
assume the underlying dynamics from f;(-) is unknown.

We test a few methods and compare their performance on uncer-
tainty quantification. We assume both the derivative and output values
are available. The data are obtained by the Runge Kutta method of
order 4 with step size A = 0.01 for 1000 steps. The initial values of
the states are sampled from zero mean multivariate normal distribution
where covariance matrix is sampled from a Wishart distribution with
the scale matrix being identity and m degrees of freedom [76]. Any
method can use the mn = 4000 observations from the first » = 100
time points as training observations, whereas the rest of the 36,000
observations at later »* = 900 time points are held out as test data.
For DMD and HODMD, we try both the observed output values and
derivatives for forecasting. Since both ways do not work well, we only
present results based on the observed output values. When constructing
the data matrices for HODMD, 6 observed snapshots (g 6) are
concatenated and 3 time points are skipped in the augmented data
(4t = 3). For PP-GP, we uniformly subsample ,,;,,, = 500 observations
from 4000 observations of derivatives in the training time period to es-
timate the parameters and construct predictive distributions in Eq. (8),
because of the high computational cost when » is large. We use the
default product Matérn covariance function with roughness parameter
being 2.5 in PP-GP. As PP-GP can be considered as an extended version
of DMD on projecting the data onto the kernel space discussed in

(35)

=D =y, 2@y -y, + F,

Table 2
Forecast accuracy and uncertainty assessment on the held-out data. The standard
deviation is 3.54 and 3.62 for the 500-step test data and 900-step test data, respectively.

500-step forecast RMSE P(95%) L(95%)
AR(1) 4.60 69.8% 10.8
DMD 4.51 91.6% 20.2
HODMD 4.24 98.8% 39.4
PP-GP 0.0126 93.9% 0.0352
900-step forecast RMSE P(O95%) L(95%)
AR(1) 4.63 75.4% 12.6
DMD 4.55 93.5% 21.9
HODMD 4.37 99.3% 43.6
PP-GP 1.52 94.6% 2.64

Section 3.3, we do not include any other EDMD approach. The range
parameters of the kernel in PP-GP are estimated by the default marginal
posterior mode estimation [56], which is more flexible than assuming
fixed nonlinear basis function in EDMD.

Fig. 1 gives the 900-step forecast by AR(1), DMD, HODMD and
PP-GP for the 10th 20th, 30th and 40th states. The uncertainty of the
forecast by PP-GP is graphed as the blue shared area in all plots.
With the default kernel function and estimation [56], the forecast of
PP-GP is reasonably accurate for the first 500 time steps and 95%
predictive interval by PP-GP (graphed as the blued shaded area) is
almost indistinguishable in this time domain. As the average Lyapunov
time for our simulation is around 1.58, the PP-GP can make precise
forecast for more than 3 Lyapunov time. The 95% predictive interval
becomes noticeably wider at later time steps, and simultaneously, the
difference between PP-GP and held-out truth becomes large. The inter-
nal uncertainty assessment quantified by the 95% predictive interval of
PP-GP provides a time range of reliable forecasts without knowing the
held-out truth. Furthermore, Fig. 2 compares the truth to the forecast
by PP-GP for all states, which confirms the forecast by PP-GP for the
first 500 steps is accurate for all states.

Table 2 summarizes the performance of forecast and uncertainty
assessment by different approaches for the Lorenz 96 system. The RMSE
by the PP-GP for the first 500 steps is much smaller than the standard
deviation of the test data and the length of the 95% predictive interval
by PP-GP is also substantially smaller than the variability in the held-
out observations. Even if the 95% predictive interval by PP-GP is short,
it covers 93.9% of the observations, indicating the uncertainty of the
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PP-GP forecast
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Fig. 2. The truth, 900-step forecast by PP-GP, and their difference for the Lorenz 96 system.
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Fig. 3. The predictive standard deviation from the PP-GP model at each step and cumulative mean absolute error SE;(t*) = Zi":ﬂ 41 19(5%) = »;(s)|/(t* — n) of 900-step forecast of

state j =1 and j =21 for ¢* = 101,...,1000 and n = 100.

forecast is properly quantified. The predictive error by PP-GP becomes
larger at later steps due to the accumulation of the approximation error,
and the overall predictive error of the 900-step forecast is dominated
by the large error at later time points. Note that the length of the
95% predictive interval from PP-GP increases automatically in PP-
GP, enabling 94.6% of the held-out data to be covered by the 95%
predictive interval. In comparison, although the proportion of the
samples covered by the 95% predictive interval by DMD and HODMD
is also close to the 95% nominal level, the average length of intervals
is substantially larger, as the underlying dynamics cannot be written as
a linear combination of previous outputs. It is worth mentioning that
the uncertainty of DMD and HODMD is affected by the selected rank to
represent the data, here chosen to be the smallest value such that the
summation of the eigenvalues explain at least 99% of the variability.
A principled way to model the noise and select the rank may improve
the uncertainty assessment of these methods.

Fig. 3 presents the predictive standard deviation of PP-GP and the
corresponding cumulative mean absolute error between the true values
and PP-GP forecasts, for the 1st and 21st states. In the initial 500-step
forecasts, both the standard deviation computed by Eq. (8) and the
cumulative mean absolute error are relatively small. As the number of
forecast steps increases, the cumulative mean absolute error increases.
The 95% predictive interval in Fig. 1 can be used to quantify the time
when the forecast becomes inaccurate.

The uncertainty assessment by the PP-GP model is reasonably ac-
curate as we convert the challenging problem of forecasting chaotic
systems to the problem of predicting the one-step-ahead function in
a 4-dimensional input space. In practice, reducing the inputs to a
low-dimensional space is helpful for producing reliable forecasts and
uncertainty assessments.

5.2. Time-dependent Green’s function

In the second example, we apply the data-driven approach to fore-
cast the simulation of the nonequilibrium dynamics of interacting
electrons in materials exposed to intense time-varying electric fields,
which is one of the most challenging problems in condensed matter
physics. Modeling nonequilibrium dynamics from the basic principles
of quantum mechanics is exceptionally challenging in computation, and
has only been extended to the ab initio simulation of real materials
in the last decade through the development of a new time-domain
approach based on a formalism of Keldysh, Kadanoff and Baym [40-42]
for the dynamics of the nonequilibrium Green’s function [43,44,77].
We refer to the new computational approach as the time-dependent
adiabatic GW (TD-aGW) method, where G stands for the interacting
single-particle Green’s function and W stands for the screened Coulomb
interaction. Details about our implementation of the method can be
found in [44], which is built on approximations developed in [43]. In
principal, the TD-aGW approach gives quantitatively accurate descrip-
tions of materials’ response to electric fields, allowing for the simulation
of experiments with femtosecond resolution and the development of
new classes of quantum materials whose properties can be switched
with laser pulses [45,47,78]. However, the scaling with respect to the
size of the problem is computationally prohibitive, and thus, the TD-
aGW method is currently limited to systems containing a few atoms
and for short timescales.

In the context of many-body perturbation theory and second quan-
tization, the nonequilibrium Green’s function is a two-point correlation
function comprised of the creation and annihilation field operators
that increase and decrease the number of particles in a given state
respectively. In general, it is a function of two time variables, but
following the work in [43,44], the change in the energy of an electron
due interactions with its environment (i.e. the electron self energy) can
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be approximated as the equilibrium self energy plus a static nonequi-
librium contribution. In this approximation, the key equation that we
solve in TD-aGW is an equation of motion for a matrix of single-particle
density p(r) with index (m;m,,k)

in2 L ON I
where H(?) is a matrix of the Hamiltonian of the system having the same
size of p(z), the square bracket denotes the commutator of two matrices
A and B such that [A,B] = AB — BA, and 7 is the Planck constant.
The particle density matrix is written in a basis of electron quantum
states with a band index m and a wave vector (or crystal momentum)
k. Hence, the matrix element p,, ,,, k(t) encodes the entanglement of a
state (m;,k) with another state (m,, k). The Hamiltonian of the system
is calculated as

pmlmz,k(t) = (36)

H(t) = Hy — eE(r) - v + ZW + 53(1). 37

Here, H, is the system’s mean-field Hamiltonian at equilibrium; X%
is the electron self-energy at equilibrium computed within the GW
approximation; and 6 X is the nonequilibrium correction to the electron
self-energy. eE(r) - r describes the coupling of the system with the
external electric field, such that E(r) is a spatially-uniform, time-varying
electric field; r is the position operator in quantum mechanics; and
e is the fundamental charge of the electron. H, and X%" describe
equilibrium properties and thus have no time-dependence. §X(¢) is a
functional of p(?):

m]mq K= 2 Pmymy k| w(OW, mym mzm’ k-k’» (38)
m] m K
where Wm,m o, k! 18 the equilibrium screened Coulomb interaction

my, m)

computed in the random- phase approximation (RPA); m,, m], A

are band indices, and k and k' are vectors in reciprocal space.

We use monolayer MoS,—a material where the electron self energy
is known to be large [79-83]-as our test system. In order to perform
the time evolution in Eq. (36), we first need to compute the equilibrium
solution before the electric field is turned on to obtain p(r = 0), as well
as the time-independent matrices H, and X°" in Eq. (36) and W in
Eq. (38). We do this within the one-shot GW approximation [37,38,84]
using the following calculation parameters. Our basis includes 4 bands
(the top 2 valence bands and the bottom 2 conduction bands) and a
uniform grid of 36 x 36 x 1 k-points in reciprocal space. Density func-
tional theory (DFT) calculations with spin-orbit coupling are performed
using the Quantum Espresso package [85]. We use norm-conserving
fully relativistic PBE pseudopotentials from the SG15 ONCV potential
library [86] and a plane wave cutoff energy of 80 Ry. A GW plus Bethe
Salpeter equation (BSE) calculation is done as a one-shot calculation
on top DFT using the BerkeleyGW package [84]. A dielectric cutoff
of 10 Ry and 6000 bands are used in the GW and BSE calculations.
We use the results of the equilibrium calculations to setup Eq. (36) at
time t=0, and then we propagate the equation in time with an external
electric field that mimics a laser pulse polarized along the r; direction.
The field is E, () = Asin (%’) sin (wt), where the constants (in Ryd)
A = 0.006 is the amplitude of the electric field, ® = 0.022 is the
frequency of the light, and T = 160 fs is the duration of the light pulse,
all in Rydberg atomic units. E, ,® =0 and E, L@ = 0. The electric
field parameters are values con315tent with typlcal experimental setups
in high harmonic generation (HHG) experiments [87]. The 4th order
Runge-Kutta method is then used to update p,, ymy k(D) and 62 (¢) at each
time step, and the matrix element p,, ,, (?) is saved for the single k-
point, k = 0, to be used as the test and training data for our data-driven
models.

Our focus in this example is on forecasting the real part of the
density matrix from Eq. (36), which in turn is related to the two-
time Green’s function through the Generalized Kadanoff-Baym ansatz
(GKBA) [42,88]. Each snapshot is a 16-dimensional vector: y, =
Vec(py (1)), where p (¢) is a 4 x 4 matrix with the (m,, m,)th entry being
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Table 3

Forecast and uncertainty assessment for the density matrix using the held-out data.
Observations at the first 2500 time steps are used to fit the model. The standard
deviation is 1.56 x 10™ and 1.48 x 10~ of the 1000-step test data and the 2000-step
test data, respectively.

1000-step forecast RMSE PO95%) L(95%)

AR(1) 6.20 x 107° 23.7% 3.97x10°¢
DMD 2.87x 1073 8.65% 2.03%x 107
HODMD 1.30 x 107 9.52% 6.56 x 1077
PP-GP 3.53x10°° 65.2% 2,98 x 1070
2000-step forecast RMSE P(95%) L(95%)

AR(1) 6.23 X 107 35.8% 5.57x 107°
DMD 2.01%x 1073 4.35% 7.29% 107
HODMD 6.22x 107 9.22% 1.94 x 107©
PP-GP 3.42x10°° 75.3% 3.97x 107°

Table 4

Forecast and uncertainty assessment of the density using the held-out data. Observations
from the first 3500-time steps are used to fit the model. The standard deviation is
1.40 x 107 and 1.06 x 10~ of the 1000-step test data and the 2000-step test data,
respectively.

1000-step forecast RMSE P(95%) L(95%)

AR(1) 1.13x 107 31.7% 7.12%x 107°
DMD 6.00 x 107¢ 15.9% 1.00 x 1076
HODMD 9.29 x 107° 29.6% 1.05x 10-°
PP-GP 3.93x10°° 81.7% 1.89 x 1073
2000-step forecast RMSE P(95%) L(95%)

AR(1) 1.50 x 107> 28.5% 9.93x 107°
DMD 8.83x 107° 16.3% 298 x 107°
HODMD 224%x 1073 20.2% 1.62 x 1076
PP-GP 9.13x 107° 88.8% 4.36x 1073

J— for my = 1,...,4 and m, = 1,...,4, and k = 0. To solve

Eq. (36), one needs to compute E(¢), which is a known analytic function,
and §X(t), which depends on the density matrix Py k—k! () At other
reciprocal lattice vectors k # 0. To evaluate the performance of the
data-driven approaches, we only utilize the observations y, to construct
the model, which only contains the local information at k = 0, whereas
the external field E(¢) and interactions terms §X(¢) from other lesser
Green’s function G i (D) are not used. For all methods, we test two
scenarios with trammg time steps being 2500 and 3500, respectively.
For AR(1) and DMD, all training data are used. For HODMD, we use the
same setting as the previous example with ¢ = 6 and 4t = 3. For PP-GP,
we use an isotropic kernel and 800 pairs of observations, uniformly
sampled from the training data for constructing the model, and the
output vector of m = m;m, = 16 dimensions from the previous time
point is used as the input for predicting the one-step-ahead transition
function.

Table 3 and Table 4 provide the performance of each method when
using observations from the first 2500 time steps and first 3500 time
step as the training data, respectively. The PP-GP has the smallest
RMSE for 2000-step forecast among three approaches in both scenarios,
smallest RMSE for 1000-step forecast in the first scenario.

The misspecification of the input variables, however, degrades the
accuracy of predictions and uncertainty quantification. The predictive
error differs when using two output regimes as the training data, as
the trend is different, and neither represents the trend in the held-
out test data. The coverage of held-out data by the 95% predictive
interval from the PP-GP is the highest among all methods, and having
observations from a longer training time period seems to improve the
overall coverage of the held-out data.

Fig. 4 and Fig. 5 display the 1000-step forecast by AR(1), DMD,
HODMD and PP-GP model using 2500 and 3500 timesteps as training
data, respectively. The PP-GP model can make accurate prediction for
the first few cycles with short predictive intervals. The prediction error
accumulates, and the model automatically detects the inaccuracy of
the prediction, leading to larger 95% predictive intervals at later time
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Fig. 4. Forecast of two time Green’s function for 1000 steps by AR(1) (orange dashed curves), DMD (brown dashed curves), HODMD (yellow dashed curves) and PP-GP (blue
dashed curve). 2500-time steps are used as training data. The 95% predictive interval by PP-GP is graphed as blue shaded area.

— Truth -- AR(1) -- DMD HODMD -- PP-GP
~1x10° o R AR A
g M
131044 7 5 00 &0 : 1x107%]  -ox10° :
3500 4500 : 3500 4500 :
. step
6x107° 1 e 7x107° 1
2 2
S i
w . 7))
3x107°1 : —2x107°1 : \
CANANNNNSTARAARAAE $ VMY
~1x10° 1, . : . : ~1x107 1 . : . :
2500 3000 3500 4000 4500 2500 3000 3500 4000 4500
step step
7x107° 1
2 2
S S
-84 —8x107 : 124 —1x1074 :
1x10 3500 4500 5x10 3500 4500
step step
® ~1x107°1 ® 8x107"%1
S S
w 7]
~1x10781 -3x10721
-8x10° 1, . : . : ~7x107"2 1, : ; : :
2500 3000 3500 4000 4500 2500 3000 3500 4000 4500

step step

Fig. 5. Forecast of two time Green’s function for 1000 steps by AR(1) (orange dashed curves), DMD (brown dashed curves), HODMD (yellow dashed curves) and PP-GP (blue
dashed curve). 3500-time steps are used as training data. The 95% predictive interval by PP-GP is graphed as blue shaded area.
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points. Note that the scale of the held-out truth is decreasing and the
overall trend is not captured by any method. This is because for all
four methods, some inputs such as H(¢) and p(7) at k # 0, are assumed
to be unknown. The large predictive intervals from PP-GP indicate
substantial differences between the output in the training and forecast
period, signaling more information is required to obtain an accurate
prediction.

6. Concluding remarks

Quantifying the uncertainty for forecast and extrapolation by data-
driven models is a challenging task that was not well-studied. We
showed popular approaches for representing dynamical systems, such
as the dynamic mode decomposition, can be written as the max-
imum likelihood estimator of a linear mapping matrix in a linear
state space model, and this generative model allows the uncertainty
to be quantified of forecast rigorously. We also extended the parallel
partial Gaussian process approach to emulate the one-step-ahead tran-
sition function that links observations at two nearby time frames, and
propagated the uncertainty through posterior sampling for forecasting
a longer time. We numerically compared different approaches with
correctly specified inputs and misspecified inputs in two examples. We
discussed scenarios where the uncertainty can be reliably quantified,
and analyzed the factors that can degrade the accuracy of uncertainty
assessment.

There is a wide range of open issues to obtain reliable uncertainty
quantification for probabilistic forecast of nonlinear dynamical systems.
First, restrictive model assumptions, such as equal variance between
output coordinates, subjective choice of latent dimensions and lack of
models of trends from the forecast period, can degrade the accuracy
of uncertainty assessment for forecasting. Having a probabilistic gen-
erative model allows one to better understand the model assumptions
and hence select data-driven models more suitable for real-world tasks.
Second, the kernel representation of vector functions, such as the
PP-GP model, can capture nonlinear behaviors of dynamical systems
through modeling the one-step-ahead transition function, whereas the
Markov assumption of the model can be restrictive. Having inputs
from longer time lag period may improve the model performance.
Furthermore, when the dimension of input is large, we need to develop
a computationally scalable way to reduce the input dimension and
form a suitable distance metric between the reduced inputs. Finally,
filtering approaches may be used along with the data-driven predictions
of one-step-ahead transition function, when the observations contain
nonnegligible noises.
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Appendix. Estimation of range and nugget parameters in PP-GP

The range and nugget parameters of PP-GP model can be estimated
from mode estimator, such as the maximum likelihood estimator (MLE)
or maximum marginal posterior estimator (MMPE). The MLE can be
unstable for estimating the these parameters when the sample size is
small. Transforming the range parameters to define the inverse range
parameter f;, = 1/y,, we use the MMPE for estimating the inverse range
and nugget parameters [33]:

(B.#) = argmaxg,, {log(L(B,n) + log(x(B,m)} . (39

Here the logarithm of the marginal likelihood after integrating out the
mean and variance is

m

- . -1

log(£(B.m) = ¢; - 5 log [R| - ' log 1K1, | - (" - ) X tog(s?),
j=1

(40)

where SI? =(y; - 4;1,)"K~!(y; - ;1,) and ¢, is a normalizing constant
not related to (y,#). The jointly robust prior [90] is used as a default
choice for prior in the RobustGaSP package [56]

5 J;
log(x(B,m) = c; + alog( Y’ C,p +m) — b (2 Ch+ n> , (41)
=1 =1
where ¢, is a normalizing constant not relevant to (8, ) and the default
choice of prior parameters in the RobustGaSP package is ¢ = 0.2,
b=n"Y%a+p)and C, = n_]//3|x;""x —x;"i"l with x* and x;"i" being
the largest and lowest input values in the /th coordinate, respectively.
For deterministic output values, including the cases where numerical
error of the simulations is negligible, the nugget n may be set to be
zero.

We transform the estimated inverse range parameters back to get
% =1/p, for I = 1,..., j and compute the predictive distribution after
integrating the m mean parameters and m variance parameters

p (yj (Xr*) | X5stt*5f’sﬁ)
= / Py (%) | X, Y, X, 7,70, p, 6%) 7 (p, 07)d pd o2,

where the reference prior of mean and variance parameters follows
7(u,62) 1/]'[;7':1 crj?, and p(y; (xp) | X, Y. X, 7.6, . 62) is the con-
ditional distribution of the output at x,. at coordinate j. With the
assumption that the outputs are independent across different coor-
dinates, the predictive distribution p (y/- (%) | X, Y, X, 7,7) follows a
Student’s distribution in Eq. (8).
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