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Abstract Elastic continuum mechanical models are widely used to compute deformations due to pressure
changes in buried cavities, such as magma reservoirs. In general, analytical models are fast but can be inaccurate
as they do not correctly satisfy boundary conditions for many geometries, while numerical models are slow and
may require specialized expertise and software. To overcome these limitations, we trained supervised machine
learning emulators (model surrogates) based on parallel partial Gaussian processes which predict the output of a
finite element numerical model with high fidelity but >1,000× greater computational efficiency. The emulators
are based on generalized nondimensional forms of governing equations for finite non‐dipping spheroidal
cavities in elastic halfspaces. Either cavity volume change or uniform pressure change boundary conditions can
be specified, and the models predict both surface displacements and cavity (pore) compressibility. Because of
their computational efficiency, using the emulators as numerical model surrogates can greatly accelerate data
inversion algorithms such as those employing Bayesian Markov chain Monte Carlo sampling. The emulators
also permit a comprehensive evaluation of how displacements and cavity compressibility vary with geometry
and material properties, revealing the limitations of analytical models. Our open‐source emulator code can be
utilized without finite element software, is suitable for a wide range of cavity geometries and depths, includes an
estimate of uncertainties associated with emulation, and can be used to train new emulators for different source
geometries.

Plain Language Summary Mathematical models are widely used to calculate how an elastic
material deforms due to pressure changes in a buried spheroidal cavity. These models have wide application to
fields such as volcanology, where they can be used to understand the way the surface of the Earth deforms due to
changes in buried magma reservoirs. Some models use relatively straightforward mathematical relations; these
can generally make predictions quickly but can become highly inaccurate for some cavity geometries. Other
models require sophisticated numerical techniques implemented in computers, but these are generally slow to
run and may require specialized expertise or software. Here we use machine learning techniques to train a
surrogate model (emulator) based on thousands of numerical computer simulations that can overcome these
limitations. The emulator makes predictions that are both fast and accurate and can be applied to a wide range of
problems.

1. Introduction
A uniform pressure change applied to the walls of a cavity causes deformation of the surrounding medium, which
may be computed using a variety of continuum mechanical models. Models of spheroidal cavities in elastic
media, in particular, are commonly used throughout the sciences as first‐order representations of more complex
structures. In volcanology, such models have been used for more than 60 years to relate displacements measured
at the Earth's surface to volume and pressure changes in magma reservoirs (e.g., Mogi, 1958; Segall, 2010; Yang
et al., 1988) and to relate reservoir and magma volume changes to one another through the compressibility of the
reservoir (e.g., Blake, 1981; Johnson, 1992). Although these models greatly simplify Earth structure, more
complex models are often not warranted in practice due in part to observational limitations.

No analytical model can accurately predict deformation induced by pressure changes in a finite spheroidal cavity
with arbitrary depth and geometry in an elastic halfspace. Exact solutions for halfspace surface displacements
exist only for spheres and horizontal “penny‐shaped” circular cracks (equivalent to a spheroid as the vertical
dimension goes to zero) and require numerical implementation (Fialko et al., 2001; Zhong et al., 2019). Other
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solutions for surface displacements are based on approximations which violate the uniform pressure boundary
condition as the ratio of cavity dimension to depth – which we refer to as shallowness – increases (Davis, 1986;
McTigue, 1987; Yang et al., 1988). Approximations for cavity volume change or cavity compressibility (also
called pore compressibility) are similarly limited (Amoruso & Crescentini, 2009; Cervelli, 2013;
Zimmerman, 1985).

Numerical techniques can be used to solve the equations governing linear elasticity to a high degree of accuracy
but generally suffer from much higher computational cost, and often a reliance on complex and/or expensive
computer code. Approaches have been developed for improving the efficiency of numerical approaches (Charco
& Galán Del Sastre, 2014; Masterlark et al., 2012; Ronchin et al., 2017; Trasatti et al., 2008), but these are
generally suitable only for limited geometries, lack generality, or result in only modest increases in efficiency.
This strongly limits the use of numerical models in many kinds of inverse problems such as Bayesian Markov
chain Monte Carlo procedures that seek, through thousands to millions of model simulations, to fully characterize
the uncertainties associated with model parameter estimation.

Machine learning approaches are only beginning to be applied to these problems in geophysics and Earth sci-
ences, but show promise for overcoming some of the aforementioned challenges. Emulators (also called surrogate
models, metamodels, or approximation models) are efficient model proxies (Gramacy, 2020; Santner et al., 2003).
Emulators use machine learning techniques to predict the outputs of numerical models at a lower computational
cost in exchange for some reduction in model fidelity (Bayarri et al., 2007; Kovachki et al., 2023). The goal is to
obtain a small reduction in fidelity and a large computational acceleration. In previous crustal deformation
studies, researchers have accelerated inverse problems by emulating data‐model misfit functions (Zhang, 2016)
and used artificial neural networks to emulate the output of a numerical solution of the relevant governing
equations (DeVries et al., 2017) or to directly ‘learn’ the relevant governing equations themselves (Okazaki
et al., 2022). While these approaches have many advantages, they are generally either inflexible – requiring
retraining for each new data set, as when emulating a residual (data‐model misfit) function – require large
amounts of training data, cannot be used independently of the original computer model, or are computationally
expensive.

Emulators developed in a probabilistic statistical framework based on Gaussian processes (GPs) may overcome
these limitations for certain classes of problems (Sacks et al., 1989). GP emulators (Kriging emulators) can be
efficiently trained using only a small number of simulation runs, which is often not the case for artificial neural
networks. Furthermore, unlike neural networks or polynomial chaos expansion (PCE) techniques – which
approximate simulator outputs by a series of multivariate polynomials (Ghanem & Spanos, 2003; Xiu &
Karniadakis, 2003) – the probabilistic model of a GP readily yields prediction uncertainty assessments.
Comparisons between GPs, neural networks, and PCEs can be found in Neal (2012), Lee et al. (2018), and
Owen et al. (2017).

Previously, Anderson et al. (2019) demonstrated that GP emulators could be used to efficiently and accurately
predict surface displacements due to pressure changes in an elastic spheroidal cavity using limited training data,
but the model was specialized for data inversion in the context of a particular volcanological problem and lacked
generality. Here we develop general and efficient GP emulators based on numerical model simulations which
yield scalar cavity compressibility and vector surface displacements for a wide range of spheroid geometry and
material properties. These emulators are both fast and accurate, can be applied to a wide range of problem without
further training, and require only limited software at runtime.

2. Methods
2.1. Physics of the Problem

We restrict our focus to vertical, axially‐symmetric spheroidal cavities embedded in uniform linear elastic half‐
spaces (Figure 1), and consider displacements only on the free surface. Cavity geometries range from thin
horizontal cracks to vertical pipes. We define the spheroid's vertical semi‐axis (axis of rotation) length as a,
horizontal semi‐axis length as b, and centroid depth as d (Figure 1a; Table 1). The elastic medium is parame-
terized entirely by its shear modulus μ and Poisson's ratio ν.
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A uniform pressure change Δp applied to the cavity walls produces a cavity volume change ΔV which is pro-
portional to the product of the cavity volume V and the applied pressure change. The constant of proportionality is
defined as the cavity (pore) compressibility β:

β ≡
1
V
ΔV
Δp

. (1)

In a halfspace, ΔV is an unknown function of source geometry (including depth) and material properties.
However, dimensional analysis and the physics of the problem suggest that β can be written as

β =
1
μ
fc(

a
b
,
a
d
,ν), (2)

where fc is an unknown, nonlinear, scalar‐output, nondimensional function, and a/b and a/d are nondimensional
parameter groups which fully define, respectively, the shape of the cavity (its aspect ratio) and its relative depth
(“shallowness”). Other groupings of dimensional parameters a, b, and d are also possible (e.g., a/d and b/d for a
more consistent nondimensionalization) but we found in practice that these generally improve emulator per-
formance. Note that since β is an intrinsic property of the cavity it is independent of applied pressure change. Use
of nondimensional forms here and elsewhere reduces the number of free parameters and improves emulator
performance.

Displacements u on the surface of the halfspace are a function of source geometry, material properties, and radial
observation (distance) vector x. Dimensional analysis and the physics of the problem suggest that surface

Figure 1. (a) Spheroidal cavity geometry used in this study. The vertical (polar) semi‐axis radius is a and the horizontal
(equatorial) semi‐axis radius is (b) (Spheroids are symmetric about their vertical axes; for the more general ellipsoidal case –
not considered here – there are two independent horizontal axes). (b) 100 typical training geometries for d = 1.
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displacements can be written as the product of linear source strength terms S
and unknown, nonlinear, nondimensional, vector‐output functions fj (which
control the shape of the displacement field) as

u(i)j (
x
d
) = S(i)f (i)j (

a
b
,
a
d
,ν;
x
d
), (3)

where the semicolon is used to separate model parameters from observation
coordinates, subscript j = r, z indicates radial and vertical displacements,
respectively, and superscript i = p, v indicates pressure and volume change
forms, respectively, as.

S(v) =
ΔV
d2
, (4)

S( p) =
VΔp
μd2

. (5)

The functional form of Equations 2 and 3 are verified in Appendix B.

We note several features of these expressions. Firstly, outputs are trivially
generalizable to obtain three‐dimensional surface displacements at any
observation point for a cavity at any arbitrary position. Secondly, in the
limit that d ≫ (a, b) then fj can be parameterized fully by (a/b, ν; x/d) and
simple analytical solutions are available (e.g., Segall, 2010; Segall, 2013).
Finally, functions f ( p)j and f (v)j differ only by a scaling factor, equal to the
cavity compressibility (note that S(v)/S(p) = β), which is unknown and
varies across parameter space. In the context of an inverse problem, both S
terms involve the same number of free parameters since Δp/μ can be
treated as a single parameter and V is a dependent function of a and b.
However, differences in fj can affect emulator performance, and parame-
terizing by cavity volume change or pressure change can be useful in
different situations. In this work we therefore trained separate emulators
for functions f ( p)j and f (v)j , as well as fc.

Surface stresses, strains, and tilts are not considered in this work, but we note that the latter may be easily
computed by numerically differentiating emulated vertical displacements (Anderson et al., 2019). Future code
updates may include these outputs.

2.2. Numerical (Finite Element) Solution

To train the GP emulator we computed fc and f
(i)
j (x/d) using the finite element method (FEM). The FEM is a

numerical technique for solving partial differential equations through discretization of the spatial domain and has
been applied to problems in the Earth sciences for decades (e.g., Dieterich & Decker, 1975). FEM models can
solve the equations governing linear elasticity to a nearly arbitrary accuracy, including complex geometries and
spatially‐variable material properties, but are relatively slow to run and rely on specialized software. (Boundary
element methods do not discretize the spatial domain and can be faster than FEMs, but are less flexible and still
slow enough to limit their use in inverse problems.)

In this study we utilized the commercial FEM software package COMSOL Multiphysics. We implemented a 2D
axisymmetric model of a vertical spheroid embedded in a uniform elastic halfspace with shear modulus μ and
Poisson's ratio ν (Figure A1). We assumed infinitesimal strains (linear elasticity). The FEM is parameterized
using cavity geometry and material properties as follows:

[uj (x), ΔV] = FEM(a, b, d, Δp, ν, μ; x). (6)

Table 1
Common Symbols Used Throughout

Symbol Meaning

Geometry, material properties, and physics

a, b Cavity dimensions (semimajor axis,
semiminor axis)

d Cavity centroid depth

V Cavity volume

Δp Uniform pressure change applied to
cavity walls

ΔV Cavity volume change

μ Elastic medium shear modulus

ν Elastic medium Poisson's ratio

β Cavity compressibility

ur, uz Surface displacements (horizontal
[radial], vertical)

Functional form

y, ŷ Model outputs (numerical, emulated)

g Transformed model output

f, f̂ Model functions (numerical, emulated)

m, m* Model parameter vectors (training set,
others)

x, x* Observation distance vector on surface
(training set, others)

Ω, Ωx Parameter space; observation
coordinate space

n, n* Number of parameter sets (training
points, test points)

k Number of observation points in x

w Number of model parameters in m
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For all FEMmodels we fixed d = 1, which allowed us to obtain a and b from nondimensional groups a/b and a/d.
Primary domain height and width were set to 100 × max{a, b, d}, to which we added infinite element domains
(which stretch coordinate axes to approximate an infinitely large model domain) extending to 120 ×max{a, b, d}.
Shear modulus was fixed to an arbitrary value μ*. For boundary conditions we applied a uniform test pressure of
Δp* to the walls of the cavity, and enforced a stress‐free halfspace surface and zero displacements on the outer
domain boundaries. We experimented to find mesh settings that were suitable for the wide range of cavity ge-
ometries employed in this study. The elastic domain was discretized with an unstructured triangular mesh with
reduced element size on the free surface and the cavity boundary; rectangular elements were used in the infinite
domains. We used quadratic elements throughout. The geometry was remeshed for each set of parameters. We
verified FEM output against other models (Appendix A).

For each set of parameters, the FEM directly yielded displacements uj (x) on the surface of the elastic halfspace.
We computed the cavity volume change ΔV by integrating boundary‐normal cavity wall displacements using
∫s (u ⋅ n̂) dswhere n̂ is the surface normal vector, and computed β using Equation 1. Finally we computed the value
of functions fc and f

(i)
j (x/d) for each set of model parameters using Equations 2 and 3 with μ*, Δp*, and ΔV. Note

that parameter sets are independent so these FEM calculations are trivially parallelizable.

2.3. Gaussian Process Emulation

Building an emulator typically begins by generating a limited set of training parameters (also called ‘design’
parameters), at which a computer model f is exercised. Denote y = f(m, x) where y = (y1,y2,…,yk)∈Rk is a
vector output of function (computer model) f at spatial or temporal coordinates x= {x1, x2, …, xk}∈Ωxwith input
model parameter vector m = {m1, m2, …, mw} ∈ Ω (note that x is omitted for functions with scalar input and
output.) Given training data, emulators represent f by a new, more computationally‐efficient mapping between
inputs and outputs ŷ = f̂ (m,x) and can then be used to predict output at other, unexplored, inputs m* ∈ Ω and
x* ∈ Ωx (Figure 2). Then, y = ŷ + ϵ, where ϵ is the error introduced by the emulator.

Our goal in this work is to emulate the nonlinear scalar‐output function fc (Equation 2) and nonlinear vector‐
output functions f (i)j (x/d) (Equation 3) using output from a limited number of FEM simulations. Given

emulated functions f̂c and f̂j
(i)
, compressibility β̂ and surface displacements ûmay be trivially computed by scaling

using linear terms in Equations 2 and 3, respectively.

In this study we used the GP emulator, which treats computer model outputs as a Gaussian process (Rasmussen &
Williams, 2006). In this approach a kernel (correlation) function models the relation between inputs and outputs
as a function of the distances between the inputs; correlations are generally strongest for more similar inputs. GPs

Figure 2. Simple demonstration of the Gaussian Process emulator in Gu (2019) for an example function with scalar output.
(a) A computationally expensive numerical model is run at just five input points (red dots) and the outputs used to train a GP
emulator. The emulator (dashed line) only roughly approximates the true numerical function (solid black line), but
recognizes this uncertainty (gray shaded region, showing 95% credible [confidence] intervals). (b) Adding just four training
points greatly increases emulator fidelity and reduces uncertainty.
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are parameterized by unknown mean, variance, and correlation parameters, which are estimated using training
data. Given the kernel function, new outputs may be predicted using the predictive mean of the GP. An important
advantage of GP emulators is that an assessment of the uncertainty associated with any prediction can also be
obtained using a closed‐form expression for the predictive variance.

GP emulators have been widely used to emulate scalar‐output computer models (Bayarri et al., 2007, 2009; Conti
& O’Hagan, 2010; Gu & Berger, 2016; Higdon et al., 2008; Sacks et al., 1989; Spiller et al., 2014). To emulate
scalar‐output function fc, we use the GP approach with robust estimation of the kernel parameters (Gu
et al., 2018). Emulating vector‐output function f (i)j is more challenging. While some approaches are suitable for
emulating one‐dimensional vectors with a small number of elements k (Conti & O’Hagan, 2010; Farah
et al., 2014; Overstall & Woods, 2016), emulating large k is both theoretically and computationally challenging.
To overcome these challenges we applied the parallel partial Gaussian process (PP‐GP) emulator (Gu &
Berger, 2016). The PP‐GP utilizes independent emulators for each point in the observation vector x; these em-
ulators have independent means and variances, but share a correlation function between physical inputs. This
approach substantially reduces computational expense while producing high‐fidelity prediction, and is particu-
larly suitable for models with high‐dimensional and spatially heterogeneous vector output. Thus, the PP‐GP
approach makes possible high‐fidelity predictions of computer model output at a large number of spatial co-
ordinates and also provides a closed‐form expression for uncertainty assessment. Here we use the MATLAB
ROBUSTGASP package (Gu, 2019) to implement both the robust GP emulator for scalar‐valued output and the PP‐
GP emulator for vector output.

We trained several emulators (Table 2), including some with restricted geometries or material properties in order
to improve speed and fidelity at the cost of generality. The performance of the emulators depends on model
parameterization, the dimensions of parameter space Ω, the number of training observations, observation co-
ordinates, and the kernel function of the emulator. In this study, several nondimensional parameterizations of
Equations 2 and 3 are possible, but we found thatm= [a/d, ν] offers good performance for spherical cavities, and
m = [log10(a/b), a/d, b/d, ν] offers good performance for spheroidal cavities. (Although b/d is dependent on a/b
and a/d so does not mathematically add any new information, we found that including it can improve
performance.)

Unless otherwise fixed, we used ν ∈ [0.05, 0.45] spanning most common materials, a/b ∈ [1/50, 50] for highly
prolate to highly oblate geometries, and a/d ∈ [0.005, 0.95] for shallow and deep cavities. We also placed limits
on dependent parameter b/d in some cases in order to exclude extremely shallow and oblate geometries which are
uncommon for most problems.

For each emulator we chose a set of n space‐filling training points (parameter sets) and another set of n* points for
testing it, both in Ω. Generally, emulator accuracy can be improved by increasing n, but computational expense
increases cubically with n unless approximations are made (e.g., Snelson & Ghahramani, 2005). In our appli-
cation, n is of order 102 to 103 (Table 2). We separately generated parameter sets for each emulator using Sobol
sequences (Sobol’, 1967), which yield sampling points that efficiently fill parameter space. In some cases, to
improve emulator performance in the oblate regime we increased training point density proportional to the ellipse
flattening parameter 1 − b/a. Example geometries are shown in Figure 1b.

We ran the FEM for all training and testing points and output to disk. For simplicity we trained all displacement
emulators using the same observation coordinates x/d ∈ [0.01, 30] with k= 1,000 points. We used an observation
vector in which point spacing is high close to x = 0 and increases toward the maximum r. Note that GP emulators
are not suitable for fr(x/d = 0) since the output is always exactly zero; we therefore used a minimum x/d of 0.01
and extrapolate to x/d = 0 as needed during emulation.

Performing transformations g on numerical model output y before emulation can improve performance (Bayarri
et al., 2009). After experimentation, we emulated g( y) = log(y + C) where for fc we use C = 0 and for fj we use
C = y −min( y) + Ajmean[y −min( y)] where Aj is a scaling factor, set here at Ar = 1 and Az = 0.1. These
transformations are well‐defined for y = 0 and improve emulator performance by “spreading out” small values of
y and de‐emphasizing large values (Bayarri et al., 2009). The emulator's predictive median and quantiles (i.e.,
emulator predictions) are obtained by inverse transformation y = exp(g) − C. We also experimented with sub-
tracting the predictions of approximate analytical models from the FEM output before emulation, but decided that
the improvement did not justify the additional complexity.
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We used the ROBUSTGASP package to train the GP emulators (Gu, 2019). For all emulators we used a product
Matérn covariance function with roughness parameter 2.5, which has been empirically found to be accurate for a
variety of applications (Gu et al., 2018) and is the default covariance function of the ROBUSTGASP package. Range
parameters of the kernel were estimated by the marginal posterior mode with the jointly robust prior (Gu, 2018).
We found that in most cases including a nugget parameter (Andrianakis & Challenor, 2012) in the covariance
function increased training time and complexity without meaningfully improving performance, so we did not
include one. The range parameters were optimized using the limited memory BFGS algorithm (Liu & Noce-
dal, 1989) handled within the ROBUSTGASP code. Numerically optimizing PP‐GP covariance parameters (training
the emulator) requiresO(n3) +O(kn2) operations per iteration. Training the emulators in this study required tens
of seconds to minutes on a modern desktop computer to yield high predictive accuracy. After training, however,
using the emulators to make predictions only requires a fraction of a second. The computational cost of exercising
the emulators is discussed in Section 3.3.

The trained emulators can only directly predict output at the observation points used in the training data, so we
compute predictions at other coordinates x* ∉ x using linear interpolation. Using a large number of observation
points k reduces interpolation error, and computational cost increases only linearly with k (Section 3.3). Also,
because we found that emulator performance is usually degraded near the edges of parameter space, we generally

Table 2
Emulator Performance

Geometry Set n Speed Func NRMSE mARE maxARE RLCI(95%) PCI(95%)
(Sims/s) (%) (%) (%) (%) (%)

Nondimensional cavity compressibility

C1 Sphere s1 500 2,800 f̂ c 1.4 × 10−4 6.8 × 10−5 1.2 × 10−3 1.5 × 10−3 100

C2 Spheroid (ν fixed) s2 909 2,300 f̂ c 4.3 × 10−4 8.3 × 10−3 0.29 6.5 × 10−2 97.0

C3 Spheroid s3 989 1,900 f̂ c 2.1 × 10−3 3.1 × 10−2 0.64 0.19 95.2

Nondimensional surface displacements

D1 Sphere s1 500 1,400 f̂ (v)r 4.8 × 10−5 1.3 × 10−5 7.0 × 10−3 1.1 × 10−4 97.0

f̂ (v)z 2.5 × 10−5 4.9 × 10−6 1.5 × 10−3 5.4 × 10−5 84.7

f̂ ( p)r 5.7 × 10−5 1.1 × 10−5 7.2 × 10−3 5.6 × 10−5 75.1

f̂ ( p)z 2.9 × 10−5 5.2 × 10−6 1.9 × 10−3 4.6 × 10−5 63.7

D2 Spheroid (ν fixed) s2 690 1,300 f̂ (v)r 1.0 × 10−2 2.4 × 10−3 0.46 3.7 × 10−2 96.1

f̂ (v)z 1.0 × 10−2 2.3 × 10−3 1.2 1.6 × 10−2 94.7

f̂ ( p)r 1.1 × 10−2 2.7 × 10−3 0.54 1.6 × 10−2 93.6

f̂ ( p)z 2.7 × 10−2 3.9 × 10−3 1.0 2.0 × 10−2 92.8

D3 Spheroid s3 956 1,000 f̂ (v)r 1.1 × 10−2 4.4 × 10−3 0.63 9.0 × 10−2 97.0

f̂ (v)z 1.7 × 10−2 3.5 × 10−3 1.7 2.6 × 10−2 94.4

f̂ ( p)r 3.6 × 10−2 4.7 × 10−3 0.60 3.5 × 10−2 98.2

f̂ ( p)z 1.1 × 10−1 4.3 × 10−3 0.92 3.1 × 10−2 95.2

Note. For each emulator we show the parameter set with approximate bounds (see below), number of training points n,
emulator speed (for sequential non‐vectorized calculations without uncertainties), emulated function, and statistical tests
using held‐out numerical test points at observation coordinates used in training. Statistical tests are reported in % and
computed for emulators f̂ with any log transformations removed. For all f̂ j, computational cost includes interpolation for
k = 1,000 random observation points. Tests were performed using MATLAB R2023b on a desktop workstation computer
with an Intel Xeon W‐2265 processor. The emulators may be exercised over broader parameter ranges than shown here but
with higher uncertainties. Each emulator set prefixed with “D” includes four different emulators. Spheroidal cavity emulators
C3 and D3 are the most general but emulators C1–C2 and D1–D2 offer modestly improved performance for spherical cavities
and/or a fixed Poisson's ratio. Parameter sets are as follows.
s1: m = [a/d, ν] a/b = 1; a/d ∈ [0.01, 0.9]; b/d ∈ [0.005, 7]; ν ∈ [0.05, 0.45]
s2: m = [log10(a/b), a/d, b/d] a/b ∈ [1/40, 40]; a/d ∈ [0.01, 0.9]; b/d ∈ [0.002, 7]; ν = 0.25
s3: m = [log10(a/b), a/d, b/d, ν] a/b ∈ [1/40, 40]; a/d ∈ [0.01, 0.9]; b/d ∈ [0.002, 7]; ν ∈ [0.05, 0.45]
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exercise the emulators over a reduced range Ωr ∈Ω; for the spheroid this is generally a/b ∈ [1/40, 40], a/d ∈ [0.01,
0.9], and b/d ≤ 7. However, the emulator is capable of making predictions over the full range of training data.

Finally, we emphasize that the predictive accuracy of the emulator depends on numerous choices made during
training. We found that the default settings in the ROBUSTGASP package, including the covariance function and
roughness parameter, worked well. However, other choices – including how the model itself is parameterized,
which parameters are used for training, the distribution of training points, and the transforms applied to the model
output before emulation – also play an important role. General principles for good performance include non-
dimensionalizing model physics before emulation in order to reduce the number of free parameters and trans-
forming model output to smooth the response surface. We also found that trial‐and‐error experimentation was
invaluable, in some cases improving emulator performance by an order of magnitude. These general concepts
should apply also to the development of other emulators in the future (Section 4.4).

2.4. Benchmarking

We first qualitatively compared emulated and FEM‐computed surface displacements for six cavity geometries,
finding in all cases very close agreement (Figure 3).

For a more quantitative and comprehensive evaluation we compared FEM and emulator output using thousands of
semi‐random parameter sets which were not used to train the emulator (selected using Sobol sequences).

We evaluated emulator performance using several metrics. To quantify misfit between the output of a model
(typically the emulator) and the output of a reference model we used the normalized root mean square error
(NRMSE; Appendix C), where we normalized using the mean range of the reference output across observation

Figure 3. Surface displacements for several cavity geometries computed using emulator D3, a finite element model (FEM),
and the Yang‐Cervelli analytical model. Cavity depth = 1 km, shear modulus = 20 GPa, Poisson's ratio = 0.25, and the
pressure change boundary condition = 10 MPa. 95% emulator confidence bounds are shaded in pink, but are too small to be
visible for most geometries. Horizontal and vertical displacements are separately normalized for clarity. Emulator output
closely matches FEM output in all cases, confirming its accuracy, but the analytical model deviates substantially for shallow
spherical and oblate cavities, reflecting its approximations (analytical models are not visible when they agree closely with
emulator predictions). Analytical model deviations are different for volume change boundary conditions, which are not
shown here.
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coordinates for f̂ j and the mean of all reference output for f̂ c. For a more interpretable metric we also defined an
absolute relative error

ARE(i,j) =

⃒
⃒
⃒
⃒
⃒

ŷ(m∗
i ; xj) − y(m∗

i ; xj)
⃒
⃒

range[y(m∗
i ; x)]

⃒
⃒
⃒
⃒
⃒
, (7)

where i and j indicate the model parameter set number and observation point number, respectively. The ARE is
normalized by the range of the reference model y along the entire output vector x (this avoids issues with zero and
near‐zero output values). For scalar‐output functions there is no observation coordinate vector and the range is
replaced by the value of the reference function y. We generally computed the mean ARE (mARE) and maximum
ARE (maxARE) across i, j, or both (Appendix C). For both NRMSE and ARE, lower values are better.

To evaluate the emulators' formal prediction uncertainties we computed the fraction of reference model outputs
falling within the emulators' 95% posterior credible intervals (PCI(95%)) and the average relative length of the
emulators' 95% posterior credible intervals (RLCI(95%)) (e.g., Gu & Berger, 2016):

PCI(95%) =
1
kn∗ ∑

k

j=1
∑
n∗

i=1
1{y(m∗

i ; xj)∈CIij(95%)}, (8)

RLCI(95%) =
1
kn∗ ∑

k

j=1
∑
n∗

i=1

⃒
⃒
⃒
⃒
⃒

length{CIij(95%)}
range[ŷ(m∗

i ;x)]

⃒
⃒
⃒
⃒
⃒
, (9)

where CI is the formal posterior credible interval of the emulator at the given level (here 95%). PCI measures the
accuracy of the emulator's predicted uncertainties; RLCI measures emulator confidence, normalized by the range
of the emulator output along the observation coordinates. PCI(95%) should be close to 95% and RLCI(95%)
should be as low as possible.

Results are shown in Table 2 and Figure 4. For all scalar‐output f̂ c (emulators C1–C3), we found NRMSE and
mARE of order 10−5% to 10−2% with no errors exceeding 0.6%, and small formal predictive uncertainties (RCLI
(%95) of order 10−3% to 10−1%). For vector‐output f̂ j(x/d) (emulators D1–D3) we found NRMSE of order 10

−5%
to 0.1% and mARE of order <10−3% or better, with maxARE ranging widely from <10−3%–1.2%. Predictive
uncertainties are small (RCLI(%95) of order 10−4% to 10−2%), but formal uncertainties of the emulator D1
(pressure boundary condition formulation) are too optimistic. Fixing Poisson's ratio (models C2 and D2) modestly
improves performance. Further limiting the cavity geometry to exclude extremely oblate, prolate, and shallow
sources also further improves performance, but we consider this unnecessary for most applications.

We also benchmarked predictions against two exact analytical models. Firstly, we benchmarked the spherical
cavity emulators C1 and D1 against the exact (Zhong et al., 2019) series‐expansion model calculated to 64th order
for a range of a/d, integrating cavity‐normal displacements predicted by that model to obtain compressibility as
needed. For both we found close agreement, with maxARE of order <10−3% to <10−1% (Figure 5 and B1). We
note that our compressibilities differ from those reported in Battaglia et al. (2013), we believe due to a higher
mesh density employed in our FEM model.

Finally, we benchmarked emulated displacements against a variety of numerical models as a part of a community
deformation modeling exercise (Crozier et al., 2023). The accuracy of the tested emulators was comparable to that
of the best community finite element and boundary element models (and exceeded some of them when compared
against the Zhong et al. (2019) model), but the speed was orders of magnitude faster than the numerical models
and even faster than the analytical models.

3. Results
In this section we utilize the computational efficiency of the emulators to characterize in detail how cavity
compressibility and surface displacements vary with cavity geometry, compare emulator output with predictions
of approximate analytical models, and evaluate the computational expense of the emulators.
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Exact solutions for cavity compressibility and half‐space surface displacements due to pressure changes in
spheroidal elastic cavities are generally unavailable, but a number of approximate solutions have been developed.
We compare our results chiefly with the analytical approximation of Cervelli (2013), which extends the Yang
et al. (1988) dipping prolate spheroidal source model to oblate geometries. We refer to this model as the Yang‐
Cervelli model. (The more general Nikkhoo and Rivalta (2023) model agrees closely with the Yang‐Cervelli
model for appropriate geometries but is more computationally expensive.). This model is known to violate the
uniform pressure cavity boundary condition for cavities relatively close to the free surface. For compressibility,
we also utilize several approximate series‐expansion solutions for end‐member geometries derived using full-
space relations (Zimmerman, 1985) (see also David and Zimmerman (2011)), which are not well known in the
geophysical literature.

3.1. Cavity Compressibility

Cavity compressibility varies by orders of magnitude as a strong function of aspect ratio and depth. For the
geometries we study, compressibility can be more than four orders of magnitude larger than predicted by
analytical approximations (Figure 6).

In the oblate regime, the Yang‐Cervelli model badly under‐predicts compressibility except for very deep cavities
(a/d = 0.01). For strongly oblate cavities, we find that compressibility grows proportionally to b/a, in agreement
with fullspace relations (Zimmerman, 1985), but with a constant of proportionality that increases for shallower
cavities.

Figure 4. Comparison of spheroidal cavity emulator predictions (emulators C3 and D3) with finite element numerical model output at test points for (a) fc, (b) f vr , and
(c) f vz . The top row shows FEM output versus emulator output, with histograms showing mean relative errors for all points (as defined in equation (C3) but without the
absolute value), with 5% outliers excluded. For (b) and (c) a random 105 points were selected across all models and observation coordinates. The bottom row shows mean
absolute relative error (mARE; Appendix (c)) along the observation vector as a function of cavity aspect ratio and shallowness. Note different color scales between panels
(a) and (b)–(c). Model output is a nonlinear function of input parameters, so emulator performance varies across the parameter space. Errors for other emulators are
summarized in Table 2.
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In the prolate regime, in contrast, compressibility is relatively constant and approaches 1/μ as a/b → ∞
(Figure 6b), in agreement with fullspace approximations (Zimmerman, 1985). At a/b = 25 the emulator predicts
compressibility to within 1% of 1/μ with little dependence on a/d or ν. Across the full prolate regime, analytical
and emulator results agree reasonably well except for relatively shallow sources for a/b < ∼ 3.

For a deep sphere (a/d = 0.1) our results agree to better than 0.1% with the widely‐used approximation β = 3/4μ
(McTigue, 1987). However, compressibility increases by∼50% as a/d→0.9, and also becomes weakly dependent
on ν (Figure 6b), both in contrast to the analytical approximation. We also observe that due to the interaction with
the free surface, modestly prolate geometries at shallow depth become more compressible than spherical cavities;
thus, the spherical geometry is not always the least compressible.

Numerical results can be used to derive simple empirical relations for certain geometries, which we attempt here
only for spherical cavities. We seek compressibility as a function of integer powers of a/dweighted by terms of ν,
and with experimentation obtain good fits using

βsph ≈
3
4μ

[1 + p1(
a
d
)
3
+ p2(

a
d
)
13
] (10)

with p1 = 0.6(1 − ν) and p2 = 1.2 − ν for ν ∈ [0.1, 0.4] (Figure 6b). Better fits may be obtained with additional a/
d terms, but this simple relation should be adequate for many purposes.

Figure 5. Comparison of emulator predictions with several spherical cavity models for ν = 0.25 with the Zhong et al. (2019)
model as the reference solution. (a) Cavity compressibility. Emulator errors (model C1) are very low and do not grow with
a/d, whereas errors in the commonly‐used 3/4μ relation grow with (a/d)3. (b) Surface displacements, computed using a
pressure boundary condition over coordinates x ∈ [0:30d]. Relative errors are maximums across both radial and horizontal
components. Emulator errors (model D2) are very low and do not meaningfully increase as a/d→ 1, unlike analytical model
errors which grow approximately with (a/d)6 (McTigue, 1987) and (a/d)3 (Cervelli, 2013; Mogi, 1958) (cf., Crozier
et al., 2023). Only for very small a/d do analytical displacement models slightly outperform the emulator (note logarithmic
scale).
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3.2. Surface Displacements

Vector surface displacements vary widely as a function of cavity aspect ratio and relative depth (Figure 3). In the
prolate regime, analytical approximations are reasonable even for relatively shallow sources. In the oblate regime,
in contrast, both the amplitude and spatial pattern of surface displacements can deviate widely from analytical
approximations for even relatively deep sources.

Compared with analytical approximations, numerical results show that surface displacements due to shallow
cavities are relativelymore concentrated above the cavity. For shallow spheres, for instance, vertical displacements
become larger and more concentrated directly above the cavity; peak horizontal displacements occur at a reduced
surface distance from the cavity and the maximum is modestly increased (Figure 3). This effect could cause
spherical‐cavity analytical models to underestimate source depths inferred from data (McTigue, 1987).

3.3. Computational Expense

Training the emulators requires of order O(n3) +O(kn2) calculations (Section 2.3). However, the computational
cost of exercising the trained emulator to compute theGP predictivemean value at all k observation points scales as

Figure 6. Cavity compressibility. (a) Top: Compressibility normalized by the value for a sphere in a fullspace (3/4μ) as a function of aspect ratio for different values of a/
d using emulator D3 for Poisson's ratio ν = 0.25. The black dashed line shows the Yang‐Cervelli analytical approximation. Bottom: Absolute relative error (ARE)
between the emulator and the Yang‐Cervelli model, which is treated as the reference. Since the analytical model underpredicts compressibility, the ARE cannot exceed
100% although the two models differ in some cases by orders of magnitude. The dashed line shows the γ relation of Yang et al. (1988) (Section 4.2) and the dashed blue
line shows a sigmoid function fit (Equation 11) to the 10% ARE line. We denote the region of low deviation the “Analytical regime.” (b) Compressibility normalized by
3/4μ as a function of shallowness a/d for two values of ν, for prolate, oblate, and spherical geometries. The dashed lines on the panel for the sphere show empirical fits
from Equation (10).
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only O(n2) + O(nk) , or as O(n2k) if prediction variances (uncertainties) are also required (Gu & Berger, 2016).
(Note that the number of model parameters can also be important in the cost of training the emulator, but is usually
less important whenmaking predictions.) Because the computational cost of exercising the emulators is linear with
k (for k > n) it is possible to utilize a dense observation vector without strongly impacting performance. This
linearity could reduce the need to downsample large data sets, like interferometric synthetic aperture radar images,
before modeling.

We find that emulators f̂ c canmake roughly 2,000–3,000 predictions per second and emulators f̂ j canmake>1,000
predictions per second at 1,000 random observation points (Table 2). Computing vertical and horizontal dis-
placements uz and ur requires two emulator calls, and computing uncertainties reduces performance by roughly a
factor of 5–10.On the other hand, for some applications speedmay be improved in several ways, including efficient
matrix calculations that are utilized when making predictions from numerous parameter sets simultaneously, and
training the emulator using the same observation coordinates required when running the emulator, which elimi-
nates the need for interpolation. Where applicable these techniques may accelerate calculations by more than an
order of magnitude.

Comparing the computational cost of the emulator with the numerical (FEM) model is subjective, as both are
strongly affected by parameterization (e.g., number of training points for the former andmesh density for the latter),
as well as numerical techniques such as parallelization. However, for the parameters chosen in this work,
computing a single FEMmodel required about 5 s (0.2 solutions/s). Thus, the emulators are able to compute surface
displacements û and cavity compressibility β̂ roughly 2,000× and 10,000× faster than the FEM, respectively.

The emulators are also much faster than available exact analytical models. They yield surface displacements û at
least one order of magnitude faster than the published MATLAB implementation of the Zhong et al. (2019)
spherical source model, with an advantage that increases with more observation points, and they yield
compressibility β̂ thousands of times faster, depending on the integration accuracy used for the Zhong et al. (2019)
model.

For large numbers of observation points the displacement emulators are even faster than the MATLAB imple-
mentation of the Cervelli (2013) analytical model. However, the Yang‐Cervelli is more general (encompassing
arbitrarily dipping geometries), and the implementation used here is not optimized for speed.

These speeds make the emulator suitable for use in intensive parameter sweeps and Monte Carlo‐style estimation
procedures where thousands or millions of simulations must be computed. We have previously demonstrated the
feasibility of this approach using an early version of theGP emulator detailed in thiswork inMonteCarlo parameter
estimation procedures at Kıl̄auea (Anderson et al., 2019), and also as a part of a community volcano deformation
model verification exercise (Crozier et al., 2023). These studies confirm both the speed and accuracy of the
approach.

4. Discussion
4.1. When Are Emulators Accurate Enough?

We have shown that emulator predictions closely match thousands of numerical simulations, and for many ge-
ometries, are far more accurate than analytical approximations. Nonetheless, an important question is the largest
error that might plausibly be encountered for other, unexplored input parameters. We found that the highest
emulator errors generally occurred for rather extreme geometries near the edges of parameter space and can be
avoided accordingly. Relative errors can also be high for far‐field observation distances where displacements are
very small, but if observation vectors are dense, large relative errors at certain points should not much influence
model‐data comparisons. Finally, in all cases, theGP emulator's predictive uncertainties can be used to discard poor
predictions, albeit at increased computational cost.

We also emphasize that emulator design should optimally depend on the range of inputs and outputs and the fidelity
required for a particular problem. Considerably improved performance could be obtained by training emulators
specialized for particular problems.We also expect emulator performance to improve in the future with refinement
of training points, model output transformations, and other settings.
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Finally, it is worth considering the accuracy required for a particular problem. For many applications – such as
volcanology – emulator error is likely very small compared with the error introduced by the use of elastic spheroid
models as approximations for more complex real‐world structures. Thus higher degrees of accuracy may not be
meaningful for most applications, excepting those for which absolute accuracy must be guaranteed (e.g., some
engineering problems).

4.2. When Are Analytical Models Accurate Enough?

We have argued that GP emulators are fast, accurate, and easy to use. As such, they may be used in place of both
analytical and FEM models for a wide range of source geometries, irrespective of considerations regarding the
performance of analytical models. Nonetheless, approximate analytical models retain advantages for certain ge-
ometries, including (in some cases) simplicity and better speed. Thus, itmay be advantageous to know in advance if
an analytical model can yield a necessary degree of accuracy.

If a/d is known to be small, we have found that approximate analytical models (e.g., Cervelli, 2013; Yang
et al., 1988) are generally adequate for computing both surface displacements and compressibility for a wide range
of cavity aspect ratios. For shallower cavities, however, results vary widely across parameter space – analytical
models perform relatively well in the prolate regime, but fail badly for all but very small a/d in the oblate regime.
For spherical cavities, the Mogi (1958) and Cervelli (2013) models perform poorly for even modestly small a/d,
while the higher‐order McTigue (1987) model performs better for surface displacements, and the Zhong
et al. (2019) model is effectively exact, although at high computational cost (Figure 5).We are aware of no higher‐
order analytical expressions for half‐space cavity compressibility analogous to the McTigue (1987) model for
surface displacements, nor any for surface displacements utilizing a volume change rather than pressure change
source strength formulation. These quantities may however be computed accurately and rapidly using the emulator
(Figure 5).

It is possible to utilize emulator predictions to develop simple empirical relations which can be used to determine
when analytical model error exceeds some threshold. For vertical prolate cavities, Yang et al. (1988) used FEM
results to argue that the pressure boundary condition on the cavity walls is violated by proximity to the free surface
by less than about 10% for γ > 1, where γ represents the ratio of the depth of cavity's top surface to its minimum
radius of curvature and can be written as γ = (a/b)2[(a/d)−1 − 1]. We test this relation for both prolate and oblate
cavities.

For cavity compressibility, we find that the γ metric is only a crude discriminator between the analytical and
numerical regimes. A sigmoid function better fits the analytical model error (β̂ − βa)/ β̂ for ν = 0.25
(Figure 6a), and we find that error is less than 10% for

a
d

<
2.66

1 + exp(−a/b)
− 1.33. (11)

This function can be used to roughly discriminate between analytical and numerical parameter regimes for
a/d < 0.9 and ν for common materials. For a sphere, error is less than 10% for a/d < 0.6.

Quantifying the misfit of vector output surface displacements is more challenging because results depend strongly
on the statistical metric chosen, channel (vertical vs. radial), length of observation vector, and also model
formulation (pressure vs. volume change). Here we examine both the mean and maximum misfits along each
observation vector 0 ≤ r/d ≤ 10 and across radial and vertical displacements (normalized by the maximum
displacement along r/d) (Figure 7). In general, γ poorly follows the 10% curve for both metrics. With experi-
mentation we find that maximum error is <10% for a polynomial

a
d

<N1 + [
a
b
+ N2]

N3
(12)

for ν = 0.25 where for the volume change boundary condition N = [−0.47, 0.046, 0.26] and for the pressure
change boundary condition N = [−0.61, 0.20, 0.33]. We emphasize that these functions are non‐unique and
depend strongly on the misfit statistic of choice. For a spherical cavity, maxARE is generally less than about 10%
for a/d < 0.45.
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4.3. Source Strength Formulation (Boundary Condition)

Continuum mechanical cavity models of the type discussed in this work are typically formulated using a uniform
pressure boundary condition (Equation 5). A formulation based rather on the cavity's net internal volume change
(Equation 4), however, may be of more direct interest for some problems; in volcanology, for instance, magma
reservoir volume changes can be related with the volumes of magma injection or withdrawal. Cavity volume
changes can also be more efficient to directly estimate in an inverse problem, since pressure changes are generally
only weakly separable from the cavity's total volume, with which they appear as a product (Equation 5).

The relation between a cavity's volume and pressure change is controlled by its compressibility (Equation 1),which
is a nontrivial function of cavity geometry and material properties (this study; Amoruso & Crescentini, 2009).
(Note that a uniform pressure boundary condition does not imply uniform displacement of the cavity walls.) To our
knowledge no exact analytical or higher‐order approximate halfspace solutions for surface displacements are
available that are formulated in terms of cavity volume change, analogous to the McTigue (1987) or Zhong
et al. (2019) pressure boundary conditionmodels (theCervelli (2013)model is formulated in terms of either volume
or pressure change but at a lower level of accuracy). Numerical models, such as FEMs, are also formulated in terms
of pressure changes, with volume changes computed only as a part of the solution process. This is an important
limitation; for instance, inverting geodetic observations for cavity pressure change using the higher‐order McTi-
gue (1987) model and converting to volume change using the approximate relation β = 3/4μ can introduce sig-
nificant error.

In this work we have used emulators to ‘learn’ the relation between cavity parameters (geometry, material prop-
erties) and cavity volume changes computed using a numerical model. This approach sidesteps the need to
formulate models using pressure boundary conditions and permits, for the first time, the calculation of surface
displacements from a wide range of elastic cavity models as a function of cavity volume change.

Figure 7. Deviation between predictions of surface displacements from emulator D2 and the Yang‐Cervelli analytical
approximation, both using the pressure change boundary condition, with the emulator output as the reference. The dotted
black lines indicate the γ relation of Yang et al. (1988) (Section 4.2), which is generally a poor discriminator between the
analytical and numerical regimes. (a) The maximum of vertical and horizontal normalized root mean square error (NRMSE)
along r/d. (b) The maximum of vertical and horizontal absolute relative error (ARE) along r/d. The thick black dashed line
indicates the fit of Equation (12).
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4.4. Opportunities for Further Development

Thework described here represents only an early step toward the efficient and accurate computation of deformation
models using machine learning techniques. Future work may include the emulation of new output parameters
including stresses and ground tilt; computation of parameters within the elastic body itself; generalization to more
complex source geometries; and consideration of heterogeneous materials, surface topography, and non‐elastic
rheologies. In the context of volcanology, heterogeneous rock properties and significant topography can cause
analytical models to fail badly (e.g., Masterlark, 2007), motivating the development of specialized three‐
dimensional numerical models (e.g., Hickey et al., 2015; Ronchin et al., 2013; Silverii et al., 2021), informed
for instance by seismic, gravity, and topographic data. These models could be used to train custom emulators that
could be used by observatories to interpret data at a particular volcano.

Many of these developments would require higher‐dimensional parameter and observation spaces, which could
prove challenging for emulators trained on a relatively small number of computer simulations. Techniques such
as hierarchical emulation (Han & Görtz, 2012), adaptive selection of optimal training points (Gramacy &
Lee, 2009), combining numerical and analytical model output, or utilizing different emulators for different
parameter ranges, may help to mitigate these challenges. In some cases, however, it may be necessary to use
emulator techniques that are suitable for larger numbers of training points, such as artificial neural networks.

Of course, emulators based on continuum mechanical models must suffer the same limitations as these models
– namely, they are not suitable for non‐elastic (e.g., plastic) deformation (Bertelsen et al., 2021), large (non‐
infinitesimal) displacements, or fracturing or damage of the host material (e.g., Got et al., 2019). The
importance of these effects will depend on the problem at hand; large displacements, for instance, may not be
common for a deeply‐buried magma reservoir, but may be much more likely for intrusion into a near‐surface
body. Although speculative, we suggest that emulator techniques will someday facilitate the broader application
of computationally expensive models of these processes where they are important.

5. Conclusions
In this work we have investigated using a machine learning technique to accelerate calculations of cavity
compressibility and surface displacements due to pressure and volume changes in vertical spheroidal cavities.
We have shown that emulators trained on of order 1,000 numerical finite element simulations using parallel
partial Gaussian processes (Gu & Berger, 2016) can closely reproduce computationally‐intensive numerical
output but orders of magnitude more efficiently. The emulators offer nearly the accuracy of a numerical model
at a computational cost comparable to that of some analytical models. They do not require finite element
software, and because they utilize a nondimensional model formulation, can be used for spheroids of any size
(e.g., mm‐scale rock pores to km‐scale magma reservoirs). We use the emulators to demonstrate that analytical
models can fail badly – especially for oblate to mildly prolate cavities at shallow depths – and we derive a
simple empirical approximation for the compressibility of a spherical cavity. The emulators can generally be
used in place of other analytical or numerical approaches and are suitable for a wide range of forward and
inverse problems including parametric sweeps and Bayesian Monte Carlo analyses.

The use of machine learning techniques for rapidly and accurately computing elastic deformations holds great
promise and should open new opportunities for analyzing real‐world data. The approach detailed herein can be
customized for particular problems and should generally be extensible in the future to more complex geometries
and material properties.

Appendix A: Finite Element Model
Figure A1 shows the finite element geometry and mesh used for this study.

We verified FEM output against analytical models under appropriate limiting conditions. For a shallow
spherical cavity with a/d = 0.8 the mean absolute relative error (Equation 7) between the FEM model and
Zhong et al. (2019) model over an observation distance 0 to 30d is better than 10−4%. We also compared FEM‐
calculated displacements with those from a variety of numerical models as a part of a community exercise
(Crozier et al., 2023) and found close agreement.
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Appendix B: Verification and Benchmarking
To confirm the form of Equations 2 and 3 we showed that

β(a, b, d, ν, μ) =
1
μ
fc(

a
b
,
a
d
, ν), and (B1)

uj (a, b, d, Δp, ν, μ; x) = S(i)f (i)j (
a
b
,
a
d
, ν;

x
d
). (B2)

Figure A1. Example finite element geometry and mesh. Infinite‐element domains use rectangular mesh elements. Distances
are normalized by cavity centroid depth d (fixed to d = 1).

Figure B1. Comparison of compressibility for a spherical cavity calculated using emulator C1 to that calculated using the
Zhong et al. (2019) model for a range of relative burial depths. An arbitrary Poisson's ratio of ν = 0.25 is used.
Compressibility is normalized by the compressibility of a cavity in a fullspace (3/4μ). Absolute relative error between the two
models is shown in Figure 5.
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To do so we ran the FEM using ∼4,000 random combinations of dimensional input parameters (a, b, d, Δp, ν, and
μ) and computed ΔV, β and uj(x). Using the same input parameters but nondimensionalized with d= 1 and with μ
and Δp fixed to arbitrary test values, we similarly ran the FEM to compute fc and fj (x/d) as described in the main
text. Finally, we scaled fc and f (i)j using the appropriate linear scaling terms and compared with dimensional
output. In all cases median differences were <0.02%.

Benchmarking the emulator against analytical models, including the exact Zhong et al. (2019) model for
spherical sources, further confirms results (Section 3 and Figure B1).

Appendix C: Statistical Tests
We used several statistical tests to evaluate emulator performance:

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑k
j=1∑n∗

i=1[ŷ(m∗
i ; xj) − y(m∗

i ; xj)]
2

kn∗

√

, (C1)

NRMSE =
RMSE

mean{range[y(m∗; x)]}
, (C2)

mARE =
1
kn∗ ∑

n∗

i=1
∑
k

j=1
ARE(i,j), (C3)

maxARE = max
i
max

j
[ARE(i,j)], (C4)

where the range in equation (C2) is taken along all observation coordinates for each reference model output. For
scalar‐output functions the range is omitted and we take simply the mean of y. Dropping operations over i and/or j
yields metrics that are a function of observation coordinate, model parameter set, or both (for scalar‐output
functions there are no summations over observation coordinate). Note that maxARE indicates the maximum
error over the entire output vector so it may be strongly influenced by a small number of points.

Data Availability Statement
Finite element calculations were performed using the commercial software package COMSOLMultiphysics. For
training and exercising the emulators we used version 1.0 of SPHEROID90GP, which is public domain software
available at the USGS code repository (Anderson, 2024a). SPHEROID90GP uses version 2.0 of the parallel partial
Gaussian process emulator (Gu, 2019), which is freely available at https://doi.org/10.5281/zenodo.10397797.
SPHEROID90GP may be used to train new emulators or exercise pre‐trained emulators; those developed in this work
are available in Anderson (2024b).

Acronyms
FEM Finite element method

GP Gaussian process

PP‐GP Parallel partial Gaussian process
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