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Evolutionary radiations generate most of Earth’s biodiversity, but are there
common ecomorphological traits among the progenitors of radiations?

In Synapsida (the mammalian total group), ‘small-bodied faunivore” has
been hypothesized as the ancestral state of most major radiating clades,
but this has not been quantitatively assessed across multiple radiations.

To examine macroevolutionary patterns in a phylogenetic context, we
generated atime-calibrated metaphylogeny (‘metatree’) comprising 1,888
synapsid species from the Carboniferous through the Eocene (305-34 Ma)
based on 269 published character matrices. We used comparative methods
toinvestigate body size and dietary evolution during successive synapsid
radiations. Faunivory is the ancestral dietary regime of each major synapsid
radiation, but relatively small body size is only established as the common
ancestral state of radiations near the origin of Mammaliaformes in the Late
Triassic. The faunivorous ancestors of synapsid radiations typically have
numerous novel characters compared with their contemporaries, and these
derived traits may have helped them to survive faunal turnover events and

subsequently radiate.

Examining the catalysts of evolutionary radiations is critical for elu-
cidating the origins of Earth’s biodiversity. Research on evolutionary
radiations s often performed from the perspective of the descendent
lineages (including extant taxa), assessing the phylogenetic relation-
ships, morphological disparity through time and speciation rates of
diverginglineages'*.In contrast, there has been less focus on the fore-
runners of evolutionary radiations and few quantitative tests of shared
ecomorphological traitsamong ancestral taxa of multiple radiations”.
Oneobserved patternis that early lineages of radiating clades tend to
be smallerinbody size than many descendant lineages®’. Because there
is covariance between body size and some ecological traits such as
diet®¢, selective extinctions of taxa of specific sizes or ecological traits
islikely toresultin surviving lineages with shared traits. Further, Cope’s
‘law of the survival of the unspecialized™"?* posits that ecologically
unspecialized taxa (that is, generalists) may commonly survive when
morespecialized lineages perish during extinction events, resulting in

unspecialized lineages being the progenitors of subsequent radiations.
These considerations suggest that there may be stereotyped ancestral
ecomorphotypes at the base of evolutionary radiations.

Here we test whether ‘small-bodied faunivore’is the ancestral eco-
morphotype of lineages that gave rise to major radiations within Synap-
sida. For patterns of body size, our aimis to assess whether the ancestral
taxaofradiations are consistently smallbodied relative to descendant
taxa. Synapsid history extends ~320 Myr (ref. 23) and is marked by the
iterative evolution of ecomorphologically diverse clades, culminat-
ing in extant taxa (monotremes, marsupials, placentals) displaying
spectacular morphological and ecological diversity. Conventional wis-
dom states that throughout synapsid history, relatively small-bodied
faunivores are dominantearly inevolutionary radiations and they give
rise to ecologically diverse clades®* %, Previous work has shown that
small-bodied faunivore is the dominant ancestral ecomorphotype
early in mammaliaform radiations (see ref. 28 and citations therein),
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with the pattern of increasing body size diversity in crown mammal
groups often used to test Cope’s rule’***°, or ‘Alroy’s Axiom™, which
states that lineages tend to evolve towards larger body size. However,
there has been no rigorous test of whether this pattern applies across
the entire evolutionary history of Synapsida.

To test the hypothesis that relatively small-bodied faunivores
are the forerunners of most synapsid radiations, we examine macro-
evolutionary patterns in body size and diet (Fig. 1a). It has been chal-
lenging to test the small-bodied faunivore hypothesis in a way that
encompasses all of synapsid history, in part because the necessary
infrastructure, namely a comprehensive synapsid phylogeny, was
unavailable. Therefore, we generated a time-calibrated metatree of
synapsid species that focuses on taxa fromthe Carboniferous through
the Eocene (305-34 Ma), incorporating 269 published morphological
character matrices. We used the metatree in conjunction with jaw
lengths (as a proxy for body size) and diet reconstructions for 404
synapsid species toinvestigate ecomorphological patterns during suc-
cessive synapsid radiations. For our primary analyses, we analysed five
temporally successive major radiations: (1) non-therapsid pelycosaurs
(hereafter ‘pelycosaurs’), (2) non-cynodont therapsids (hereafter ‘ther-
apsids’), (3) non-mammaliaform cynodonts (hereafter ‘cynodonts’),
(4) non-therian mammaliaforms (hereafter ‘mammaliaforms’) and (5)
therians (eutherian-placental and metatherian-marsupial lineages).
Each of these radiations is marked by considerable ecological diver-
sification (thus, hereafter we refer to them as ‘ecological radiations’),
with descendent lineages achieving a broad diversity of body masses
and diets***"*® (Supplementary Methods). We further examined radia-
tions ata phylogenetically finer scale in supplementary analyses. Our
results shed new light on the forerunners of synapsid radiations and
inform our understanding of evolutionary transitions that influenced
therise of extant mammals.

Results

Metatree

Our time-calibrated metaphylogeny (‘metatree’; sensuref. 32) includes
1,888 synapsid species that are primarily from the Carboniferous
through the Eocene (305-34 Ma). The tree is based on 269 published
character matrices (listed in Supplementary Table 6). The metatree
is a comprehensive species-level phylogeny for non-mammaliaform
synapsids; itincorporates all published character matrices that focus
onnon-mammaliaform synapsids (as of July 2021). Further, itincludes
57 mammaliaform- and mammal-focused matrices and samples ~525
mammaliaforms and mammals. The metatree was pruned to the 404
species for which we had jaw length data. See the Supplementary Infor-
mation foradditional discussion of the metatree, including the synapsid
sample and tree topology, and for a version of our pruned phylogeny
with tip labels (Extended Data Figs. 1-5 and Supplementary Fig.1).

Body size patterns
Among the five major ecological radiations, correlation analyses
and regressions (ordinary least squares (OLS) and phylogenetic gen-
eralized least squares (PGLS)) of jaw lengths (a proxy for body size)
against patristic distances (see Methods for a detailed definition of
patristic distance) were both only statistically significant for therians
(Table1,and Supplementary Tables 2 and 5). Inaddition, the OLS (but
not PGLS) linear regression was statistically significant for mammalia-
forms. Therians and mammaliaformsboth displayed a positive trendin
body size evolution with time (Fig. 2), and their ancestral body sizes are
reconstructed as being especially small (Table 1, and Supplementary
Tables 3 and 5). Pelycosaurs and cynodonts showed a slight negative
trend inbody size with time (Fig. 2). Thus, there was nocommon trend
in body size evolution among all five radiations.

The lack of consistent trends for non-mammaliaform radiations
is reflected by a conflicting mixture of patterns among the subclades
within each radiation (Extended Data Figs. 3-6, and Supplementary
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Fig.1| Testing the hypothesis that small faunivores are the forerunners of
synapsid radiations using diet and body size patterns through time.

a, Conceptualillustration of the tested hypothesis (left) and predicted patterns

of regression results (right). Diet was quantified by assigning taxa to numeric
categories and jaw length was used as a proxy for body size. b,c, Diet (b) and jaw
lengths (c) for all synapsids in our sample are plotted against patristic distance.
Theregression linesinband c represent quasibinomial (for diet) and linear (for
Jjawlengths) models for each of the groups of taxa that make up the major synapsid
ecological radiations (see Fig.2). See Extended DataFig,. 6 for versions of b and c that
include regression lines of smaller subclades analysed in this study. The grey curves
are LOESS-fitted (locally weighted scatterplot smoothing) regression curves and
theassociated bands are 95% confidenceintervals. d, The jaw length optima from
the fitted five-peak Ornstein-Uhlenbeck evolutionary model (see Results), which
treats each major radiation as a different model regime. Models were fit to log, -
transformed jaw lengths, but we back-transformed the length optima here for ease
ofinterpretation. Thesilhouettes ind are by]. I1za (therapsid), C. Axon (cynodont)
and E. Newham (mammaliaform). They were obtained from www.phylopic.org and
are available vialicense CC0O1.0. faun, faunivory; herb, herbivory; omni, omnivory.

Tables 1and 2). For pelycosaur subclades, the only significant trend
in body size through time was within Sphenacodontidae, which
experienced a positive trend (Supplementary Table 1 and Extended
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Table 1| Summary statistics for body size (jaw length) and dietary analyses of the major synapsid radiations

Body size (jaw length) analyses

Diet analyses

Jaw lengths (mm) Linear regressions Kendall rank ASR Quasibinomial Kendall rank
correllation regression correllation
Radiation Median Range ASR t-stat Pvalue r* tau Pvalue Faunivory t-stat Pvalue tau P

likelihood value
Pelycosaurs 13515 24.83-634.98 10060 -0.512 0612 0.008 -0.081 0.501 >0.999 1.047 0.303 0.193 0.184
Therapsids 29550 2712-636.38 13473 0.276 0.783 0.001 -0.044 0.452 >0.999 3.366 0.001 0.223 0.002
Cynodonts 8743 15.90-385.89 103.26 -0.783 0.438 0.014 -0.079 0.450 0.772 2.459 0.018 0.255 0.034
Mammaliaforms ~ 26.93 11.30-133.59  29.06 2.673 0.009 0.086 0.090 0.244 >0.999 3.310 0.001 0.317 0.001
Therians 52.62 12.28-781.30 2413 4.099 <0.001 0135 0.253 <0.001 0.997 3.405 0.001 0.219 0.004

For the linear regressions and Kendall rank correlation coefficient analyses, data were analysed against patristic distances. Before analyses, jaw lengths (proxies for body sizes) were
log,o-transformed and taxa were assigned to one of three dietary categories (1, faunivore; 2, omnivore; 3, herbivore). Ancestral-state reconstructions (ASRs) are at the basal node of each
radiation. Jaw length ASRs were calculated using log,o-transformed jaw lengths, but we back-transformed the data for ease of interpretation. The diet ASRs are the scaled likelihoods for
faunivory. Note that the first four radiations are paraphyletic grades. Significance tests are two-tailed and not adjusted for multiple testing. See Supplementary Tables 2, 3 and 5 for additional

statistical results, including results for the subclades analysed in this study.

DataFig.1).In contrast, the Ophiacodontidae had a strongly negative
slope, which may not have been statistically significant because of
the especially small available sample size (n = 5). Within therapsids,
Therocephaliaand Anomodontia had significant negative and positive
trends, respectively (Supplementary Table1and Extended DataFig. 2).
Biarmosuchia, Dinocephaliaand Gorgonopsia had non-significant jaw
length regressions (Supplementary Table 1), but for these subclades,
this may be due to small sample sizes (7-12 taxa each). Within cyno-
donts, Cynognathiaand Probainognathiaboth had positive regression
slopes but neither had significant trends (Supplementary Table1and
Extended DataFig. 3).

There was a clear ‘bottleneck’ in body size near the Mammalia-
formes node during the Late Triassic, with Triassic-Jurassic mamma-
liaforms showing less variationin body size than other synapsid groups
(Fig. 1c). Further, the mammaliaform ancestral jaw length (-29 mm;
Table 1) and trait optimum from the best-fitting evolutionary models
(-29 mm; Table 2) were both considerably shorter than those of earlier
radiations (Table 1). The mammaliaform trend towards larger body
sizes with time may be driven primarily by multituberculates and eutri-
conodontans (Supplementary Tables1and 2, and Extended DataFig. 4).
The therian ancestral jaw length (-24 mm) was the shortest among
the five ecological radiations. Within therians, early eutherians had
asignificant positive trend in body size with time. Early metatherians
alsoshowed a positive trend, but it was not significant (see Discussion,
Supplementary Table 1and Extended Data Fig. 5).

In evolutionary model-fitting analyses of body sizes (that is,
log,,-transformed jaw lengths), the multiple-peak Ornstein-Uhlenbeck
evolutionary models (OUM) consistently received stronger support
than other fitted models, including Brownian motion (BM), early burst
(EB), ‘release’, and ‘release and radiate’ models (see Methods). Full
results of these analyses are reported in Supplementary Table 4, and
truncated results arein Table 2. The best-fitting model was a four-peak
model (OUM4_Cy_Mf Tn) with trait optima (8) that vary among pely-
cosaurs + therapsids, cynodonts, mammaliaforms and therians. Two
additional models were similarly strong fits to the data (with AAICc
values of -2; Table 2): athree-peak OU model (OUM3_Mf Tn)with vary-
ing trait optima for non-mammaliaform synapsids, mammaliaforms
and therians, and a five-peak model (OUMS5) with trait optima for all
five groups (Fig. 1d). For each of the three best-fitting models, the jaw
length optima are smaller for mammaliaforms and therians than for
non-mammaliaform synapsid groups (Table 2).

Diet patterns
Correlation analyses, regressions and ancestral-state reconstruc-
tions indicated that all five major radiations exhibited trends from

faunivory-only to faunivory-and-herbivory (Table 1, Figs.1band 2, and
Extended DataFig. 7). Pelycosaurs had the weakest statistical support
for this trend because the regression and correlation analyses are not
significant (Table 2 and Supplementary Table 5), but the ancestral-state
reconstruction for the basal node (thatis, the node for Synapsida) had
afaunivory likelihood of >0.999.

Inaddition, somelessinclusive subclades also displayed this trend
of greater dietary diversity with time (Supplementary Tables1and 2,
and Extended Data Figs. 1-6). However, this pattern was not present
in many of the subclades that we investigated, due in part to many of
the subclades consisting entirely of faunivores (for example, Sphena-
codontidae, Spalacotherioidea) or herbivores (for example, Anomo-
dontia). Most pelycosaur and therapsid subclades showed no trend
except for Therocephalia, which had a positive correlation between
diet (towards greater herbivory) and patristic distance (Supplementary
Table 2, and Extended Data Figs.1and 2). Multituberculata exhibited an
omnivore-to-herbivore trend with time (Extended Data Fig. 4), consist-
entwith previous research®>*. Within Theria, early eutherians showed
astrong trend towardsincreased dietary diversity with time, whereas
our early metatherian sample showed no dietary trend with time (but
seecomments on metatherianresultsin the Discussion, Extended Data
Fig.5, and Supplementary Tables1and 2).

There was an especially distinct faunivory ‘bottleneck’ near the
Mammaliaformes node, which is at the same phylogenetic position
as the body size ‘bottleneck’ (Fig. 1b,c). Although early mammali-
aforms achieved considerable dietary diversity that included car-
nivory and plant-dominated omnivory®****%, many of the herbivorous
mammaliaformlineages do notappearinthefossil record until the Late
Cretaceous and Palaeocene®?****°, more than 100 Myr after
mammaliaforms originated.

Discussion

We used a comprehensive ‘metatree’ of non-mammalian synapsids
and a number of Mesozoic and Palaeogene mammals to investigate
whether ‘small-bodied faunivore’ was the ancestral ecomorphotype
for the major five major synapsid evolutionary radiations. Our results
indicate faunivory isindeed the ancestral diet for the different synap-
sid radiations, but asmall ancestral body size is a feature of only later
synapsid radiations.

Radiation forerunners are faunivorous but not always small

Contrary to our expectations, we did not find universal support for
the hypothesis that relatively small-bodied faunivores are the progeni-
tors of synapsid groups that experienced major ecological radiations.
Although faunivoryisthe typical ancestral dietary regime of each major
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Fig.2|Dietand jaw length plotted against patristic distance for each of the
five major synapsid radiations. Diet regressions are quasibinomial models and
jawlengthregressions are linear models. Grey bands are 95% confidence intervals.
Ontheright is the dated metaphylogeny of 404 synapsid species. Stars mark the
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basal phylogenetic node of each major ecological radiation. See Extended Data
Figs.1-6 for regression plots for subclades within each major radiation, and see
Extended DataFigs.1-5 and Supplementary Fig. 1 for cladograms with tip labels.
See Fig. 1 caption for silhouette attribution information.
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Table 2 | Summary of relative fits and parameters for evolutionary models fit to jaw length data

Evolutionary models Summary statistics

Jaw length (mm) optima or mean

AlCc AAICc Weight a o? Pe Td Cy Mf Tn
BM1 197.03 197.03 0.000 ( 100.60 )
ou1 14211 14211 0.000 0.028 0.010 ( 57.89 )
EB1 199.06 199.06 0.000 ( 100.60 )
OouM2_Td 140.45 140.45 0.000 0.031 0.010 121.94 ( 52.75 )
OUM2_Cy 122.20 122.20 0.003 0.047 0.012 (130.52 ) ( 41.07 )
OuUM2_Mf 120.31 120.31 0.009 0.049 0.012 ( 116.46 ) (37.83 )
OUM2_Tn 145.20 145.20 0.000 0.028 0.010 ( 58.90 ) 59.42
OUMB3_Td_Cy 1247 12447 0.001 0.047 0.012 124.00 135.42 ( 41.07 )
OUMB3_Td_Mf 122.25 122.25 0.003 0.049 0.012 12418 (112.85 ) (37.83 )
OUM3_Td_Tn 142.33 142.33 0.000 0.031 0.010 121.89 ( 51.00 ) 56.98
OUMB3_Cy_Mf 119.01 119.01 0.016 0.052 0.012 (131.40 ) 74.68 (3767 )
OUMS3_Cy_Tn 120.67 120.67 0.007 0.049 0.012 (130.61 ) 35.51 51.03
OUM3_Mf_Tn 114.25 114.25 0178 0.056 0.013 ( 117.33 ) 29.37 50.41
OUM4_Td_Cy_Mf 120.96 120.96 0.006 0.052 0.012 124.51 136.49 7473 37.66
OUMA4_Td_Cy_Tn 122.65 122.65 0.003 0.049 0.012 124.21 135.39 (35.52 ) 51.02
OUMA4_Td_Mf_Tn 1617 1617 0.068 0.056 0.013 124.92 (113.83 ) 29.37 50.40
OUM4_Cy_Mf_Tn 1214 1214 0.509 0.061 0.013 (132.08 ) 75.49 29.25 50.17
OUM5 114.09 114.09 0193 0.061 0.013 125.36 136.89 75.53 29.24 50.17

Fitted models include a single-regime Ornstein-Uhlenbeck model (OU1), single-regime BM, EB and multiple-peak OUM models. See Supplementary Table 4 for full model-fitting results, which
include additional ‘shift’ models that are not reported here. Numbers after ‘OUM’ in the model names represent the number of regimes (that is, ‘peaks’), and abbreviated clade names represent
the nodes that differentiate model regimes. Model parameters include the strength of attraction to trait optima (a), evolutionary step rate (02) and trait optima (8). ‘Weight' is the Akaike weight.
Parentheses in the table define the groups that are included in each model regime. For example, for the OUM2_Cy model, the two regimes are (1) ‘pelycosaurs’ + ‘therapsids’ and (2) all other
taxa (that is, Cynodontia). We used log,o-transformed jaw lengths for analyses, but we back-transformed the length optima here for ease of interpretation. The three best-fitting models are in

bold. Cy, cynodonts; Mf, mammaliaforms; Pe, pelycosaurs; Td, therapsids; Tn, therians.

ecological radiation, the radiation forerunners are not always small
in size; the tendency for ancestral taxa of radiations to be relatively
small bodied does not become common until the end-Triassic size
bottleneck near the base of Mammaliaformes (Figs. 1and 2, Table 2
and Supplementary Tables1-3). Furthermore, mammaliaforms do not
show an especially strong trend towards greater body size diversity with
time; their correlation analyses and PGLS regression are not significant
(Table 1and Supplementary Table 5), the range of body sizes among
descendant lineages is suppressed compared with other groups, and
thereconstructed ancestral jaw lengthis longer than the median value
forthe group (Table1and Supplementary Table 3). Thus, Theriais the
only major radiation to show strong evidence of ancestral lineages
being relatively small-bodied compared with descendant lineages.

In previous non-mammaliaform synapsid radiations, some sub-
clades show statistically significant trends in body size evolution, but
those trends at smaller phylogenetic scales tend to contradict each
other, resulting in no overall trend within the higher-level radiations
(Extended Data Figs. 1-6). Therapsids exemplify this: two subclades,
anomodonts and therocephalians, display opposite trends (Extended
DataFig.2). Anomodonts experience asignificant trend towards larger
bodysizes, possibly reflecting the metabolic benefits larger body sizes
would have provided given their herbivorous diet*, inaddition to the
clade’s re-diversification following the Permo-Triassic extinction pri-
marily consisting of medium to large-sized taxa*’. The opposite body
size trend is seen in therocephalians. A few large-bodied species are
presentinthe Triassic, but the overall trend towards smaller body sizes
in therocephalians may reflect the impacts of the end-Guadalupian
mass extinction***,

All five major groups and many subclades showed evolutionary
trends of ancestral faunivores giving rise to greater dietary diversity
withtime (Figs.1and 2, Table 2, and Supplementary Tables1and 2). This

patternwas supported by the ancestral-state reconstructions; allnodes
ofthe ‘backbone’ of the synapsid phylogeny (from pelycosaursto early
therians) were reconstructed as faunivorous (Extended Data Fig. 7),
indicating that faunivores consistently gave rise to groups with greater
dietary diversity. Further, thisresultindicates that evenif we had cho-
senadditional nodes of interest for analyses, we would have maintained
the same conclusionthat radiation forerunners were faunivorous. One
unexpected exceptionto the faunivore-to-herbivore trend is Metathe-
ria, which showed no dietary trend with time (Extended Data Fig. 5, and
Supplementary Tables 1and 2). However, the earliest metatherians
are thought to be mostly faunivorous*, and metatherian herbivores
and omnivores that arise later in the Cretaceous and early Cenozoic
(forexample, Glasbiidae and Polydolopimorphia) are not adequately
sampledinour study because these taxaare mostly known fromteeth
and notjaws (for example, Glasbius)*. Therefore, we posit that a larger
sample of early metatherians (especially those from the Cenozoic)
would demonstrate the faunivory-only to faunivory-and-herbivory
patternthatis common in other synapsid clades.

Body size bottleneck in early mammaliaforms

Asmall-body-size bottleneck in early mammaliaforms s evident from
the plot of jaw lengths through time (Fig. 1c), and thisis supported by the
mammaliaform regressions (Fig. 2c), ancestral-state reconstructions
(Table1) and evolutionary model-fitting analyses (Fig. 1d) that all sug-
gest very smallsizes for early mammaliaforms. The positive trend with
size was not as strong in mammaliaforms as it was in therians (Fig. 1c
and Table 1), and the correlation analyses did not show a significant
correlation between size and patristic distance in mammaliaforms,
indicating a period of reduced body size diversification in the Late
Triassicand EarlyJurassic. All three of the best-fitting models (OUM3_
Mf_Tn, OUM4_Cy_Mf Tn, OUMS5) include large shifts in trait optimain
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mammaliaforms (toamuch shorterjawlength) and therians (to alonger
jaw length) (Fig. 1d and Table 2). Thus, each model captures both the
body size bottleneck near the base of Mammaliaformes and the subse-
quentbody size diversification of therians. The four-peak and five-peak
modelsalso describe the shiftin body size evolution from pelycosaurs
and therapsids to cynodonts. With a few exceptions (for example,
Cynognathus, Exaeretodon, Impidens, Scalenodontoides)*, the range
of body sizes within cynodonts is more constrained to medium and
small sizes (jaw length <135 mm) relative to the sizes of pelycosaurs
and therapsids, which s consistent with previous findings*’. This may
suggest selection against larger cynodont body sizes, or an inability
of cynodonts (and early mammaliaforms) to invade ecological niches
that require or accommodate larger body sizes due to the increasing
ecological dominance of diapsid reptiles in the Triassic.

The appearance of very small body sizes is one of several aspects
of the mammalian phenotype to emerge in the Late Triassic and Early
Jurassic. Other traits include a determinate pattern of skull growth,
the novel dentary-squamosal jaw joint, smaller ‘post-dentary’ bones
free from functional constraints associated with mastication, a more
ossified braincase and orbital wall, diphyodont tooth replacement,
mammal-like regionalization of the vertebral column and endo-
thermy**™°, We follow previous studies in positing that small body
sizemay have been aprerequisite or catalyst for the evolution of some
of these traits. For example, ref. 60 argued that especially small body
size may have helped facilitate the evolutionary transition of jaw joint
bones (quadrate, articular) to the middle ear (incus, malleus) by reduc-
ing biomechanical stresses at the jaw joint. Further, the evolution of
endothermy in mammalian ancestors has been linked to the shift to
smaller body size***"*2,

Many mammaliaforms and therians were already at or near their
absolute minimum body size during the Jurassic and Cretaceous, the
lower bound of which is probably determined by physiological or
metabolic constraints*>, The absolute minimum body size for mam-
mals may act as an evolutionary ‘reflecting boundary’ (sensu ref. 64)
such thatlarger body size was the only available morphological space
into whichmammaliaforms and therians could evolve’. Therefore, the
trends towards larger body size in mammaliaforms and therians may
reflect passive trends away from small body size rather than active
trends towards larger size”** (but see refs. 29,65 for an opposing view).
Mammaliaforms and early therians may have been restricted to small
body sizes during the Mesozoic because of competition with or preda-
tion by the dominant dinosaur fauna®***’ (but for alternative views,
see refs. 4,33,70,71). Once niche space opened up after faunal turno-
ver events of the Cretaceous Terrestrial Revolution (KTR)**7?and the
Cretaceous-Palaeogene (K-Pg) mass extinction (for example, ref. 45),
mammalian body size diversification may have trended (passively or
actively) towards larger sizes?”*** %73 In this way, the end-Triassic body
size bottleneck permanently altered macroevolutionary dynamics
for the remainder of synapsid history, although this change did not
fully manifest itself until after the KTR and/or K-Pg extinction, over
100 Myr later.

Survival of the relatively novel faunivores

Asa potential causal mechanism for the observed macroevolutionary
pattern that faunivores are the forerunners of major radiations, it is
tempting to turnto Cope’s ‘law of the unspecialized®”7***, This ‘law’
states that ecologically unspecialized species have a reduced risk of
extinction compared with highly specialized species; thus, unspecial-
ized taxa are morelikely to survive extinction events and subsequently
radiate. Hypothetically, if most faunivores (or at least insectivores) are
considered less ecologically specialized than herbivores, then fauni-
vorous lineages may be more likely to experience long-term survival
and give rise to subsequent radiations (as we observe here), whereas
herbivorous clades have agreater risk of extinction®>”*. ‘Survival of the
relatively unspecialized’ has been used to help explain the mammalian

trend towards larger body sizes with time (as seen in our mammalia-
formand therian results)””, whichis often attributed to Cope’s rule”.

However, we do not consider ‘survival of the unspecialized’ to
fully explain our results, for at least two reasons. First, ‘survival of the
unspecialized’ refers to being ecologically unspecialized, and although
‘omnivore’is often considered the most generalized dietary group, we
did not find evidence of omnivory being the ancestral dietary regime of
major radiations. Second, although many of the progenitors of major
synapsid radiations may appear to be morphologically unspecialized
faunivores, this does not mean that they are ecologically unspecial-
ized.Forinstance, recent studies have shown that early insectivorous
mammaliaforms exhibited greater niche partitioning than previously
assumed”™’°,

Further, the view that early lineages of radiations are morphologi-
cally (or ecologically) unspecialized might simply be due to observa-
tional bias: the early lineages of each radiation are morphologically
‘unspecialized’relative to many of their later descendant lineages, but
they also can be very derived compared with their contemporaries.
For instance, early therians were small-bodied insectivores or omni-
vores that are relatively unspecialized compared with descendant
clades, which include extant mammals (besides monotremes) that
have achieved extreme levels of ecomorphological diversity. Rela-
tive to contemporary clades in the Mesozoic Era, however, therians
could be considered very derived and morphologically specialized.
For example, they (or their close relatives) evolved a tribosphenic
molar that permitted more complex masticatory functions than most
coeval faunivores’”’®, novel masticatory movements via asynchronous
contractions of jaw muscles”*2, and improved auditory and olfactory
senses via evolutionary changes to the cochlea® and face®, respec-
tively. Asimilar patternapplies to the other synapsid radiations, with as
many as 55 novel synapomorphies differentiating early therapsids from
pelycosaurs®*® and 27 synapomorphies separating cynodonts from
other therapsids®®. Thus, rather than ‘survival of the unspecialized’,
we argue that our results support the ‘survival of the relatively novel ™.

Many of these novel traits, which could be considered ‘key inno-
vations’, may have played a larger role in survival than diversification.
The origins of these traits (and the clades that possess the traits) rarely
coincide with the start of evolutionary radiations, indicating that
the traits themselves did not catalyse the radiations. For instance,
therians (or closely related taxa) with novel molar, ear and facial traits
experienced a macroevolutionary lag®: they evolved by the Middle
Jurassic (-165 Ma)® but did not begin to ecologically radiate until the
middle or Late Cretaceous, -75 Myr after their origin**’°. Rather than
catalysing radiations, the novel traits may have facilitated long-term
lineage survival during mass extinctions and other faunal turnover
events. Therapsids evolved by the late Pennsylvanian, but their diver-
sification is only recorded in the middle Permian, following Olson’s
extinction, and the main cynodont radiation occurs in the aftermath
of the Permo-Triassic mass extinction despite the clade’s originin the
middle Permian®°°*", Similarly, early mammaliaforms survived the
Triassic—Jurassic mass extinction, and therians survived the KTR and
K-Pg mass extinction®. In each case, the opening of ecological niche
space through the removal of previous incumbents seems to be the
key step in beginning the subsequent diversification®*”". This pattern
is consistent with evidence from early amniotes, including the first
synapsids, which demonstrates that extinction predates the start of
evolutionary radiations at that stage of tetrapod evolution as well*’.

Conclusions

Using a new time-calibrated metatree of fossil synapsids spanning
~300 Myr, we rigorously tested hypotheses of body size and diet evo-
lution. Specifically, we asked whether the early members of synapsid
evolutionary radiations consisted of relatively small-bodied fauni-
vores, with later members exhibiting a broader range of dietsand a
trend towards larger body sizes. We found that faunivory is the typical
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ancestral dietary regime of each major radiation within Synapsida,
but the small-to-large trend in body size within radiations does not
become common until the end-Triassic size bottleneck near the base
of Mammaliaformes. Our results indicate a shift to smaller ancestral
sizes at the base of Cynodontia, with stronger shifts at the base of Mam-
maliaformes and Theria. In turn, these changes caused subsequent
radiations to exhibit small-to-large trends in size evolution, although
these trends may be passive due to the ancestral sizes being close to the
lower limit possible for the clades. The Triassic shift to small ancestral
body sizes altered synapsid macroevolutionary dynamics, although
this change was not fully realized until the Cenozoic diversification of
therian mammals. Finally, although the progenitors of synapsid radia-
tions appear relatively unspecialized in hindsight, they typically pos-
sessimportant novel characters compared with their contemporaries.
These characters were likely important in promoting their long-term
survival and diversification (that s, ‘survival of relatively novel fauni-
vores’), butit appears that mass extinctions and other faunal turnovers
were necessary for the lineages that possessed these characters to
reach their full evolutionary potential. The past decade has witnessed
aresurgence of research on non-mammaliaform synapsids, and our
new comprehensive metaphylogeny provides a rigorous foundation
for continuing work on macroevolutionary patterns and processes
among the forerunners of mammals.

Methods

Metatree

To examine synapsid macroevolutionary patterns in a phyloge-
netic context, we built a metatree of 2,130 synapsid species. Our
time-calibrated metatree contains 1,888 species from the Carbonifer-
ous through the Eocene (305-34 Ma). We follow the metatree approach
described inrefs. 32,98, using the metatree” (https://github.com/grae-
metlloyd/metatree) and Claddis® packages in R'°°, as well as the maxi-
mum parsimony software TNT v.1.1 (ref. 101). For non-mammaliaform
synapsids, we collected every morphological character matrix that
has ever been published (to the best of our knowledge) as of July 2021,
in which non-mammaliaform synapsids composed the majority of
the operational taxonomic units (OTUs). We also collected the most
comprehensive early mammaliaform character matrices. We collected
269 matricesintotal from 241source studies (Supplementary Table 6).
Dueto evolving ideas of relationships and frequent matrix reuse, each
of the matrices was weighted according toits publication year and its
dependence on‘parent’ matrices using an established procedure (Sup-
plementary Methods)***.

For the non-therianradiations, our aimwas to capture macroevo-
lutionary patterns over the entire evolutionary duration of the group.
However, examining macroevolutionary patterns for all of Theria is
beyond the scope of this study, as it would require intense sampling
of the incredibly numerous later Cenozoic taxa (for example, ref. 102
identified 6,495 extant and recently extinct mammalian species and
this excludes the vast majority of Cenozoic fossil mammals). Instead,
for Theriaour aimwasto examine the first ~100 Myr of evolution, from
the origin of the clade (-165 Ma)*’ through the evolution of many of the
modernordersinthe early Paleogene. Thus, our results for Theria only
reflect the early history of the clade, but our sampling is sufficient to
establish its ancestral body size and diet, and to determine whether
there is aninitial trend towards the evolution of larger size among its
members. See Supplementary Methods for additional discussion on
our theriansample.

The metatree approachrelies on XML metadata files that reconcile
OTU names tovalid Paleobiology Database'® (PBDB; www.paleobiodb.
org) taxa®*>®, We resolved OTU names in matrices to match with taxon
names in the PBDB. This was a time-consuming task that must be done
carefully and deliberately. We made a total of ~400 revisions to the
PBDB in the course of this project, including adding taxa, correcting
mis-spellings and correcting/adding taxonomic lineage information.

Further, we deleted unnamed specimen-level OTUs and those not pre-
sentinthe PBDB. Many OTUs in character matrices are only givenat the
genus level, but our metatree is at the species level. In these cases, we
examined the original publications for information on which particular
species were used to score each genus and used these in the XML files.

In early metatree analyses, some relationships of early synapsid
clades were especially unstable or contradictory to consensus views
withintheliterature. This appears toresult fromthe fact thatrelatively
few analyses of higher-level relationships among major therapsid
clades have been undertaken, but that small numbers of outgroup
taxa are included in the many analyses of relationships within major
clades. Most of these within-clade datasets are not designed to resolve
outgroup relationships and they sometimes recover results that con-
flict with the few higher-level analyses that have been conducted (for
example, the relatively stemward position of Gorgonopsia and the
paraphyly of Dinocephaliain most derivatives of the anomodont data
matrix of ref.104). Thus, to ensure that the metatree topology reflected
the current understanding of higher-level non-mammalian synapsid
relationships, we used the phylogenetic tree of ref. 84 to constrain some
of the higher-level relationships within the metatree.

To time calibrate the majority-rule topology, we began by query-
ing the PBDB to obtain occurrence ages (Supplementary Table 7). We
then vetted all PBDB age data, supplementing or updating them with
biostratigraphic or radiometric age estimates from primary sources
asmuch as possible. PBDB ages were revised for -10% of sampled spe-
cies. For Cretaceous and early Palaeocene therian age ranges, we relied
primarily on previously reported ages*. Reliable occurrence datawere
obtained for1,888 of the taxain the phylogeny. After dropping the taxa
for which we did not have occurrence data, we used the timePaleo-
Phy function within the paleotree R package'® to date the metatree.
Although we later dropped tips representing taxa for whichjaw length
measurements were not available, these were included during the
time-scaling process because they provided important branchlength
and node age information'®.

The strict consensus topology of our metatree contained large
polytomies within Mammaliaformes. To circumvent thisissue, we used
the majority-rule topology (see Supplementary Fig.1for our analyses).

We divided synapsids into five ecological radiations, which are
well established in the literature as distinct major radiations®*¢~%,
See Supplementary Methods for a detailed description of these radia-
tions, including discussion of their derived morphological traits and
evidencethat they have each undergone ecological diversification. Fur-
ther, the Supplementary Methods includes discussion on some clades
with controversial topological positions (for example, varanopids,
allotherians). For supplementary analyses, we divided the five major
radiationsinto19 subclades and results for these groups are provided
in Supplementary Results. Finally, we repeated some analyses using
Mammalia to help test whether our choice of clades influenced results
(Supplementary Tables 1-3).

Body size proxies and dietary classification

We used jaw length as a proxy for body size, in part because many
different measurements have been used to approximate body size in
different groups of synapsids*>***, making it challenging to produce
consistent estimates across all synapsid groups. Further, jaws are com-
monly preserved in the synapsid fossil record, thus providing us witha
large sample size. We collected jaw length measurements and dietary
information for 404 synapsid species (37 pelycosaurs, 134 therapsids,
45 cynodonts, 78 mammaliaforms and 110 therians). Jaws were meas-
ured from photographs taken by the authors and published figuresin
theliterature (Supplementary Table 7). In cases where we had more than
one measurement for aspecies, we used the longest jaw length to help
minimize the chance of includingjuvenilesin our sample. Jaw lengths
were measured as the distance from the anterior tip of the dentary to
thejawjoint/posterior condylar process, parallel to the cheek teeth row
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(sensuref.16). For mammaliaforms and mammals without preserved
anterior portions of the jaw, we used a regression equation based on
data from extant mammals'® to estimate jaw lengths from the distance
between the first lower molar and jaw joint (see Supplementary Meth-
ods).Jaw lengths were log,,-transformed before analyses.

Dietary information was taken from the PBDB and vetted using
information from the scientific literature and inferences from dental
morphologies, resulting inseveral species’ diets that were altered from
the PBDB classifications (Supplementary Table 7). We grouped taxa
intooneof three diet categories: faunivores, omnivores or herbivores.
Insectivores, carnivores and piscivores were included in the faunivore
category. Although these three categories are an oversimplification
of the dietary diversity in the mammalian lineage, we could not use
more specific diet categories because detailed dietary information
is unavailable for many early synapsid groups. Further, many of the
fooditems of extant mammals (for example, grasses and fleshy fruits)
were not present for much of synapsid history, hence narrower diet
categories (for example, ‘grazing herbivore’ or ‘frugivore’) might not
be applicable to amajority of our sample. See Supplementary Methods
for additional discussion.

To quantify diets for some analyses, we assigned anumber to each
ofthethree diet categories: 0, faunivores; 0.5, omnivores; and 1, herbi-
vores. We chose these values because they represent approximations
of the percentages of plant material in each of the diets (for example,
many herbivores have diets consisting of 100% plants), thus allowing
usto treat the diets as proportional datain regression analyses.

Regression and correlation analyses

We used two types of analyses to quantify trends in body size and
dietacross the five major synapsid groups (Supplementary Methods)
and their subclades. First, we examined the relationship between jaw
lengths and patristic distance usinglinear models, and we examined the
relationship between diet and patristic distance using quasibinomial
generalized linear models, which can be fit to proportional data. We
used OLS regressions for our primary linear model results (Table 1),
but we also performed supplementary regression analyses via PGLS
(Supplementary Table 5). PGLS regressions were performed using the
gls function of the nime R package'”’, with phylogenetic signal (Pagel’s
A)incorporated into analyses and calculated viamaximum likelihood.
Because omnivores and herbivores were assigned larger values (0.5
and 1, respectively) than faunivores (0), for diet regressions, a positive
relationship indicates an increased number of omnivorous and/or
herbivorouslineages with time. Patristic distance provides ameasure
of the phylogenetic proximity of each taxon to aselected node within
a phylogeny'®®, and comparisons between morphology and patristic
distance have been used in previous studies of trends in synapsid evo-
lution*34*19%11° 'We calculated patristic distance as the sum of branch
lengthsin units of time from each taxon in our sample to our outgroup
taxon, the oldest known sauropsid Hylonomus lyelli™.

Second, we tested for a correlation between our data (jaw lengths
ordiets) and patristic distances using both the Kendall rank correlation
coefficient and the Spearman rank correlation coefficient. Our quan-
titative dietary categories (0, 0.5 and 1) are arbitrarily ranked values,
hence correlation analyses may be more statistically appropriate than
regressions. We used the cor.test R function with the setting ‘exact =
FALSE’ due to someidentical paired values among diet data (that s, spe-
cieswiththe same patristic distance and diet) and because some sample
sizes among subclades were less than 50. Results for Kendall rank and
Spearman rank were very similar (Table 1 and Supplementary Table 2).

Evolutionary model-fitting analyses

We fit 44 evolutionary models to the jaw length data (log,, mm) using
the mvMORPH R package'?, following the methods in ref. 106. We fit
three categories of models: (1) ‘uniform’ models that treat all taxa as
asingle selective regime, (2) ‘shift’models that allow for a single shift

in mode of evolution at a specific node and (3) multiple-regime (or
multiple-peak) Ornstein-Uhlenbeck (OU) models'™ that test for a
shift in trait optima at one or more nodes. Uniform models included
BM (‘random walk’), OU and EB models. Shift models included the
‘radiate’ (OU shifting to BM with a constant evolutionary rate) and
‘release and radiate’ (OU shifting to BM with a shift in rate) models®’,
aswellasvariations of the ‘release’ and ‘release and radiate’ modelsin
which BM shifts to OU. We also tested for BM evolution with rate shifts
(thatis, BMM models)"2. We tested for shifts at five nodes: Therapsida,
Cynodontia, Mammaliaformes, Mammalia and Theria. Mammalia is
not one of the major radiations that we focus on in this study, but we
included it to test whether a more significant shift occurred at the
mammalian node than at the mammaliaform or therian nodes. Mul-
tiple OUM models were fit to the data using various combinations of
nodes. For instance, the OUM3_Cy_Mfmodelis a three-regime model
that allows for shifts in trait optima at the Cynodontia (Cy) and Mam-
maliaformes (Mf) nodes (that is, the three regimes are non-cynodont
synapsids, non-mammaliaform cynodonts and mammaliaforms). For
OUM models, we assumed the oldest regime state to be stationary (that
is, the ‘root’ parameter was set to ‘FALSE’) because our sample did not
include non-synapsid fossil data that would inform whether there
was an optimum shift at Synapsida. Model support was determined
using small-sample-size-corrected Akaike Information Criterion (AlCc)
values™. In Table 2, we only report results for the OUM models and
uniform models for comparison because none of the ‘shift’ models
had AICc values within ~25 of the best-fitting model (full results for all
models are provided in Supplementary Table 4).

With the OUM models, trait optima are the only parameters that
canvary; evolutionary rates (02) and selection strength (a) are constant
acrossregimes. It would be reasonable to expect some shifts in evolu-
tionary rates or selection strength at different nodes, and shiftsin rate
and selection strength should be explored in future work.

Ancestral-state reconstructions

To understand the degree and direction of body size evolution in
more detail, we calculated the ancestral jaw length of each major
radiation with the reconstruct function in the R package ape'™. This
function uses maximum likelihood and assumes a BM mode of evolu-
tion across the full phylogeny. Because some groups are unlikely to
have evolved via BM (for example, see our evolutionary model-fitting
results), we performed additional ancestral reconstructions for jaw
lengths after first testing whether single-regime BM or OU models
were better fits to the data for individual radiations (the phylogeny
was pruned toinclude only the taxa of that radiation). Models were fit
using the mvMORPH R package™*. We calculated ancestral jaw lengths
for eachradiating group using the best-fitting model. We report and
discuss theresultsin Supplementary Table 5 and the Supplementary
Results, respectively.

We calculated ancestral states for discrete diets (faunivore,
omnivore, herbivore) using the ace function in the ape R package. We
used the default ‘REML method and assumed equal transition rates
among diets.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datausedin this study are available through the main tables and the
Supplementary Information.

Code availability

A simplified version of the R code used for this study is available as a
supplementary text file. The code used to create the metatree is avail-
able at https://github.com/graemetlloyd/metatree.
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Extended DataFig. 2 |Jaw length (log,, mm) and diet regressed against not fit regression models for diets of Biarmosuchia or Gorgonopsia because
patristic distance for therapsid subclades. We do not include a quasibinomial their members all have the same diets - the dashed lines are included to help
model for Therocephalia because the model algorithm did not converge on emphasize the lack of diet change. Grey bands are 95% confidence intervals.
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Study description To examine macroevolutionary patterns in a phylogenetic context, we generated a time-calibrated meta-phylogeny (‘metatree’)
comprising 2,128 synapsid species from the Carboniferous through the Eocene (305-34 Ma), based on 270 published character
matrices. We used comparative methods to investigate body size and dietary evolution during successive synapsid radiations.
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Research sample Metatree: For non-mammaliaform synapsids, we collected every morphological character matrix that has ever been published (to
the best of our knowledge) as of July 2021 where non-mammaliaform synapsids composed the majority of the Operational
Taxonomic Units (OTUs). We also collected the most comprehensive early mammaliaform matrices. We collected 269 matrices in
total from 241 source studies (Supplementary Table 3). To time calibrate the majority rule topology, we began by querying the PBDB
to obtain occurrence ages (Supplementary Table 4). We then vetted all PBDB age data, supplementing or updating them with
biostratigraphic or radiometric age estimates from primary sources as much as possible.

Body size proxies and dietary classifications: We collected jaw length measurements (as a proxy for body size) and dietary
information for 404 synapsid species (37 pelycosaurs, 134 therapsids, 46 cynodonts, 80 mammaliaforms, and 110 therians). Jaws
were measure from photographs taken by the authors and published figures in the literature (Supplementary Table 4). We used jaw
length (log10 mm) as a proxy for body size. Dietary information was taken from the PBDB and supplemented with information from
the scientific literature whenever possible (Supplementary Table 3).

Sampling strategy Jaw length and dietary data were collected for as many taxa in our full metatreee as possible. The availability of this information was
based on the presence of appropriate photographs and dietary information in the literature.

Data collection Jaw lengths were measured as the distance from the anterior tip of the dentary to the jaw joint/posterior condyle, parallel to the
cheek tooth row (sensu Grossnickle 2020). We used jaw length (log10 mm) as a proxy for body size, in part because many different
measurements have been used to approximate body size in different groups of synapsids (e.g. Wilson et al. 2012, Smits 2015, Sookias
et al. 2012), making it challenging to produce consistent estimates across all synapsid groups. Jaw length measurements were
collected by David Grossnickle and Christian Kammerer. Dietary information was taken from the PBDB and supplemented with
information from the scientific literature whenever possible (Supplementary Table 3). This information was collected by David
Grossnickle and Spencer Hellert.

Timing and spatial scale The taxa in our dataset range from the Carboniferous through the Eocene (305-34 Ma). These dates were determined by the
availability of jaw-length data, dietary data, and occurrence dates for the taxa with in our metatree.

Data exclusions Jaw length data was excluded for juvenile individuals.

Reproducibility The data we collected is available in the literature, but will also be available in a more concentrated format in the supplemental
materials for the manuscript. This data can be easily reanalyzed using the openly available R packages we also used.

Randomization We grouped taxa into one of three diet categories: 1) faunivores, 2) omnivores, or 3) herbivores. Insectivores, carnivores, and
piscivores were included in the faunivore category.

Blinding Blinding was not relevant this study.

Did the study involve field work? |:| Yes |Z| No
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Materials & experimental systems Methods
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Specimen provenance No specimens were collected for this study. All data came from published studies.

Specimen deposition No specimens were collected for this study. All data came from published studies.

Dating methods All data came from published studies.

|X| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight No ethical approval or guidance was necessary. This is because no specimens were collected for this study. All data came from
published studies.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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