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Abstract—The rapid expansion of location-based services gives
rise to significant security and privacy apprehensions. While these
services deliver convenience, they accentuate concerns regarding
widespread location tracking via web services, mobile apps, IoT
devices, and autonomous vehicles. In this study, we comprehen-
sively assess the merits and constraints of prevalent techniques in
location privacy protection, including spatial-temporal cloaking,
k-anonymity, differential privacy, and encryption. Furthermore,
we delve into emerging applications like intelligent traffic plan-
ning and virus contact tracing which introduce novel complexities
to the pursuit of robust location privacy safeguards.

I. INTRODUCTION

We are experiencing the rapidly expanding use of location-

based services which has an estimated market growth from 20

billion in 2021 to 48.5 billion by 2026 [1]. While we enjoy the

convenience and benefits brought by location-based services

ranging from GPS navigation, friend locator to recent infec-

tious disease contact tracing, location tracking is becoming

a vital security and privacy concern among the majority of

people.

A huge amount of our location information is continu-

ously being collected by companies and organizations through

various types of services that request users to provide their

locations or collect users’ locations automatically. As illus-

trated in Figure 1, people living in modern life have been or

will be tracked almost everywhere via web services, mobile

apps, Internet of Things (IoT), smart vehicles, etc. It is never

clear to an end user how much and how long one’s location

data has been stored and when or whether the data has

been sold to third parties. Unexpected location disclosure can

lead to a series of consequences, some of which could be

severe. To name a few, kids sharing their locations on social

media could put themselves at risk of unwanted contact from

strangers and sometimes even cause kidnapping; potential

employers or insurance companies may take advantage of the

obtained rich location data of a person to infer their social

relationship, health, religion, etc., making decisions that may

be unfair to that person; hackers who compromise location-

based service providers could utilize the target’s daily travel

habits to conduct social engineering attacks. Fortunately, there

is light at the end of this tunnel. More and more countries

have tightened their privacy laws to enhance privacy protection

for their people. Still, this would not be an easy journey to

Fig. 1: Location Privacy in Pervasive Environments

accomplish without the necessary techniques to preserve the

privacy while ensuring the same level of service delivery.

Research on location privacy protection has a long history

in the literature since decades ago. Popular techniques being

proposed include spatial-temporal cloaking, k-anonymity, dif-

ferential privacy, and encryption. However, it remains an ex-

tremely challenging task to achieve the ideal location privacy

protection without degrading the quality of location-based

services. Moreover, the emergence of novel applications within

pervasive environments, including vehicular ad-hoc networks,

IoT applications, crowdsourcing/sensing, and virus contact

tracing, has introduced a fresh array of challenges to location

privacy protection.

In the remaining of the paper, we will first give an overview

of location privacy classifications (Section II), and then discuss

location privacy protection techniques in traditional settings

(Section III), and the modern era of pervasive environments

(Section IV), followed by a series of open challenges (Section

V). Finally, we will conclude the paper in Section VI.

II. LOCATION PRIVACY CLASSIFICATIONS

The risk of location privacy breach occurs at the moment

when a user gives out his/her exact location information

in plain text to another party which could be the service

provider, a broker agent, a peer user, etc. Any location-

based service is essentially conducting some kind of spatial-

temporal queries. Based on the location sensitivity of the
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query input and output, we can classify location-based services

into the following three categories: (i) private-input-private-

output (RIRO), (ii) public-input-private-output (PIRO), and

(iii) private-input-public-output (RIPO).

• Private-input-private-output (RIRO): An RIRO type

service takes private user location data as query input

and compares that with private location data of other

users. For example, the contact tracing application col-

lects users’ trajectory information and then identifies

trajectories of other users that are within a certain vicinity

of an input trajectory (i.e., a patient’s trajectory). Family

and friend locator is another popular application in this

category.

• Public-input-private-output (PIRO): Examples of

PIRO type services are emerging crowdsourcing applica-

tions such as the Apple Map incident report feature that

prompts questions to users at a certain location where an

incident took place earlier and asks for an update of an

incident status from the users who are currently driving

towards the scene. Similarly, the envisioned crowdsensing

applications require the server to recruit users who are

near a designated workplace to use their mobile devices to

report the sensing data about the location. Also, with the

increasing adoption of IoT (Internet of Things) devices

in public venues, servers may now track users whenever

they access those IoT devices. For example, cars equipped

with an RFID-enabled pass can go by a toll station faster

without stopping whereas the car’s location is recorded

automatically by the server at the same time. In the future,

there may be more electric charging stations that can

serve cars automatically without individual payment but a

monthly charge to their registered online accounts. Other

envisioned public IoT services such as Internet-enabled

printing services could also disclose users’ location infor-

mation to the service providers whenever the users use

the service. In these PIRO applications, the query input

(e.g., the incident location, the workplace, the charging

location) is publicly known while the users’ locations are

private.

• Private-input-public-output (RIPO): The RIPO type

services have been widely adopted nowadays. Finding a

nearby gas station, a nearby hotel, or a nearby restaurant

all fall in this category, where the query input is the

user’s private location while the query results are public

locations.

Existing location privacy preserving algorithms can be

classified into three main categories based on the underlying

techniques: (i) Spatial-temporal cloaking and k-anonymity; (ii)

Differential privacy based approaches; and (iii) Encryption

based approaches. In the next section, we will review the

representative works in each category.

III. LOCATION PRIVACY IN TRADITIONAL MOBILE

APPLICATIONS

In traditional mobile applications such as finding gas sta-

tions, map navigation, weather inquiry, and traffic flow analy-

sis, various privacy preserving approaches have been proposed.

A. Spatial-temporal Cloaking and K-anonymity

The core concept of spatial-temporal cloaking involves

generating a cloaking region encompassing the actual location

of a user along with K − 1 other users, thereby rendering

the service provider incapable of distinguishing among the K
users within the same area, ensuring a level of K-anonymity.

This concept was initially introduced by Gruteser et al. [2]

and has since undergone various extensions by others [3]–[8],

each employing distinct methods for creating these cloaking

regions. However, while these approaches effectively obscure

the precise user location, they fall short in safeguarding coarse

location data, such as user movement patterns. To illustrate,

attackers may be unable to pinpoint a user’s exact home

location, but they could still deduce the city of residence

and approximate user trajectory by connecting these cloaking

regions. To address this limitation, Lin et al. [9], [10] propose

a remedial solution involving the transformation of all real

locations into a new domain, providing comprehensive protec-

tion against the exposure of precise and continuous locations.

It is important to note that this approach is primarily suited

for RIRO (Private Input Private Output) type services such as

location queries about friends.

In addition to the utilization of cloaking regions, Besides

using cloaking regions, dummy trajectories are also often

used to achieve k-anonymity for privacy preservation. Notably,

various strategies have been devised to achieve this objective.

For instance, Niu et al. [11], [12] introduced strategies like

dummy swapping and dummy selection. Similarly, Xue et al.

[13] put forth the idea of deploying multiple virtual probes

to differentiate between user locations and fabricated GPS

positions. Addressing the queries related to top-k Points of

Interest (POIs), Zhang et al. [14] proposed two algorithms for

selecting dummy-POIs. Fei et al. [15] took a distinct approach

by categorizing users into groups, selecting dummies based on

these groups, and subsequently sharing the outcomes from the

service provider. Nonetheless, a shortcoming of these dummy

trajectories lies in their lack of coherent movement patterns.

This vulnerability makes them susceptible to detection by

malicious entities analyzing the dummies collected at different

timestamps. To address this limitation, Wang et al. [16]

proposed a fog structure to generate partial information and

dummy trajectories. Hara et al. [17] incorporated geographical

constraints into the dummy generation process. Similarly

aligned with the goal of obscuring actual user locations, Liu et

al. [18] introduced a filtering mechanism to eliminate dummies

that could be discerned based on spatiotemporal correlations.

Hayashida et al. [19] proposed a method to estimate user

movement by utilizing inputted visiting points. On a different

note, Pingley et al. devised a strategy that generates dummy

queries with diverse service attributes, effectively preventing

adversaries from linking a query to a specific user.

Yet, these methods fall short in considering the behavioral

rationale of the generated dummies. Their lack of adherence

to daily routines renders them easily distinguishable from
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genuine human trajectories through conventional data mining

techniques. In a recent advancement, Kang et al. [20] intro-

duced the concept of generating decoys that emulate human

behaviors throughout the day. These decoys discreetly submit

identical location-based service requests as the genuine user,

thereby camouflaging the user’s actual requests.

The above discussion focuses on mainly real-time location

based services. There is a line of research which looks

into the privacy protection when historical location data is

published for general use. Collected location data have great

potential for statistical usage in various applications such as

traffic congestion prevention, infrastructure and evacuation

planning, analysis of social behavior, advertising campaigns,

and control of spread of diseases. While the benefits provided

by location datasets are indisputable, preserving the location

privacy of the data owners remains a challenging task. Most

of existing approaches in this field [21]–[27] adopt the k-

anonymity concept and output anonymized trajectories in the

form of cloaking regions or centers of clusters. More advanced

approaches [24], [28]–[30] generate anonymized trajectories

following the road networks. The most recent efforts also

look into scalability issues brought by the rapidly expanding

volume of location data. Addressing this challenge, Katrina et

al. introduce an innovative solution called MELT [31], which

leverages the MapReduce computing paradigm to facilitate

concurrent processing of trajectory anonymization tasks.

B. Differential Privacy

An alternative strategy for hiding precise locations of users

from service providers involves employing the principles of

differential privacy to introduce controlled perturbations to

users’ actual locations. This approach, which adds an element

of randomness to the data, seeks to obscure individual details

while maintaining aggregate data utility. Andres et al. [32]

applied Laplacian noise to location data on a discrete Cartesian

plane. This framework empowers users to calibrate their

desired privacy levels, enabling them to modulate the extent

of noise applied to their location data. A similar concept is

presented by Chen et al. [33], who suggest adapting noise

levels based on the concepts of unobservability and a Kalman

filter. Xiao et al. [34] propose a method that adjusts privacy

protection levels according to users’ location profiles and

historical mobility patterns. Ngo and Kim [35] introduce the

notion of differential privacy geo-indistinguishability, which

contributes to diminishing the average size of cloaking regions.

Similarly, Wang et al. [36] employ differential geo-obfuscation

as a means to obscure exact user locations.

However, a caveat remains that even with differential-based

mechanisms, the noises introduced to the location data must be

judiciously managed to avoid degradation of service quality.

Consequently, adversaries may still glean certain information,

such as the user’s residing city, approximate movement tra-

jectories, and daily routine patterns, from the perturbed data.

This susceptibility to profiling arises because these approaches

do not fully eliminate recognizable patterns in the data. Fur-

thermore, adversaries might exploit non-sensitive contextual

information to deduce sensitive user particulars, as pointed

out in [37]. As a result, achieving an ideal balance between

privacy preservation and data utility remains a challenge in

these differential privacy-based techniques.

C. Encryption-based Privacy Preserving

Encryption-based strategies represent a robust avenue for

safeguarding location privacy, as they revolve around encrypt-

ing location data and facilitating queries directly on the en-

crypted data, thereby ensuring comprehensive privacy preser-

vation. A prominent example of this approach is exemplified

by the work of Ghinita et al. [38], who devised a framework

centered on Private Information Retrieval to enable private

nearest neighbor queries. Puttaswamy and Zhao [39] propose

an approach where location coordinates are encrypted prior to

sharing, guaranteeing that only authorized users possess the

decryption keys to access location information.

Leveraging the computational capabilities of smartphones,

Huang et al. [40] introduced secure multi-party computation

for processing users’ location data. Addressing the context

of sharing location among trusted peers and unfamiliar in-

dividuals, Wei et al. [41] created MobiShare, a system that

meticulously maintains user location privacy. Guha et al. [42]

designed a cloud-based matching service that offers encrypted

attributes and their values. Li and Jung [43] engineered a

protocol for privacy-preserving location queries using Pallier

encryption to obstruct adversaries from intercepting transmit-

ted data. Puttaswamy et al. [44] subsequently extended their

efforts to protect location privacy within geo-social applica-

tions.

For optimizing query efficiency, Paulet et al. [45] combined

oblivious transfer and private information retrieval techniques.

Building upon enhanced homomorphic encryption, Zhu et

al. [46] introduced a query framework that empowers users

to retrieve Location-Based Service (LBS) outcomes within a

specified polygon range without disclosing the precise query

polygon information. These encryption-based strategies sub-

stantially fortify user location information privacy. Neverthe-

less, their adoption necessitates substantial modifications to

the existing architecture of both LBS servers and clients, a

transition potentially encumbered by the associated capital

costs.

While encryption-based techniques undeniably provide the

most potent shield for location privacy, the main obstacle

in this realm is the considerable computational complexity

they entail. However, there is an optimistic outlook on the

horizon: the continuous evolution of computing power. This

trajectory suggests that as computing capabilities advance,

an increasing number of encryption-based methodologies are

likely to transition from theoretical constructs to practical

solutions for real-world applications.

IV. LOCATION PRIVACY IN MODERN APPLICATIONS

The rapid proliferation of Internet of Things (IoT) devices

and the advancement of autonomous driving technology have

catalyzed the emergence of a diverse range of innovative
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location-based services. In the subsequent sections, we will

delve into a selection of these contemporary applications.

These include but are not limited to: leveraging Vehicular

Ad-hoc Networks (VANETs) for efficient information dis-

semination, orchestrating intelligent traffic management for

autonomous vehicles, and enabling robust virus contact tracing

mechanisms.

In the context of these modern applications, safeguarding

location privacy has become a paramount concern. As a

response, novel privacy-preserving strategies are being em-

ployed, transcending the boundaries of conventional methods.

One notable trend is the integration of cutting-edge technolo-

gies like blockchain into the realm of location privacy protec-

tion. This fusion of approaches not only reflects the dynamic

nature of these new applications but also underscores the

multifaceted efforts to ensure the confidentiality of location-

based data in today’s evolving technological landscape.

A. Location Privacy in Vehicular Ad-hoc Netoworks

The continuous advancements in self-driving and connected

vehicles, along with the emerging concept of smart cities,

offer a glimpse of a dramatically different transportation

future [47]. Envisioning a smart city where vehicles are

equipped with autonomous driving systems, the potential to

completely eradicate traffic jams becomes a reality through

seamless, coordinated traffic planning, enabling autonomous

cars to smoothly navigate at high speeds without collisions

[48]–[51]. While the transition to smart cities may require

time, the immense benefits of highly efficient transportation

make it imperative to start studying various algorithms and

strategies needed for this transformation which include the

critical security and privacy issues.

The coordination among vehicles requires the establishment

of a trust relationship [52]–[55] which in turn may give

away individual vehicle’s location privacy. Existing works

on privacy preservation in VANETs focus on anonymizing

vehicle identities. By keeping their identities anonymous, the

vehicles also achieve location privacy. One common approach

is to enable vehicles to use different pseudonyms during

communication rather than using their real identities. An initial

contribution in this particular field was made by Raya and

Hubaux [56]. Their proposal involves a mechanism where a

vehicle, when needing to sign a message, randomly selects a

private key from an extensive collection of certificates issued

by a central authority. The recipient of the message then veri-

fies the authenticity of the sender’s signature by validating the

associated public key certificate. However, a notable drawback

of this protocol is that during the verification of each received

signed message, vehicles are required to examine an extensive

list of revoked certificates. This process is inherently time-

consuming. Later, various alternative pseudonym-based pro-

tocols have been developed [57]–[60]. These protocols offer

differing levels of enhancement in addressing the challenge of

key revocation. Nevertheless, a common aspect among most of

these approaches is the necessity for the identity management

authority to keep certificates linked to each vehicle. This

enables the authority to recover the genuine identities of

vehicles in cases of disputes. However, this practice also brings

about a notable concern. The continuous maintenance of these

certificates could potentially lead to the tracking of vehicle

movements by the authority. Consequently, the fundamental

issue of preserving the location privacy of the vehicles remains

inadequately addressed in these protocols.

Another category of privacy preserving protocols is group-

based [61], [62]. The core concept behind these protocols

involves the utilization of group managers to organize and

validate vehicles, thereby enabling vehicles to communicate

anonymously within their respective groups. Many protocols

in this category make use of a group signature scheme.

Within this scheme, vehicles possess the ability to verify

the authenticity of messages originating from valid group

members, without gaining knowledge of the actual sender’s

identity. This inherent anonymity within groups is exemplified

by the ECPP protocol introduced by Lu et al. [61], where

Roadside Units (RSUs) act as group managers. These RSUs

allocate group keys to passing vehicles. The security and

privacy aspects of ECPP are subsequently enhanced by Jung

et al. [62], whose protocol ensures both unlinkability and

traceability even when multiple RSUs are compromised. Given

the substantial computational burden associated with the group

signature scheme, various techniques have been proposed to

enhance efficiency. For instance, Hao et al. [63] present a

distributed key management framework, and Wang et al. [64]

introduce a decentralized certificate authority coupled with a

biological-password-based two-factor authentication.

In addition to the group-based signature scheme, alternative

techniques have been put forth to achieve anonymity within

groups. For example, Zhang et al. [65] adopt the concept of

k-anonymity to uphold user privacy. This ensures that a given

vehicle remains indistinguishable from k − 1 other vehicles.

However, k-anonymity demands a minimum of k vehicles

in close proximity, a requirement that may not always be

feasible in regions with limited vehicle presence. In the work

by Squicciarini et al. [66], a PAIM protocol is proposed, which

dynamically forms groups through direct vehicle-to-vehicle

communication. This protocol employs Pedersen commitment

and secret sharing schemes to realize anonymous vehicle

authentication.

In general, the group-based protocols have several notable

disadvantages. Primarily, there is the concern that the group

manager possesses comprehensive knowledge about the iden-

tities of group members, thereby enabling potential tracking

capabilities. Secondly, the task of managing group updates

and revoking membership can become prohibitively expensive

due to the substantial number of vehicles involved and the

rapid movement patterns exhibited by these vehicles. A third

limitation arises from the inherent constraint that commu-

nication within these protocols is confined solely to group

members. This, in turn, underscores the necessity for a robust

and dynamic grouping algorithm, which currently remains a

challenge. Furthermore, protocols reliant on infrastructure sup-

port, such as Roadside Units (RSUs), may encounter feasibility
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challenges in real-world scenarios where RSUs are sparse and

infrequently deployed. To address these concerns, the most

latest techniques for preserving privacy of vehicles in VANETs

employ homomorphic encryption and cloud servers that enable

vehicles to self-generate random IDs and minimize the reliance

on RSUs [67]–[69].

B. Location Privacy in Contact Tracing

Infectious diseases have posed a significant threat to public

health for centuries. The COVID-19 pandemic, in particular,

has demonstrated the devastating repercussions on human lives

and economies. In response to the urgent need to mitigate

the spread of highly contagious viruses like COVID-19, iden-

tifying and isolating individuals potentially exposed to the

virus through contact tracing has become paramount. Since

the inception of the pandemic, numerous efforts in privacy-

preserving contact tracing have emerged [70].

The majority of these existing endeavors employ short-

range wireless technologies like WiFi and Bluetooth to de-

tect instances of human-to-human contact. However, these

approaches share a common limitation: they may overlook

indirect contacts that occur when an individual encounters

residual virus particles after an infected person has departed

the area. Because of the inherent design involving localized

storage of direct encounter information on users’ devices, this

category of approaches encounters challenges when extending

to identify indirect contacts or conducting comprehensive

contact tracing queries using diverse location data collection

methods (such as GPS or QR codes). An early illustration of

these efforts is the EPIC system introduced by Altuwaiyan

et al. [71]. In this system, the server calculates a matching

score based on encrypted connection signals between users.

Nonetheless, the encryption scheme utilized in this method is

intrinsically computationally intensive. More recently, Trieu et

al. [72] have proposed a Bluetooth-based approach named Epi-

one, allowing users to exchange and store randomly generated

tokens during close proximity interactions. In case a user tests

positive, they inform the server, which then broadcasts a set

of tokens associated with that user. Other users subsequently

compare the tokens received from the server with their own

collected tokens to assess potential exposure risk. Similarly,

building on a comparable concept, Pinkas and Ronen [73]

present the Hashomer system that relies on Bluetooth for

detecting close contacts among users. This system records

pseudo IDs of encounters within the application and enables

health authorities to broadcast reported patient IDs to all users.

With the aim of granting users greater authority over their

privacy, Song et al. [74] introduce the concept of self-sovereign

identity. This notion empowers individuals to dictate when and

under what circumstances they share their identities during

interpersonal encounters. To enhance privacy protection even

further, certain strategies eliminate the need for a central server

and instead leverage blockchain techniques. For instance,

Ahmed et al. [75] propose a mechanism where individuals

who test positive for a disease can opt to upload their pseudo

IDs to a blockchain. Subsequently, other users can query the

blockchain to ascertain whether they have encountered any

of the diagnosed patients. However, this approach necessitates

users to proactively and consistently monitor the blockchain,

a task that inevitably consumes time and energy.

It is important to note that the aforementioned human-to-

human contact-based approaches may not be energy-efficient

in large-scale settings without sacrificing users’ location pri-

vacy. In cases where the server is unaware of a patient’s

region (e.g., city), broadcasting the patient’s pseudo IDs to a

large number of users throughout the country for self-checking

may result in the unnecessary consumption of phone batteries

for those who are geographically distant from the patient. To

narrow down the range of users to be notified, the patient must

be willing to surrender some location privacy by providing

information such as the cities they have visited.

V. OPEN CHALLENGES AND FUTURE DIRECTIONS

In this section, we discuss the open challenges and potential

future research directions.

A. Open Challenges

Providing location privacy protection for a single location-

based service is no longer sufficient as attackers could make

use of combined knowledge garnered from other services that

pertain location information to infer the users’ real locations.

Thus, it is important to investigate all location-based services

that a user has subscribed to in order to develop a holistic

protection plan that prevents potential privacy breach caused

by correlations of information from different services. An even

more challenging task is to also look into the user’s contacts

who may have shared the user’s location information online.

It is expected to take time for service providers to adopt

privacy protection mechanisms. During the transitional period,

users should have the necessary tools to sustain partial burden

of the privacy protection of their own data.

Finally, there is still a huge gap between the theoretical

solutions and the real-world implementations in terms of

location privacy protection. To enable the wide adoption of

the privacy protection mechanisms, it is important to bear in

mind the efficiency and scalability as well as the feasibility

and usability.

B. Future Directions

As discussed earlier, advancement in pervasive computing

has fostered a new realm of location-based services especially

those related to smart cities. We envision the possibly biggest

platform for the next generation of LBS applications could be

vehicular ad-hoc networks (VANETs) as it is the backbone

of communication infrastructure in future smart cities. In

this large scale and highly dynamic environment, preserving

vehicle’s location privacy would be on the top of the list to

address participants privacy concerns when subscribing to the

service.

For future VANET applications, robust and promising pri-

vacy preserving algorithms are likely to be developed us-

ing encryption-based approaches like blockchain and secure

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on July 31,2024 at 06:47:50 UTC from IEEE Xplore.  Restrictions apply. 



�������	�
�
���� �����	��� 


���
��� �������	��� 


�������������������

�����	�
��

������


��������� ����
����
���


����������
�����

������
���
�������

�������	
��	
�
�	����

������	�
�	
������	�
������	
��
�����	�������������
�
�����
�	
�����

Fig. 2: Blockchain-based Location Privacy Protection Strate-

gies

multiparty computation because they offer the undoubtedly

strong privacy guarantee and their computational efficiency is

improving constantly.

1) Blockchain-based Location Privacy Protection Strate-
gies: To improve road safety and traffic management, one

crucial aspect of the future VANET applications is the need for

vehicles to share important information (e.g. road conditions

and vehicle abnormal behaviors for road safety applications,

parking information, and charging station information to en-

hance convenience and efficiency of the drivers, multi-media

data for social sharing application, etc.) [47], [76]. To improve

the usability and quality of the service, these applications en-

sure the precision of location information in the data shared by

vehicles while preserving location privacy. The conventional

location privacy-protecting methods, such as K-anonymity and

regional cloaking methods, fall short of providing precise

location data while preserving location privacy.

Moreover, to incentivize vehicles to actively participate in

information sharing, it is imperative to introduce a reward

system that necessitates the ability to prove ownership of

the shared information. Additionally, the data shared, such

as road conditions, and reports of misbehaviors, must remain

immutable to ensure its integrity and prevent malicious tam-

pering. Traditional centralized methods fall short in guaran-

teeing immutability while preserving location privacy, as they

risk exposing the identity of the reporting vehicle and, in

some cases, can link multiple reports to reveal the vehicle’s

trajectory.

To address these issues, we can leverage blockchain tech-

nology as a robust foundation and lay the foundation for secure

and privacy-preserving data sharing in VANETs. As illus-

trated in Figure 2, first, when sharing a piece of information

along with a precise location, vehicles can use randomized

identifiers and transmit the information as a digital asset to

the blockchain. It allows vehicles to prove ownership without

revealing their real identities, thus unlinking the real identity

and location to protect location privacy. Vehicles can generate

new identifiers when sharing new information and only use

the used identifiers to get the reward.

Second, in some application scenarios, we can also utilize

smart contracts to trigger specific actions when predefined

conditions are met (e.g. produce an alarm when the number of

road hazard condition reports reaches a threshold, or trigger a

transaction when a piece of information has been verified as

valuable). By doing that, no centralized management unit is

needed to collect and process user location information.

Third, in case of the application scenario that vehicles need

to share information that is only accessible to a specific set of

vehicles, we can further introduce more encryption methods,

such as ciphertext policy attribute-based encryption (CP-ABE),

on the blockchain so that only the vehicles with required

attributes can decrypt the information.

By utilizing blockchain to decentralize the process, vehicles

can provide only a minimized set of information and make it

difficult for the attacker to link two pieces of shared informa-

tion and reveal the location and trajectory of the vehicles.

2) Secure Multi-Party Computation Based Location Privacy
Protection Strategies: As illustrated in Figure 3, secure multi-

party computation could be employed to enhance VANET’s

traffic prediction, thereby facilitating optimal vehicle routing.

This would involve utilizing secret sharing to calculate incom-

ing car numbers for each Road-Side Unit and direction.

We could achieve this by employing vehicle grouping

and designating a group leader. Each On-Board Unit would

determine a one-hot vector indicating the next neighboring

Road-Side Unit on the vehicles route. Subsequently, On-Board

Units would divide the vector into shares, sending one share to

the current Road-Side Unit and the other to the group leader.

The group leader would send the sum of the shares received

and their own location vector to the Road-Side Unit. Next,

the Road-Side Unit will aggregate all received shares and

reveal the result. Afterwards, the Road-Side Unit will possess

a vector indicating the number of vehicles heading to each

neighboring Road-Side Unit. The Road-Side Unit can then re-

lay this information to the location service provider potentially

improving short-term traffic prediction, more efficient traffic
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Fig. 3: Secure Multi-party Computation Based Location Pri-

vacy Protection Strategies
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routing, and smart traffic light scheduling.

In considering the viability of this prospective work, some

issues need to be addressed. Primarily, small groups of

vehicles could weaken any privacy guarantees. Due to the

risk of tracking individual vehicles along the route between

the two RSUs if there are too few vehicles in the group.

Additionally, the integrity of group leader would be crucial.

This could potentially be mitigated by appointing multiple

co-group leaders. On-Board Units would need to generate

additional shares as the number of group leaders increased.

VI. CONCLUSION

In the booming era of pervasive computing, safeguarding

location privacy requires a comprehensive approach. Pro-

tection must extend beyond individual services, considering

potential data correlations and user contacts. While various

location privacy protection algorithms have been proposed, the

gap between theory and real-world implementation remains

a challenge, demanding efficient, scalable, and user-friendly

solutions. The quest for comprehensive and robust location

privacy protection continues, uniting researchers, providers,

and users in a collaborative journey.
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