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Abstract: ZnO-Au nanocomposite thin films have been previously reported as hybrid metamaterials

with unique optical properties such as plasmonic resonance properties and hyperbolic behaviors.

In this study, Au composition in the ZnO-Au nanocomposites has been effectively tuned by target

composition variation and thus resulted in microstructure and optical property tuning. Specifically,

all the ZnO-Au nanocomposite thin films grown through the pulsed laser deposition (PLD) method

show obvious vertically aligned nanocomposite (VAN) structure with the Au nanopillars embedded

in the ZnO matrix. Moreover, the average diameter of Au nanopillars increases as Au concentration

increases, which also leads to the redshifts in the surface plasmon resonance (SPR) wavelength and

changes in the hyperbolic behaviors of the films. As a whole, this work discusses how strain-driven

tuning of optical properties and microstructure resulted through a novel Au concentration variation

approach which has not been previously attempted in the ZnO-Au thin film system. These highly

ordered films present great promise in the areas of sensing, waveguides, and nanophotonics to name

a few.

Keywords: hyperbolic metamaterials; surface plasmon resonance; vertically aligned nanocomposites;

strain-driven tuning

1. Introduction

Zinc Oxide (ZnO), though relatively new in the field of nanotechnology, has historical
uses dating back centuries such as in ointments and watercolor pigment [1,2]. Recently, it
is widely used in various industries and applications, such as rubber tire production [3],
mineral sunscreens to protect against UV-A radiation [4], therapeutics because of its anti-
cancer, anti-bacterial, and antioxidant properties [5], textiles [5], and agriculture [5] to
name a few. The fabrication of ZnO nanostructures grown using thermal processing
in 2001 has opened a new direction for ZnO [6]. From then on, many other 1-D ZnO
nanostructures have been developed [7], forming because of the noncentral symmetry and
polarity in the ZnO wurtzite hexagonal crystal structure [7,8]. ZnO also holds multiple
unique properties which have made it an oxide of increased interest, including wide band
gap semiconductor, piezoelectric [9] and pyroelectric [10] behavior. It is also a transparent
conductive oxide [11], with good radiation hardening resistance properties [10], and is
nontoxic [12], biodegradable [13], and biocompatible [13].

Mixing metallic nanostructures into ZnO as ZnO-based nanocomposites has drawn
great research interests in enhancing its multifunctionalities, such as Au for enhanced
surface plasmon resonance properties and catalytical properties. Very recently, thin film
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approaches have been used to grow metal-ZnO nanocomposites with uniform metal
distributions. Specifically, two types of metal morphologies have been achieved, i.e.,
particle in matrix (PIM) and vertically aligned nanocomposite (VAN), with PIM being
more common in oxide-metal growths. In PIM, the metal presents itself as nanoparticles
which are evenly distributed in the oxide matrix [14]. Noble metals such as Au, Pt, and Ag
have been grown as nanoparticles and researched due to their unique optical properties,
specifically the localized surface plasmon resonance (LSPR) response they demonstrate [15].
The shape, size, and dispersion of these metal nanoparticles in the matrix they are in can
tune this LSPR phenomenon thus giving them a variety of possible applications [15–18].
VAN on the other hand, is when metallic nanopillars are self-assembled epitaxially in
the oxide matrix on a substrate [14,19]. VAN are uniquely advantageous because the
functionality of the films can be tuned through material selection and as a result, vertical
strain can be tuned and controlled [19,20]. Oxide-metal VAN are able to tune not only
the LSPR phenomenon but also epsilon near zero (ENZ) permittivity thereby varying the
hyperbolic dispersion of hyperbolic metamaterials [HMM] [21–26].

These well controlled thin film-based nanocomposites also demonstrated powerful
tunability in optical properties. For example, ZnO-Au-based VAN films grown via pulsed
laser deposition (PLD) process have shown effective tuning via oxygen pressure and laser
frequency [27], and alloying with other metals [26]. In this work, we explore the power of
Au composition on the tuning of ZnO-Au nanocomposite thin films. Such composition
tuning has been achieved by the target composition variation from 10%, 20% to 30% of
Au. Detailed microstructural characterizations were carried out to compare the effects of
Au composition on the overall epitaxial growth quality, morphology and distribution of
Au nanostructures and strain coupling effects. Optical properties including plasmonic
resonance properties and optical anisotropy have been explored using UV-vis transmittance
measurements and ellipsometry measurements.

2. Materials and Methods

2.1. Thin Film Growth

All of the ZnO-Au VAN thin films which include the ZnO plus 10% mol Au, 20%
mol Au, and 30% mol Au (overall mol% of Au are written in Table S1 and the resulting
composition after film deposition is seen in Figure S1), were grown using pulsed laser
deposition (PLD). All films were deposited on c-cut sapphire substrates with a KrF excimer
laser (λ = 248 nm) using 3 different ZnO-Au composite targets. All the ZnO-Au composite
targets were processed using the spark plasma sintering process. Deposition conditions
included a substrate temperature of 610 ◦C, target-substrate distance of 4.5 cm, laser
frequency of 5 Hz, oxygen background pressure of 20 mTorr, and laser energy of 420 mJ.
Before deposition, the base pressure was 3 × 10−6 Torr or better.

2.2. Microstructure Characterization

Microstructure characterization was conducted using X-ray diffraction (XRD), trans-
mission electron microscopy (TEM), scanning transmission electron microscopy (STEM),
scanning electron microscope, and energy-dispersive X-ray spectroscopy (EDS). A Malvern
PANalytical Empyrean X-ray diffractometer (XRD) from Worcestershire, UK was used to
conduct θ − 2θ scans with Cu Kα (λ = 0.154 nm) radiation. The TEM/STEM/EDS-mapping
images were taken using the ThermoFisher TALOS F200X TEM. The cross-section TEM
samples were prepared by a standard sample preparation procedure consisting of man-
ual grinding, dimple polishing, and ion milling (PIPS 695 system, 5keV). The SEM BSE
(backscattered electron) images were taken using the Teneo Volumescope SEM.

2.3. Optical Measurements

Optical measurements were obtained using a J.A. Woollam RC2 spectroscopic ellip-
someter for ellipsometry measurements. A B-spline model coupled with a uniaxial model
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were applied to get optical permittivity measurements in the range of 210–2500 nm. A
Lambda 1050 UV-vis spectrophotometer was used for transmittance (%T) measurements.

3. Results

3.1. XRD

X-ray diffraction data were collected to examine the growth quality and phase com-
position of various ZnO-Au VAN films. Figure 1a shows the θ–2θ plots collected for all
the samples. Highly textured growth is obviously seen with the preferred out of plane
direction of ZnO (0002) and Au (111) on Al2O3 (0006). This relationship helps explain the
connection between the dissimilar crystal structures of ZnO and Au. ZnO has a hexagonal
closed packed structure while Au has a face centered cubic (FCC) structure. Thus ZnO
(00l) grows well on Al2O3 (0006), while Au (111) with a 3-fold symmetry matches to Al2O3

(0006) [27].

t
t

ff
θ θ

t

θ θ ff

t

Figure 1. (a) XRD θ–2θ scans for the different gold composition films and (b) the corresponding

d-spacing plot of ZnO (0002) and Au (111). (b) shows the d-spacing of the main Au (111) and the left

shoulder peak on the Au (111) especially for the 10% and 20% Au samples.

The calculated d-spacing values for ZnO (0002) and Au (111) are plotted in Figure 1b
for all three ZnO-Au samples. The blue and green solid lines are the bulk d-spacing values
of ZnO (0002) and Au (111), respectively, as reference. The green square line represents the
d-spacing for the main Au (111) peak while the green triangle line represents the d-spacing
for the left-hand side (LHS) shoulder peak especially for the 10% and 20% Au samples.
Error values for the d-spacing are as follows: ±0.1 nm for the ZnO (0002) peak and ±0.1
nm for the Au (111) peak.

In general, Au (111) main peak d-spacing values increase as the Au concentration
increases while ZnO (0002) d-spacings remain comparable with a minor increase. Specif-
ically, in the 10% Au film, both Au (111) and ZnO (0002) are under compression. When
the Au concentration increases to 20% Au, ZnO is still under compression while the Au is
nearly the same as the bulk value. Finally, in the sample with 30% Au, the ZnO is under
compression and the Au is now in tension. Considering the interfacial strain coupling
along the vertical interfaces in ZnO-Au VAN thin films, Au (111) will be under tensile
strain while ZnO (0002) is expected to be under compressive strain. This is consistent with
the strain results in the 30% Au sample. It is noted that Au (111) has experienced a larger
strain variation than that of ZnO suggesting the Au pillars are more likely to be tensile
strained by the ZnO matrix. Overall, the texture relationship is ZnO (0002) || Au (111) ||
Al2O3 (0006).

Additionally, the Au (111) peak in Figure 1a shows a left shoulder peak for the 10%
and 20% Au samples. The d-spacing of the shoulder peak has been calculated and plotted
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as the green triangle line found in Figure 1b. Unlike the main peak, this Au (111) shoulder
peak is in tension for all Au concentrations. This can be attributed to the morphology of the
films. Specifically, the 10% and 20% Au samples have both particle and pillar morphology,
leading some of the Au to be strain coupled to the substrate while the main Au (111) peak
is strain coupled to the ZnO matrix. The Au (111) peak in the ZnO-30%Au sample shifts
to a smaller angle and is broadened. This could be attributed to the large amount of Au
present in the film and the resulting lattice distortion and inhomogeneity in composition,
as previously reported [28]. The same reasoning can be applied to the visibly broadened
and shifted Au (222) peak.

3.2. Microstructure

STEM along with EDS mapping was conducted and summarized in Figure 2 to explore
the microstructure variation as a function of the Au concentration. All the films were grown
to be of comparable thicknesses (~80 nm). It is obvious that all the samples show clear
vertical Au nanopillars throughout the film thickness, with increasing pillar density and
diameters as the Au composition increases from 10% to 30%. The 10% and 20% samples
also show more discontinued Au nanopillars, while the 30% one shows more straight and
continuous pillars. The Au nanopillar diameters are plotted in Figure 3 for all three samples.
The average pillar diameter is 2.3 nm, 3.7 nm, and 5.0 nm for the 10%, 20% and 30% Au
films, respectively. This tuning of the pillar diameter with Au content variation is what
gives these ZnO-Au films the unique tunable optical properties discussed next.

t

t
t

t

Figure 2. Microstructure characterization of the Au concentration tuning. (a) Cross-section STEM and

(b) Au, (c) Zn, (d) combined EDS mapping image of the ZnO-10% Au film. (e) Cross-section STEM

and (f) Au, (g) Zn, (h) combined EDS mapping image of the ZnO-20% Au film. (i) Cross-section

STEM and (j) Au, (k) Zn, (l) combined EDS mapping image of the ZnO-30% Au film.
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Figure 3. Histogram of pillar diameters of (a) ZnO-10% Au, (b) ZnO-20% Au, and (c) ZnO-30% Au

films. The mean pillar diameter is stated in each image.

3.3. Optical Properties

Considering the plasmonic properties of Au nanostructures, UV-vis transmittance
measurements were conducted on the Au-ZnO VAN thin films with different Au compo-
sitions. Figure 4 shows the transmittance plots as a function of wavelength in the range
of 210 nm to 750 nm for all the samples. By comparing the data for the 10% Au, 20% Au,
and 30% Au films, there is an obvious redshift of the surface plasmon resonance peak as
the Au concentration increases, as labelled as arrows. Specifically, the ZnO-10% Au film
shows a plasmonic resonance response at 510 nm, the ZnO-20% Au film shows a plasmonic
resonance response at 513 nm, and the ZnO-30% Au film shows a plasmonic resonance
response at 545 nm. Such larger redshift of the plasmon resonance peak from the 10% and
20% Au to the 30% Au is likely related to the thicker, well-formed Au nanopillars in the
30% Au sample (~5.0 nm in average pillar diameter). There is also a broadening of the
absorption edge as this redshift occurs possibly due to the broadening of the diameter
distribution of the Au nanopillars in the 30% Au film. Moreover, there is a decrease in %T
as the Au content increases, suggesting the film allows less light through which can be
attributed to the increased Au content as well as the increased pillar size. Additionally, the
SPR wavelength can be tuned by the aspect ratio of the Au nanopillars. Therefore, another
reason for the redshift in SPR wavelength as the Au content increases is the better formation
of continuous Au pillars. As the pillars become more continuous and have larger diameters,
the proximity of one Au pillar to the next decreases. This smaller interpillar distance leads
to better near-field plasmonic coupling thus the observed redshift as the microstructure
changes [29]. Such redshift in ZnO-Au films has also been previously reported when
background oxygen pressure has been varied which results in more randomized Au pillars
growing in the VAN [27]. Additionally, increasing the laser frequency led to an increase
in Au pillars resulting in a redshift of the SPR wavelength [27]. In this work, the redshift
can be attributed to the increase in ordering and average pillar diameters as a result of
increasing the Au concentration in the films. This suggests that Au concentration tuning
in the films can effectively tune the SPR response in addition to the previously reported
deposition parameter variation. Sensing is one of the most widely used applications of the
SPR phenomenon in Au nanopillars [30]. Since the size and shape of the Au nanopillar can
tune the SPR wavelength, light sensing can be detected due to the dip in light intensity
corresponding to the resonant frequency of the Au structure. The refractive index of the
matrix surrounding the Au nanopillars can also tune the SPR wavelength as well. Optical
sensing is clearly a promising area for the use of these kinds of films.
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Figure 4. UV-Vis transmission (%T) of the ZnO-Au films with varying gold concentration. The

numerical values listed in the plot represent the wavelength corresponding to the surface plasmonic

resonance response of the individual films.

Due to the fact that these films were composed of an oxide and a metal, hyperbolic
behavior (when the film behaves like a dielectric in one direction and a metal in the other for
a given range of wavelengths) was expected. To understand this hyperbolic dispersion and
optical permittivity for the films with different Au compositions, spectroscopic ellipsometry
measurements were conducted. A B-Spline model was used to fit the film thickness and
achieve a mean square error of less than 5. A uniaxial model was used to fit the data to
understand the in and out-of-plane permittivities. All the samples demonstrate evident
hyperbolic dispersion and ENZ (epsilon near zero) values. These 3 films are ZnO-30%Au,
ZnO-20%, and ZnO-10% films. The ZnO-30% Au film shows 2 hyperbolic regions and two
ENZ points in the out of plane direction.

For the ZnO-10% Au thicker film in Figure 5a, the optical permittivity data presents 3
ENZ values at 234 nm, 279 nm, and 2118 nm all in the in-plane direction. In the regions
between 234–279 nm and greater than 2118 nm, the in-plane component (ε//) is negative
while the out-of-plane component (ε§) is positive. This means that in these regions, the film
behaves Type II hyperbolic structure, i.e., a metallic manner in-plane while a dielectric out-
of-plane. For the ZnO-20% Au thicker film in Figure 5b, there is one ENZ value at 1115 nm
in the out-of-plane direction. In the region between 1115–2500 nm, ε§ is negative while ε//

is positive. This suggests a Type I hyperbolic structure, i.e., metallic behavior in out of plane
direction and a dielectric in-plane. For the ZnO-30% Au film seen in Figure 5c, there are
two ENZ values at 339 nm and 693 nm in the out-of-plane direction. In the regions between
210–339 nm and 693–2500 nm, the film behaves as a Type I hyperbolic structure, i.e., a
metal out-of-plane and a dielectric in-plane. The variability in the hyperbolic dispersion
and ENZ values of these films is an outcome of the anisotropic nature of the ZnO-Au
VAN and consequently of the amount of Au in the films. HMMs can actually improve
the SPR sensing capability in devices [31]. Therefore, hyperbolic dispersion dips can be
attributed to surface plasmon resonance. The slight dip in Figure 5a around 500 nm can
be attributed to the SPR dip for the 10% Au film seen in Figure 4. Applications of HMMs
include waveguides, hyperlenses, and sensors [32].
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Figure 5. Real part of the optical permittivity of the (a) ZnO−10% Au Thicker, (b) ZnO−20%

Au Thicker, and (c) ZnO−30% Au films. The regions where hyperbolic dispersion is present are

highlighted. The green region corresponds to the green hyperboloid of two sheets while the yellow

region corresponds to the yellow hyperboloid of one sheet.

4. Discussion

One advantage of Au composition tuning is the ability to grow high quality films
regardless of Au content up to 30 mol %. This is evidenced from the strong Au (111) XRD
peaks for the different samples. This is in contrast to the films grown with individual
Zn and Au targets through sputtering which demonstrated a decrease in Au (111) XRD
peak intensity with Au content increase [33], which also lead to the degradation of the
crystallinity of the ZnO and Au isolating and clustering in the films. Additionally, tuning
the Au concentration also allows the pillar diameter tuning from 2.3 nm to 5.0 nm for
10% and 30% Au, respectively. In comparison, tuning laser frequency has shown to
result in a larger range and larger sized pillars with diameters ranging from 15 nm to
27 nm [27]. Additionally, the use of low Au composition to achieve smaller Au pillars is
a more economic option compared to the 1:1 ratio ZnO/Au nanocomposite targets used
previously [27].

Surface plasmon resonance tuning has been also observed in this work and the prior
work on laser frequency tuning [27]. In this work, Au concentration tuning results in the
absorption edge broadening when there are more Au nanopillars present. Interestingly,
plasmon resonance dips occur at varying wavelengths for the laser frequency study and
the Au concentration tuning study. Specifically, the Au concentration tuning method
shows SPR dips in the wavelengths ranging from 510 nm to 545 nm while the films grown
through varying laser frequency show SPR dips in the wavelengths ranging from 573 nm
to 600 nm [27]. In both cases, there is a redshift of the SPR wavelengths, but the cause
is different. When the Au concentration in the film increases, there is a redshift in SPR
wavelengths corresponding to an increase in Au pillar diameter and a more pillar like
morphology of the Au in the film. When the laser frequency increases, there is a redshift in
SPR wavelengths corresponding to a decrease in Au pillar diameter but an increase in the
number of pillars [27].

These highly ordered ZnO-based VAN films present great promise in the areas of
sensing [34], waveguides [34], and nanophotonics [35] just to name a few. Future research
in regard to Au concentration variation in ZnO-Au VAN could continue in the areas of
complex multilayer films with different Au concentrations or different ZnO-metal VANs.
Additionally, considering the minute magnetic properties in ZnO, a study on magnetic and
plasmonic coupling properties in ZnO-Au VANs and other ZnO-magnetic metal VANs
could be conducted. Plus, a further look at the tunability of the nonlinearity and second
harmonic generation (SHG) can be conducted. Preliminary SHG data are shown in Figure
S2 though no obvious SHG was observed. (In Supplementary Materials)
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5. Conclusions

In this work, The ZnO-Au VAN thin films with different Au composition varied from
10%, 20% to 30% have been deposited and their microstructure and properties have been
compared. The Au concentration tuning in these ZnO-Au VAN films has led to Au nanopil-
lar morphology tuning, strain variation, and the tuning of SPR properties and hyperbolic
dispersion. The ZnO-30% Au films show better developed and thicker Au VAN pillars
compared to the 10% and 20% samples. The SPR showed a redshift in wavelength with the
formation of more structured and thicker Au pillars as the Au concentration increases. All
the samples show clear hyperbolic behavior with different epsilon near-zero (ENZ) values
and hyperbolic dispersion regions in relation to Au concentration. Au composition tuning
has been demonstrated as an effective approach for tuning microstructure and properties in
ZnO-Au VAN hybrid metamaterials for future applications in integrated photonic devices
and optical sensors.

Supplementary Materials: The following supporting information can be downloaded at: https:

//www.mdpi.com/article/10.3390/cryst14010065/s1, Table S1: Table of the actual mol% of Au in

the composite ZnO-Au target, Figure S1: Table showing composition from EDS mapping, Figure S2:

Initial second harmonic generation (SHG) measurements for the ZnO+30%mol Au film, Figure S3:

Backscattered electron (BSE) SEM images of the (a) 10% Au, (b) 20% Au, and (c) 30% Au samples.

The bright contrast spots are the Au while the gray contrast area is the ZnO.
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