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Abstract
Aedes aegypti mosquitos are the primary vector for dengue, chikungunya, and Zika viruses and tend to breed in small con-
tainers of water, with a propensity to breed in small piles of trash and abandoned tires. This study piloted the use of aerial 
imaging to map and classify potential Ae. aegypti breeding sites with a specific focus on trash, including discarded tires. 
Aerial images of coastal and inland sites in Kenya were obtained using an unmanned aerial vehicle. Aerial images were 
reviewed for identification of trash and suspected trash mimics, followed by extensive community walk-throughs to identify 
trash types and mimics by description and ground photography. An expert panel reviewed aerial images and ground photos 
to develop a classification scheme and evaluate the advantages and disadvantages of aerial imaging versus walk-through trash 
mapping. A trash classification scheme was created based on trash density, surface area, potential for frequent disturbance, 
and overall likelihood of being a productive Ae. aegypti breeding site. Aerial imaging offers a novel strategy to characterize, 
map, and quantify trash at risk of promoting Ae. aegypti proliferation, generating opportunities for further research on trash 
associations with disease and trash interventions.

Keywords  Aedes · Garbage · Trash · Waste · Unmanned aerial device · Unmanned aerial vehicle · Remote sensing 
technology · Vector borne diseases

Background

Aedes aegypti mosquitoes, which can be found globally in 
tropical and sub-tropical climates, are the primary vector for 
multiple arboviruses including dengue, chikungunya, and 
Zika viruses (Kraemer et al. 2015). Ae. aegypti is a highly 
anthropophilic species that commonly breeds in small, man-
made containers of water such as plastic containers, bottles, 
buckets, and other trash that can collect rainwater (Getachew 
et al. 2015; Ngugi et al. 2017, 2020; Krystosik et al. 2020; 
Forsyth et al. 2020, 2022; Nosrat et al. 2021; Mwakutwaa 
et al. 2023; Khan et al. 2023). Discarded tires are uniquely 
suited to holding rainwater and serve as a particularly pro-
ductive breeding ground (Hayes et al. 2003; Sekhon and 
Minhas 2014). Despite trash, including tires, being a well-
known breeding site for Ae. aegypti mosquitoes, data is 
limited evaluating the relationship between living in close 
proximity to trash and the risk for Ae. aegypti-transmitted 
infectious diseases (Khan et al. 2023; Peña-García et al. 
2023). This gap is largely due to a lack of precise tools to 
quantify and map trash distribution. Trash has previously 
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been characterized by walking through communities and 
documenting the presence of potential mosquito breeding 
ground (Heukelbach et al. 2001) or counting specific trash 
types within and directly surrounding a household (Hayes 
et al. 2003; Brunkard et al. 2007; Kenneson et al. 2017; 
Mukhtar et al. 2018). Trash exposure has also been evaluated 
by household distance from public landfills (Tomita et al. 
2020), as well as with interviews asking about household 
trash contact (Zolnikov et al. 2023). However, these methods 
are time consuming and labor intensive, do not necessarily 
account for trash disposal practices or exposure at both a 
household and neighborhood scale, and do not provide a 
quantifiable measure of trash exposure.

A novel approach to surveying trash and mosquito habi-
tats is with aerial imaging using unmanned aerial vehicles 
(UAVs). UAV imaging is increasingly being used to map 
high risk habitats for various mosquito species that transmit 
human pathogens like malaria and dengue (Landau and Van 
Leeuwen 2012; Hardy et al. 2017; Carrasco-Escobar et al. 
2019; Sarira et al. 2020; Case et al. 2020; Schenkel et al. 
2020; Valdez-Delgado et al. 2021; Lee et al. 2021). UAV 
imaging to identify Ae. aegypti habitat has been piloted in 
Ecuador (Lee et al. 2021), Mexico (Valdez-Delgado et al. 
2021), and the USA (Schenkel et al. 2020), and is being used 
for related applications such as mapping the habitat of dif-
ferent mosquito species (Hardy et al. 2017; Carrasco-Esco-
bar et al. 2019; Case et al. 2020) and assisting with beach 
trash cleanups (Andriolo et al. 2021; Liao and Juang 2022). 
Moreover, the image data generated with UAVs are well 
suited for automatic image detection using tailored machine 
learning algorithms, a strategy that has been implemented 
with varying success for quantifying individual containers 
(Case et al. 2020; Passos et al. 2021; Liao and Juang 2022), 
marine and beached trash (Andriolo et al. 2021, 2022), as 
well as land cover that provides mosquito habitat (Carrasco-
Escobar et al. 2019; Trujillano et al. 2023). However, there 
is currently a lack of research applying these technologies to 
identify trash piles that pose a risk of serving as Ae. aegypti 
breeding sites.

Not all trash translates into a potential risk for Ae. aegypti 
breeding. Trash that is removed frequently or disturbed often 
by cars or foot traffic, for example, may not hold water con-
sistently and therefore does not provide suitable breeding 
ground for mosquitoes. Trash dump sites also have a variety 
of appearances, both on aerial imaging and as seen when 
walking through a community. The lack of a trash classifica-
tion system based on trash appearance and Ae. aegypti risk 
limits our ability to use UAV imaging to identify and quan-
tify trash, and ultimately assign trash scores to particular 
geographic areas for further evaluation of the relationship 
between trash and potential risk of Ae. aegypti breeding. 
The objective of this study is to develop a trash classification 

system that can be applied to UAV aerial imaging to assign 
trash categories and risk for Ae. aegypti breeding habitats.

Methods

Study site

This study was conducted in Kwale on the coast of Kenya, 
and Kisumu in southwestern Kenya (Figure 1). These sites 
are known to have extensive Ae. aegypti mosquitoes breed-
ing in trash and discarded tires throughout the communities 
and consequent dengue and chikungunya infections (Ngugi 
et al. 2017).

UAV flight planning and image acquisition

All flights plans were created using DJIFlightPlanner soft-
ware version 2.5.1.15 (https://​www.​dji.​com/​mobile/​downl​
oads/​djiapp/​dji-​pilot). Fights were conducted using a DJI 
Mavic 2 UAV by a licensed UAV pilot in collaboration with 
SwiftLabs (https://​swift​lab.​tech/). All flights adhered to the 
Kenyan Aviation Authority regulations for UAVs. Images 
were obtained at an altitude of approximately 100 meters 
over 8 days in July 2022 and January 2023 during daytime 
hours. Flight launch times were determined to optimize UAV 
flight conditions, minimizing shadows and glare from the 
white sand. Data was collected at two points of the year in 
order to capture variations in the appearance of trash across 
seasons.

Aerial image processing

Image processing was done using AgiSoft Metashape Pro-
fessional version 1.8.4 and base maps were generated in 
geographic coordinate system WGS 84 with a pixel resolu-
tion of 0.03 square meters and exported as a geotiff. Image 
classification and the coupling of ground truth photos with 
their corresponding UAV map locations were conducted in 
QGIS version 3.24. Aerial maps of the two study sites were 
systematically reviewed by two individuals to identify sus-
pected trash and trash mimics to help direct the community 
walk-through evaluations.

Walk‑through identification of trash versus mimics

After reviewing the initial aerial maps, over 10 hours and 
768 km2 of community walk-throughs were conducted with 
a community liaison and a community leader, both familiar 
with the major community trash sites and overall environ-
ment. Walk-throughs in both study sites were performed 
over 7 days in January 2023, concurrent with the UAV 

https://www.dji.com/mobile/downloads/djiapp/dji-pilot
https://www.dji.com/mobile/downloads/djiapp/dji-pilot
https://swiftlab.tech/
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flights. During the walk-throughs, various types of trash 
piles, tires, and other piles that could be mistaken for trash 
were discussed. Photographs of various trash types and trash 
mimics were taken to facilitate future discussion as a group.

Trash classification

Based on a representative sample of aerial images and 
ground truth photo images, trash types were iteratively clas-
sified by a team of six analysts, including two local ento-
mologists with extensive experience evaluating Ae. aegypti 
breeding habitats in these areas. A trash classification 
scheme was developed based on the appearance and volume 
of the trash; then each trash category was assigned a risk 
score of high, medium, or low based on the likelihood that 
trash type could be a productive Ae. aegypti breeding site. 
A few types of trash were determined to be essentially no 
risk. Trash determined to be “no risk” and trash mimics were 
subsequently excluded from aerial classification. In addi-
tion to creating major trash categories, four sub-categories 
were created based on discussion about other environmental 
features around the trash that could modulate Ae. aegypti 

breeding site risk. With this structure, each trash pile can be 
assigned one major trash classification in addition to up to 
four subcategories.

Ethics

Ethical approval for this study was obtained from the Tech-
nical University of Mombasa (TUM), National Commission 
for Science, Technology, and Innovation (NACOSTI), and 
Stanford University. Local administrative approvals were 
also obtained starting from the County Commissioners of 
Kisumu and Kwale counties down to Assistant Chiefs. Due 
to COVID-19 restrictions, local public meetings (barazas) 
were not conducted.

Results

Trash identification and classification

In the coastal site of Kwale, 1.5 km2 were mapped by 
UAV with 1316 trash piles identified. In the inland site 
of Kisumu, 2.0 km2 were mapped with 1888 trash piles 

Fig. 1   Study sites. Our study sites included the more urban, inland 
region of Kisumu, and the coastal, semi-rural area of Kwale in 
Kenya. Drone flight areas are outlined in red. County administrative 
boundaries available from OCHA Regional Office for Southern and 
Eastern Africa (https://​data.​humda​ta.​org/​datas​et/​cod-​ab-​ken). Coun-
try boundaries provided by IGAD Climate Prediction and Applica-
tions Centre (ICPAC) (https://​geopo​rtal.​icpac.​net/​layers/​data0:​geono​

de:​afr_​g2014_​2013_0). Hydrologic regions provided by ArcGIS 
Living Atlas Team (https://​hub.​arcgis.​com/​datas​ets/​arcgis-​conte​nt::​
world-​lakes/​about). Building and road data available from Humani-
tarian OpenStreetMap Team (https://​data.​humda​ta.​org/​datas​et/​
hotosm_​ken_​build​ings, https://​data.​humda​ta.​org/​datas​et/​hotosm_​
ken_​roads)

https://data.humdata.org/dataset/cod-ab-ken
https://geoportal.icpac.net/layers/data0:geonode:afr_g2014_2013_0
https://geoportal.icpac.net/layers/data0:geonode:afr_g2014_2013_0
https://hub.arcgis.com/datasets/arcgis-content::world-lakes/about
https://hub.arcgis.com/datasets/arcgis-content::world-lakes/about
https://data.humdata.org/dataset/hotosm_ken_buildings
https://data.humdata.org/dataset/hotosm_ken_buildings
https://data.humdata.org/dataset/hotosm_ken_roads
https://data.humdata.org/dataset/hotosm_ken_roads
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identified. A total of 961 photos of trash and trash mimics 
were taken and reviewed by at least two team members and 
compiled for targeted review by the full expert panel. Trash 
areas, including discarded tires, were first categorized based 
on appearance and expert opinion of overall risk of being 
an Ae. aegypti breeding site on an ordinal scale, then could 
be assigned up to four sub-categories that modulated risk 
(Table 1).

Trash major risk categories

The highest risk trash areas identified were trash collection 
centers and large community dumps (Figure 2). Collection 
centers typically sort trash based on material type; turnover 
of collected trash ranges from weeks to months, depend-
ing on the material type and time required to collect a vol-
ume that is cost-effective to transport to a larger recycling 
center. These large, stable piles of trash collect water which 
remain largely undisturbed and are ideal breeding sites for 
Ae. aegypti. Large community dumps are unsorted trash sites 
where multiple households and businesses dump organic and 
non-organic waste, typically including a large variety of 
small plastic containers which can breed Ae. aegypti; these 
sites are not routinely removed and experience minimal dis-
turbance. Medium community dumps are similar to large 
community dumps in composition and disruption but gener-
ally smaller in area and density. Small household trash piles 
are where one or a small number of households dump trash; 

density and area of small piles is less than medium dumps 
and they are typically in areas around roads and households 
that would be expected to get more frequent foot traffic and 
consequent disturbance.

Scattered trash and trash within canals were divided into 
risk and no risk categories based on location. Scattered trash 
in a grassy area often consists of plastic bottles or bags that 
can fill with water and are relatively undisturbed, charac-
teristics of good breeding grounds. However, because less 
trash is scattered over a larger area, the surface area overes-
timates risk compared to denser dump sites. Trash scattered 
in the road is frequently disturbed or trampled and therefore 
even plastic containers in these sites do not serve as good 
breeding sites and are considered no risk. A pile of trash 
that accumulates adjacent to a canal has some potential to 
fill with clean rainwater and be a low risk Ae. aegypti site. 
However, trash inside water canals is typically submerged 
in large amounts of dirty water which are good habitats for 
several Culex species but not Ae. aegypti. Therefore, trash 
within a canal was classified as no risk.

Discarded tires were classified based on positioning. 
Discarded car tires lying on the ground or leaning against 
something can fill with water and are a high-risk site for 
Ae. aegypti. However, tires embedded in the ground, often 
serving as seating areas or barriers along the roadside, can-
not fill with rainwater and are no risk. The positioning and 
therefore risk of the tire can be differentiated on aerial imag-
ing by the shape.

Table 1   Trash classification by Aedes aegypti breeding habitat risk

Trash piles were first classified by a primary risk category that took into account trash density, surface area, capacity to hold rainwater, and like-
lihood of site being disturbed. Tires were similarly classified into two categories based on the ability to hold water. Trash and tires could then be 
further assigned up to four sub-categories which could affect aerial visualization or breeding site risk

Trash categories Aedes aegypti risk Trash density Trash area Rainwater holding capacity Disturbance

Trash collection center High (6) High Large High Low
Large community dump High (5) High Large Medium Low
Medium community dump Medium (4) High Medium Medium Medium
Small household trash pile Medium (3) Medium Small Small Medium
Scattered trash in the grass Low (2) Low Large Small Medium
Trash pile next to water canal Low (1) Medium Small Small High
Scattered trash by the road - - - None (Trampled) High
Trash inside a water canal - - - High (dirty; submerged) -
Tire categories
Discarded car tire High NA Small High Low
Tire embedded in the ground - - - None (cannot hold water) -
Trash sub-categories Obscures view Provides shade High turn over More likely to change
Mixed with vegetation Increased Yes Yes - -
Partially hidden by trees Increased Yes Yes - -
Evidence of burning Decreased - - Yes -
Inside building construction site - - - - Yes
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Fig. 2   Major categories. The 
trash classification scheme was 
iteratively developed based on 
aerial image and ground truth 
visualization. Side by side com-
parisons are shown of the aerial 
image and ground truth image 
of major categories
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Trash sub‑categories

In addition to major trash categories, trash can belong to up 
to four sub-categories which can attenuate the Ae. aegypti 
risk, obscure the full view of trash, or be more likely to 
change in the near future (Figure 3). Vegetation and trees can 
provide shade, slowing the rate of water evaporation from 
small containers of water, helping breeding sites persist long 
enough for larval maturation. These areas can also provide 
nectar for adult mosquitoes and shade to protect them from 
desiccation. However, vegetation and trees can also obscure 
the aerial view of relatively large dump sites, underestimat-
ing the full extent of the site. Burning trash is a common 
practice, particularly for smaller piles of household trash; 
burning removes much of the trash and indicates a site that 
is frequently disturbed which decreases risk of Ae. aegypti 
breeding. Some entirely charred areas with no surrounding 

trash are also evident in communities and indicate areas of 
previous trash burning or burning for other uses such as out-
door cooking; these entirely burnt areas are no risk and are 
not included in the trash classification. Trash is frequently 
dumped in partially completed building sites as evidenced 
by an outline of bricks. Since these building may be under-
going active construction, these sites may become covered 
up or removed as construction continues; these dumps may 
therefore change on a shorter time horizon than other sites 
and pose more transient risk.

Trash mimics

On aerial imaging, several items looked like trash, but key 
features help to distinguish them from dump sites (Figure 4). 
Piles of bricks, stones, or rubble create the texture of a trash 
pile but are typically more homogenous in color and could 

Fig. 3   Trash classification sub-
categories. Each trash pile could 
also be assigned to a sub-cate-
gory. Side by side comparisons 
are shown of the aerial image 
and ground truth image of each 
sub-category
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Fig. 4   Trash mimics. Several 
items and non-trash piles could 
be mistaken for a trash pile on 
aerial imaging. Ground truthing 
was key for identifying these 
potential mimics so that they 
would not be classified as trash. 
Side by side comparisons are 
shown of the aerial image and 
ground truth image of each 
potential trash mimic
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be predicted based on the site (white bricks in Kwale and 
red clay bricks in Kisumu). Piles of other items like leaves 
or wood also create a texture like a trash pile but have a 
more natural hue and the shapes of sticks were usually dis-
tinguished. Similarly, piles of discarded crates or tarps can 
usually be distinguished by their shapes and cannot typically 
hold sufficient rainwater for Ae. aegypti breeding. Fabric or 
even stones embedded in the road also create a texture and 
color similar to trash, but the location in the middle of the 
road helps to distinguish these features from piles of trash. A 
pile of white sandbags or a herd of cattle or goat could also 
initially look like white plastic bags, but the scale of these 
objects helps to prevent this misidentification.

Unique trash types

In addition to the trash categories and mimics, there were 
special types of trash that were noted while walking through 
the communities which were not always readily distinguish-
able on aerial imaging and conferred a unique health risk. 
Several dump sites contained a large number of soiled dia-
pers. Diapers do not hold water for Ae. aegypti to breed 
in, but they contaminate the local environment with feces, 
particularly during the rainy season; additionally, diapers 
naturally absorb large volumes of moisture and therefore are 
very difficult to burn. Another unique dump site consisted of 
a large area of crushed glass; again, this was not a mosquito 
risk but could pose an injury risk, particularly to anyone 
walking barefoot through the area. Finally, in both study 
areas, retired dump sites were identified where trash was no 
longer being dumped but the ground retained evidence of 
being a former dump. These former dump sites were diffi-
cult to distinguish from active dump sites on aerial imaging, 
demonstrating that despite trash removal, it can take years 
for these areas to be fully rehabilitated if ever.

Discussion

Our study demonstrates that UAV imaging can be used 
to identify trash sites that serve as Ae. aegypti breeding 
grounds. Given the heterogeneity of trash dump sites, we 
created a trash classification scheme based on appearance 
on UAV imaging and risk level for serving as Ae. aegypti 
breeding habitat.

We created six categories of trash piles ranked based on 
overall Ae. aegypti risk which took into consideration a vari-
ety of factors, including pile density, surface area, ability to 
hold clean rainwater that would be feasible for Ae. aegypti 
oviposition and larval development, and likelihood of fre-
quent disturbance of breeding sites. We also distinguished 
between high risk and no risk tires based on their visual 
appearance and ability to hold rainwater. This classification 

system codifies the expertise from our interdisciplinary team, 
including local expert entomologists, and the accumulated 
knowledge from numerous studies identifying trash and tires 
as common Ae. aegypti breeding sites (Hayes et al. 2003; 
Sekhon and Minhas 2014; Getachew et al. 2015; Ngugi et al. 
2017; Mukhtar et al. 2018; Khan et al. 2023; Peña-García 
et al. 2023). We combined this knowledge of common breed-
ing sites with a detailed review of over 3000 trash sites and 
nearly 1000 trash ground photos to create categories that 
could be used for aerial image classification of trash sites.

The definition and relevance of different trash types 
depends on the use case. Trash identification by UAV imag-
ing is increasingly being deployed for various purposes, 
including mosquito abatement (Case et al. 2020; Schenkel 
et al. 2020; Valdez-Delgado et al. 2021; Lee et al. 2021), 
beach clean-up efforts (Andriolo et al. 2021; Liao and Juang 
2022), and locating off-shore marine trash (Andriolo et al. 
2022). In this study, we developed an aerial image classifica-
tion system specific for trash that poses a risk for Ae. aegypti 
breeding. This classification incorporates subtle but mean-
ingful differences in risk amongst trash and tire types based 
on distribution, location, and shape. For example, trash that 
is trampled, burned, submerged in dirty water, or tires that 
cannot hold water are considered differently than trash in 
large piles in relatively protected areas. Creating a classifica-
tion system that accounts for these differences makes this a 
highly useful tool for studying the relationship between trash 
and diseases like dengue.

However, our study is limited to trash and tires and does 
not evaluate all potential Ae. aegypti breeding site such as 
open water containers, cisterns, or gutters, which have also 
been identified as possible breeding sites (Heukelbach et al. 
2001; Mukhtar et al. 2018; Haddawy et al. 2019; Ngugi et al. 
2020; Valdez-Delgado et al. 2021). Future studies carefully 
evaluating these sites with consideration of item use, tempo-
ral stability, disturbance, and water flushing effects could fur-
ther expand the utility of UAV Ae. aegypti habitat mapping.

One important limitation of aerial imaging is that visuali-
zation of the ground can be obstructed by things overhead, 
such as overhanging eaves, trees, or dense vegetation. To 
address this limitation, we developed sub-categories which 
note trash that appears to be mixed with or partially obscured 
by trees or vegetation. While overhanging eaves can also 
limit views, this was encountered less frequently during the 
walk-throughs and tended to obscure only a small area of 
trash piles and therefore was not included in this sub-cate-
gorization. Additionally, unlike with ground visualization of 
a trash pile, the exact composition of a particular pile cannot 
be determined by these aerial images. However, during our 
walk throughs, it was noted that most community trash heaps 
consist of a mixture of different trash types, the vast majority 
of which included some types of containers that could serve 
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as Ae. aegypti breeding sites; a few unique types of piles 
were noted but these were infrequent.

Our study is also limited in its evaluation of trash stability 
over time, including both turnover of trash within a pile and 
movement of individual piles over time. However, our assess-
ment of trash disturbance took into consideration anecdotal 
observations by community leaders, stakeholders, and field 
staff about timing of trash turnover and stability of sites; in 
general, most of the larger and higher risk sites have report-
edly been in place for many years with infrequent trash turno-
ver; the smaller or sparser areas of trash are more difficult 
to assess but are suspected to be less stable. For particular 
cases such as burning, which causes frequent trash turnover, 
and trash dumped in a partially finished building, which may 
complete construction over a few months or years, we created 
sub-categories so that these changes could be accounted for 
or monitored over time. Repeated UAV flights and focused 
ground truth monitoring in the future would further enhance 
our understanding of trash turnover and dump site stability.

Trash is inherently difficult to classify, delineate bounda-
ries around, and ultimately quantify. These challenges are 
shared by various methods of measuring trash in the envi-
ronment, whether by aerial imaging (Schenkel et al. 2020; 
Andriolo et al. 2021; Lee et al. 2021), ground observations 
(Haddawy et al. 2019), or surveys (Getachew et al. 2015; 
Ngugi et al. 2017; Haddawy et al. 2019). However, aerial 
image analysis is a method that provides a map that can 
be re-referenced as classification systems evolve and other 
environmental variables are incorporated. These maps can 
provide quantifiable estimates of the surface area that trash is 
distributed within a given space and, by incorporating a clas-
sification system of risk and trash density, can give rough 
estimates of volume. As UAV trash assessments advance, 
additional research is needed to compare aerial image classi-
fication between different raters, against ground truth obser-
vations, during different seasons, and in other locations.

The classification scheme presented by this study serves 
as a foundation for future work using machine learning for 
automatic trash detection and assessment of Ae. aegypti 
breeding risk. Furthermore, the classification scheme cre-
ates different trash classes across a spectrum of Ae. aegypti 
risk and defines and justifies the visual features that impact 
the risk score. Even when focused specifically on trash dump 
sites, the surface area of the trash alone does not fully account 
for the quantity or quality of that trash as it pertains to Ae. 
aegypti risk. The classification scheme developed here paves 
the way for developing machine learning algorithms that fac-
tor in these nuanced but important differences. Additionally, 
identifying and quantifying the categories of trash according 
to the classification system developed creates an opportunity 
to measure the impact of interventions targeted at cleaning up 
and reducing high risk sites.

Conclusions

Our aerial image classification system identifies trash, 
including discarded tires, across a range of Ae. aegypti 
breeding risk. Importantly, this study forms a relationship 
between the appearances of trash from UAV imaging and 
ground truth walk-throughs, and the corresponding risk of 
the trash site being a productive breeding ground. Existing 
studies have developed tools to quantify trash at the level of 
individual containers and larger environmental hotspots; this 
study adds to the rapidly expanding research using UAVs for 
trash identification by examining trash through the lens of 
Ae. aegypti breeding risk. This study highlights the varying 
risk of trash in different contexts depending on the density, 
area, water holding capacity, and level of disturbance of trash 
and tires. The development of this tool lays the foundation 
for further opportunities to use UAV imaging technology 
to efficiently and quantitatively evaluate environmental risk 
for Aedes-transmitted infectious diseases and to target and 
measure interventions aimed at mitigating that risk.
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