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Abstract

Aedes aegypti mosquitos are the primary vector for dengue, chikungunya, and Zika viruses and tend to breed in small con-
tainers of water, with a propensity to breed in small piles of trash and abandoned tires. This study piloted the use of aerial
imaging to map and classify potential Ae. aegypti breeding sites with a specific focus on trash, including discarded tires.
Aerial images of coastal and inland sites in Kenya were obtained using an unmanned aerial vehicle. Aerial images were
reviewed for identification of trash and suspected trash mimics, followed by extensive community walk-throughs to identify
trash types and mimics by description and ground photography. An expert panel reviewed aerial images and ground photos
to develop a classification scheme and evaluate the advantages and disadvantages of aerial imaging versus walk-through trash
mapping. A trash classification scheme was created based on trash density, surface area, potential for frequent disturbance,
and overall likelihood of being a productive Ae. aegypti breeding site. Aerial imaging offers a novel strategy to characterize,
map, and quantify trash at risk of promoting Ae. aegypti proliferation, generating opportunities for further research on trash
associations with disease and trash interventions.
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been characterized by walking through communities and
documenting the presence of potential mosquito breeding
ground (Heukelbach et al. 2001) or counting specific trash
types within and directly surrounding a household (Hayes
et al. 2003; Brunkard et al. 2007; Kenneson et al. 2017;
Mukhtar et al. 2018). Trash exposure has also been evaluated
by household distance from public landfills (Tomita et al.
2020), as well as with interviews asking about household
trash contact (Zolnikov et al. 2023). However, these methods
are time consuming and labor intensive, do not necessarily
account for trash disposal practices or exposure at both a
household and neighborhood scale, and do not provide a
quantifiable measure of trash exposure.

A novel approach to surveying trash and mosquito habi-
tats is with aerial imaging using unmanned aerial vehicles
(UAVs). UAV imaging is increasingly being used to map
high risk habitats for various mosquito species that transmit
human pathogens like malaria and dengue (Landau and Van
Leeuwen 2012; Hardy et al. 2017; Carrasco-Escobar et al.
2019; Sarira et al. 2020; Case et al. 2020; Schenkel et al.
2020; Valdez-Delgado et al. 2021; Lee et al. 2021). UAV
imaging to identify Ae. aegypti habitat has been piloted in
Ecuador (Lee et al. 2021), Mexico (Valdez-Delgado et al.
2021), and the USA (Schenkel et al. 2020), and is being used
for related applications such as mapping the habitat of dif-
ferent mosquito species (Hardy et al. 2017; Carrasco-Esco-
bar et al. 2019; Case et al. 2020) and assisting with beach
trash cleanups (Andriolo et al. 2021; Liao and Juang 2022).
Moreover, the image data generated with UAVs are well
suited for automatic image detection using tailored machine
learning algorithms, a strategy that has been implemented
with varying success for quantifying individual containers
(Case et al. 2020; Passos et al. 2021; Liao and Juang 2022),
marine and beached trash (Andriolo et al. 2021, 2022), as
well as land cover that provides mosquito habitat (Carrasco-
Escobar et al. 2019; Trujillano et al. 2023). However, there
is currently a lack of research applying these technologies to
identify trash piles that pose a risk of serving as Ae. aegypti
breeding sites.

Not all trash translates into a potential risk for Ae. aegypti
breeding. Trash that is removed frequently or disturbed often
by cars or foot traffic, for example, may not hold water con-
sistently and therefore does not provide suitable breeding
ground for mosquitoes. Trash dump sites also have a variety
of appearances, both on aerial imaging and as seen when
walking through a community. The lack of a trash classifica-
tion system based on trash appearance and Ae. aegypti risk
limits our ability to use UAV imaging to identify and quan-
tify trash, and ultimately assign trash scores to particular
geographic areas for further evaluation of the relationship
between trash and potential risk of Ae. aegypti breeding.
The objective of this study is to develop a trash classification
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system that can be applied to UAV aerial imaging to assign
trash categories and risk for Ae. aegypti breeding habitats.

Methods
Study site

This study was conducted in Kwale on the coast of Kenya,
and Kisumu in southwestern Kenya (Figure 1). These sites
are known to have extensive Ae. aegypti mosquitoes breed-
ing in trash and discarded tires throughout the communities
and consequent dengue and chikungunya infections (Ngugi
et al. 2017).

UAV flight planning and image acquisition

All flights plans were created using DJIFlightPlanner soft-
ware version 2.5.1.15 (https://www.dji.com/mobile/downl
oads/djiapp/dji-pilot). Fights were conducted using a DJI
Mavic 2 UAV by a licensed UAV pilot in collaboration with
SwiftLabs (https://swiftlab.tech/). All flights adhered to the
Kenyan Aviation Authority regulations for UAVs. Images
were obtained at an altitude of approximately 100 meters
over 8 days in July 2022 and January 2023 during daytime
hours. Flight launch times were determined to optimize UAV
flight conditions, minimizing shadows and glare from the
white sand. Data was collected at two points of the year in
order to capture variations in the appearance of trash across
seasons.

Aerial image processing

Image processing was done using AgiSoft Metashape Pro-
fessional version 1.8.4 and base maps were generated in
geographic coordinate system WGS 84 with a pixel resolu-
tion of 0.03 square meters and exported as a geotiff. Image
classification and the coupling of ground truth photos with
their corresponding UAV map locations were conducted in
QGIS version 3.24. Aerial maps of the two study sites were
systematically reviewed by two individuals to identify sus-
pected trash and trash mimics to help direct the community
walk-through evaluations.

Walk-through identification of trash versus mimics

After reviewing the initial aerial maps, over 10 hours and
768 km? of community walk-throughs were conducted with
a community liaison and a community leader, both familiar
with the major community trash sites and overall environ-
ment. Walk-throughs in both study sites were performed
over 7 days in January 2023, concurrent with the UAV
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Fig.1 Study sites. Our study sites included the more urban, inland
region of Kisumu, and the coastal, semi-rural area of Kwale in
Kenya. Drone flight areas are outlined in red. County administrative
boundaries available from OCHA Regional Office for Southern and
Eastern Africa (https://data.humdata.org/dataset/cod-ab-ken). Coun-
try boundaries provided by IGAD Climate Prediction and Applica-
tions Centre (ICPAC) (https://geoportal.icpac.net/layers/data0:geono

flights. During the walk-throughs, various types of trash
piles, tires, and other piles that could be mistaken for trash
were discussed. Photographs of various trash types and trash
mimics were taken to facilitate future discussion as a group.

Trash classification

Based on a representative sample of aerial images and
ground truth photo images, trash types were iteratively clas-
sified by a team of six analysts, including two local ento-
mologists with extensive experience evaluating Ae. aegypti
breeding habitats in these areas. A trash classification
scheme was developed based on the appearance and volume
of the trash; then each trash category was assigned a risk
score of high, medium, or low based on the likelihood that
trash type could be a productive Ae. aegypti breeding site.
A few types of trash were determined to be essentially no
risk. Trash determined to be “no risk” and trash mimics were
subsequently excluded from aerial classification. In addi-
tion to creating major trash categories, four sub-categories
were created based on discussion about other environmental
features around the trash that could modulate Ae. aegypti

de:afr_g2014_2013_0). Hydrologic regions provided by ArcGIS
Living Atlas Team (https://hub.arcgis.com/datasets/arcgis-content::
world-lakes/about). Building and road data available from Humani-
tarian  OpenStreetMap Team  (https://data.humdata.org/dataset/
hotosm_ken_buildings, https://data.humdata.org/dataset/hotosm_
ken_roads)

breeding site risk. With this structure, each trash pile can be
assigned one major trash classification in addition to up to
four subcategories.

Ethics

Ethical approval for this study was obtained from the Tech-
nical University of Mombasa (TUM), National Commission
for Science, Technology, and Innovation (NACOSTI), and
Stanford University. Local administrative approvals were
also obtained starting from the County Commissioners of
Kisumu and Kwale counties down to Assistant Chiefs. Due
to COVID-19 restrictions, local public meetings (barazas)
were not conducted.

Results
Trash identification and classification
In the coastal site of Kwale, 1.5 km?> were mapped by

UAV with 1316 trash piles identified. In the inland site
of Kisumu, 2.0 km? were mapped with 1888 trash piles
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identified. A total of 961 photos of trash and trash mimics
were taken and reviewed by at least two team members and
compiled for targeted review by the full expert panel. Trash
areas, including discarded tires, were first categorized based
on appearance and expert opinion of overall risk of being
an Ae. aegypti breeding site on an ordinal scale, then could
be assigned up to four sub-categories that modulated risk
(Table 1).

Trash major risk categories

The highest risk trash areas identified were trash collection
centers and large community dumps (Figure 2). Collection
centers typically sort trash based on material type; turnover
of collected trash ranges from weeks to months, depend-
ing on the material type and time required to collect a vol-
ume that is cost-effective to transport to a larger recycling
center. These large, stable piles of trash collect water which
remain largely undisturbed and are ideal breeding sites for
Ae. aegypti. Large community dumps are unsorted trash sites
where multiple households and businesses dump organic and
non-organic waste, typically including a large variety of
small plastic containers which can breed Ae. aegypti; these
sites are not routinely removed and experience minimal dis-
turbance. Medium community dumps are similar to large
community dumps in composition and disruption but gener-
ally smaller in area and density. Small household trash piles
are where one or a small number of households dump trash;

Table 1 Trash classification by Aedes aegypti breeding habitat risk

density and area of small piles is less than medium dumps
and they are typically in areas around roads and households
that would be expected to get more frequent foot traffic and
consequent disturbance.

Scattered trash and trash within canals were divided into
risk and no risk categories based on location. Scattered trash
in a grassy area often consists of plastic bottles or bags that
can fill with water and are relatively undisturbed, charac-
teristics of good breeding grounds. However, because less
trash is scattered over a larger area, the surface area overes-
timates risk compared to denser dump sites. Trash scattered
in the road is frequently disturbed or trampled and therefore
even plastic containers in these sites do not serve as good
breeding sites and are considered no risk. A pile of trash
that accumulates adjacent to a canal has some potential to
fill with clean rainwater and be a low risk Ae. aegypti site.
However, trash inside water canals is typically submerged
in large amounts of dirty water which are good habitats for
several Culex species but not Ae. aegypti. Therefore, trash
within a canal was classified as no risk.

Discarded tires were classified based on positioning.
Discarded car tires lying on the ground or leaning against
something can fill with water and are a high-risk site for
Ae. aegypti. However, tires embedded in the ground, often
serving as seating areas or barriers along the roadside, can-
not fill with rainwater and are no risk. The positioning and
therefore risk of the tire can be differentiated on aerial imag-
ing by the shape.

Trash categories Aedes aegypti risk Trash density Trash area Rainwater holding capacity Disturbance
Trash collection center High (6) High Large High Low

Large community dump High (5) High Large Medium Low
Medium community dump Medium (4) High Medium Medium Medium
Small household trash pile Medium (3) Medium Small Small Medium
Scattered trash in the grass Low (2) Low Large Small Medium
Trash pile next to water canal Low (1) Medium Small Small High
Scattered trash by the road - - - None (Trampled) High

Trash inside a water canal - - - High (dirty; submerged) -

Tire categories

Discarded car tire High NA Small High Low

Tire embedded in the ground - - - None (cannot hold water) -

Trash sub-categories Obscures view Provides shade High turn over More likely to change
Mixed with vegetation Increased Yes Yes - -

Partially hidden by trees Increased Yes Yes - -

Evidence of burning Decreased - - Yes -

Inside building construction site - - - - Yes

Trash piles were first classified by a primary risk category that took into account trash density, surface area, capacity to hold rainwater, and like-
lihood of site being disturbed. Tires were similarly classified into two categories based on the ability to hold water. Trash and tires could then be
further assigned up to four sub-categories which could affect aerial visualization or breeding site risk
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Fig.2 Major categories. The
trash classification scheme was
iteratively developed based on
aerial image and ground truth
visualization. Side by side com-
parisons are shown of the aerial
image and ground truth image
of major categories
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Fig. 3 Trash classification sub-
categories. Each trash pile could
also be assigned to a sub-cate-
gory. Side by side comparisons
are shown of the aerial image
and ground truth image of each
sub-category
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Trash sub-categories

In addition to major trash categories, trash can belong to up
to four sub-categories which can attenuate the Ae. aegypti
risk, obscure the full view of trash, or be more likely to
change in the near future (Figure 3). Vegetation and trees can
provide shade, slowing the rate of water evaporation from
small containers of water, helping breeding sites persist long
enough for larval maturation. These areas can also provide
nectar for adult mosquitoes and shade to protect them from
desiccation. However, vegetation and trees can also obscure
the aerial view of relatively large dump sites, underestimat-
ing the full extent of the site. Burning trash is a common
practice, particularly for smaller piles of household trash;
burning removes much of the trash and indicates a site that
is frequently disturbed which decreases risk of Ae. aegypti
breeding. Some entirely charred areas with no surrounding
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trash are also evident in communities and indicate areas of
previous trash burning or burning for other uses such as out-
door cooking; these entirely burnt areas are no risk and are
not included in the trash classification. Trash is frequently
dumped in partially completed building sites as evidenced
by an outline of bricks. Since these building may be under-
going active construction, these sites may become covered
up or removed as construction continues; these dumps may
therefore change on a shorter time horizon than other sites
and pose more transient risk.

Trash mimics

On aerial imaging, several items looked like trash, but key
features help to distinguish them from dump sites (Figure 4).
Piles of bricks, stones, or rubble create the texture of a trash
pile but are typically more homogenous in color and could
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Fig.4 Trash mimics. Several
items and non-trash piles could
be mistaken for a trash pile on
aerial imaging. Ground truthing
was key for identifying these
potential mimics so that they
would not be classified as trash.
Side by side comparisons are
shown of the aerial image and
ground truth image of each
potential trash mimic
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be predicted based on the site (white bricks in Kwale and
red clay bricks in Kisumu). Piles of other items like leaves
or wood also create a texture like a trash pile but have a
more natural hue and the shapes of sticks were usually dis-
tinguished. Similarly, piles of discarded crates or tarps can
usually be distinguished by their shapes and cannot typically
hold sufficient rainwater for Ae. aegypti breeding. Fabric or
even stones embedded in the road also create a texture and
color similar to trash, but the location in the middle of the
road helps to distinguish these features from piles of trash. A
pile of white sandbags or a herd of cattle or goat could also
initially look like white plastic bags, but the scale of these
objects helps to prevent this misidentification.

Unique trash types

In addition to the trash categories and mimics, there were
special types of trash that were noted while walking through
the communities which were not always readily distinguish-
able on aerial imaging and conferred a unique health risk.
Several dump sites contained a large number of soiled dia-
pers. Diapers do not hold water for Ae. aegypti to breed
in, but they contaminate the local environment with feces,
particularly during the rainy season; additionally, diapers
naturally absorb large volumes of moisture and therefore are
very difficult to burn. Another unique dump site consisted of
a large area of crushed glass; again, this was not a mosquito
risk but could pose an injury risk, particularly to anyone
walking barefoot through the area. Finally, in both study
areas, retired dump sites were identified where trash was no
longer being dumped but the ground retained evidence of
being a former dump. These former dump sites were diffi-
cult to distinguish from active dump sites on aerial imaging,
demonstrating that despite trash removal, it can take years
for these areas to be fully rehabilitated if ever.

Discussion

Our study demonstrates that UAV imaging can be used
to identify trash sites that serve as Ae. aegypti breeding
grounds. Given the heterogeneity of trash dump sites, we
created a trash classification scheme based on appearance
on UAV imaging and risk level for serving as Ae. aegypti
breeding habitat.

We created six categories of trash piles ranked based on
overall Ae. aegypti risk which took into consideration a vari-
ety of factors, including pile density, surface area, ability to
hold clean rainwater that would be feasible for Ae. aegypti
oviposition and larval development, and likelihood of fre-
quent disturbance of breeding sites. We also distinguished
between high risk and no risk tires based on their visual
appearance and ability to hold rainwater. This classification

@ Springer

system codifies the expertise from our interdisciplinary team,
including local expert entomologists, and the accumulated
knowledge from numerous studies identifying trash and tires
as common Ae. aegypti breeding sites (Hayes et al. 2003;
Sekhon and Minhas 2014; Getachew et al. 2015; Ngugi et al.
2017; Mukhtar et al. 2018; Khan et al. 2023; Pefia-Garcia
et al. 2023). We combined this knowledge of common breed-
ing sites with a detailed review of over 3000 trash sites and
nearly 1000 trash ground photos to create categories that
could be used for aerial image classification of trash sites.

The definition and relevance of different trash types
depends on the use case. Trash identification by UAV imag-
ing is increasingly being deployed for various purposes,
including mosquito abatement (Case et al. 2020; Schenkel
et al. 2020; Valdez-Delgado et al. 2021; Lee et al. 2021),
beach clean-up efforts (Andriolo et al. 2021; Liao and Juang
2022), and locating off-shore marine trash (Andriolo et al.
2022). In this study, we developed an aerial image classifica-
tion system specific for trash that poses a risk for Ae. aegypti
breeding. This classification incorporates subtle but mean-
ingful differences in risk amongst trash and tire types based
on distribution, location, and shape. For example, trash that
is trampled, burned, submerged in dirty water, or tires that
cannot hold water are considered differently than trash in
large piles in relatively protected areas. Creating a classifica-
tion system that accounts for these differences makes this a
highly useful tool for studying the relationship between trash
and diseases like dengue.

However, our study is limited to trash and tires and does
not evaluate all potential Ae. aegypti breeding site such as
open water containers, cisterns, or gutters, which have also
been identified as possible breeding sites (Heukelbach et al.
2001; Mukhtar et al. 2018; Haddawy et al. 2019; Ngugi et al.
2020; Valdez-Delgado et al. 2021). Future studies carefully
evaluating these sites with consideration of item use, tempo-
ral stability, disturbance, and water flushing effects could fur-
ther expand the utility of UAV Ae. aegypti habitat mapping.

One important limitation of aerial imaging is that visuali-
zation of the ground can be obstructed by things overhead,
such as overhanging eaves, trees, or dense vegetation. To
address this limitation, we developed sub-categories which
note trash that appears to be mixed with or partially obscured
by trees or vegetation. While overhanging eaves can also
limit views, this was encountered less frequently during the
walk-throughs and tended to obscure only a small area of
trash piles and therefore was not included in this sub-cate-
gorization. Additionally, unlike with ground visualization of
a trash pile, the exact composition of a particular pile cannot
be determined by these aerial images. However, during our
walk throughs, it was noted that most community trash heaps
consist of a mixture of different trash types, the vast majority
of which included some types of containers that could serve
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as Ae. aegypti breeding sites; a few unique types of piles
were noted but these were infrequent.

Our study is also limited in its evaluation of trash stability
over time, including both turnover of trash within a pile and
movement of individual piles over time. However, our assess-
ment of trash disturbance took into consideration anecdotal
observations by community leaders, stakeholders, and field
staff about timing of trash turnover and stability of sites; in
general, most of the larger and higher risk sites have report-
edly been in place for many years with infrequent trash turno-
ver; the smaller or sparser areas of trash are more difficult
to assess but are suspected to be less stable. For particular
cases such as burning, which causes frequent trash turnover,
and trash dumped in a partially finished building, which may
complete construction over a few months or years, we created
sub-categories so that these changes could be accounted for
or monitored over time. Repeated UAV flights and focused
ground truth monitoring in the future would further enhance
our understanding of trash turnover and dump site stability.

Trash is inherently difficult to classify, delineate bounda-
ries around, and ultimately quantify. These challenges are
shared by various methods of measuring trash in the envi-
ronment, whether by aerial imaging (Schenkel et al. 2020;
Andriolo et al. 2021; Lee et al. 2021), ground observations
(Haddawy et al. 2019), or surveys (Getachew et al. 2015;
Ngugi et al. 2017; Haddawy et al. 2019). However, aerial
image analysis is a method that provides a map that can
be re-referenced as classification systems evolve and other
environmental variables are incorporated. These maps can
provide quantifiable estimates of the surface area that trash is
distributed within a given space and, by incorporating a clas-
sification system of risk and trash density, can give rough
estimates of volume. As UAV trash assessments advance,
additional research is needed to compare aerial image classi-
fication between different raters, against ground truth obser-
vations, during different seasons, and in other locations.

The classification scheme presented by this study serves
as a foundation for future work using machine learning for
automatic trash detection and assessment of Ae. aegypti
breeding risk. Furthermore, the classification scheme cre-
ates different trash classes across a spectrum of Ae. aegypti
risk and defines and justifies the visual features that impact
the risk score. Even when focused specifically on trash dump
sites, the surface area of the trash alone does not fully account
for the quantity or quality of that trash as it pertains to Ae.
aegypti risk. The classification scheme developed here paves
the way for developing machine learning algorithms that fac-
tor in these nuanced but important differences. Additionally,
identifying and quantifying the categories of trash according
to the classification system developed creates an opportunity
to measure the impact of interventions targeted at cleaning up
and reducing high risk sites.

Conclusions

Our aerial image classification system identifies trash,
including discarded tires, across a range of Ae. aegypti
breeding risk. Importantly, this study forms a relationship
between the appearances of trash from UAV imaging and
ground truth walk-throughs, and the corresponding risk of
the trash site being a productive breeding ground. Existing
studies have developed tools to quantify trash at the level of
individual containers and larger environmental hotspots; this
study adds to the rapidly expanding research using UAV's for
trash identification by examining trash through the lens of
Ae. aegypti breeding risk. This study highlights the varying
risk of trash in different contexts depending on the density,
area, water holding capacity, and level of disturbance of trash
and tires. The development of this tool lays the foundation
for further opportunities to use UAV imaging technology
to efficiently and quantitatively evaluate environmental risk
for Aedes-transmitted infectious diseases and to target and
measure interventions aimed at mitigating that risk.
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