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Abstract

This study introduces a non-invasive approach to monitor operation and productivity of a legacy pipe bending machine in
real-time based on a lightweight convolutional neural network (CNN) model and internal sound as input data. Various sen-
sors were deployed to determine the optimal sensor type and placement, and labels for training and testing the CNN model
were generated through the meticulous collection of sound data in conjunction with webcam videos. The CNN model, which
was optimized through hyperparameter tuning via grid search and utilized feature extraction using Log-Mel spectrogram,
demonstrated notable prediction accuracies in the test. However, when applied in a real-world manufacturing scenario, the
model encountered a significant number of errors in predicting productivity. To navigate through this challenge and enhance
the predictive accuracy of the system, a buffer algorithm using the inferences of CNN models was proposed. This algorithm
employs a queuing method for continuous sound monitoring securing robust predictions, refines the interpretation of the CNN
model inferences, and enhances prediction outcomes in actual implementation where accuracy of monitoring productivity
information is crucial. The proposed lightweight CNN model alongside the buffer algorithm was successfully deployed on
an edge computer, enabling real-time remote monitoring.

Keywords Machine sound monitoring - Sound recognition - Convolutional neural network - Remote monitoring

1 Introduction

Machine monitoring is crucial to provide visibility into
manufacturing operations that drives improvement from
the shop floor. With the advent of manufacturing equipment
equipped with Information and Communication Technol-
ogy (ICT) and Internet of Things (IoT) capabilities, effective
monitoring and the utilization of Artificial Intelligence (AI)
have become more feasible [1, 2]. These advancements are
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allowing manufacturing companies to progressively depend
more on the collection, analysis, and exchange of data within
interconnected production systems [3]. Manufacturing com-
panies are progressively depending more on the collection,
analysis, and exchange of data within interconnected pro-
duction systems. With the adoption of Industry 4.0 princi-
ples, manufacturing processes have become more efficient,
cost-optimized, and have introduced new business models,
resulting in heightened competitiveness in the market [4].
Despite these advancements, industry still relies on a sig-
nificant amount of legacy equipment, which remains pivotal
to industrial operations [5]. A "legacy machine" is charac-
terized as manufacturing equipment that inherently lacks
the capacity for external communication or the existence
of an application programming interface (API) that would
facilitate data exchange. The "legacy" pertains to the inher-
ent functionalities of the device rather than the chronologi-
cal age of the equipment [6]. It poses challenges in modern
manufacturing environments because of incompatibility
with the state-of-the-art technology. In other words, legacy
machines are not able to communicate with or connect to
newer machines or systems [7, 8]. Due to this downside,
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integrating legacy machines into a modern manufacturing
environment entails high costs. Despite the challenge, manu-
facturers continue using legacy machines because these are
still in good working order in terms of producing parts. Over
time, expertise in using these legacy machines has accumu-
lated, and they have been optimized for stable operation,
making it difficult to simply replace them. Moreover, a tre-
mendous amount of budget is spent to replace the legacy
machines with the latest machines that are equipped with
exchanging data. This decision turns in reduced efficiency,
increased maintenance costs, and limited scalability [6].
Maintaining and upgrading legacy machines are an impor-
tant consideration for companies who expect to stay com-
petitive in the global marketplace, especially for small manu-
facturing enterprises (SMEs) [9, 10]. Retrofitting is defined
as a process that involves altering or adding devices to tra-
ditional machinery, aiming to improve their efficiency and
functionality while minimizing financial and time expenses
and risks without the need for replacing equipment [11].
However, retrofitting the legacy machines is challenging to
most SMEs. The shortage of relevant skilled personnel [3,
12] as well as the lack of awareness of advanced techniques
to upgrade the machines [13, 14] make retrofitting the legacy
machines difficult in SMEs.

To overcome these challenges, low-cost methods have been
studied to enable legacy machines to be monitored. Extracting
data directly from programmable logic controller (PLC) [5,
15, 16] or installing sensor in the electrical circuit [10], hard
wiring [7], or power supply [6, 17, 18] are intrusive ways that
involves unwanted downtime to deploy the sensors and then
stabilize the machine. Furthermore, when it comes to the lack
of cybersecurity capability in SMEs [19, 20], the intrusive
approach is threatened because manipulation of the deployed
solution can potentially affect the operation of the machine
and even disable it. This makes SMEs hesitate to adopt direct
connections to PLCs or electrical circuits of the machines.
Computer vision, vibration monitoring, and sound recognition
are typical methods as non-intrusive monitoring for machine
state and operation in the context of retrofitting legacy
machines. Computer vision techniques with affordable cam-
eras such as webcam were applied for monitoring of legacy
computer numerical control (CNC) machine tools [21-23],
manual production and assembly process [24], and various
shop floor artifacts such as equipment control panel, analog
gauge, and so on [21]. Nonetheless, the presence of cameras
during machine operation can impede the operator’s line of
sight. Conversely, there is a potential for operators or other
objects to obstruct the camera’s view, a common occurrence
on a real factory floor, which causes trouble with vision detec-
tion. Moreover, in any vision system, object detection is sensi-
tive to light conditions of the environment [25, 26], which can
pose challenges when implementing it on real factory floor.
On the other hand, vibration and sound monitoring offers
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an alternative non-intrusive approach as machines generate
vibrations and emits sounds, producing distinct vibrational
and acoustic behaviors at different operational states. Accel-
erometers and acoustic emission (AE) sensors were utilized
for machine operation and prognostic monitoring [27-29].
Although vibration monitoring using accelerometer and AE
sensor is known for its high accuracy and has been extensively
researched, its practical implementation is challenging due to
the requirement for additional apparatus such as a data acqui-
sition (DAQ) system and amplifier, which contributes to high
costs. To address this issue, low-cost accelerometers such as
micro-electromechanical systems (MEMS) and piezoelectric-
based sensors were also employed to monitor the operational
states of the machine [30-33]. These low-cost accelerometers
have inherent limitations including drifting [34, 35], narrow
frequency band and low resolution [31], and phase lag [32],
which hinders the factory to utilize them. In the meantime, as
sound sensors are becoming more affordable, sound recogni-
tion is a practical technique for monitoring machine opera-
tions. However, the adaptability of sound signals for machine
and process monitoring is poor [29], especially in a real shop
floor environment, mainly due to noise from neighboring
machines [36] and difficulty in localizing sound signals [37].
To address the challenges in sound monitoring, the adoption
of Al techniques and the development of a new sound sensor
to reduce noise have been applied to make sound recognition a
more feasible solution for monitoring machine operations. Pre-
viously in our group, a stethoscope-based internal sound sen-
sor has been developed [38]. To capture internal sound, it con-
sists of a stethoscope and a USB microphone attached to the
end of a rubber tube. The details of configuration and system
identification are shown in [38]. It showed better prediction
accuracy than a microphone when the same signal processing
and model were applied to running state prediction of CNC
machine tools and their subcomponents [39]. It was also uti-
lized to identify anomalies caused by heavy lifting of robot arm
[40] and predicting cutting state and productivity of CNC tube
cutting machine [41]. Sound recognition framework based on
MTConnect to stream multiple sound streams was suggested
and evaluated in predicting accuracy and response time [41].
Moreover, other recent studies showed that machine learning
(ML) and deep learning (DL) techniques for sound recogni-
tion are able to predict manufacturing process and machine
operation. Dynamic time wrapping (DTW) was evaluated to
predict operational status of legacy machines, showing that
feature extraction affects speed and accuracy of prediction
[36]. A study [42] introduced a learning-based acoustic defect
detection (LearnADD) method for automating bottle inspec-
tion and compared different ML and DL techniques, revealing
that LSTM exhibited the highest accuracy performance.
Implementing DL models on edge computers is pivotal in
sound monitoring applications, where real-time data process-
ing with minimum latency is vital [43, 44]. Conducting sound
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classification directly at the source not only enhances the respon-
siveness and accuracy of event detection but also preserves
bandwidth and ensures data privacy by limiting the transmis-
sion of sound data through networks. Convolutional neural net-
work (CNN) architecture using sound signals was successfully
applied for real-time prediction of the operational state of multi-
ple machines simultaneously [39, 45, 46]. In the study [46], the
entire processing time for machine operational sound monitoring
was 8 seconds even the efforts to reduce the inference time using
a lightweight CNN architecture. For environmental sound clas-
sifications using a shallow CNN architecture [47], they achieved
a short inference time averaging 0.255 seconds. In our previous
study [41] concluded that supplementary algorithms on edge
computers were necessary for robust prediction based on the
CNN inferences. Furthermore, most prior research on edge com-
puting implementation focused on simple binary classification
tasks such as determining the ON or OFF status of machines and
identifying cutting operations [36, 39, 41, 46].

Based on our previous work, this study was extended
to apply the internal sound sensors for monitoring multi-
ple operational states and productivity of a legacy manu-
facturing machine. This research suggests a workflow to
create a lightweight CNN model aiming to reduce com-
putation load considering deployment to edge computer
and an algorithm utilizing sequential CNN inferences to
improve the performance of productivity prediction.

2 Monitoring System

The target system is a legacy pipe bending machine
(SB-22X8A-MR-V-U, SOCO) on a real shop floor. Other
machines such as CNC mills, band saws, and welding sta-
tions are located near the pipe bending machine, causing a
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noisy environment. The pipe bending machine has eight elec-
tric servo control axes, which enables this machine to draw,
rotate, and bend the pipe. The bending amount, direction, and
number of cuts depend on the final shape of the part. This
machine bends the raw straight metal pipe and yields the bent
pipe as an intermediate product. The operator manually feeds
the raw pipe into the machine in a timely manner so that the
machine bends and cuts the pipe as it is pre-programmed.
The schematic of the monitoring system for the pipe bending
machine and part example are shown in Fig. 1. The details of
sensor deployment and data collection are as follows.

2.1 Sensor Deployment

Four sound sensors were installed at different locations of
the pipe-bending machine. All sensors were connected to a
single edge device (Raspberry Pi 4B). Aside from sound sen-
sors, three webcams (CyberTrack H4 web camera, ADESSO)
were also installed at the high points around the pipe bend-
ing machine where each camera monitors the operation, and
the captured images represent the context of sound data. The
four sound sensors used in the study are denoted from 1 to 4.
Sensor 1 is a USB microphone (K053, Fifine Microphone)
to capture ambient sound, which was affixed to the backside
of Sensor 2. Sensors 2, 3, and 4 are the internal sound sensor
[38], the combination of a stethoscope (Littmann Classic III,
3M) and a microphone (the same USB microphone as Sen-
sor 1). Sensor 2 was installed on the surface of the main bed
which acts as the base for the rest of the components. Sensor 3
was installed on the surface of the front bed, which is the most
frequently moving component to bend a pipe. Within the front
bed, there are clamps capable of securing raw pipes of differ-
ent sizes, along with a shear cutting blade used to trim each
part after bending. Sensor 4 was installed on the hydraulic
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Fig. 1 Outline of pipe bending machine monitoring system (left) and raw material and end part (right)
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Table 1 Type and location of sound sensor

Number Type Location
Sensor 1 External microphone Main bed
Sensor 2 Internal sound sensor Main bed
Sensor 3 Internal sound sensor Front bed
Sensor 4 Internal sound sensor Hydraulic pump

pump which provides the power to clamp the pipe and closes
the cutting blade. The initial locations for the sound sensors
were determined through discussions with the machine opera-
tor and shop floor manager, aiming to choose spots that would
not interfere with the machine’s operations or production pro-
cesses while still effectively capturing the machine’s sounds.
The types and locations of the sound sensors are summarized
in Table 1. The locations of the sound sensors and webcams
are shown in Fig. 2, respectively. The stationary sample frame
image from the video of each webcam is shown in Fig. 3.

Sensor 1 (external) and
Sensor 2 (internal)

—
Pipe bending
machine

2.2 Data Collection and Labeling

After the sensors were deployed, both sound and vision data
were collected. A customized sound collection program to
capture sound signals from all sensors simultaneously was
written in Python using advanced Linux sound architecture
(ALSA) and PyAudio module because Raspberry Pi OS sup-
ports ALSA for hardware and software interfaces of sound
devices. In Windows OS, WASAPI can be utilized to ensure
compatibility and efficient sound data collection. A webcam
image capturing program was also developed by Python and
OpenCV library. In daily data collection, programs for web-
cam video and sound were started at the same time. From the
timestamp printed on each frame of video as on the left top of
each frame in Fig. 3, the vision data and sound data were syn-
chronized correctly by using a network time protocol (NTP)
server for all the embedded computers. The specifications
of the collected data according to sensors are summarized

Fig.3 Captured images of webcam videos: webcams 1 (left), 2 (middle), and 3 (right)
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Table 2 Specification of collected data

Data type Category Specification
Sound Format WAV
Duration per day l1h
Sampling rate 48 kHz
Channel 1
Audio bit depth (resolution) 16-bit
Number of sensors 4
Vision Format AVI
Duration per day l1h
Frames per second 30 fps
Frame size 640 %480 pixels
Number of sensors 3
Table 3 Definition of operational state for labeling
Label Definition
Off Machine is powered off
Idle Machine is ready to run without any axis movements
Load Operator feeds a straight pipe into the machine
Executing The machine bends, rotates, or draws the pipe
Cut The cutting blade trims the pipe and yields a product

or a by-product

in Table 2. After creating the files of the collected data from
the sensors, embedded computers automatically uploaded the
files to cloud storage to secure the disk space.

The collected data was labeled with five different classes
according to operational states: ‘Off’, ‘Idle’, ‘Loading’, ‘Exe-
cuting’, and ‘Cut’. The definition of each label is described in
Table 3. When an operator runs the pipe bending machine, the
operator first feeds the straight pipe into the machine and then
it draws the pipe in the axial direction. The machine moves
to bend and cut the pipe to produce parts. The sum of ‘Load-
ing’, ‘Executing’, and ‘Cut’ time represents the run time of
the machine. Therefore, machine utilization can be estimated
according to batch, part, shift, and time, which can contribute
to production scheduling and optimization. The operational
state and sound signals of a single cycle for 90 s are shown
in Fig. 4. Figure 4a is the operational state event plot, Fig. 4b
is raw sound signals in the time domain, and Fig. 4c is sound
spectrograms by short-time Fourier transform (STFT). In
Fig. 4b, c, Sensor 1 to 4 signals are located from top to bot-
tom, respectively. In Fig. 4b, the y-axis represents normalized
amplitude of sound. The time range from 0 to 90 seconds is the
same in all the plots and each time axis is aligned vertically.
The first ‘Executing’ and ‘Cut’ produced a byproduct and the
following three ‘Executing’ events produced three products.
As in Fig. 4, each operational state generates unique sounds.
When we listened to the recorded sound after analyzing

webcam videos, it was able to figure out which operational
state generated corresponding sound. Moreover, according
to sensor type and placement, different sounds were captured
despite the same machine being monitored. Sensor 4 as in the
bottom plots of Fig. 4b, ¢ showed distinct sound signals when
cutting occurred whereas it could not be able to capture other
operational states.

The labels and accordance timestamps were created from the
collected webcam videos as illustrated in Fig. 5. The sound sig-
nal example in Fig. 5 is from Sensor 1. The data and time range
of Fig. 5 are the same as Fig. 4, which means data from 0 to 20 s
of Fig. 4 was used to describe labeling procedure in Fig. 5. First,
webcam videos were analyzed to define the operational state
with the start and end timestamps of each state. Second, the
operational state data and the sound signals were synchronized
using the given timestamps. Third, the entire sound signal was
scanned with a frame size of 0.98 s. The chunk length when
reading the audio signal from the USB microphone is 2 to the
power of n where 7 is a positive integer. In this monitoring sys-
tem, the sound chunk size was 2'! sample points. This chunk
translates to approximately 42.67 ms of sound at a sampling
rate f, of 48 kHz. Considering further real-time implementa-
tion using the same sound data flow framework, the frame size,
which is 23 chunks, 47,104 sample points, and 0.981 s, of the
nearest 1 s was chosen. The frames were eventually used to
input data for training models. The interval of each scanning
frame was the chunk length. Therefore, the first frame starts at
0 s as in Fig. 5, the second frame starts at 43.67 ms (a chunk),
and the second frame starts at 85.33 ms (two chunks). The start,
center time, and end time of the frame were defined as lro lres
and 7;,, respectively in Fig. 5. The superscript means the frame
number. In case the operational state is changed in a frame, the
label for the frame was determined based on the center time of
the frame. For example, if a frame’s center time 7, falls within
an operational state, it is labeled as such. Thus, labels for all the
frames were determined by scanning the entire sound signals.
All example sound signals according to the sensor and opera-
tional states are plotted in Appendix.

2.3 Sound Feature Extraction

Upon segmenting and labeling the sound signals from the
sensors into input frames, the log-Mel spectrogram was
adopted to extract features. These features were subsequently
used to train the CNN models. The log-Mel spectrogram is
the time—frequency representation of the sound signal by
applying Mel scale on the short-time Fourier transformation
(STFT) [48]. The Mel scale refines frequency data using Mel
filter banks on the STFT, reducing the feature size for CNN
models. This ensures training efficiency while preserving
high accuracy in sound recognition. The Mel spectrogram
has been widely employed for musical and speech recogni-
tion [49, 50] as well as machine sound monitoring [39, 41,
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Fig.4 A single cycle data of

pipe bending machine for 90 s:

a operational state, b time
domain, and ¢ sound spectro-
gram

(a)

(b)

—
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46]. The Mel scale indicates how humans perceive the fre-
quency of a pure tone compared to its objectively measured M(f) = 25951ogyg <1 + ﬁ)
frequency. The relationship between the Mel and frequency

is expressed in Eq. (1).
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Fig.5 Operational state labeling procedure

where M and frepresent Mel and frequency, respectively. This
expression is calibrated so that a frequency of 1000 Hz corre-
sponds to 1000 Mels. Below 1000 Hz, the relationship between
Mel and frequency is nearly proportional. For higher frequen-
cies, however, the relationship is logarithm. In this study, 120
Mel bands within a frequency range of 20 Hz to 24 kHz were
chosen for feature extraction in training the CNN model. The
lower frequency limit (20 Hz) was set based on the minimum
frequency range of the USB microphone, while the upper limit
(24 kHz), half of the sampling rate, was chosen as the maximum
frequency. When transforming the time domain information to
the STFT, A Hamming window with 2048 points of FFT (fast
Fourier transform) was applied as a windows function to reduce
the spectral leakage enabled by smooth tapering at the edges.
Due to the shape of the window function in the time domain,
there is information loss near the edge. To counteract this loss,
a50% window overlap was employed. The input feature dimen-
sion of the Log-Mel spectrogram is 120X 47 where the number
of Mel bands is 120 and the number of windows is 47.

3 CNN Training and Prediction Algorithm
3.1 Dataset

Datasets were collected on various production days for
different parts to train and test the CNN models. Figure 6

8 8.5 9 13

13.5

k: Executing

illustrates the structure of dataset utilized for both training
and testing phases. The CNN model was trained using one
hour of actual production data from a single part production
(Day 1, Part A). Test datasets were curated to assess the
model’s performance on identical as well as different parts.
Different parts have various shapes, materials, cycle time,
and so on. Arbitrary identifiers, such as Part A, B, and Day
1, 2, and so on, were used for parts and days.

Figure 7 summarizes the distribution of label count for
each dataset. The ‘Loading’ label consistently registered the
shortest duration, indicating the least frequent occurrence
among all labels. Table 4 provides a summary of the cycle
time and operational states’ statistics. Each cell in the table
represents averaged value and standard deviation. Cycle time
was defined as the working duration for a single raw mate-
rial. Notably, the cycle time and operational states exhibited
variations depending on the parts involved.

3.2 CNN Model Training

Convolutional neural network (CNNSs) is one of the widely
used Deep learning (DL) models in audio classification tasks
for their ability to learn complex patterns [51]. While the
complexity of a CNN model is crucial for accuracy, it is
important to avoid excessive complexity in edge computing
with limited resources. Minimizing prediction time is also a
key for real-time monitoring. Therefore, it is advantageous
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Fig.6 Configuration of datasets Traini K — - -
for CNN model training and drammg — Dayllr.] FELE A CNN model training and validation
testing on the top and the ataset (1 hour)
captured images of parts on the
bottom -
Test Day 2: Part A A CNN model testing
dataset 1 (1 hour) (same part on different day)
| Day3: Part B
/ (20 minutes)
| .
Test ‘ Day 4: Part C A CNN model testing
dataset2 (20 minutes) (different part and different day)

“‘\ Day5: Part D

- (20 minutes)

Part A

50000

Part D

Fig.7 Label count distribution
according to dataset
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Table 4 Statistics of cycle time and operational states

Part Cycletime (s) Loading(s) Executing(s) Cut(s)

A 76.56+0.43 451+0.12 14.59+8.94 2.83+0.05
B 128.01+0.14  3.16+0.21 10.85+4.23 2.73+0.03
C 83.40+1.10 253+0.17 22.62+10.10 2.51+0.04
D 159.76+0.85  5.39+0.09  25.88+20.2 2.76 +£0.02

for the CNN model to balance between simplicity and per-
formance. Among various hyperparameter optimization
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A Test dataset 1
[ Test dataset 2

2859
1483
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Loading Executing

strategies [52-56], grid search was employed in this study
to fine-tune the CNN model.

The CNN model architecture, illustrated in Fig. 8§,
incorporated two convolutional layers, interposed by
2 X 2 max pooling layers, followed by a fully connected
layer, two hidden layers, and an output layer, with the lat-
ter being configured to classify five task states. The ReLU
(Rectified Linear Unit) activation function was appointed
for both the convolutional and hidden layers, while the
output layer utilized the softmax activation function,
defined in Eq. (2).



International Journal of Precision Engineering and Manufacturing

exp(¥,.)

c
]Z:l exp(9y) @

SGe) =

where C represents the total number of classes and y, and
9 indicate the unnormalized outputs for classes ¢ and k,
respectively. The softmax function converts the raw out-
puts from the preceding layer into probabilities by expo-
nentiating and normalizing them, ensuring them to sum up
to one across all classes, thus forming a valid probability
distribution.

As in Table 5, a grid search strategy was employed to
optimize various hyperparameters across predefined search
spaces: the number of filters, kernel sizes for the convolu-
tional layers, and the neuron count for the hidden layers.
The minimum and maximum denote the lower and upper
bound of hyperparameters, and step size indicates the inter-
val between each step. The steps show the total number of
steps. The total number of combinations for grid search was
1024. In the convolutional operations, a stride of 1 and zero-
padding were consistently applied. Training was conducted
utilizing the categorical cross-entropy loss function L. Train-
ing utilized the Adam optimizer, adopting a learning rate of
1074, with data processed in batches of 64. Initial training
was confined to 10 epochs per configuration during the grid
search, and upon identifying the most propitious configura-
tion, further training was conducted for an additional 100
epochs to obtain the best model for each sensor case.

Figure 9 illustrates the entire sequence of training and
testing CNN model including the grid search for hyperpa-
rameter tuning. The dataset necessitated a mindful approach
to splitting, considering the pronounced label imbalance
prevalent throughout the training data (Dayl, Part A) as
shown in Fig. 7. To address this, each label category was first
subsampled to mirror the count of the least populous label,
ensuring equitable representation across all classes. Sub-
sequently, the curated dataset was partitioned into training
and validation sets, adhering to an 80-20 percent division

Kernell

Kernel2

Sound

feature
extraction

Sound input
(47104x1)

Log-Mel spectrogram

RelLU
(120%47)

Max Pooling
(2x2)

Convolutionl

Table 5 Search space range of hyperparameter for grid search

Hyperparameter Minimum Maximum Step size Steps

Number of filters in 2D 8 32 8 4
Conv 1

Kernel size in 2D Conv 1 2%2 3%x3 1 2

Number of filters in 2D 8 32 8 4
Conv 2

Kernel size in 2D Conv 2 2%2 3x3 1 2

Number of neurons in 16 64 16 4
Hidden 1

Number of neurons in 16 64 16 4
Hidden 2

scheme, which was randomly implemented. The best model
was consequently tested using the full test datasets of the
test dataset 1 and 2, ensuring a comprehensive and unbiased
evaluation of its predictive capabilities.

Moreover, a comparative analysis of prediction perfor-
mance against established CNN architectures was conducted
to validate the effectiveness of the proposed CNN with the
top-performing sensor. Specifically, VGG16, VGG19 [57],
YAMNet [58], and ResNet-50 [59] were chosen for compari-
son. To facilitate training these CNN models, the size of input
feature and output were modified to accommodate the data
and labels, and the identical training dataset was utilized.

3.3 Prediction Algorithm for Real-Time
Implementation

After evaluating the trained models and selecting the best
sensor, MTConnect was adopted as middleware to generate
sound signal stream and implement the CNN model on a
Raspberry Pi in real-time [41]. An MTConnect adapter for
a sensor transmits a chunk (2'! data points) of sound signals
in the space-delimited format continuously to MTConnect
agent in Displacement representation and TimeSeries type
of the MTConnect standard [60]. The example of the sound
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Fig.8 CNN architecture for operational state sound classification of pipe bending machine
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Fig.9 CNN model training and testing with hyperparameter tuning

data from MTConnect agent is shown in Fig. 10. Each data
point is represented by a signed 16-bit integer. The data
streamed to the MTConnect agent can be retrieved based on
a sequence, allowing the application to request the last 1 sec-
ond (1-s) of sound data. The steps to retrieve sound signal
for the CNN model implementation are as follows in detail.

1. Request using ‘current’ method to MTConnect agent of
sound stream according to MTConnect Rest API. Note
that implementation in this research was performed in
the Raspberry Pi and the port number is 5000. There-
fore, the HTTP request is as below.

e http://localhost:5000/current

2. Take ‘LastSequence’ as N from Header of the XML
response.

3. Request again for last 1-s sound data using ‘sample’
method. Note that because sampling rate is 48,000
Hz and the chunk length is 21 the nearest integer to
1 sis23.

e http://localhost:5000/sample ?’from=N-23&count=23

4. Parse the XML document in ascending order of sequence
with converting the space-delimited chunk and then
appending to an array (x). This ensures that x is always
the last 1-s sound signal array.

<«— hyperparameter

Evaluation in II

test datasets

Additional model training
with the selected best
hyperparameters
(100 epochs)

Evaluation
—* intraining
validation

Best model

Test dataset 2
(different parts and different days)

Test dataset 1
(same part but different days)

When applying the CNN model to forecast the opera-
tional state of the pipe bending machine, the inference
from a model output yields an immediate result for a given
input frame of 1-s length. Operational states, labels related
to productivity prediction such as ‘Loading’, and ‘Cut’ as
shown in Table 4, persist for at least 2.5 seconds. An incor-
rect inference amid the duration of a continuous operational
state amplifies prediction errors. For instance, a single false
inference during the ‘Loading’ state can lead to dividing it
into two separate ‘Loading’ counts. To refine the interpreta-
tion of CNN model’s inference, a buffer algorithm utilizing
a queueing method was introduced. Figure 11 demonstrates
the interpretation of sequential CNN model inferences with
a buffer size of 5. Here, f represents the timestamp at which
the CNN model inference occurs, the subscript k is an inte-
ger designated the order of the inferences, 7 is the predic-
tion interval between inferences. If the prediction interval
is shorter than the input frame length (1 second), there is
overlap between inferences and it improves the resolution.
Since the buffer employs a queue to maintain its size, the
first-in element is ejected when the buffer reaches its capac-
ity to enqueue the latest element. The final prediction is
ascertained by the majority elements within the buffer. In
this scenario, even if an inference ‘Executing’ is incorrect at

<DisplacementTimeSeries dataltemld="sensorl" timestamp="2023-10-19T12:45:35.394052Z" name="sensorl"
sequence=“11357" sampleCount="2048" sampleRate="48000">534 -262 -1033 -1119 -631 -446 262 128
299 104 634 1512 1235 1078 502 261 644 809 537 118 -48 -58 223 830 1047 852 287 -322 -697 -830
-715 -647 -588 -325 133 345 516 439 147 -251 -278 596 630 749 680 193 -510 -886 -908 -726 -283 -
180 -413 -493 -1453 -1228 680 1192 707 412 245 357 841 1214 1049 -140 -159 -466 -547 -143 427
14 -946 1247 -2514 -2758 196 632 758 68 2139 -215 -258 -879 239-393 ... </DisplacementTimeSeries>

Fig. 10 Example of sound stream from MTConnect agent

@ Springer KE;E


http://www.localhost:5000/current
http://www.localhost:5000/sample?from=N-23&count=23

International Journal of Precision Engineering and Manufacturing

ti.4+1, the predictive result from the buffer remains ‘Loading’.
Algorithm 1 describes a buffer algorithm employing a queu-
ing method for continuous sound monitoring and incorporat-
ing a custom function to identify the majority element from
the buffer array. Here, the input x represents the last one-
second length of the sound signals at the moment of request,
v denotes an inference obtained from a CNN model, and
the output ¥, denotes the final prediction derived from
a queue buffer with a maximum length of N. In scenarios
without a buffer, where N equals 1, § invariably equals the
output. The duration required for one loop is signified by the
prediction interval 7. It is anticipated that utilizing computa-
tionally intensive models will prolong the loop time, thereby
compromising the efficacy of the monitoring performance.
Algorithm 1: Continuous sound monitoring

1 while True do

2 Input: x < RetrieveSoundSignal()

3 Log-Mel < ComputeLogMelSpectrogam(x)
4 ¥ « CNN_Model.predict(Log-Mel)

5 if buffer size < N then
6

7

8

Enqueue ()
else
Dequeue()
9 Enqueue(y)
10 end if

11 Output: 9y, ¢ rer < FindMajority(buffer)
12 end while

Function: FindMajority(buffer)

1 for each unique element e in buffer do

2 count[e] «— CountOccurrences(e, buffer)

3 end for

4 return clement e such that count[e] is maximal

Fig. 11 Interpretation based on X
selection of the most frequently Modelinference at t;
inferred element from consecu- ‘

tive CNN model predictions

4 Results and Discussion

The CNN models were evaluated comprehensively, espe-
cially in the context of dealing with datasets that exhibit
significant class imbalance among the labels as shown in
Fig. 7. Given that the disproportionality among the classes
may lead to a biased evaluation when relying solely on
accuracy as a performance metric, the additional evaluation
metrics was incorporated, namely the macro-averaged preci-
sion, recall, and F1-score with accuracy as the performance
metrics. Accuracy offers a general view of how often the
model is correct across all the classes. However, its limita-
tion, especially in the context of imbalanced data, emanates
from its inability to provide specific insights into how well
the model performs for each class. That is, a model might
still achieve high accuracy by merely predicting the majority
class correctly while performing poorly in the minor classes.
Given imbalanced datasets, the macro-averaged metrics
become crucial. These metrics calculate the performance for
each class independently and then take the average, ensuring all
classes are treated equally. Considering C as the total number of
classes, TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative counts, respectively. Precision,
recall, and F1-score are defined for each class i as follows:

Precision. = TP;

reclsloni = TP[ T FPl (3)
Recall, = — 2

= TP Y FN, “

Fl = 2 X Precision; X Recall;

1

®

Precision; + Recall;

The macro-averaged precision, recall, and F1-score can
be calculated using:

Prediction

interval Prediction
I r I from buffer

using a buffer

| Loading | Loading | Loading | Loading | Idle | ‘

tk tkfl

tk -2 tk -3 tk -4

- Loading | Loading | Loading | Loading | ‘

tk+1 tk

tk—l ZLk—2 tk—3

Loading | Loading | Loading | ‘

tk+2 tk+1

tk t/cfl tk72
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al-
.Mq

Precision .., = Precision; 6)
i=1
1
Recall ..o = I ; Recall, @)
1 €
Fl 00 = = ), FLi
ma = & 2 F ®)

The merit in utilizing macro-averaged metrics lies in their
ability to provide an unbiased metric of the model’s per-
formance by equally weighing each class, irrespective of
their sample size. This impartiality is important because the
dataset experiences class imbalance as it avoids the metric
being skewed towards the majority class, thereby presenting
a more transparent view of how the model performs across
all the classes. In the following analysis and throughout
the manuscript, macro-averaged performance metrics were
employed unless otherwise specified.

4.1 Sensor Selection

Table 6 provides a summary of the optimal hyperparameters for
each sensor, determined through grid search. Figure 12 shows
the selected models’ F1-score comparisons for training and test
datasets. Sensor 2 showed the best prediction performance in all
training and test datasets. Overall, the CNN models exhibited
superior prediction performances on Test dataset 1 compared
to Test dataset 2. One plausible explanation for this divergence
in performance might be attributed to the nature of the datasets
themselves. Test dataset 1 encompasses data from the same part
production as the training dataset collected on a different day,
thereby potentially sharing similar underlying distribution and
patterns. Conversely, Test dataset 2 was derived from a differ-
ent part production, which might introduce new variances and
patterns not present or learned from the training data, causing
accurate predictions to be more challenging.

Figure 13 illustrates the F1-scores to evaluate prediction
performances for each label using combined test datasets.
Among the classes, prediction performances of ‘Off’ were
the best while prediction performances of ‘Loading’ were the
lowest in all sensors. Sensor 2 exhibited the highest perfor-
mance across most classes except for ‘Cut’ where Sensor 4
outperformed the others. This could be attributed to the pipe
cutting method being shear cutting, driven by the hydraulic
pump, which allows Sensor 4 to effectively capture the asso-
ciated cutting sound from the pump. Nevertheless, Sensor
4 delivered poor prediction performances for ‘Idle’, ‘Load-
ing’, and ‘Execution’ because it struggles to discern distinct
sounds during different machine operations. Furthermore,
since the hydraulic pump remains active while the machine is

@ Springer KE;E

Table 6 Best hyperparameters chosen from grid search

Layer Parameter ~ Sensor 1 Sensor2 Sensor3 Sensor 4
2D Conv 1 Filter size 16 16 24 24
Kernel size 3X%x3 3%3 2%x2 3%x3
2D Conv 2 Filter size 32 32 32 32
Kernel size 3X%x3 3%x3 3%x3 3%x3
Hidden 1 Neuron size 64 64 64 48
Hidden2  Neuron size 32 64 64 48
98.72 98.79
100 — 9419
84.46
30 76.04 -
@ 60
3
o 40
20

Sensor 1 Sensor 2 Sensor 3 Sensor 4

| OTraining FlTest dataset 1 [ Test dataset 2|

Fig. 12 Fl-score comparison of sensor according to training and
dataset

turned on, Sensor 4 demonstrated the best prediction perfor-
mance specifically in predicting ‘Off’. If timely operation and
precise pipe cutting are pivotal monitoring targets, employing
Sensor 4 could be a judicious choice.

Overall, a performance ranking of the sensors was observed:
Sensor 2, the internal sound sensor on the machine bed, exhib-
ited the highest performance, followed by Sensor 3, Sensor 1,
and Sensor 4. From the result, Sensor 2 was chosen for addi-
tional analysis and model implementations, taking advantage of
its proven superior predictive capacities across all datasets. This
selection is expected to utilize its robust predictive capability
and thereby enhance model performance in actual applications.

4.2 Comparison with Other CNN Architectures

Comprehensively analyzing deep learning models, particularly
CNN architectures, demands meticulous and multi-pronged
approach to accurately capture their efficacy and applicabil-
ity across various deployment environments. In this section,
a comparative analysis was conducted among diverse CNN
architectures, examining not merely their computational
demand but also their overall size, intrinsic complexity, and
predictive performance. FLOPs (floating point operations per
second) serve to depict the computational burden of the mod-
els, offering insights into the computational resources required
during inferential processes [61]. While a lower FLOP count
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Fig. 13 Fl-score of each label
on all test datasets according to 100
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typically suggests reduced computational demands, it also pro-
vides an estimate of a model’s capacity to undertake real-time
inference. Further, the physical size of the models, articulated
in megabytes (MB), was assessed to determine their storage
and memory footprints. This metric is pivotal in ascertaining
the viability of model deployment in environments where stor-
age capabilities are constrained such as in edge computers.
Table 7 presents a comparison of various trained CNN mod-
els using Sensor 2, evaluating aspects such as training accuracy,
complexity, and computational demand. Optimal outcomes
characterized by the highest accuracy and the minimal compu-
tational load are emphasized in bold. All the examined CNN
models demonstrated training accuracies of nearly 99%. While
VGG19 secured the top spot in training accuracy, it is notably
the largest model with a size exceeding 500 MB. Conversely,
the proposed CNN architecture yielded relatively commend-
able training accuracy with a lightweight model size which is
approximately 100 times smaller than that of VGG19.
Prediction performances of the trained CNN architectures
using Sensor 2 for the combined test datasets are summarized
in Table 8, presenting a detailed insight into the models’ capa-
bilities. The bolden value is the best one in the column. While
VGG16 exhibited the highest prediction performances across
all metrics, the proposed CNN model closely followed, dem-
onstrating only marginal differences in performance outcomes.
ResNETS50 showed the worst prediction performances across
all the metrics. The proposed CNN model manifested an equi-
librium among the metrics, not only achieving an impressive
accuracy of 97.08% but also securing robust precision, recall,
and Fl1-score, at 94.58%, 93.8%, and 94.19%, respectively.
Considering these metrics and computational efficiency, the
proposed lightweight CNN model demonstrates comparable
predictive performance combined with efficient resource use.

4.3 Real-Time Implementation on Edge Computer

The CNN models were implemented to the same Rasp-
berry Pi with Sensor 2 on the shop floor to evaluate the

Loading Execution

Table 7 Comparative analysis of CNN architectures trained using
Sensor 2

CNN architec- Training Parameter FLOP Model size
ture accuracy (million)  count (mil- (MB)
(%) lion)
VGG19 99.58 43.12 3946.1 505.5
VGG16 99.06 37.81 3137.3 4432
ResNETS50 98.85 23.59 960.9 227.0
YAMNet 99.51 1.57 60.4 18.5
Proposed CNN  99.55 0.51 4.1 5.9

prediction accuracy and speed of the proposed CNN model
in real-time integrated with the buffer algorithm. The
inference time 7y, once Of the CNN models was assessed.
TensorFlow Lite was employed to execute the CNN mod-
els, and the inference time was calculated based on the
duration required to obtain the CNN model output, as
indicated in line 4 of Algorithm 1. Throughout each itera-
tion of Algorithm 1, the inference time was recorded and
stored. To test the computation time in the same environ-
ment, each model was loaded for 1 hour long respectively
on the same day. Figure 14 illustrates the average inference
time results over a 1 hour period of ResNET, YAMNet,
and the proposed CNN model. The error bar in Fig. 14
represents the standard deviation. The Raspberry Pi was
unable to load VGG16 and VGG19 due to an out-of-mem-
ory error encountered during program execution. Even if
VGG16 showed the highest accuracy in both training and
testing phase, it could not be used for the model deploy-
ment on the edge computer. The proposed CNN model
demonstrated the quickest speed, at 0.0039 seconds, while
ResNETS50 and YAMNet recorded approximately 0.173
and 0.017 seconds, respectively. Evidently, the inference
time ratio among the models is proportional to several
factors such as the number of parameters, model size, or
FLOPs shown in Table 7.
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Table 8 Performance metrics

; CNN architecture Accuracy (%) Precision (%) Recall (%) Fl-score (%)
of CNN architectures on test
datasets using Sensor 2 VGG19 96.14 91.07 93.09 92.07
VGG16 97.62 95.39 94.28 94.83
ResNET50 93.89 86.86 92.64 89.19
YAMNet 97.32 91.24 94.21 92.7
Proposed CNN 97.08 94.58 93.8 94.19
0.25
® ResNET50
0.2 B YAMNet
0.1728 ¢ Proposed CNN >
ey =
‘g 0.15 E
] e
é a 04 Loading
% 0.1 —&—Executing
W 0.2
0.05
0t Y S V.. N R .
é 0.0168 0.0039 0 1 2 3 4 5
0 Time [sec]
ResNET50 YAMNet Proposed CNN
©
JI)
Fig. 14 Inference time according to CNN model on Raspberry Pi 5 ®
v wn
a
While assessing the inference time for the production of 0 1 2 3 4 5
Time [sec]

another part, distinct from the model training, a substan-
tial number of prediction errors in operation counting were
identified. The count for each operation was defined as incre-
mented by one upon a change in the operational state. Fig-
ure 15 demonstrates the model output probability (top) and
the predicted state (bottom) without the buffer algorithm
during ‘Executing’ operation in all the time range. The raw
output values (logits) from the CNN model, denoted as z, are
transformed into probabilities through the softmax function,
yielding a probability vector J represented as Eq. (9).

¥y = Softmax(z) )

with each element indicating the predicted probability
of a class. The softmax function normalizes the raw net-
work outputs to provide values representing probabilities
for each class, ensuring the sum of the probabilities in the
model’s final class prediction equals one. Eventually, the
model’s inference y is obtained by selecting the class with
the highest probability. The probabilities depicted in Fig. 15
signify the probabilities associated with labels ‘Loading’
and ‘Executing’. At approximately 2.8 s in Fig. 15, the pro-
posed CNN model incorrectly inferred the ‘Executing’ state
as ‘Loading’. While this does not significantly impact the
accumulated operation time, it can be crucial when count-
ing the operational state. The count of ‘Loading’ operations
directly correlates with the number of parts produced. Fur-
thermore, the cutting blade for the pipe, being an expensive
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Fig. 15 Inference probability (top) and predicted state (bottom)

replacement, has its replacement time determined by the
number of cuts. Therefore, it is crucial to count these opera-
tions accurately.

The buffer algorithm (Algorithm 1) was implemented using
buffer size of 5 alongside the proposed CNN model on the
Raspberry Pi. The decision to implement 5 buffers was made to
ensure robust detection of operational states while reducing pre-
diction delays. This was chosen to minimize the change of con-
fusion that might arise with an even number of buffers, where
conflicting inferences could lead to ambiguous predictions. The
choice of 5 buffers effectively balances the necessity for immedi-
ate response capabilities with the precision required to accurately
capture and respond to brief operational changes, such as those
seenin 'Cut’ or ‘Loading’ events. These events, often lasting just
a few seconds, demand a buffer length that can quickly pro-
cess and reflect changes without significant delays. Thus, the
selection of five buffers represents a thoughtful compromise,
ensuring our monitoring system remains both responsive and
accurate in its real-time analysis of operational state changes.
During this test, webcam videos were also recorded to retrieve
true operational states for the real-world performance of the
implementation and comparison. The ‘Off” state did not exist
in this test. In each iteration of the loop, the timestamp, 9, and
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Vpugrer Were stored for a duration of 1 hour. Here, § represents the
model prediction result without applying the algorithm, while
Spuger denotes the result obtained with the algorithm applied.
Table 9 summarizes the results of prediction performances of
counting ability and time accuracy in comparisons between the
proposed CNN model and the model with the buffer algorithm.
The bolden values indicate ones with less error from the true
value. Error values are presented in parentheses as percentages.
The employment of the buffer algorithm effectively reduces
the predictive count discrepancy in all labels. Notably, ‘Load-
ing’ exhibits a 0% error, indicating accurate prediction with the
buffer algorithm. Predictions of the accumulated time on each
label are relatively accurate compared to the count predictions,
with both models presenting relatively minor error percentages
across all the labels. The model employing the buffer algorithm
demonstrated a substantial enhancement in predicting count of
operational state occurrences.

Finally, the proposed CNN model paired with the buffer algo-
rithm and Sensor 2 was applied for web-based remote monitor-
ing of the legacy pipe bending machine. Figure 16 presents an
outline of the monitoring system. MySQL was employed for the
database, while the Grafana interface was utilized for the web-
based dashboard. In each iteration of the proposed algorithm,
the operational state prediction, 3, is transmitted to the
database. Data is efficiently stored by writing only the changing

operational state result along with the timestamp to the database.
Consequently, productivity is calculated by counting operational
states, and operational time-related metrics such as runtime and
downtime are monitored by measuring the timestamps between
changes in the operational state. Figure 17 is the capture of the
web-based dashboard includes a discrete time panel for state
history change, cut and loading counts, and executing cycle.
Following the presentation of the real-time implementation
on an edge computer, it is crucial to acknowledge a limita-
tion regarding long-term reliability. Continual learning for
long-term reliability is an important topic that this research
did not focus on, but it deserves more attention in the future.
The necessity for models to adapt over time, particularly in
response to factors such as equipment wear and the introduc-
tion of new operational conditions, highlights the importance
of continuous learning strategies. Looking forward, the dis-
cussion on enabling continual learning within this monitoring
system is relevant. This could involve developing mechanisms
for incremental model updates, where the system regularly
integrates new data, learning from evolving operational pat-
terns without the need for complete retraining [62]. Addition-
ally, exploring techniques such as transfer learning, where a
pretrained model is fine-tuned with new data, could prove
valuable for efficiently adapting to changes in the operational
environment [63]. Future research in these areas will be

Table 9 Prediction performance

. . Metric Label True value Proposed CNN model only Proposed CNN model
COMmparisons 1n real with buffer algorithm
implementation

Count Idle 91 (121.9%) 50 (22.0%)
Loading 29 (70.6%) 17 (0%)
Executing 112 215 (92.0%) 120 (3.57%)
Cut 112 (69.7%) 67 (1.52%)
Accumulated Idle 834.5 848.4 (1.73%) 850.9 (2.04%)
time [sec] Loading 88.3 86.1 (— 3.43%) 83.32 (- 6.59%)
Executing 2495.2 2489.4 (— 0.16%) 2490.9 (- 0.209%)
Cut 182.7 176.6 (— 3.26%) 175.5 (— 2.46%)
Fig. 16 Schematic of real-time ™
remote monitoring for pipe . ] " ) Grafana
. . .- Real-time operation My
bending machine ~ S —
_ 2 monitoring <> —
| — I Il
. _ % N—!
| Raspberry Pi ¥ —
I EU Web-based
] Database
. CNN model dashboard
Sensor 2 @Main bed and algorithm Runtime
Downtime
_”".""‘—4“ = B S Productivity
E N - R
on *‘
/“\','
e “© O

Pipe bending machine

End users
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Panel Tle

Fig. 17 Capture of web-based dashboard

crucial for advancing the adaptability and sustainability for
machine learning models in industrial monitoring, ensuring
they remain robust and effective over extended periods.

5 Conclusion

This study introduced a real-time sound monitoring technique
employing a lightweight CNN model to monitor operation
and productivity of a legacy pipe bending machine on a real
shop floor. Initially, four sensors were deployed to determine
the optimal sensor type and placement, collecting sound data
alongside webcam videos to generate labels for training the
CNN model. Various datasets gathered from different produc-
tion phases and durations were labeled, then utilized to train
and test the lightweight CNN model. The model leverages
Log-Mel spectrogram for feature extraction and employs a grid
search method to optimize hyperparameters across two con-
volutional and two hidden layers. Amongst training and test-
ing datasets, a CNN model, utilizing an internal sound sensor
located on the main bed, exhibited superior prediction perfor-
mances with accuracies of 99.55% and 97.07%, respectively.
The proposed CNN model was compared with state-of-the-
art DL architectures, such as VGG16, VGG19, ResNET50, and
YAMNet, to discern both prediction performance and efficacy
in edge computing. While VGG16 exhibited the highest predic-
tion performance with a 97.62% accuracy on testing datasets,
VGG16 and VGG19 were not implemented on the edge com-
puter due to their substantial size, inhibiting their applicability
on Raspberry Pi. Moreover, the inference time of the proposed
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CNN model on Raspberry Pi was measured, revealing an aver-
age inference time of 3.9 ms, the shortest amongst the com-
pared architectures. However, during real-world application, the
model encountered a significant number of errors in predicting
operational state occurrences. To mitigate this, a buffer algo-
rithm was introduced to enhance count performance. A queuing
method was proposed for continuous sound monitoring, effec-
tively mitigated predictive count discrepancies in operational
states. This is particularly vital for accurately counting load-
ing and cutting operations, which directly correlate with the
number of parts produced, thereby ensuring precise monitor-
ing and operational efficiency in the manufacturing process. In
conjunction with the buffer algorithm, the proposed lightweight
CNN model was successfully deployed on the edge computer
for remote monitoring of the machine in real-time.

Future work will delve deeper into the buffer algorithm and
related techniques to enhance the robustness and prediction
performances of CNN models in sound monitoring. A key
focus will also be on exploring continual learning methods
to ensure the system adapts and evolves with changing opera-
tional conditions, aiming to maintain the long-term effective-
ness of our monitoring solutions. Additionally, the scope of
sound monitoring and recognition for legacy machines will be
expanded to encompass condition-based monitoring (CbM).

Appendix

See Fig. 18.
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Fig. 18 Sound signal in time domain and sound feature of each oper- colormap throughout all Log-Mel spectrograms is the same with it in
ational state (row) and sensor (column) in grid: Each cell contains Off case of Sensor 4. The time axis is the same as in Fig. 4

time domain plot (top) and Log-Mel spectrogram (bottom) and the
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