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Abstract
Investigating evolutionary changes in frontal cortex microstructure is crucial to understanding how modifications of neuron 
and axon distributions contribute to phylogenetic variation in cognition. In the present study, we characterized microstruc-
tural components of dorsolateral prefrontal cortex, orbitofrontal cortex, and primary motor cortex from 14 primate species 
using measurements of neuropil fraction and immunohistochemical markers for fast-spiking inhibitory interneurons, large 
pyramidal projection neuron subtypes, serotonergic innervation, and dopaminergic innervation. Results revealed that the rate 
of evolutionary change was similar across these microstructural variables, except for neuropil fraction, which evolves more 
slowly and displays the strongest correlation with brain size. We also found that neuropil fraction in orbitofrontal cortex 
layers V–VI was associated with cross-species variation in performance on experimental tasks that measure self-control. 
These findings provide insight into the evolutionary reorganization of the primate frontal cortex in relation to brain size 
scaling and its association with cognitive processes.
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Introduction

The frontal cortex is centrally involved with motor plan-
ning and cognitive functions, such as decision making, goal-
directed behavior, working memory, and attentional control 
(Passingham and Lau 2022). In primate brain evolution, 
granular prefrontal cortex regions, defined by reciprocal con-
nections with the dorsomedial thalamus (Berger et al. 1991), 

have become further specialized (Aboitiz and Garcia 1997; 
Berger et al. 1991; Carmichael and Price 1994; Goldman-
Rakic 1988; Kass 2013; Passingham and Wise 2012; Preuss 
and Goldman-Rakic 1991; Smaers et al. 2017). Haplorhine 
primates (i.e., tarsiers, monkeys, apes, and humans) display 
additional areas of dorsomedial, mid-lateral, and ventral pre-
frontal cortex compared to strepsirrhines (i.e., lemurs, gala-
gos, pottos, and lorises), suggesting that neuroanatomical 
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modifications and accompanying behavioral adaptations 
associated with these regions have been important in pri-
mate diversification (Preuss and Goldman-Rakic 1991; Sal-
let et al. 2013). Ventromedial prefrontal cortex is particularly 
important for emotional regulation and guidance of social 
interaction (Rolls 2004).

Differences among primate species have been reported in 
cytoarchitecture, pyramidal neuron morphology, cell type 
composition, neurotransmitter-expressing axon densities, 
and other aspects of histological architecture in frontal cor-
tex regions (Bianchi et al. 2013; Elston et al. 2011; Hercu-
lano-Houzel et al. 2007; Jacobs et al. 2018; Semendeferi 
et al. 2011; Raghanti et al. 2008a, b; Sherwood et al. 2004; 
Spocter et al. 2012). To date, however, there has not yet been 
a comprehensive analysis that models evolutionary changes 
concurrently in various features of cortical microstructure 
across different regions and layers. The aim of the current 
study was to generate a comparative dataset characterizing 
frontal cortex microstructure from diverse primate species 
to identify evolutionary shifts and scaling patterns in a phy-
logenetic framework.

Microstructural elements such as serotonergic and dopa-
minergic innervation, local inhibitory interneurons, and 
long-range projection neurons all play important roles in 
shaping the function of the cerebral cortex. Serotonin and 
dopamine are key neurotransmitters that modulate prefrontal 
cortex activity, with serotonin regulating mood and atten-
tion, and dopamine modulating motivation and reward pro-
cessing (Cools and Arnsten 2022). Local inhibitory interneu-
rons regulate the activity of nearby neurons, controlling 
their spiking dynamics and information encoding (Fishell 
and Kepecs 2020). Long-range projection neurons connect 
different regions of the brain, participating in signal inte-
gration and high-order cognitive processing (Charvet 2023; 
Hilgetag et al. 2019). The interplay among these different 
systems has likely played a crucial role in the development 
of prefrontal cortex function in primates, which is critical for 
complex cognitive abilities such as decision-making, work-
ing memory, and executive function (Preuss and Wise 2022).

In 14 species of primates, we employed immunohisto-
chemical markers for fast-spiking GABAergic inhibitory 
interneurons (parvalbumin, PV), large pyramidal neuron 
subtypes involved in corticocortical connectivity (non-phos-
phorylated neurofilament H, NEFH), serotonergic innerva-
tion (serotonin transporter, SERT), and dopaminergic inner-
vation (tyrosine hydroxylase, TH) (Campbell et al. 1989; 
Carmichael and Price 1994; Gabbott and Bacon 1996; Gab-
bott et al. 1997; Hof and Sherwood 2005; Hof et al. 1995a, 
1995b; Raghanti et al. 2008a, b; Sherwood et al. 2004, 2007; 
Stimpson et al. 2016; Wendland et al. 2005). Additionally, 
we measured neuropil fraction to represent the proportion 
of intercellular space occupied by synapses, dendrites, and 
axons.

The frontal regions we analyzed were the dorsolateral 
prefrontal cortex (DLPFC, Brodmann’s area 46), orbitofron-
tal cortex (OFC, area 13b), and primary motor cortex (M1, 
area 4). Both prefrontal regions are involved in high-order 
cognitive processes, such as decision making, and guiding 
behavior based on goals and predictions of future outcomes. 
Functional neuroimaging studies, for example, have dem-
onstrated activation of the DLPFC during monitoring and 
ordering tasks, which are measures of working memory 
(Amiez and Petrides 2007; Petrides et al. 1993; Provost et al. 
2010). Furthermore, lesions in the lateral frontal cortex in 
macaque monkeys and human patients lead to impairments 
in executive function (Barbey et al. 2013; Petrides 1991). 
The OFC of primates, in particular area 13, has strong con-
nections with the DLPFC (Preuss and Goldman-Rakic 1991) 
and receives substantial inputs from the amygdala (Ghash-
ghaei et al. 2007), playing a role in integrating sensory infor-
mation, evaluating novelty, and assigning emotional valence 
to stimuli (Folloni et al. 2019; Frey et al. 2009; Rolls 2004). 
In contrast to the prefrontal areas which are expected to dif-
fer among primate species, M1 serves a function that is con-
served in representing a map of muscle activation.

Using this comparative frontal microstructural dataset, 
one aim was to determine which features are associated with 
variation in overall brain size. In addition, we predicted that 
species differences in microstructure across the primate 
phylogenetic tree would be more pronounced in prefrontal 
cortex compared to M1, as other neuroanatomical features 
of volumetric size and connectivity have evolved at varying 
rates (Goldman-Rakic 1988; Passingham and Wise 2012; 
Preuss and Goldman-Rakic 1991). Finally, we sought to test 
whether these microstructural features were associated with 
species-typical measures of cognitive function reported in 
the literature (i.e., self-control and domain-general cognitive 
test performance) (Deaner et al. 2007; MacLean et al. 2014).

Materials and methods

Tissue preparation

The sample was comprised of brains from 44 individuals, 
representing 14 different primate species (Fig. 1). Brains 
were collected opportunistically from subjects following 
death unrelated to the current study. All brains were from 
adults above the age of species-typical sexual maturity 
(Tacutu et al. 2018). Nonhuman primate specimens came 
from individuals that lived in zoos and research centers, 
and were maintained in accordance with each institution’s 
animal care and use guidelines. Human brain samples were 
provided by the El Paso County coroner’s office in Colorado 
from individuals with no reported history of neurological 
or psychiatric disorders. Left hemispheres were used when 
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available (42 of 46 individuals). Within 24 h of each sub-
ject’s death, the brain was removed and immersed in 10% 
formalin. In most cases, the brain was transferred to 0.1 M 
phosphate buffered saline (PBS) with 0.1% sodium azide 
solution after 10–14 days and stored at 4 °C. Whole hemi-
spheres or blocks containing DLPFC, OFC, and M1 were 
cryoprotected by immersion in buffered sucrose solutions 
up to 30%, embedded in TBS freezing medium, frozen in a 
slurry of dry ice and isopentane, and sectioned at 40 µm with 
a sliding microtome in the coronal plane.

Regions of interest

The two prefrontal regions included in our analyses, dorso-
lateral prefrontal cortex (DLPFC, area 46) and orbitofrontal 
cortex (OFC, area 13b), can be identified in the same coronal 
histological section in catarrhine primates (i.e., cercopithe-
cid monkeys and apes). In platyrrhine monkeys, however, 
DLPFC is found slightly anterior to OFC (Fig. 2). There is 
no area 46 homologue identified in strepsirrhines, meaning 
this cortical subdivision likely evolved after haplorrhines 

diverged (Passingham and Wise 2012; Preuss and Goldman-
Rakic 1991). Therefore, we included only OFC and M1 as 
regions of interest for the strepsirrhine species in the current 
study. The DLPFC is located laterally on the middle frontal 
gyrus above the inferior frontal gyrus in hominids; in cer-
copithecid monkeys, it is found within the principal sulcus. 
It is found on the coronal level just before the appearance of 
the corpus callosum in platyrrhines and just after it in cerco-
pithecids, where the putamen becomes visible. The OFC is 
located on the ventral surface of the brain, along the medial 
orbital gyrus (Carmichael and Price 1994; Mai et al. 2007; 
Paxinos et al. 2008, 2011). Cytoarchitecturally, the DLPFC 
is granular, with larger neurons at the bottom of layer III 
and top of layer V. Layer IV is narrow and densely packed 
with small cells. The OFC is dysgranular and merges into 
agranular areas posteriorly (Carmichael and Price 1994; Hof 
et al 1995a; Preuss and Goldman-Rakic 1991; Semendeferi 
et al. 1998). Regions were traced along the superior frontal 
sulcus/principal sulcus (DLPFC) and medial orbital sulcus 
(OFC). The primary motor cortex (M1) is located on the 
anterior bank of the central sulcus. Cytoarchitecturally, M1 
is identified by the presence of large Betz cells in layer V 
and the absence of a clear layer IV (Sherwood et al. 2003).

Neuropil fraction

In each specimen, a 1:10 series of sections through each 
region was stained with 0.5% cresyl violet to reveal cyto-
architecture. Images of these Nissl-stained sections were 
acquired to quantify neuropil fraction (NF). Neuropil is the 
space within the grey matter, between the somata of neurons 
and glia, which remains unstained in Nissl-stained prepara-
tions, containing axons, dendrites, synapses, glial processes, 
and microvasculature (Issa et al. 2019; Spocter et al. 2012). 
We measured NF within each cortical area subdivided into 
supragranular layers II–III and infragranular layers V–VI. 
Supragranular and infragranular layers in the frontal cortex 
have been found to have differences in both cell morphology 
and axon density, which could indicate differences in neuro-
pil space, projection length, or other functional differences 
(de Lima et al. 1990; Hof et al. 1995b; Raghanti et al. 2008a, 
b, 2009; Semendeferi et al. 1998). A systematic-random 
series of images was taken through each region of interest 
across three sections using a 20 × objective lens (average 
number of images = 95 for DLPFC; 93 for OFC; 102 for M1) 
with an Optronics MicroFire color video camera (Optron-
ics, Golenta, CA), and a Zeiss Axioplan 2 photomicroscope 
(Zeiss, Thornwood, NY) equipped with a Ludl XY motor-
ized stage (Ludl Electronics, Hawthorne, NY), Heidenhain 
z-axis encoder, coupled to a Dell PC workstation running 
StereoInvestigator software (MBF Bioscience, Williston, 
VT). The resulting images were 0.53 pixels/µm resolution. 
Each image was imported into Image J (v. 1.8.0_112; NIH, 
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Fig. 1   Phylogenetic tree of the species included in this study, with 
sample sizes shown in parentheses
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Fig. 2   Cortical regions analyzed 
in this study. A Lateral views 
of frontal lobes, showing the 
cortical areas where data were 
collected. Images not to scale. 
Arrowheads indicate the coronal 
levels shown in panel B. B The 
location in coronal sections 
where regions were sampled 
for quantification, shown in 
representative species. C His-
tological appearance of cortical 
regions from Nissl staining 
in a chimpanzee brain. Scale 
bar = 250 µm Dorsolateral prefrontal 

cortex (DLPFC)

Orbitofrontal cortex (OFC) 

Primary motor cortex (M1) 

Varecia rubra Lemur catta Saimiri sciureus Sapajus apella Callithrix jacchus

Ateles fusciceps Pongo pygmaeusMacaca mulatta Papio hamadryas Papio anubis

Pan troglodytes Pan paniscus Homo sapiensGorilla gorilla

M1DLPFC 

Lemur catta Saimiri sciureus

Macaca mulatta Pan troglodytes
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Bethesda, MD) and subjected to background subtraction 
with a rolling ball radius of 50 pixels and then converted 
to binary by an automated threshold routine (Spocter et al. 
2012). Before calculation of the neuropil fraction, images 
that contained artifacts related to histological processing 
were removed from the batch. NF was calculated as the 
average across all images per individual per region and 
calculated as the space occupied by neuropil (white pixels) 
divided by the total number of pixels (Fig. 3).

Immunohistochemistry

For immunohistochemical staining, four adjacent 1:10 
series of free-floating sections from DLPFC, OFC and 
M1 were stained with: mouse monoclonal IgG1 antibody 
against PV (1:10,000 dilution, 235, Swant, Switzerland; 
RRID:AB_10000343); mouse monoclonal IgG1 antibody 
against SERT (1:100,000 dilution, MAB5618, EMD Milli-
pore, Billerica, MA; RRID:AB_2190560); mouse monoclo-
nal IgG1 antibody against NEFH (1:3,000 dilution, 801,701, 
Biolegend, San Diego, CA; RRID:AB_2564642); goat mon-
oclonal IgG1 antibody against TH (1:1,000 dilution, AB152, 
Millipore, Billerica, MA; RRID:AB_390204) (Fig. 4).

Tyrosine hydroxylase (TH) is the rate-limiting enzyme 
in catecholamine synthesis, including dopamine (DA), epi-
nephrine, and norepinephrine (Daubner et al. 2011). Stud-
ies in primates have shown that TH and DA-hydroxylase, 
the enzyme required for norepinephrine synthesis, are not 
extensively colocalized in axons within the cerebral cortex 
(Akil and Lewis 1993; Gaspar et al. 1989). Therefore, we 
interpret TH-positive axons in the current study to primarily 
represent dopaminergic innervation from the ventral tegmen-
tal area to the frontal cortex. However, it is important to note 
that norepinephrine-containing axons from the locus coer-
uleus may also play a significant role in cognitive processes 

through effects on mood, motivation, attention, and arousal 
(Sara and Bouret 2012; Sharma et al. 2010).

Prior to immunostaining, sections were rinsed thoroughly 
in PBS and pretreated for antigen retrieval by incubation in 
10 mM sodium citrate buffer (PV, TH: pH 3.5 at 37 °C in 
an oven; SERT, NEFH: pH 8.5 at 85 °C in a water bath) for 
30 min then cooled at room temperature for an additional 
20 min. Sections were then rinsed and immersed in a solu-
tion of 2.5% hydrogen peroxide in 75% methanol to elimi-
nate endogenous peroxidase activity. After rinsing again, 
sections were incubated in solution containing PBS with 
normal horse serum and 0.1% Triton X-100 detergent for 
one hour and then incubated in primary antibody diluted in 
PBS for approximately 24 h on a rotator at 4 °C. After rins-
ing in PBS, sections were incubated in either biotinylated 
anti-mouse IgG (1:200 dilution, BA-2000, Vector Laborato-
ries, Burlingame, CA) or biotinylated anti-goat (1:200 dilu-
tion, BA-1000, Vector Laboratories, Burlingame, CA) and 
processed with the avidin–biotin-peroxidase method using 
a Vectastain Elite ABC kit (pk-6100, Vector Laboratories). 
Sections were rinsed again in PBS, followed by a rinse in 
sodium acetate buffer. Immunoreactivity was revealed using 
3,3′-diaminobenzidine and nickel enhancement according 
to a modification of the methods in Shu et al. (1988) as 
described in Van der Gucht et al. (2001). When the primary 
antibody was excluded in control experiments, no immu-
nostaining was observed.

Stereologic quantification

Three sections from the 1:10 series were quantified for each 
cortical region and marker using the same microscope setup 
as for NF measurement. In StereoInvestigator, contours were 
drawn around layers II–III and layers V–VI of each of the 
regions in every section under 4 × magnification. Stereologic 

A B C

D E

layers V-VIlayers II-III

Fig. 3   The procedure for obtaining neuropil fraction data. A A series 
of systematic random sampling of image frames is collected. The dor-
solateral prefrontal cortex of a gorilla is shown as an example. Scale 
bar = 500 µm. B Example of an image frame. Scale bar = 150 µm. C 

Conversion to 8-bit greyscale. D Background subtraction using a roll-
ing ball algorithm. E Binarization of the threshold image. The neu-
ropil fraction is calculated as the proportion of the total pixels in the 
image that are white, representing the space surrounding cell bodies
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NEFH - Non-phosphorylated neurofilament H 

PV - Parvalbumin

TH - Tyrosine hydroxylase

SERT - Serotonin transporter

A B C D

E F G H

I J K L

M N O P

Fig. 4   Photomicrographs showing the immunostaining features that 
were quantified in this study. Non-phosphorylated neurofilament H 
in (A) DLPFC layer III of Lemur catta, B DLPFC layer III of Ate-
les fusciceps, C M1 layer V of Sapajus apella, D DLPFC layer III 
of Pongo pygmaeus. Parvalbumin in (E) DLPFC layer V of Varecia 
rubra, F DLPFC layer V of Macaca mulatta, G OFC layer V of Cal-
lithrix jacchus, H OFC layer V of Saimiri sciureus. Serotonin trans-

porter in (I) DLPFC layer III of Sapajus apella, (J) DLPFC layer III 
of Papio anubis, K DLPFC layer V of Gorilla gorilla, L M1 layer 
III of Pan troglodytes. Tyrosine hydroxylase in (M) OFC layer II of 
Macaca mulatta, N DLPFC layer II of Pongo pygmaeus, O DLPFC 
layer V of Homo sapiens, P DLPFC layer V of Homo sapiens. Scale 
bar = 100 µm
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sampling was performed to measure the density of PV-
immunoreactive (-ir) and NEFH-ir neurons, and length den-
sity of SERT-ir and TH-ir axons. Optical fractionator and 
Spaceballs analysis were performed to obtained estimates 
of neuron density and axon length density, respectively. 
Counts were collected under Koehler illumination using a 
63 × objective lens (Zeiss Plan-Apochromat, N.A. 1.4).

For neuron density, the counting frame was set at 
65 µm × 65 µm. Neurons were counted using a counting 
frame height of 6 µm, with a guard zone of 1 µm at the top 
of the section. Cells were counted when the nucleus was 
located within the counting frame or on the green inclusion 
line. For axon length density, the radius of the hemisphere 
probe was set at 10 µm, with a 1 µm guard zone at the top 
of the section. Tissue was sampled in a systematic random 
fashion with the grid spacing optimized according to the 
specimen’s region size. The sampling design was imple-
mented with the goal of obtaining approximately 100 sam-
pling sites per individual per region of interest. This yielded 
an average of 132 ± 35 (standard deviation) sampling sites 
for PV-ir neurons, 124 ± 35 sampling sites for NEFH-ir 
neurons, 104 ± 26 sampling sites for SERT-ir axons, and 
107 ± 21 sampling sites for TH-ir axons. Total neuron den-
sity was calculated as the sum of neurons counted divided 
by the product of the sum of disectors examined and their 
volume (Sherwood et al. 2007).

Cellular volumes of NEFH-ir neurons were estimated 
using the nucleator probe with a vertical design (Gundersen 
1988). Neurons were selected for volume measurement in 
a systematic random fashion by applying optical disector 
sampling in one section, as described above. The centroids 
of neurons included in optical disectors were marked and 
two transect lines from randomly selected directions were 
centered at the marker and superimposed over the neuron. 
The intersection of each line with the outer surface of the 
neuronal soma was marked and cellular volume was meas-
ured based on the nucleator principle. This sampling scheme 
resulted in the measurement of cellular volumes in an aver-
age of 11 ± 5 NEFH-ir neurons for each region of interest 
per individual.

Total axon density was calculated as the total axon length 
over the planimetric reference volume as obtained from the 
StereoInvestigator software (Raghanti et al. 2008a). All 
numerical densities of both neurons and axons derived from 
these counts were corrected by the number-weighted mean 
section thickness as described in Sherwood et al. (2007).

Quantifying trait changes and differences in rate 
of evolution

To provide an overview of the evolutionary changes that 
underpin the comparative variation in our data, we used 
Brownian motion (BM) to model the rate of phenotypic 

evolution (Adams 2014). Within BM, the evolution of a 
continuous trait “X” along a branch over time increment 
“t” is quantified as dX(t) = σdB(t), were “σ” constitutes the 
magnitude of undirected, stochastic evolution and “dB(t)” 
is Gaussian white noise. BM-based modeling approaches 
model the accumulation of variance over time through its 
rate parameter “σ2”. The BM rate parameter has become 
the standard measure of evolutionary rate in phylogenetic 
comparative methods. We tested for differences in the BM 
rate parameter among measurements (NF, PV, NEFH, SERT, 
TH). Here, and for all subsequent analyses, we used the pri-
mate phylogeny provided by Arnold et al. (2010).

We performed a multi-regime Ornstein–Uhlenbeck 
(OU) modeling analysis (Khabbazian et al. 2016) on each 
microstructural variable relative to brain size. This analysis 
identifies the phylogenetic location of shifts in mean phe-
notypic value along particular branches in the phylogeny 
by quantifying the evolution of a continuous trait “X” as 
dX(t) = α[θ – X(t)]dt + σdB(t) (Butler and King 2004). In 
this model, “σ” captures the stochastic evolution of a Brown-
ian motion process, “α” determines the rate of the adaptive 
evolution towards an optimum trait value “θ”. This stand-
ard OU model has been modified to accommodate for the 
possibility that traits may reach different optima across the 
phylogeny. Such multi-regime OU models allow modelling 
trait evolution towards different “regimes” that each display 
a different mean trait value.

Correlations with brain size and cognition

To address whether these microstructural features are cor-
related with brain size, we regressed each variable against 
brain weight using phylogenetic least-squares analysis 
(Rohlf 2001) in combination with a maximum likelihood 
optimization of the degree of phylogenetic independence of 
the data using the lambda parameter (Pagel 1999). Least-
squares model fitting further allowed identifying which vari-
ables indicate the best statistical fit with brain size by means 
of the Akaike information criterion (AIC).

To explore possible correlations with behavioral meas-
ures of cognition, we regressed each variable against two 
independent measures of cognition from the literature—
self-control (MacLean et  al. 2014) and domain-general 
cognitive test performance (Deaner et al. 2007). To meas-
ure self-control, MacLean et al. (2014) used two tests. The 
first method, known as the A-not-B task, involved subjects 
resisting the urge to search for food in a previously rewarded 
location when the food was visibly moved to a new loca-
tion. The second method, called the cylinder task, required 
subjects to inhibit the impulse to directly reach for food hid-
den inside a transparent cylinder and instead use a detour 
response learned during familiarization. The percentage of 
test trials in which subjects performed the correct response 
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in each task was measured. These two tasks assessed dif-
ferent aspects of self-control, and a composite score was 
used to provide a broader measure across both tasks. Some 
have argued that because these tasks only measure the capac-
ity to inhibit actions, they should be considered to repre-
sent only a partial measure of self-control (Beran 2018). 
The domain-general cognition variable used in this study 
was derived from a meta-analysis by Deaner et al. (2007). 
The meta-analysis combined results from various studies 
that investigated learning and cognition in multiple primate 
species, categorizing them into paradigms. The final data-
set included information from 44 publications, comprising 
nine cognitive paradigms and 30 procedures. The species 
represented in the frontal cortex microstructure dataset over-
lapped with the self-control dataset except for Ateles fusci-
ceps, Macaca mulatta, and Homo sapiens, and overlapped 
with the domain-general cognition dataset except for Pan 
paniscus and Homo sapiens. Because some microstructure 
variables were significantly correlated with brain size, we 
repeated the correlation analysis with cognitive measures 
by adding brain size as a predictor to models.

All hypothesis testing was two-tailed. We controlled for 
multiple testing using the procedure introduced by Benja-
mini and Hochberg (1995) and report the results based on 
both the unadjusted and adjusted alpha (P and Padj values).

Results

Species averages for neuropil fraction, neuron densities, and 
axon densities can be found in Table 1. Lemur catta and 
Varecia rubra were not included in analyses of DLPFC, as 
a there is no homologous region to area 46 in strepsirrhines 
(Passingham and Wise 2012; Preuss and Goldman-Rakic 
1991).

Rates of evolution and phylogenetic regimes

Among the microstructure measurements (across regions 
and layers), neuropil fraction consistently showed a lower 
rate of evolution compared to other variables (P < 0.001). 
This result holds when separately considering different 
regions and/or layers and when considering variables scaled 
against brain size.

We used analysis of best-fit regime configurations to 
identify sets of lineages that display similar trait values for 
each microstructural variable relative to brain size. Only one 
variable was found to be divided into significantly different 
regimes between lineages in this dataset. Relative PV-ir neu-
ron density (residuals after scaling to brain size) was lower 
in strepsirrhines compared to haplorrhines (AIC = 0.97). For 
every other microstructural variable, the best-fit OU model 
to the data indicated that a common slope and intercept 

accounts for variation across phylogenetic groups of pri-
mates. Additionally, humans did not display significant dif-
ferences in any of these microstructural variables compared 
to what would be predicted for their brain size.

Correlations with brain size

Among measurements, neuropil fraction displayed the high-
est statistical fit with brain size (AICΔ > 20). After adjusting 
results for multiple testing, 7 out of 36 (19%) of the micro-
structure measures were significantly associated with brain 
size, 5 of which were in OFC, 2 of which were in DLPFC, 
and none of which were in M1 (Table 2; Fig. 5). Neuro-
pil fraction increases with brain size in OFC layers V–VI 
(b = 0.030, P = 0.008, Padj = 0.043). NEFH-ir soma volume 
increases with brain size in DLPFC layers V–VI (b = 0.138, 
P = 0.006, Padj = 0.035). SERT-ir axon density decreases 
with brain size in OFC layers II–III (b =  – 0.239, P = 0.004, 
Padj = 0.034), OFC layers V–VI (b =  – 0.321, P = 0.001, 
Padj = 0.015), and DLPFC layers II–III (b =  – 0.255, 
P = 0.005, Padj = 0.034). TH-ir axon density decreases with 
brain size in OFC layers II–III (b =  – 0.433, P = 0.001, 
Padj = 0.018) and OFC layers V–VI (b =  – 0.457, P = 0.001, 
Padj = 0.015).

Correlations with cognition

We examined the frontal cortex microstructural measures 
for correlations with published species-mean data on self-
control and domain-general cognitive test performance. 
After adjusting for multiple testing, only one microstructural 
variable displayed a correlation with data from the cognitive 
tests (Fig. 6). Neuropil fraction in OFC layers V–VI was 
positively correlated with self-control (b = 4.64, t = 6.57, 
P < 0.001, Padj < 0.02). This relationship remained signifi-
cant when adding brain size as a covariate (neuropil fraction 
in OFC layer V–VI: b = 3.01, t = 6.42, P < 0.001; brain size: 
b = 0.14, t = 4.46, P < 0.005). This analysis also indicates 
that neuropil fraction in OFC layers V–VI is a better predic-
tor of self-control than brain size. Two additional analyses 
provided further confirmation of this result. Self-control pre-
dicted by neuropil fraction in OFC layers V–VI yielded an 
AIC value of  – 5.860, whereas self-control predicted by brain 
size yielded a lower AIC value of  – 3.485 (AICΔ = 2.375; 
AICw = 0.766). Lastly, a test of allometric integration 
(which compares rates of evolution of residual error; a lower 
rate indicating a higher integration, lower residual error and 
a better fit) revealed that predicting self-control by neuropil 
fraction in OFC layers V–VI yields a significantly lower 
rate of evolution than predicting self-control by brain size 
�
2

SC∼NFOFCV−VI
= 0.0006985, �2

SC∼Brainsize
= 0.003362 , rate 

ratio: 4.813, P of difference in rates = 0.0155).
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Discussion

The present study investigated the evolutionary scaling and 
cognitive correlates of primate frontal cortex microstructure. 
Neuropil fraction showed a lower rate of evolution compared 
to other variables, and it displayed the highest statistical fit 
with brain size. Additionally, humans did not display sig-
nificant differences in any of these microstructural variables 
compared to what would be predicted for their brain size, 
suggesting that scaling is a major determinant of the micro-
structure of the human frontal cortex. Neuropil fraction in 
OFC layers V–VI was positively correlated with self-control, 
and this relationship remained significant when adding brain 

size as a covariate, indicating that neuropil fraction in OFC 
layers V–VI is a better predictor of self-control than brain 
size and, thus, may contribute to species differences in the 
regulation of behavior. This finding is particularly interest-
ing given the well-established role of the OFC in reward 
processing and decision-making in humans and other pri-
mates (Rolls 2004). Notably, the integrity of the OFC was 
shown to contribute more than the DLPFC in marmosets to 
their performance on a detour reaching task similar to the 
comparative self-control measures in the dataset we used for 
our analyses (Wallis et al. 2001).

Neuropil is a fundamental component of the cerebral 
cortex that consists of the tissue surrounding the somata 

Table 2   Associations between 
brain size and microstructural 
variables

Microstructural variable Region Layers P Value Adjusted P Value Slope (b) AIC Value

Neuropil fraction DLPFC II–III 0.056 0.108 0.029  – 26.9
V–VI 0.367 0.441 0.015  – 23.0

OFC II–III 0.038 0.102 0.026  – 34.6
V–VI 0.008 0.043 0.030  – 38.6

M1 II–III 0.032 0.096 0.033  – 36.5
V–VI 0.197 0.273 0.012  – 40.7

NEFH-ir neuron density DLPFC II–III 0.147 0.211  – 0.106 11.8
V–VI 0.030 0.096  – 0.193 14.8

OFC II–III 0.722 0.743  – 0.027 18.2
V–VI 0.444 0.500  – 0.062 20.0

M1 II–III 0.138 0.211  – 0.105 15.2
V–VI 0.086 0.141  – 0.131 16.9

NEFH-ir neuron volume DLPFC II–III 0.015 0.061 0.143 4.1
V–VI 0.006 0.035 0.138  – 1.0

OFC II–III 0.323 0.401 0.035  – 3.6
V–VI 0.070 0.126 0.148 9.7

M1 II–III 0.057 0.108 0.108 8.3
V–VI 0.800 0.800 0.015 12.3

PV-ir neuron density DLPFC II–III 0.669 0.708 0.022 4.5
V–VI 0.024 0.087  – 0.188 13.0

OFC II–III 0.042 0.102 0.138 5.2
V–VI 0.440 0.500  – 0.090 24.4

M1 II–III 0.205 0.274 0.073 9.9
V–VI 0.551 0.601  – 0.057 25.1

SERT-ir axon density DLPFC II–III 0.005 0.034  – 0.255 13.0
V–VI 0.013 0.060  – 0.216 13.4

OFC II–III 0.004 0.034  – 0.239 15.5
V–VI 0.001 0.015  – 0.321 17.9

M1 II–III 0.276 0.355  – 0.102 23.7
V–VI 0.141 0.211  – 0.150 25.5

TH-ir axon density DLPFC II–III 0.044 0.102  – 0.236 21.9
V–VI 0.075 0.128  – 0.259 27.7

OFC II–III 0.001 0.018  – 0.433 28.4
V–VI 0.001 0.015  – 0.457 27.3

M1 II–III 0.045 0.102  – 0.277 32.9
V–VI 0.056 0.108  – 0.315 38.0



1833Brain Structure and Function (2024) 229:1823–1838	

1 3

of cells and includes elements such as axons, dendrites, 
and glial cell processes. The fact that neuropil fraction 
displays the strongest overall association with brain size in 
our analysis may reflect the need for more connections and 
synapses per neuron to support the maintenance of net-
works in larger brains (Rash et al. 2023; Semendeferi et al. 
2011; Sherwood et al. 2020; Spocter et al. 2012). Spe-
cies that have cortices with more neuropil space, such as 
humans, great apes, and elephants, also have networks of 

larger, more complex neurons with greater dendritic arbo-
rization (Bianchi et al. 2013; Elston et al. 2011; Jacobs 
et al. 2001, 2011). In contrast, other microstructural varia-
bles, such as interneuron proportions, may serve functions 
in the cortex that are more constrained to be relatively 
invariant or less linked with brain size across primate lin-
eages (Fishell and Kepecs 2020; Sherwood et al. 2007; 
Shi et al. 2021). Overall, the slower rate of evolution and 
strong association with brain size of neuropil suggest that 
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it plays a fundamental role that scales allometrically in the 
primate cerebral cortex.

Dopaminergic (i.e., TH-ir) and serotonergic (i.e., SERT-
ir) axon length density were found to significantly decrease 
with brain size across the primate species examined. This 
occurs in conjunction with the well-known pattern of neu-
ron density also decreasing in larger brains (Herculano-
Houzel et al. 2007; Sherwood et al. 2020). Further research 
is needed to explore the underlying mechanisms and func-
tional implications of these coordinated changes in axon 
and neuron densities across primate species. In previous 
comparative studies focusing on human, chimpanzee, and 
macaque brains, we calculated the ratio of dopaminergic 
and serotonergic axon length density relative to neuron 
density to estimate the amount of potential innervation per 
neuron (Raghanti et al. 2008a, b). We found that human and 
chimpanzee brains exhibited a higher relative innervation 
density compared to macaque monkeys in layers V–VI of 
prefrontal areas 9 and 32, but there were no phylogenetic 
differences in primary motor cortex. These findings suggest 
that, despite the negative correlation between axon length 
density and brain size observed in our study, the relative 
innervation density per neuron may vary across species and 
brain regions.

The results of this study highlight the potential impor-
tance of microstructural variation in the evolution of behav-
ioral differences across primate species. Although brain size 
and neuron numbers have been investigated as predictors of 
cognitive abilities across species (Herculano-Houzel 2017; 

MacLean et al. 2014; Reader and Laland 2002; Shultz and 
Dunbar 2010), the current study suggests that microstruc-
tural variation can provide additional insight into the evolu-
tion of cognitive functions. The findings indicate that the 
microstructure of specific brain regions, such as OFC lay-
ers V–VI, may be more closely associated with cognitive 
abilities such as self-control than overall brain size. This 
underscores the need to consider both brain size and micro-
structural variation when investigating the evolution of cog-
nitive functions in primates (Galakhova et al. 2022; Vander-
haeghen and Polleux 2023). Furthermore, the current study 
emphasizes the importance of examining specific regions 
beyond large neuroanatomical subdivisions (i.e., whole 
neocortex) in comparative research on the coevolution of 
brain and behavior, as different neural systems may have 
distinct evolutionary trajectories that are associated with 
different cognitive functions or socioecological adaptations 
(DeCasien and Higham 2019; Schwartz et al. 2023).

The association between OFC layers V–VI and meas-
ures of self-control across primate species may be due to 
the role of these circuits in inhibitory control, helping to 
regulate impulsive behavior, and override inappropriate or 
irrelevant responses. The OFC is involved in monitoring 
and adjusting actions based on changing circumstances 
and goals to update behavior (Bechara et al. 2000). Lay-
ers V–VI are particularly important for these functions as 
they receive input from sensory and association areas and 
send output to other frontal regions that are involved in 
decision-making and motor planning. In addition, these 
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layers contain pyramidal neurons that project to subcorti-
cal regions, such as the striatum and amygdala, which are 
involved in reward processing and emotional regulation 
(Cardinal et al. 2002). The functional significance of OFC 
layers V–VI in inhibitory control and sensory integra-
tion may explain why neuropil fraction in these layers is 
positively associated with measures of self-control across 
primate species. Such changes in neuronal connectivity 
may play a pivotal role in shaping cognitive function and 
provide a mechanism for species-specific neuroanatomical 
specialization beyond total cerebral volume or numbers 
of neurons.

Overall, these findings contribute to our understanding 
of the evolution and function of the primate frontal cortex 
and provide a foundation for future research investigating 
the relationship between microstructure, brain function, and 
behavior in primates. However, it should be noted that this 
study has some limitations, including the relatively small 
sample sizes for some species, and the use of published data 
for cognitive test performance, which may not be directly 
comparable across studies. Indeed, self-control is a complex 
cognitive process that involves both the inhibition in behav-
ioral responses to prepotent stimuli as well as the ability 
to delay gratification as a means of evaluating the payoff 
of future rewards (Beran 2018). The two main tasks that 
MacLean et al. (2014) used were not designed to assess the 
full range of self-control capabilities. Future studies with 
larger sample sizes and more standardized cognitive test-
ing protocols may help to clarify these relationships fur-
ther. In addition, our analysis considered only three frontal 
regions, which leaves open questions about the evolutionary 
dynamics and cognitive correlates of other cortical areas. In 
this regard, it is also worth noting that the parcellation and 
homologies of the prefrontal cortex across primates contin-
ues to be actively debated and revised (Borra et al. 2019; 
Rapan et al. 2023).

Taken together, our findings suggest that although some 
microstructure measures are correlated with brain size, 
they do not necessarily exhibit the same rate of evolution or 
cognitive correlates. Our study provides a comprehensive 
view of the microstructural characteristics of primate fron-
tal cortex and highlights the importance of considering the 
evolutionary and cognitive context when interpreting these 
characteristics.
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