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Abstract

Neuronal plasticity can vary remarkably in its form and degree across animal species. Adult neurogenesis, namely the capac-
ity to produce new neurons from neural stem cells through adulthood, appears widespread in non-mammalian vertebrates,
whereas it is reduced in mammals. A growing body of comparative studies also report variation in the occurrence and activity
of neural stem cell niches between mammals, with a general trend of reduction from small-brained to large-brained species.
Conversely, recent studies have shown that large-brained mammals host large amounts of neurons expressing typical mark-
ers of neurogenesis in the absence of cell division. In layer II of the cerebral cortex, populations of prenatally generated,
non-dividing neurons continue to express molecules indicative of immaturity throughout life (cortical immature neurons;
cINs). After remaining in a dormant state for a very long time, these cINs retain the potential of differentiating into mature
neurons that integrate within the preexisting neural circuits. They are restricted to the paleocortex in small-brained rodents,
while extending into the widely expanded neocortex of highly gyrencephalic, large-brained species. The current hypothesis
is that these populations of non-newly generated “immature” neurons might represent a reservoir of developmentally plastic
cells for mammalian species that are characterized by reduced stem cell-driven adult neurogenesis. This indicates that there
may be a trade-off between various forms of plasticity that coexist during brain evolution. This balance may be necessary to
maintain a “reservoir of plasticity” in brain regions that have distinct roles in species-specific socioecological adaptations,
such as the neocortex and olfactory structures.
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Introduction and Alvarez-Buylla 2019; Kempermann 2019; Bonfanti
and Charvet 2021; La Rosa and Bonfanti 2021). Structural
changes can impact the anatomy of the nervous system,

from a subcellular to a neural circuit level. The most com-

Neuronal plasticity is recognized as a crucial mechanism
through which the central nervous system (CNS) learns from

experience, forms memories, modifies the structure of neu-
ral networks over time, recovers after lesion or disease, and
in some cases, regenerates lost nerve cells (Martino et al.
2011; Aimone et al. 2014; Bao and Song 2018; Obernier
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mon type of structural remodeling is synaptic plasticity. It
enables changes in connections between neurons, allowing
the establishment of neural circuitry during development
and subsequent refinement based on experience (Citri and
Malenka 2008; Holtmaat and Svoboda 2009; Fig. 1A). This
form of plasticity is expected to take place in nearly all parts
of the grey matter in the central nervous system (CNS) and
is likely well-conserved among mammals, reflected, in part,
by the low interspecies variation of synaptic density and
structure (apart from some differences probably linked to
evolutionary adaptations of neural circuits to particular func-
tions; Sherwood et al. 2020; De Felipe et al. 2002; Alonso-
Nanclares et al. 2022). The most striking form of plasticity is
adult neurogenesis, namely the formation of new neurons in
specific neurogenic regions, as the result of neural stem cell
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activity (Aimone et al. 2014; Lim and Alvarez-Buylla 2016;
Bao and Song 2018; Obernier and Alvarez-Buylla 2019;
Fig. 1B). Since its discovery in mammals (Altman and Das
1965; Lois and Alvarez-Buylla 1994), adult neurogenesis
has raised considerable interest, and it has been intensively
studied with the objective of fostering therapeutic interven-
tions aimed at brain repair, possibly harnessing the regen-
erative potential of neural stem cells (Martino et al. 2011;
Bao and Song 2018). Nevertheless, it is becoming more and
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more evident that remarkable differences occur among ani-
mal species in regenerative capacities: in non-mammalian
vertebrates (e.g., fish, amphibia, reptiles) stem cells are quite
abundant and widespread in large portions of the CNS, thus
granting continuous cell renewal, whereas in mammals the
stem cell niches are highly restricted to only two-to-three
small brain regions (Bonfanti 2011; Lindsey et al. 2018;
Lange and Brand 2020; La Rosa and Bonfanti 2018; Van-
destadt et al. 2021; Fig. 2). Accordingly, fish neurogenic
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«Fig. 1 Neurogenesis as a process to build up the brain (dark blue),
and to provide new neurons during adulthood at specific locations
(light blue). A, the vast majority of brain neurons are produced dur-
ing embryogenesis, then reach maturation during postnatal assem-
bly and stabilization of the neural circuits (black). The life of these
neurons spans the entire life of the animal, some of them undergoing
damage/death because of aging or neurological diseases (purple). It is
assumed that all these neurons can undergo synaptic plasticity (grey).
B, neurogenic processes can last during adulthood in restricted neu-
rogenic sites hosting stem cell niches (examples in B’). Full integra-
tion of functional mature neurons has been well documented in two
brain sites: the olfactory bulb (from cells generated in the forebrain
subventricular zone, SVZ) and the hippocampus (from cells gener-
ated in the subgranular zone of the dentate gyrus, SGZ). These pro-
cesses undergo remarkable reduction through ages, due to stem cell
depletion. C, neuronal integration of new elements in the circuits
can also occur in the layer II of the cerebral cortex (piriform cortex
in mice) through “awakening” and maturation of prenatally gener-
ated, “immature” neurons that had been blocked in an immature state
since embryogenesis (examples in C’: left, DCX* neurons in the rab-
bit neocortex; right, neocortical DCX* neurons in lambs, generated
during embryogenesis in pregnant sheep treated with the thymidine
analogue bromodeoxyuridine, BrdU). This “neurogenesis without
division” can occur in the absence of active stem cells, undergoing
exhaustion only after maturation of the entire reserve. D, at least three
types of mature neurons are present in the adult brain on the basis of
their origin: most of them were generated during embryogenesis and
reach maturity in early postnatal periods (black), others are generated
from stem cells in the neurogenic sites (green), and others come from
delayed maturation of “immature” neurons (blue). Confocal images
reproduced with permission from Ghibaudi et al. 2023a (B’ and C’,
left) and Piumatti et al. 2018 (C’, right)

processes can provide substantial possibilities for brain
repair and regeneration after lesion (Lindsey et al. 2018;
Lange and Brand 2020), whereas in mammals most regen-
erative capacity has been lost (Weil et al. 2008; Bonfanti
2011), the new neurons mainly playing a role in the postna-
tal maturation of specific neural circuits by sculpting their
capability to learn from experience (Aimone et al. 2014;
Seménov 2019; Kempermann 2019; Cushman et al. 2021;
La Rosa and Bonfanti 2021; Fig. 2). Neurogenic plastic pro-
cesses also differ among mammals, to serve the appropriate
time course/functional adaptation of each species (Barker
et al. 2011; Bonfanti and Charvet 2021) and follow diverse
lifespans and related developmental schedules (Finlay and
Darlington 1995; Workman et al. 2013).

In neurobiological research, the use of laboratory rodents
as animal models has been prevalent, which has obscured our
appreciation of the interspecies variation in different types
of neurogenic plasticity. However, in recent years, these dif-
ferences have started to come to light (Brenowitz and Zakon
2015; Faykoo-Martinez et al. 2017; La Rosa and Bonfanti
2018). Many researchers working exclusively on mice and
rats make claims concerning the putative function(s) of adult
neurogenesis by generalizing their conclusions to all mam-
mals (see for example Gage 2019), yet many reports have
revealed striking differences among species (Paredes et al.
2016; Parolisi et al. 2018; Sanai et al. 2011). Similarly, some

scientists working on non-human primates (e.g., common
marmosets, macaques), then generalize to “primates and
humans” (see for example Hao et al. 2022). Yet, marmosets
have relatively small (brain weight: 8,5 g) and lissencephalic
brains (Gyrification index, GI: 1,18), which are remarkably
different from other species of anthropoid primates with
larger and more highly gyrencephalic brains (e.g., chim-
panzee brain weight: 383 g, GI: 2,31; Zilles et al. 2013).
In addition, compared to other anthropoid primates, mar-
mosets exhibit unique life history traits. They have acceler-
ated reproductive rates, shorter lifespans, earlier maturation,
and regularly give birth to twins (Tardif et al. 2011; Preuss
2019).

The protracted generation of neurons during postnatal and
adult stages has been identified as not merely a brain func-
tion, but rather as a “tool” that the brain can utilize to enhance
specific functions. The specific functions that benefit from this
neuronal generation can differ significantly among species and
their socioecological adaptations (Barker et al. 2011). In one of
the most elegant review articles written on this subject, Barker
et al. (2011) state that “the function of adult neurogenesis is a
task-dependent specialization”, so that comparative analysis in
widely different species can help to understand neurogenesis
as an evolutionarily conserved trait to meet ecological pres-
sures. On this basis, we should “seek multiple explanations
for the adaptive significance of adult neurogenesis and how
particular ecological needs and evolutionary pathways have
directed its function, where it occurs” (Barker et al. 2011).
Indeed, remarkable differences do exist in the duration, loca-
tion, type, and rate of plastic changes in different mammals
(Lipp and Bonfanti 2016; Paredes et al. 2016; Palazzo et al.
2018). Recent comparative analyses carried out in rodents
and non-rodent mammals have started to reveal possible phy-
logenetic trends for such variation, suggesting that different
animal lineages display evolutionary specializations. Despite
technical limits and some controversial data, results mostly
converge to indicate that neurogenesis is almost entirely absent
in regions of the adult human brain whereas neuronal addi-
tion continues into adult life in rodents (reviewed in Paredes
et al. 2016; Parolisi et al. 2018; Sorrells et al. 2021; Duque
and Spector 2019). The forebrain stem cell niche of the lateral
ventricle subventricular zone (SVZ, providing new neurons
for the olfactory bulb) is a striking example of interspecies dif-
ference (see below). On the other hand, a novel population of
cortical “immature” neurons that are generated prenatally, then
delaying their maturation and “awakening” during adulthood,
are significantly more abundant in large-brained, non-rodent
species (Palazzo et al. 2018; La Rosa et al. 2020a; Figs. 1, 2,
3,4). The hypothesis that various forms of plasticity may arise
due to evolutionary trade-offs linked to brain size and other
neuroanatomical adaptations is gaining momentum. In this
review article, we aim to provide a comprehensive overview
and analysis of the existing data, while also placing them in
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Fig.2 Heterogeneity, reduction, and specialization of brain structural
plasticity in vertebrates. Top left, the amount, extension and activity
of brain stem cell niches (green) vary remarkably among animals,
being reduced from fish to mammals (asterisk: a third stem cell niche
is described in the hypothalamus, the final fate/integration of new-
born neurons being less studied). Right, the rate of neurogenesis, as

a phylogenetic context. We will emphasize the gaps in our
knowledge that continue to hinder a universally shared under-
standing of these topics. Understanding the implications of
these trade-offs in different forms of neuronal plasticity has
significant implications for mammals with varying brain sizes
and adaptations. It can shed light on how different species have
evolved distinct strategies to optimize cognitive abilities, sen-
sory processing, and behavioral flexibility. By examining these
trade-offs, we can gain valuable insights into the evolutionary
mechanisms underlying the diversity of mammalian brains and
their functional capacities.
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well as its persistence through age, show variation among mammals,
their reduction being more evident in large-brained compared with
small-brained species. This trend is paralleled by a higher presence of
non-newly generated, immature neurons (red and blue) in the cerebral
cortex of large-brained species, suggesting a specialization (trade-off)
of different types of plasticity in mammals

Heterogeneity of neurogenic processes:
newly generated and non-newly generated
“immature” cells coexist in adult brains

Before addressing phylogenetic variation of neurogenic
processes, we summarize recent developments in the field
that are changing our view about the possibility for adult
brains to add new neurons through life. Until recently,
efforts in developmental neurobiology have been mostly
focused on stem cell-driven neurogenesis (Bonfanti and
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Fig.3 Phylogenetic variation of adult neurogenesis (AN) and corti-
cal immature neurons (cINs) in mammals endowed with largely
different neuroanatomy. Due to multiple difficulties in conducting
large scale comparative studies, data are still fragmentary. A, brains
of different mammals are represented from smaller to larger (brain
weight reported on the right; not in scale). B, for adult neurogene-
sis, despite the existence of comparative studies, a lack of compara-
ble quantitative analyses extended to many species makes it difficult
a real comparison of their rates (uneven grey line). Available data

only at young ages

Low
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reveal remarkable differences at the extremes: high rates in labora-
tory rodents vs. low rates, or even vestigial presence, in large-brained
species. The main aspects of heterogeneity (mostly qualitative) are
reported in the AN column C, for cINs, despite the overall scarcity of
studies, a comparative, quantitative analysis has been performed on
10 mammalian species by using the same method; red dots of differ-
ent sizes graphically represent the different cIN amount in the neo-
cortex of different mammals (numbers indicate the median of linear
densities in cortical layer II, as reported in La Rosa et al. 2020a)
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Peretto, 2011; Aimone et al. 2014; Bond et al. 2015; Lim
and Alvarez-Buylla 2016; Kempermann 2019; Obernier
and Alvarez-Buylla 2019). The discovery of adult mam-
malian neurogenesis raised new hopes to develop thera-
peutic strategies for neurological disorders (Martino et al.
2011; Bao and Song 2018). A huge number of reports
have been published in the last 30 years (> 13,000 papers
in PubMed) increasing our knowledge of the genesis,
differentiation, integration, and modulation of new neu-
rons in specific “neurogenic sites” located in restricted
brain regions (mostly the olfactory bulb and hippocam-
pus; Aimone et al. 2014; Lim and Alvarez-Buylla 2016).
Over the years, other regions were proposed to host “non
canonical” neurogenic processes, a finding which became
more evident when different mammalian (non-rodent) spe-
cies were analyzed (Ponti et al. 2006, 2008, 2010; Luz-
zati et al. 2006; Barker et al. 2011; Feliciano et al. 2015;
Amrein 2015). In parallel, it was suggested that even in
“canonical” neurogenic sites, remarkable variation can
exist depending on the animal species and/or ages con-
sidered (Sanai et al. 2011; Patzke et al. 2015; Lipp and
Bonfanti 2016; Parolisi et al. 2017, 2018; Cipriani et al.
2018; Sorrells et al. 2018; see dedicated section below).
All these variables increased the complexity of the field,
sometimes creating confusion in the interpretation of
results (Lipp and Bonfanti 2016; Oppenheim 2019; Duque
et al. 2022). Apart from technical considerations regarding
common pitfalls in the reliable detection of cell genesis,
which have been addressed elsewhere (Duque and Spec-
tor 2019), some bona fide mistakes can be generated by
erroneous interpretation of markers of immaturity that are
commonly used in the study of adult neurogenesis, such as
the cytoskeletal protein doublecortin (DCX; Nacher et al.
2001) and the polysialylated, low-adhesive form of the
Neural Cell Adhesion Molecule (PSA-NCAM; Acheson
et al. 1991). Since these proteins are transiently expressed
by neuroblasts produced in the neurogenic niches, they
were universally considered as reliable markers, or prox-
ies, for neurogenesis and “an alternative to bromodeoxyur-
idine (BrdU) labeling” (Brown et al. 2003; Bonfanti 2006).
On this basis, neurogenesis was reported to occur in vari-
ous brain regions out of the canonical stem cell niches,
some of which were found to host DCX-immunoreactive
(DCX™) cells that are not associated with cell division
and neurogenesis (Bonfanti and Nacher 2012; Nacher and
Bonfanti 2015; Konig et al. 2016; reviewed in La Rosa
et al. 2020b). In recent years, researchers have discovered
a possible explanation for these observations in layer II of
the piriform cortex (paleocortex). A population of corti-
cal “immature” neurons (cINs) have been identified that
are not newly generated but are instead born prenatally
and continue to exhibit markers of immaturity through-
out adulthood (Gémez-Climent et al. 2008; Klempin et al.

2011; Bonfanti and Nacher 2012; Konig et al. 2016; Bon-
fanti and Seki 2021; Fig. 1C). These cells undergo delayed
maturation and might represent a new form of “neurogen-
esis without division”, involving “dormant” neural ele-
ments “frozen in a stand-by mode” and sharing the same
markers of immaturity with newly born neurons (Gémez-
Climent et al. 2008; Bonfanti and Nacher 2012; Konig
et al. 2016; Piumatti et al. 2018; Rotheneichner et al. 2018;
La Rosa et al. 2020b). Using DCX-Cre-ERT2/Flox-EGFP
transgenic mice, in which the green fluorescent protein
(GFP) is permanently expressed in DCX™ cells and in
their progeny following tamoxifen administration, it was
confirmed that most cINs mature throughout life into glu-
tamatergic neurons (Rotheneichner et al. 2018), and can
be integrated into the pre-existing piriform cortex network
(Benedetti et al. 2020; Fig. 1). Although the role, fate,
and significance of this neuronal population, as well as
the mechanism leading to block their maturation (and to
wake up them later) are still unknown, the cINs can be
considered as highly plastic cells which might represent a
reservoir of young neurons in adult brains (Rotheneichner
et al. 2018; La Rosa et al. 2019, 2020a, b; Benedetti and
Couillard-Despres 2022).

Similarly, DCX* “immature” cells are detectable in
subcortical regions (amygdala, claustrum, white matter),
also in this case having originally been identified as either
neurogenic events (Bernier et al. 2002; Marlatt et al. 2011;
Jhaveri et al. 2018) or “immature” neurons (Fudge 2004;
Marti-Mengual et al. 2013; Sorrells et al. 2019; Chareyron
et al. 2021; reviewed in Ghibaudi and Bonfanti 2022). At
these locations our current understanding is incomplete,
and further studies are needed to correctly classify these
DCX* cells (Ghibaudi and Bonfanti 2022; see below). For
this reason, the present review will mainly focus on the
cINs.

The complex issue of the different types of young neurons
has slowly emerged across the years within the well-estab-
lished field of adult neurogenesis (Bonfanti and Seki 2021),
and it is rapidly evolving (Benedetti and Couillard-Despres
2022; Ghibaudi and Bonfanti 2022). It is now clear that
beside the newly born cell populations produced in the stem
cell niches, many DCX™ neurons in adult brains appear to
be in a state of protracted or arrested maturation, maintain-
ing immature marker expression and a simple morphology
for long time. In mammalian brains, these cell populations
coexist with adult neurogenic processes, yet their relative
occurrence, distribution and amount can vary remarkably
across different species (La Rosa et al. 2020a; Ghibaudi and
Bonfanti 2022). While comprehensive studies and compa-
rable data on such phylogenetic variation are scarce and
largely incomplete (Fig. 3), the following sections will pro-
vide a summary of our current understanding of this subject
and the potential evolutionary trade-offs that take place in
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mammal brain evolution, involving different neurogenic
strategies.

Phylogenetic variation in canonical adult
neurogenesis

Heterogeneity of approaches can make it difficult
to compare adult neurogenesis across species

The issue of occurrence, location and rate of canonical
adult neurogenesis in different species is far from being
solved, due to the lack of quantitative data obtained in a
systematic, comparable way (Fig. 3B). Only a small num-
ber out of 700,000 articles published in the neuroscience
field since the year 2000, and more than 13,000 articles
published on adult neurogenesis since the 1990s, used a
comparative approach, the vast majority of the investiga-
tions having been performed on laboratory rodents (Lipp
and Bonfanti 2016; Cozzi et al. 2020). Some comparative
studies describing differences in adult neurogenesis in dif-
ferent mammalian groups are available (see for example
Barker et al. 2011; Patzke et al. 2015; Amrein 2015; Pare-
des et al. 2016; Parolisi et al. 2018), nevertheless the origi-
nal reports differ in various significant ways, including age
of subjects, brain regions examined, source of material,
type and time of tissue fixation, postmortem intervals, type
of markers, antibodies and detection method employed,
type of quantitative analyses, and aim of the study (Zhao
and van Praag 2020; Ghibaudi et al. 2023a). Though
some researchers point specifically to tissue fixation and
postmortem interval as a source of variation in observa-
tions (Moreno-Jiménez et al. 2021), in a recent study we
highlighted that other variables are important when deal-
ing with comparative immunocytochemical detection of
plasticity-related markers (Ghibaudi et al. 2023a). These
variables are mainly represented by the choice and avail-
ability of primary antibodies (that can react very differ-
ently in different species), and by the existence of actual
interspecies differences in the presence and distribution of
antigens. In our extended study, involving six widely dif-
ferent mammalian species, spanning from mice to humans,
we showed that very similar results can be obtained in
tissues treated with different types of fixation (including
intracardiac perfusion and tissue immersion) and with dif-
ferent postmortem intervals, while both absence of stain-
ing or non-specific staining can occur when using differ-
ent commercially available antibodies (Ghibaudi et al.
2023a). Moreover, in our experience on DCX™ cortical
immature neuron detection in animal species endowed
with widely different brain sizes, the highest numbers
of these cells were found in the largest brains, namely in
those tissues that are technically more difficult to be fixed
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and processed (Piumatti et al. 2018; La Rosa et al. 2020a).
Finally, by using an in situ hybridization with RNA probe
(RNAscope), absence of staining or non-specific staining
for DCX was found to be frequent in human brain tissues
treated with several antibodies, most of them being raised
to work in mice (Ghibaudi et al. 2023a).

Age is another variable that can affect the rate of neu-
rogenesis (Ben Abdallah et al. 2010; Seménov 2021), and
animal species widely differ in their length of develop-
ment and lifespan (Snyder 2019; Bonfanti and Charvet
2021). In other words, the species matters more than often
acknowledged.

For obvious reasons linked to the scarce availability of
well-fixed tissues for large-brained mammals, to the tech-
nical difficulties encountered in their analysis and related
ethical issues, comparative studies encompassing multiple
species are rare or limited to different rodents and mouse
strains (van Dijk et al. 2019). Also, accurate longitudinal
studies on the rate of cell division in the neurogenic sites at
different ages are mostly limited to single species (mostly
rodents; Ben Abdallah et al. 2010; Seménov 2021). This
is due to the lack of reliable tools to trace the history and
fate of the newly generated elements in vivo, through time,
in animal species that are protected by ethical guidelines
such as elephants, whales, great apes, and others. In addi-
tion, a common bias that has come to light in recent years
consists of neuronal populations sharing the same markers
of immaturity, e.g., DCX and PSA-NCAM: the newly gen-
erated neurons (produced in the process of stem cell-driven
adult neurogenesis), and the “immature” neurons frozen in
a state of arrested maturation (but having lost the capacity to
undergo cell division; see La Rosa et al. 2020b, and below),
the abovementioned markers being previously considered as
specific markers for adult neurogenesis (Brown et al. 2003;
see above). As an example, the detection of DCX " neurons
in the adult human dentate gyrus has been interpreted as
adult neurogenesis (Moreno-Jiménez et al. 2019), even in
the absence of substantial cell division (Sorrells et al. 2021),
thus being rather ascribable to persistent immature neurons
(Zhou et al. 2022).

Finally, considering that a substantial decrease in the gen-
esis of new neurons does occur in all species with increasing
ages, it is not always easy to establish a comparison between
widely different mammals, due to their different neurodevel-
opmental schedules and maturational states (Workman et al.
2013; Bonfanti and Charvet 2021).

In summary, we are still far from reaching a complete and
reliable, comparative mapping of adult neurogenesis occur-
rence, distribution and rate in widely different mammals
(especially concerning the rate of cell division giving rise
to the new neurons, with respect to the immaturity marker
detection), although a general trend implying evolutionary
trade-offs is starting to emerge.
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Despite heterogeneity, a general trend of reduction
in adult neurogenesis from small-brained
to large-brained species is emerging

Although the comparative data on adult neurogenesis in
mammals is incomplete and varied, the available evidence
strongly suggests that this process may have undergone sig-
nificant evolutionary changes across different phylogenetic
groups. Our current knowledge regarding such variation is
mainly qualitative, being based on: (i) observations provided
by histological and immunocytochemical studies concerning
the existence of morphological and molecular features typi-
cal of stem cell niches in the neurogenic sites (Sanai et al.
2011; Sorrells et al. 2018, 2021; Fig. 3), and (ii) a small
number of quantitative studies of the rates of cell division
(Fig. 3), with all the limits described above. An extreme
example is represented by the dramatic drop in neurogenic
activity within the olfactory system of some large-brained
mammals (Fig. 4). Dolphins, which are large-brained, long-
living aquatic mammals lacking a sense of smell, exhibit
a vestigial and largely inactive subventricular zone (SVZ)
at birth (Parolisi et al. 2017, 2018). This observation was
obtained after careful analysis of 10 postmortem dolphin
brains (5 neonates and 5 adults), by using internal positive
controls for DCX and Ki-67 antigen in the highly prolif-
erating external granule layer of the cerebellum (Parolisi
et al. 2015, 2017). In humans, the SVZ substantially ceases
to produce newly born neuroblasts for the olfactory bulb
around two years of age (Sanai et al. 2011), which represents
a relatively early stage in the human lifespan (Fig. 4).

The current controversy concerning the occurrence/rate
of adult hippocampal neurogenesis in humans (Moreno-
Jiménez et al. 2021; Sorrells et al. 2021), is raised by the
contrast between the finding of DCX* and PSA-NCAM™*
neurons in the adult hippocampus (Mikkonen et al. 1998;
Boldrini et al. 2018; Moreno-Jimenez et al., 2019; Tobin
et al. 2019; Seki et al. 2019, 2020), in the absence of a mor-
phologically-recognizable stem cell niche (Sorrells et al.
2018) and with very low levels of cell division (reported by
most studies, though with different methods; see for example
Sorrells et al. 2018; Cipriani et al. 2018; Moreno-Jimenez
et al., 2019; Seki et al. 2019). This discrepancy has at pre-
sent no clear explanation, yet, might be partially understood
as a general trend for a higher occurrence of “immature”
neurons in large-brained mammals (Palazzo et al. 2018; dis-
cussed in the next paragraph) and/or by possible processes
of “dematuration” because of inflammation or pathological
states in older adult individuals (Hagihara et al. 2019).

One of the recognized causes for age-related reduction
is surely stem cell depletion, consisting of a mix of real,
progressive exhaustion of the stem cell pool (reduction of
the stem cell number; Encinas et al. 2011; Obernier et al.,
2018) and entry in stem cell quiescence (Urban et al. 2019).

It has been proposed that similar mechanisms may limit neu-
rogenesis to infancy in animals with very long lifespans, like
humans (Obernier et al., 2018). In both neurogenic sites,
with some differences in the slope of reduction between SVZ
and hippocampus, a substantial genesis of new neurons is a
juvenile event (Ben Abdallah et al. 2010; Seménov 2021),
being influenced by lifespan extension and its impact on the
timing of neurodevelopmental events across species (Snyder
2019; Charvet and Finlay 2018).

Phylogenetic variation in “immature”
heurons

The topic of cortical immature neurons (cINs), along with
the concept of “neurogenesis without division,” is relatively
new, and thus, still not fully explored (Bonfanti and Seki
2021; Benedetti and Couillard-Despres, 2022). Many ques-
tions remain unanswered, among which are the molecular
and cellular mechanisms that allow these neurons to halt
their maturation before birth and subsequently “awaken”
during adulthood. Also, their prevalence throughout the
brain is not yet precisely known (Ghibaudi and Bonfanti
2022; Page et al. 2022), and it remains unclear whether they
can be activated in response to injury, inflammation, or neu-
rological disorders (excluding recent reports on subcortical,
putative immature cell populations in macaques; Chareyron
et al. 2021, discussed below). In parallel, some insight has
been gained about the phylogenetic variation of cINs through
systematic investigation of the cortex of different mamma-
lian species widely varying in brain size, gyrencephaly and
socioecological features, providing an unexpected twist in
our understanding of comparative neuroplasticity (Piumatti
et al. 2018; La Rosa et al. 2020a; Fig. 3C). Previous reports
indicated that in laboratory rodents cINs are highly restricted
to the piriform and entorhinal regions of the paleocortex
(Seki and Arai 1991; Bonfanti et al. 1992; Nacher et al.
2001), though DCX™ neurons were also observed in the neo-
cortex of some mammals, including guinea pigs, rabbits, and
cats (Cai et al. 2009; Zhang et al. 2009; Varea et al. 2011;
Luzzati et al. 2009; Xiong et al. 2008). In experiments using
pregnant sheep treated with BrdU injections, with subse-
quent analysis of the lamb’s brains, we showed that most of
the DCX™* neurons in the cerebral cortex (including neocor-
tex), as well as some in subcortical regions (amygdala and
claustrum), were generated prenatally, while still expressing
markers for immaturity (Piumatti et al. 2018). Hence dif-
ferences exist in the anatomical distribution of cINs among
mammals, suggesting a more widespread presence in large-
brained gyrencephalic species (Palazzo et al. 2018). Since
most comparative studies on this subject were carried out on
single animal species, by different laboratories, and using
different methods of tissue processing and cell counting, we
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«Fig.5 Anatomical and functional aspects at the basis of the evo-
lutionary trade-off hypothesis to explain the relative occurrence
between different types of brain structural plasticity (adult neuro-
genesis and cortical immature neurons) in mammals. A, B, different
importance of certain brain regions/functions for navigation and sur-
vival: small-brained rodents rely mostly on olfaction, whereas large-
brained, gyrencephalic species rely mostly on widely expanded cere-
bral cortex (neocortex). C, immature neurons are more widespread (in
the cortical mantle) and abundant (in terms of cell density) in large-
brained, gyrencephalic species with respect to rodents. They would
have been favored by evolution to place a process of “neurogenesis
without division” (i.e., the addition of new functional neurons) in
brain regions not endowed with stem cell-driven neurogenesis (e.g.,
cerebral cortex). D, the prevalence of immature neurons in the cortex
of large-brained species and of stem cell-driven neurogenesis in the
neurogenic sites of rodents suggests a trade-off in different types of
neurogenic plasticity

layer II; Fig. 3C). The analysis revealed an extension of the
presence of cINs from paleocortex in rodents to the entire
neocortical mantle in gyrencephalic mammals (Fig. 5), with
remarkable variation in cell density (one order of magnitude
when comparing the group of small-brained species with
large-brained ones; La Rosa et al. 2020a; Figs. 3, 4, 5). The
presence of DCX* cINs has been confirmed in the cerebral
cortex of humans (Knoth et al. 2010; Liu et al. 2018; Sorrells
et al. 2021; Coviello et al. 2022; Ghibaudi et al. 2023a; Li
et al. 2023). Though systematic quantitative data in humans
are not yet available (comparable cell density), it has been
shown that these neurons cover layer II of the entire corti-
cal mantle, being preserved at adult and old ages (Li et al.
2023). Thus, it appears that the cINs could grant a reservoir
of young cells for the neocortex of large-brained species. For
the highly complex cerebral cortices of these mammals, to
rely on pre-existing neurons that can be added functionally
throughout life might be an evolutionarily advantageous,
energetically inexpensive solution for overcoming the lack
of stem cells and progenitor cells (La Rosa and Bonfanti
2021). This aspect might also be linked to increased lifes-
pans, since most large-brained mammals are also long-living
with respect to mice. Interestingly, a prolonged maturation
of the newlyborn neurons (up to 3—5 months) has been found
in the naked mole rat, a rodent reaching thirty years of age
and showing maturational features of large-brained, long-
living mammals (Faykoo-Martinez et al. 2022).

Several reports indicate that “immature” neurons might
exist in subcortical regions as well, also with significant
interspecies variation (Chareyron et al. 2021; Ghibaudi and
Bonfanti 2022; Page et al. 2022). For example, in a detailed
study conducted on the human amygdala from embryogen-
esis to adulthood (Sorrells et al. 2019), an immature neu-
ronal cell population (DCX*, PSA-NCAMY) that maintains
a small size and a simple morphology for decades was found
in the basolateral nucleus. The authors suggest that a por-
tion of these cells undergo maturation as excitatory neu-
rons (TBR1*Y/VGLUT2"), mainly during adolescence. Yet,

some DCX*/PSANCAM™ cells persist even at older ages, in
association with Ki67* nuclei. These proliferating cells did
not overlap with DCX*/PSANCAM™ cells, being primarily
associated with blood vessels or oligodendrocytes (Sorrells
et al. 2019). In contrast to the persistent presence of imma-
ture cells, the authors showed a sharp decline in the Ki67*
cells population in the first years of life.

The same research group recently studied the DCX*
cells of the amygdala in mice (only a few cells are detect-
able in the rodents studied to date), revealing that they can
migrate to the piriform cortex at early postnatal stages, to
add as glutamatergic excitatory neurons to the cINs already
in place (Alderman et al. 2022). By using embryonic BrdU
birth dating, this study confirms that immature neurons in
the amygdala are generated prenatally, with results similar
to those obtained by Gémez-Climent et al. (2008) for cINs,
thus extending the concept of INs to subcortical regions.
Though we still lack systematic comparative analyses, the
data obtained in humans and mice indicate that subcortical
immature neurons may also display interspecies variation.

Changes in the immature neuronal population of the
amygdala have been described after bilateral hippocampal
lesion in neonatal and adult monkeys (Macaca mulatta;
Chareyron et al. 2016). The lesion-induced increase in the
number of mature neurons in the amygdala has been inter-
preted as the product of different processes, including the
maturation of resident immature cells, a migration of imma-
ture neurons from the paralaminar nucleus to other nuclei, or
from a stream of neuroblasts originating in the SVZ (Bernier
et al. 2002; Chareyron et al. 2016).

Overall, the amygdala of primates continues to undergo
structural changes during essential formative years in the
juvenile period and later in life, both in physiological and
pathological conditions, mostly through maintenance of
populations of immature excitatory neurons.

Hypotheses on a possible evolutionary
trade-off between different types
of neurogenic plasticity

Based on the evidence of phylogenetic variation in stem cell-
driven neurogenesis and non-dividing “immature” neurons,
it is likely that evolutionary pressures associated with eco-
logical niche or neurodevelopmental constraints have led
to the selection of different types of plasticity in various
species and brain regions. This suggests a “trade-off”’, which
refers to a situation where compromise occurs between two
or more traits that offer distinct benefits but cannot be fully
optimized concurrently. Such compromises can arise due to
limited resources or energy that must be allocated among
competing demands, or due to anatomical or developmental
limitations (Heldstab et al. 2022).
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The concept of a trade-off implies that the balance of
resource allocation can shift between different options with-
out necessarily indicating an exclusive commitment to one
over the other (Noordwijdk and Jong, 1986). Consequently,
evolutionary processes might favor specific forms of plas-
ticity in certain species or brain regions, depending on the
ecological pressures and functional demands they face. We
hypothesize that trade-offs play a crucial role in shaping the
evolutionary trajectory of neural plasticity and contribute
to the remarkable diversity observed across species. Here
we propose that trade-offs can be observed in forms of neu-
rogenic processes across mammal species between those
that require or do not the presence of stem/progenitor cell
division.

Brain size and balance in the allocation of resources

It is important to consider the factors that influence the
occurrence of trade-offs in evolutionary biology. Limited
resources, such as energy, nutrients, or developmental tim-
ing can pose constraints on an organism's ability to optimize
multiple traits simultaneously. These constraints lead to the
need to balance the allocation of resources so that one trait
may come at the expense of another. For example, in the
context of neurogenesis, maintaining a larger pool of stem
cells for continuous regeneration may come at the cost of
other energy-demanding processes, such as enhancing syn-
aptic plasticity or cognitive functions (Walton et al. 2012).

Additionally, anatomical constraints can also contribute
to trade-offs. The physical structure and organization of an
organism's brain can impose limitations on the optimization
of multiple traits. For instance, brain regions with limited
space or specialized functions may prioritize specific forms
of plasticity that are most beneficial for their ecological
niche, while compromising on others (Charvet and Finlay
2018).

Nevertheless, it is important to note that evolution, as a
process, is not linear, progressive, or predictable. While it
operates through natural selection and the accumulation of
advantageous traits over time, it also encompasses elements
of randomness through neutral drift and contingent excep-
tions that defy straightforward explanations. The interplay of
genetic variation, environmental factors, and chance events
introduces a level of unpredictability (e.g., bats are small-
brained mammals with reduced adult neurogenesis, or naked
mole rats which are long-living rodents with abundant adult
neurogenesis; Amrein et al. 2007; Penz et al. 2015). How-
ever, amid this complexity, certain trends and patterns can be
identified. These trends are governed by the balance of ener-
getic allocation and developmental constraints, ultimately
shaping variation in brain structure across species and the
capacity for different forms of plasticity.
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In the case of neurogenic plasticity, the following vari-
ables are relevant: (i) the type of plasticity (e.g., stem cell-
driven neurogenesis and non-dividing immature neurons);
(i) the anatomical region hosting plasticity that is linked to
specific functions (e.g., canonical neurogenic site linked to
olfaction and cerebral cortex linked to high-order compu-
tational capabilities); (iii) the phylogenetic lineage of the
species and their brain size.

Adult neurogenesis in large mammal brains is subject to
various energetic costs and developmental constraints. The
biosynthetic process of generating new neurons requires
substantial metabolic resources, including glucose and oxy-
gen, which can impose a significant burden on the energy
budget of the brain (Bauernfeind and Babbitt 2020). Large
mammal brains may face challenges in allocating sufficient
resources for neurogenesis while maintaining other essen-
tial functions. Additionally, the developmental constraints
associated with large brain size can limit the spatial and
temporal availability of neurogenic niches, where new neu-
rons are generated (Patzke et al. 2015; Charvet and Finlay
2018; Martinez-Cerdeno et al., 2018; Duque and Spector
2019). This may restrict the extent and duration of adult
neurogenesis in large mammals.

By contrast, the prenatally generated, non-dividing cor-
tical “immature” neurons, which do not require stem/pro-
genitor cells to occur as undifferentiated elements within
the mature cortex, are far more abundant and widespread in
large-brained mammals (La Rosa et al. 2020a; Fig. 6), likely
representing a “low energy cost”, alternative form of neuro-
genic plasticity. For instance, it has been shown that virtu-
ally all the cINs eventually awaken and pursue their fate to
functional integration across the animal lifespan (Benedetti
et al., 2023). On the other hand, it is well known that at least
60% of the cells produced in canonical adult neurogenesis
will die by apoptosis during the first week after division,
and others will be selectively lost while trying to reach their
target (Sierra et al. 2010; Pilz et al. 2018), so that only a
few cells will eventually integrate. In addition, the cINs are
already in place within their destination (layer II) since the
last phases of embryogenesis, hence not needing migration,
and are ensheated by astrocytic lamellae, having only a few
or no synapses (Gomez-Climent et al., 2008). Of course,
it is far from clear how these cells can survive apparently
isolated from the surrounding neuropil, yet these features
might represent an advantageous source for providing new
neurons to locations across the entire cortical surface, in the
absence of active stem cell niches.

From olfaction to neocortex: the hypothesis
of navigation adapted to plasticity

Recent theories propose that the origin of the neocortex
in early mammals resulted from behavioral adaptations
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related to olfaction-mediated goal-directed and navigational
behaviors, accompanied by integrated sensory map devel-
opment, which in turn resulted in developmental changes
in the distribution of cells and the formation of circuits in
the telencephalon (Aboitiz et al. 2003; Aboitiz and Montiel
2015). Early mammals likely adopted a nocturnal and bur-
rowing lifestyle, utilizing internal cues such as propriocep-
tive information in conjunction with sensory inputs from
the olfactory and somatosensory systems for spatial navi-
gation. In such conditions, orientation was predominantly
based on one-dimensional maps that encoded sequences of
events in a time series. These early mammals are thought
to have relied heavily on their sense of smell, leading to an
expansion of the olfactory bulb and olfactory cortex as brain
size increased. Accordingly, selective pressures led to the
emergence of an interface between olfactory-hippocampal
networks, integrating somatosensory information for naviga-
tion (Kaas 2019).

As mammals diversified and occupied new ecologi-
cal niches, including diurnal environments for some spe-
cies, vision and audition provided additional information
regarding distance and location. These senses are vital for
generating accurate two-dimensional and time-independent
spatial maps, providing more detailed information relevant
to navigation (Buzsaki 2005; Eichenbaum 2014). Over time,
the expanding neocortex played an increasingly prominent
role in the formation of multimodal association networks
and map-like representations of space (Aboitiz and Montiel
2015).

The current diversity of brain structure in mammals
is extraordinary. Large-brained mammals with gyrence-
phalic brains often exhibit reduced olfactory bulb size or
complete absence of olfactory bulbs, as observed in dol-
phins (Fig. 5; references in Parolisi et al. 2018). In contrast,
smaller-brained mammals, including most rodents, possess
prominent olfactory structures and relatively smooth neo-
cortices. In these species, the activity of the periventricular
neurogenic niche (SVZ) is impressive, providing thousands
of new neurons/day for the olfactory bulb through the animal
lifespan, and allowing experience-induced plasticity linked
to olfaction (Lim and Alvarez-Buylla 2016; Lledo and Val-
ley 2016; Fig. 4). By contrast, the SVZ neurogenic niche of
humans is exhausted at very early postnatal stages, then leav-
ing only a vestigial remnant (Sanai et al. 2011; Fig. 4). This
anatomical variation reflects functional adaptations, with
rodents heavily relying on olfaction, while larger mammals
exploit the computational capabilities of their expanded neo-
cortical circuits. The neocortex, characterized by six layers,
undergoes remarkable elaboration in large-brained mammals
with greater differentiation of specialized cortical fields that
are important for sensorimotor integration and cognitive
functions (Englund and Krubitzer 2022). Large-brained spe-
cies with highly folded neocortices, such as primates, exhibit
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reduced dependence on olfaction, with their behavioral com-
plexity predominantly linked to an extensively expanded
neocortical mantle. This difference in reliance on olfaction
and neocortical development could explain the lower levels
of neurogenesis observed in these species, which primarily
occur during the postnatal and juvenile stages to shape neu-
ral circuits through experiential learning (Seménov 2019;
Kempermann 2019; Cushman et al. 2021). Consequently, a
possible adaptation in large-brained, long-living mammals
is the selection of non-dividing immature neurons (cINs) as
a mechanism to provide a form of neurogenic plasticity in
layer II of the cerebral cortex (as discussed in La Rosa et al.
2020a). This alternative mechanism for structural plastic-
ity in highly expanded neocortices may serve an especially
important functional role for species that lack abundance of
active stem cells in the neurogenic sites, and may contrib-
ute to maintain neotenic features in brains with extended
lifespans.

In considering the evolutionary reasons for the prevalence
of diverse neurogenic processes, numerous questions arise
regarding the role, mechanisms, and connectivity associ-
ated with plasticity linked to cINs. First, the observation
that small-brained mammals exhibit this characteristic pri-
marily in specific limbic areas, while other regions such as
the sensory, motor, and association cortex lack it, suggests
that a reservoir of cINs might not be a necessary supplement
to synaptic plasticity in neocortical regions of these spe-
cies. On the other hand, the existence of dormant neurons
might have a role in large brains with expanded neocortices
since the number of these cells is considerably greater than
in small-brained rodents (see estimations below). Yet, the
question arises: does the incorporation of a small number
of new neurons over several years of an organism’s lifes-
pan yield a significant functional benefit? The answer may
involve a trade-off, as the number of dormant cINs signifi-
cantly increases in larger brains with expanded neocorti-
ces, such as those in chimpanzees compared to rodents. For
instance, the total number of cINs has been estimated at
36,000 (18,000 per hemisphere) in three-month-old mice
(Ghibaudi et al. 2023b), whereas it reaches approximately
5 million (2.5 million per hemisphere) in chimpanzees (La
Rosa et al. 2020a, b), representing a two-order-of-magnitude
difference. Although the total number of cortical neurons
has been estimated to be 5—7 million/hemisphere in mice
(Herculano-Houzel et al. 2006), and 3, 7 billion/hemisphere
in chimpanzees (Collins et al. 2016), namely a difference of
three orders of magnitude, the difference in cIN density in
the neocortex of mouse and chimpanzee is even more strik-
ing, with a five orders of magnitude increase in chimpanzees
(La Rosa et al. 2020a). Despite an evident interspecies dif-
ference, whether adding a few cells for every thousands of
existing neurons during the course of a lifetime can make a
functional difference remains far from clear.
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A third unresolved question pertains which connections
these neurons might establish. It's worth noting that these
immature neurons are found in layer II, a region consid-
ered to have a role in furnishing corticocortical association
projections (and association with respect to other cortical
layers), which may make it an ideal location for a neuro-
genesis-like process within the structurally stable cerebral
cortex (La Rosa et al. 2020a). How these neurons orchestrate
long-range axonal growth to reach their targets is a topic that
requires further study.

Lastly, our current understanding of subcortical immature
neurons strongly suggests that their numbers only moder-
ately decline with age in gyrencephalic large-brained spe-
cies, maintaining a substantial pool of immature cells (like
a sort of neoteny) even in advanced life stages. This phe-
nomenon has been observed in sheep (Piumatti et al. 2018)
and humans (Sorrells et al. 2019) and has been discussed in
Ghibaudi et al. (2023b). This observation raises intriguing
hypotheses about the functional role of immature neurons,
which may not solely rely on their structural integration.
It’s possible that not all these neurons become active; some
may remain immature and exert paracrine effects, such as
trophic, neuroprotective, or bystander influences, on mature
neural networks.

The presence of a trade-off between stem cell-driven
neurogenesis and immature, dormant cINs in favor of the
latter in gyrencephalic, long-lived mammals calls for fur-
ther fundamental and comparative research. This research
should aim to comprehensively elucidate all aspects of this
fascinating mechanism in brain plasticity, holding significant
translational implications.

Conclusions

Biomedical research, including the neurosciences, is
largely conducted on laboratory animal models, mostly
mice and rats (Brenowitz and Zakon 2015; Bolker 2012,
2017; Faykoo-Martinez et al. 2017; La Rosa and Bonfanti
2018; Cozzi et al. 2020). Comparative studies using dif-
ferent mammalian species represent a small fraction of
current research, although interest in the neurobiology of
non-rodent mammals, including large-brained species and
humans, has been increasing. One of the reasons surely is
due to recent findings highlighting remarkable interspecies
differences in the occurrence, extension, and rate of neural
plastic processes (this review article). Comparative studies
can help us to better understand the possible trade-offs that
occur during evolution between different types of plasticity,
thus providing a more comprehensive picture of these pro-
cesses in mammals to avoid confusion and misinterpretation
coming from the exclusive use of rodents as animal models
(Lipp and Bonfanti 2016; Faykoo-Martinez et al. 2017). Do

these differences have consequences for cognition, learn-
ing, capacity to recover from injury, or some other function?
According to Jessica Bolker (2012) “disparities between
mice and humans may help to explain why the millions of
dollars spent on basic research have yielded frustratingly few
clinical advances”. Now we know that disparities between
reparative and physiological (homeostatic) plasticity, as
well as between adult neurogenesis and “immature” (dor-
mant) neurons, may contribute to explain these difficulties
in translation.

Whatever the evolutionary reason, the differences in
brain structural plasticity among animal species do exist,
are remarkable, and indicate a gain in widespread adaptive
plasticity at the expenses of loss in reparative and regenera-
tive capability. This diversity may potentially frustrate thera-
peutic translation from animal models, but there is reason
to be optimistic that the comparative perspective will bring
exciting breakthroughs in our understanding of the role of
plasticity in driving postnatal brain development and main-
taining a healthy and efficient brain throughout life.
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