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ABSTRACT

In file systems and database management systems (DBMSes), delet-

ing data marks it as unallocated storage rather than explicitly eras-

ing data. This data can be reconstructed from raw storage, making it

vulnerable to data theft and exposing organizations to liability and

compliance risks, violating data retention and destruction policies.

The problem is further magnified in DBMSes because (unlike in file

systems) DBMS backups are performed in pages and will include

such deleted records. Data erasure (or sanitization) is a process

that eliminates this vulnerability, providing users with łthe right

to be forgottenž. However, most of the work in data sanitization

is only relevant to erasing data at the file system level, and not in

DBMSes. Limited existing work in database sanitization takes an

erase-on-commit approach, which can introduce significant I/O

bottlenecks.

In this paper, we describe a novel data sanitization method,

DBSanitizer, that 1) is DBMS agnostic, 2) can batch value era-

sure, and 3) targets specific data to erase. DBSanitizer is designed

as a template for DBMS vendors to support backup sanitization and

ensure that no undesirable data is retained in backups. In this paper,

we demonstrate how our approach can be used in any row-store re-

lational DBMS (including Oracle, PostgreSQL, MySQL, and SQLite).

As there are no backup sanitization tools available on the market or

in research literature, we evaluate DBSanitizer, in a live database

that supports erase-on-commit sanitization approach.
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1 INTRODUCTION

The ultimate goal of security systems is to prevent and detect un-

wanted data access. Accessible data includes not only the obvious

stand-alone files (e.g., PDFs, JPEGs) or active records in a database,

but also data that resides in unallocated storage. File systems and

DBMSes do not explicitly overwrite data upon deletion. Instead,

data becomes unallocated storage that is free-listed and eventually

overwritten. The deleted data that resides in unallocated storage

is retrievable with plain-text searches (e.g., GREP), or it can be re-

constructed with digital forensics methods (e.g., file carving [26] or

database page carving [39]).

DBMSes are used to manage data both in a corporate and in

personal setting. A lightweight DBMS, such as SQLite, is commonly

used to manage personal data stored on mobile phones or web

browsers. Whereas, a DBMS that supports more robust access con-

trol and storage management, such as Oracle, PostgreSQL, MySQL,

or Microsoft SQL Server, is better suited to manage corporate data.

Post-deletion data can become a long term liability in a DBMS.

Lenard et al. [14] demonstrated that a significant number of deleted

records can be copied into (read-only) DBMS backups where it will

be retained in perpetuity, until the backup is destroyed.

Data erasure is an anti-forensics method that overwrites data

in a storage medium so that it is no longer reconstructable. Data

erasure offers łthe right to be forgottenž [44], and its importance is

evident in the many laws and regulations that prohibit the disclo-

sure of sensitive data including HIPAA [34], FERPA [35], Canada’s

PIPEDA [21], and GDPR [3]. Furthermore, many government agen-

cies have procedures for the proper deletion and destruction of

sensitive data [17, 18, 36]. Failing to comply with data governance

rules and policies creates real liability risks. For example, in Feb-

ruary 2022, EyeMed Vision Care was fined $600,000 for failing to

comply with New York’s Stop Hacks and Improve Electronic Data

Security Act [31]. Among the violations, EyeMed failed to comply

with the data retention requirements. Data erasure approaches are

also referred to as data wiping [11, 13], sanitization [8, 17, 18], and

secure deletion [16, 24].

Traditional sanitization techniques (e.g., [8, 15]) overwrite entire

sectors on disk to eliminate deleted files. This approach cannot be

used for DBMS records because a deleted record is marked łdeletedž

in a live DBMS file (which is not deleted from the OS perspective).

Current DBMSes do not offer a secure delete feature (except SQLite)

because a typical implementation of erase-on-commit is considered

too costly. We demonstrate that our system, DBSanitizer, which

uses a batched erasure approach, can be efficiently implemented

by any DBMS vendor. This paper evaluates DBSanitizer against

PostgreSQL and SQLite. We expect that a DBMS vendor (with a

better understanding of their own storage) can implement a more
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ğ Summary

2 Database storage concepts and terminology.

3 Related work in database forensics and erasure.

4 An overview of deleted data behavior within DBMS storage.

5 Considerations that must be taken when directly modifying DBMS storage.

6 An overview of DBSanitizer. Deleted records and objects, stale auxiliary data, and unallocated pages are evaluated for erasure.

7 Considerations for data erasure in DBSanitizer approach.

8 Overview of all storage areas where additional data copies may be found.

9 Experiments that demonstrate the capabilities and advantages of the batched approach used by DBSanitizer.

Table 1: Summary of the remaining paper.

efficient native version of DBSanitizer. This approach can be ap-

plied to backups or live DBMS storage. Table 1 summarizes the

contributions of this paper.

1.1 DBSanitizer Approach

DBMSes were traditionally designed to favor performance, with

security as a secondary consideration. Secure deletion (i.e., erase

the data immediately when it is deleted) increases I/O costs which

will negatively affect performance. DBMSes also have to consider

auxiliary structures (indexes, materialized views) that contain extra

copies of data. Furthermore, cloud based DBMSes pay a high cost

for increased I/O demands ś a cost that applies both to magnetic and

SSD drives. Because of the high overhead, DBMS vendors have been

unwilling to support sanitization. In fact, SQLite is the only DBMS

to support secure deletion, but it is disabled by default because it

negatively impacts performance [32].

In a file system, users can use third party tools (surveyed in [8])

to perform data sanitization. However, due to the tight control

of DBMSes over their internal storage, they must instead rely on

the DBMS vendor to supply such a feature. This paper proposes

a data erasure system, DBSanitizer, which mitigates most of the

performance concerns. DBSanitizer validates a batched łsearch

and destroyž approach rather than the immediate erase-on-commit

approach used by the SQLite secure deletion and related work

(see Section 3). DBSanitizer has the following properties:

(1) Database Agnostic. It can be adopted by any (open or

closed-source) relational row-store DBMS.

(2) Batched Execution. Data is erased in batches at a user-

controlled frequency. Information about deleted data does

not need to be maintained.

(3) Targeted Erasure. Users can specify the data to erase (i.e.,

erase only sensitive data values).

Database Agnostic. DBSanitizer operates independently of the

DBMS (i.e., source code modification or vendor support is not re-

quired). However, we believe users would be skeptical to trust a

third-party data erasure tool that has the potential to corrupt DBMS

storage. Therefore, this system is intended to provide a template

for DBMS vendors to introduce their own erasure functionality.

DBSanitizer is meant to demonstrate that vendors can realisti-

cally introduce this functionality in a DBMS.

Batched Execution. DBSanitizer’s batched approach to Erasure

is consistent with the majority of related work in data erasure at

the file system level [8]. To operate independently of the DBMS,

DBSanitizer uses page carving (Section 3) to interpret and modify

storage (Section 5). Rather than maintaining information about

deleted data, page carving is used to find and reconstruct this data.

Target Erasure. Deleted data is scattered throughout DBMS stor-

age, but users can specify which data are sensitive (e.g., SSN versus

publicly available office phone #) to erase. Focused erasure fur-

ther limits the overhead associated with the secure delete solution.

DBSanitizer illustrates targeted erasure of sensitive data in DBMS

storage and cost savings that it achieves.

2 DATABASE STORAGE CONCEPTS

This paper incorporates proof-of-concept experiments that modify

internal DBMS storage to erase data. Internal storage is, by design,

hidden from users. Thus, it is helpful to have an understanding

of some internal details specific to DBMS storage. This section

provides a generalized description of page-level storage for all (re-

lational) DBMSes and terminology used in the paper. The concepts

in this section apply (but are not limited) to IBM Db2, Microsoft

SQL Server, Oracle, PostgreSQL, MySQL, Apache Derby, MariaDB,

SQLite, and Firebird.

2.1 Database Pages

A DBMS storage layer partitions all physical structures (e.g., tables,

indexes, and system catalogs) into fixed-size pages (typically 4, 8,

or 16 KB). Fixed-size pages across an entire instance also simplify

storage and cache management.

When data is inserted or modified, the DBMS controls data place-

ment within pages and internally maintains additional metadata.

Across all DBMSes on the market, many commonalities exist for

how data is stored and maintained at the page level. Every row-

store DBMS uses pages with three main structures: header, row

directory, and row data. Figure 1.A displays a high-level breakdown

of a page with all three of these structures.

The page header stores metadata describing the user records

stored in the page. The page header metadata of interest to this

paper are the checksum, object identifier, page identifier, and row

count. Figure 1.B demonstrates how this metadata could be posi-

tioned in a page header. The checksum detects page corruption;

whenever a page is modified, the checksum is updated. The object

identifier represents the object to which the page belongs. The

plaintext object name (e.g., table name) is not stored in a page, but

the object identifier can be mapped to the system catalog data to
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Figure 1: Page examples: A) high-level, B) header, C) row directory, and D) row data.

retrieve it. Depending on a DBMS, the page identifier is unique to

each page for either each object, within a file, or across all DBMS

files. The row count refers to the number of active records within a

page. If a record is deleted in a page, the row count is decremented

by one; if a record is added, it is incremented.

The row directory stores pointers to each record. When a record

is added to a page, a corresponding pointer is added to the row

directory. Figure 1.C shows an example row directory. The row data

segment stores user data along with metadata, describing record

layout. Figure 1.D shows an example row data structure (with minor

DBMS-specific variations). In this example, each record stores a

row delimiter, row identifier, column count, value sizes, and user

data values. The row delimiter marks the start of a record. The row

identifier is an internal DBMS pseudo-column. The column count

represents the number of record columns. Value sizes are typically

stored for strings, but not other data types (e.g., integers).

System Catalog. The system catalog refers to the data and meta-

data maintained by the DBMS. The system catalog is stored in

tables and pages similar to user data. Sometimes the system catalog

tables use domain datatypes that are not available to the user (e.g.,

the Object Name datatype in PostgreSQL). Examples of data and

metadata stored in the system catalog are object types (e.g., table

or index), object plaintext name (e.g., customer or employee), and

object identifier, which is a unique identifier for each object (also

stored in the user data page headers).

2.2 Database Auxiliary Objects

Users interact with DBMS tables; however, multiple copies of user

data are stored in many other internal objects. Copies are stored

in auxiliary objects (e.g., indexes, materialized views) that improve

query performance or enforce constraints. Note: indexes are created

both by explicit user commands or automatically by the DBMS itself

(e.g., primary key or unique constraints).

Index value-pointer pairs are stored in pages just as table data in

Figure 1. Index storage is structurally similar to a table that stores

(value, pointer) records. Figure 2 displays an example of an index

page, and how it references a table page. A table record pointer is

stored with each city value. In this example, the pointer stores the

table page identifier, 8, and the respective row identifier, 25.

Index Organized Tables. MySQL and SQLite create index orga-

nized tables (IOTs) by default, and IOTs are often used in other

DBMSes under different names (e.g., IOT table in Oracle or index

included columns in Microsoft SQL Server), so we incorporated

IOTs into our data erasure method. An IOT is structured as a tradi-

tional B-Tree index on the primary key, and all remaining columns

are included columns (or not used for ordering).

3 RELATEDWORK

Retention of Deleted Database Data. Stahlberg et al. [33] demon-

strated how deleted data remains in storage after table defragmen-

tation and SQL DELETE, UPDATE, and INSERT commands. Their work

was tested on PostgreSQL, MySQL, DB2, and SQLite. Lenard et

al. [14] have investigated how deleted data propagates into data-

base backups, showing that depending on a workload, a significant

fraction of already-deleted rows can be backed up and permanently

retained. Scope et al. [27, 30] have designed a data purging frame-

work which relied on cryptographic erasure to destroy data across

all backups. Their system generated encryption keys based on reten-

tion and purging policies; these keys could then be independently

managed [28] in order to łremotelyž erase associated data in back-

ups by making it unrecoverable. Although Scope et al. approach

was not limited to relational databases [29], it would was only de-

stroy data that was covered by a purging policy (e.g., łerase after

3 yearsž) and only after the expiration time. Wagner et al. [38, 40]

analyzed what operations cause deleted data (or data abandoned
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Figure 2: An example of how an index value references a table record.

in unallocated storage) including non-delete user actions, mainte-

nance of auxiliary structures, and object rebuilds. Their work was

evaluated across multiple relational databases.

Database Artifact Reconstruction. Related work explored the re-

construction of (deleted) database data. Forensic tools, such as

Sleuth Kit [1] and EnCASE Forensic [6], are commonly used by

digital investigators, but they reconstruct file system data and can-

not parse DBMS files. While a multitude of built-in and 3
𝑟𝑑 party

recovery tools (e.g., [19, 22, 23]) can extract database storage, these

tools only recover table records that are łactivež (non-deleted).

Frühwirt et al. presented a reconstruction method specifically for

MySQL in [5]. Reconstruction of database content was later gen-

eralized across relational DBMSes with page carving [39, 41ś43].

Page carving is similar to traditional file carving [7, 26] in that data,

including deleted data, is reconstructed from disk images or RAM

snapshots without using a live system. In this paper, we implement

database-specific page carving steps to carve deleted data.

Data Erasure. Many solutions for disk-level data erasure exist

[2, 8, 10, 25], but these cannot erase values or records in DBMS

files. A few DBMS-specific erasure solutions were previously pro-

posed. SQLite is the only DBMS that supports data erasure with

the secure_delete setting [32], which is disabled by default. If

enabled, secure_delete explicitly overwrites deleted data with

zeros. Stahlberg et al. presented a well-founded method of data era-

sure for MySQL [33]. Their method modified MySQL source code

to overwrite records as soon as they are free-listed. Both [33] and

SQLite secure_delete use an erase-on-commit approach. Alterna-

tively, DBSanitizer performs a batched erasure at a user-specified

time. We evaluate both approaches in Section 9.

Grebhahn et al. proposed a set of SQL commands that, if sup-

ported, could overwrite unallocated storage [9]. Miklau et al. de-

scribed the challenges facing a DBMS that supports targeted over-

writes, including the lack of storage transparency [16]. Furthermore,

Wagner et al. [40] emphasized the importance of transparency for

data erasure by demonstrating deleted data that is created unbe-

known to the user. DBSanitizer provides storage transparency

giving users the knowledge of unallocated storage. Thus, users can

be selective of which data is erased.

4 DELETED DATA

This section describes types of deleted data that we seek to erase:

records, values, and pages. Deleted database data has been explored

in more detail by related work (e.g., [5, 37, 40]); this section provides

a brief overview. Section 2 discusses some of the terms and concepts

fundamental to storage principles in a DBMS.

Records are the minimum deletion unit for a DELETE command;

deleted records also arise from other operations, such as an UPDATE

or a table rebuild. When a record is deleted, a DBMS either erases

the record’s directory pointer on the page or marks the record as

łdeletedž. Figure 3 shows examples of a record, Row1, marked as

deleted in the row data or in the row directory. In each scenario,

modified page parts are labeled with a star; deletion always updates

the row count and the checksum.

Deleted records are eventually overwritten based on a particular

DBMS and its settings. For example, Oracle uses a percent page uti-

lization threshold (user-configured) to determine when unallocated

storage is reclaimed. Alternatively, PostgreSQL reclaims storage

sooner if a new record fits into the unallocated space.

In practice, index values are not marked as unallocated space

when a corresponding table record is deleted. Stale index values

persist in storage, until the B-Tree index is explicitly rebuilt (with

a special user command(s)); thus index copies survive long after

the table record is overwritten. To identify stale index values, table

records can be mapped back to index value-pointer pairs.

Unallocated pages occur when an object is deleted (DROP), rebuilt

(e.g., ALTER INDEX Name REBUILD ONLINE in Oracle, REINDEX TABLE

Customer in PostgreSQL), or defragmented (e.g., the PostgreSQL

VACUUM command). DBMS storage architecture and operations dic-

tate when unallocated pages are disassociated from DBMS files or
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Figure 3: An example of a deleted record marked in either the row data or row directory.

reclaimed and overwritten by new objects. The page itself is typi-

cally not marked as unallocated. Instead, the table’s record in the

system catalog is marked as deleted, and the pages containing the

table records are either free-listed in DBMS storage or reclaimed

by the file system. Therefore, a page’s object identifiers can be com-

pared to the object identifier in the system catalog to determine if

a page is unallocated.

Example: Unallocated Pages. An index rebuild results in a differ-

ent representative storage-level outcomes for Oracle, MySQL, and

PostgreSQL. All three build a new index structure. In Oracle, both

the old and the new index structures remain in storage, leaving

many old unallocated pages. In MySQL, the new index structure im-

mediately overwrites the old index structure. If the new index needs

less storage (which is very likely, because index is compacted), some

old, łdeletedž index pages remain. In PostgreSQL, the new index

version is stored in a new file and the old index file is reclaimed by

the file system. In all cases, old index pages have a different object

identifier than the new index version pages.

5 DBMS FILE MODIFICATION

DBSanitizer directly modifies DBMS files without using the DBMS

API (e.g., SQL). DBMSes do not provide an API to modify or even

directly inspect the storage at the page level. When a DBMS file is

modified, correct format and all relevant metadata must be consid-

ered to avoid corrupting the page (or the entire DBMS instance).

Three things must be considered to perform live DBMS file modifi-

cation correctly: 1) page checksum, 2) committed transactions, and

3) dirty pages. Taking into consideration committed transactions

and dirty pages, we recommend that our erasure approach is ap-

plied to quiesced (i.e., not actively used by users) data structures

(e.g., [4] in Oracle).

Page Checksum. Section 2 discussed that any page modification

requires updating the corresponding checksum, even if DBMS is

shut down. Figure 3 demonstrated that the checksum is updated

when a record is deleted.

Transactions. Transactions help manage concurrent access to

the DBMS and are used for recovery. All relational DBMSes guar-

antee that transactions are atomic, consistent, isolated, and durable

(ACID). If page modifications are performed on a live DBMS struc-

ture, logs can identify any uncommitted transactions. Note that

SQL DDL commands (e.g., CREATE, DROP, and ALTER) are automati-

cally committed.

Dirty Pages. DBMSes do not immediately write modified pages

from RAM to disk; a page that contains pending changes in RAM

is known as dirty page. This is significant because a (manually)

modified page can be overwritten when a dirty page is flushed to

disk. This does not prevent our approach from working or pose any

corruption risk, but may undo some of the work by DBSanitizer;

Section 6 discusses how to address this possibility.

Example: Transactional Rollback Effect. A transaction can fail due

to a conflict with another transaction or because user explicitly

issued an ABORT command. This causes a ROLLBACK, restoring the

database to the pre-transaction state. We loaded the Supplier ta-

ble from SSBM benchmark (see Section 9) into an Oracle DBMS,

started, and aborted a transaction that inserted 1000 rows. For all

intents and purposes, an aborted insert transaction never happened.

However, all 1000 records had their values copied into the indexes.

Furthermore, after the DBMS was stopped, a (deleted) copy of all

1000 records could be recovered from the table files as well. This

exemplifies just one of several non-obvious operations that create

many additional (inaccessible) copies of user data.

6 DBSANITIZER

The remainder of the paper describes DBSanitizer in Algorithm 1,

followed by an experimental evaluation in Section 9.

1445



SAC’24, April 8 śApril 12, 2024, Avila, Spain J. Wagner et al.

Algorithm 1 DBSanitizer Overview

1: 𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑎𝑏𝑙𝑒𝑠 ← a list of active user/system tables queried from the system catalog.

2: 𝐴𝑐𝑡𝑖𝑣𝑒𝐼𝑛𝑑𝑒𝑥𝑒𝑠 ← a list of active indexes queried from the system catalog.

3: 𝑁 ← the number of table pages to be read

4: 𝐸𝑟𝑎𝑠𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑𝑠 ← an empty list for erased table record pointers and hash values

5: 𝑆𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑑𝑒𝑥 ← an empty dictionary to store approximately sorted indexes.

6: for each 𝑁𝑃𝑎𝑔𝑒𝑠 ∈ 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑇𝑎𝑏𝑙𝑒𝐹𝑖𝑙𝑒𝑠 do

7: 𝐶𝑎𝑟𝑣𝑒𝑑 ← 𝑁𝑃𝑎𝑔𝑒𝑠 page carving output: PageIDs, Slot#s, and Records

8: for each 𝑃𝑎𝑔𝑒 ∈ 𝐶𝑎𝑟𝑣𝑒𝑑 do

9: if 𝑃𝑎𝑔𝑒.𝑂𝑏 𝑗𝑒𝑐𝑡𝐼𝐷 ∈ 𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑎𝑏𝑙𝑒𝑠 then

10: for each 𝑅𝑒𝑐𝑜𝑟𝑑 ∈ 𝑃𝑎𝑔𝑒 do

11: if 𝑅𝑒𝑐𝑜𝑟𝑑𝑆𝑡𝑎𝑡𝑢𝑠 = 𝐷𝑒𝑙𝑒𝑡𝑒𝑑 then

12: 𝑃𝑜𝑖𝑛𝑡𝑒𝑟 ← ReconstructPointer()

13: 𝐸𝑟𝑎𝑠𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑃𝑜𝑖𝑛𝑡𝑒𝑟, 𝐻𝑎𝑠ℎ𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑅𝑒𝑐𝑜𝑟𝑑.𝑉𝑎𝑙𝑢𝑒𝑠))

14: EraseRecord() ⊲ Section 7.1

15: else

16: ErasePage() ⊲ Section 7.3

17: for each 𝐼𝑛𝑑𝑒𝑥𝑃𝑎𝑔𝑒 ∈ 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝐼𝑛𝑑𝑒𝑥𝐹𝑖𝑙𝑒𝑠 do

18: 𝐶𝑎𝑟𝑣𝑒𝑑 ← page carving output of 𝐼𝑛𝑑𝑒𝑥𝑃𝑎𝑔𝑒 . ⊲ Section 3

19: if 𝐶𝑎𝑟𝑣𝑒𝑑.𝑂𝑏 𝑗𝑒𝑐𝑡𝐼𝐷 ∈ 𝐼𝑛𝑑𝑒𝑥𝑇𝑎𝑏𝑙𝑒𝑠 then

20: for each 𝑉𝑎𝑙𝑢𝑒 ∈ 𝐶𝑎𝑟𝑣𝑒𝑑 do

21: 𝐻𝑎𝑠ℎ𝑉𝑎𝑙𝑢𝑒 ← 𝐻𝑎𝑠ℎ𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑉𝑎𝑙𝑢𝑒)

22: 𝑆𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑑𝑒𝑥 .𝑢𝑝𝑑𝑎𝑡𝑒 (𝑉𝑎𝑙𝑢𝑒.𝑃𝑜𝑖𝑛𝑡𝑒𝑟, 𝐻𝑎𝑠ℎ𝑉𝑎𝑙𝑢𝑒)

23: else

24: ErasePage() ⊲ Section 7.3

25: for each 𝐵𝑢𝑐𝑘𝑒𝑡 ∈ 𝑆𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑑𝑒𝑥 do

26: 𝑁𝑃𝑎𝑔𝑒𝑠 ← carved pages where 𝑃𝑎𝑔𝑒𝐼𝐷 ∈ 𝐵𝑢𝑐𝑘𝑒𝑡

27: for each 𝐼𝑛𝑑𝑒𝑥𝑉𝑎𝑙𝑢𝑒 ∈ 𝐵𝑢𝑐𝑘𝑒𝑡 do

28: 𝑃𝑜𝑖𝑛𝑡𝑒𝑟 ← 𝐼𝑛𝑑𝑒𝑥𝑉𝑎𝑙𝑢𝑒.𝑃𝑎𝑔𝑒𝐼𝐷 + 𝐼𝑛𝑑𝑒𝑥𝑉𝑎𝑙𝑢𝑒.𝑆𝑙𝑜𝑡#

29: if (𝑃𝑜𝑖𝑛𝑡𝑒𝑟 ∈ 𝑁𝑃𝑎𝑔𝑒𝑠 ∧ 𝐼𝑛𝑑𝑒𝑥𝑉𝑎𝑙𝑢𝑒 ≠ 𝑁𝑃𝑎𝑔𝑒𝑠.𝑃𝑜𝑖𝑛𝑡𝑒𝑟 .𝑉𝑎𝑙𝑢𝑒) ∨ (𝑃𝑜𝑖𝑛𝑡𝑒𝑟 ∈ 𝐸𝑟𝑎𝑠𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑𝑠) ∨ (𝑃𝑜𝑖𝑛𝑡𝑒𝑟 ∉ 𝑁𝑃𝑎𝑔𝑒𝑠) then

30: EraseIndexValue() ⊲ Section 7.2

Deployment Considerations. DBMSes support a restricted state

(e.g., quiesced state in Oracle [4]), preventing ongoing transactions.

For example, a quiesced state is enabled during backup to ensure

backup integrity. However, as we demonstrate, file modifications

can also be performed against a live DBMS if desired. Since dirty

pages in a live system can overwrite changesmade by DBSanitizer,

some data may survive in RAM until it is evicted from cache.

Initialization: Alg 1, Lines 1 - 5. DBSanitizer first retrieves a list

of tables and indexes from the system catalog (Section 2), and stores

their object identifiers in the lists ActiveTables and ActiveIndexes.

A number of table pages (parametrized by N ) is read into memory

at a given time. An empty list (ErasedRecords) for pointers and

hash values from tables and an empty dictionary (SortedIndex) for

approximately sorted indexes are initialized.

Table Data Erasure: Alg 1, Lines 6 - 16. The DBMS files are first

evaluated for table data to erase. N number of pages are recon-

structed using our implementation of page carving (Section 3) and

stored as Carved. The object identifier, ObjectID, from each page in

Carved determines if the page belongs to a table. If ObjectID is in

ActiveTables, then the page is evaluated for deleted records. When

a deleted record is found, the index pointer is reconstructed. The

value and its pointer are then appended to ErasedRecords. We store

a hash of the value instead of the value itself to avoid the risk of

leaking data while erasing it. Next, the deleted record is erased

(described in Section 7.1). If ObjectID is not in ActiveTables, then

the page is an unallocated page, and the entire page is erased as

described in Section 7.3.

Index Sorting: Alg 1, Lines 17 - 24. Next, the index value-pointer

pairs are reconstructed, collected, sorted, and stored in Carved. The

ObjectID from Carved determines if the page belongs to an index.

If ObjectID is in ActiveIndexes, then index value-pointer pairs are

parsed and sorted; If the ObjectID is not in ActiveTables, then the

page is assumed to be unallocated page and erased (Section 7.3).

Index Data Erasure: Alg 1, Lines 25 - 30. The DBMS files are next

evaluated for index data to erase. For each Bucket from SortedIndex

the relevant table pages are carved. For each IndexValue within the

Bucket, the index value is erased if the value-pointer pairs do not

match between the table and index, its pointer is in ErasedRecords,

or its pointer does not point to a valid record structure.
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Erased Record

Row1Addr/NULL

Row Delimiter

Checksum’’

Row2 Address

Row Count = 1

Metadata

NULL

NULL

NULL

DBSanitizer wipes 

deleted record

Deleted Record Marked in:

Row Directory

Row1 Address

Row Delimiter

Checksum’

Row2 Address

Row Count = 1

Metadata

Bob, Boston

Delete Mark

Metadata

Alice, Austin

NULL

Row Delimiter

Row2 Address

Metadata

Row Delimiter

Metadata

Checksum’
Row Count = 1

Row Data

Row1

(Deleted)

Row2

(Active)
Bob, Boston

Alice, Austin

Bob, Boston

Figure 4: An example erasing a deleted record.

7 DATA ERASURE

7.1 Table Records

Once a page’s ObjectID is associated with an active table, the page

is evaluated for deleted records marked in the carved page output,

Carved. Section 4 discussed deleted record identification.

To erase a record (regardless of how DBMS signifies row dele-

tion in page storage), DBSanitizer overwrites the entire record

(including the metadata) with NULL (decimal value 0). To avoid data

corruption, DBSanitizer also updates the page checksum to re-

flect the change. Since the record was already marked deleted by

a SQL command, no other page metadata must be updated. This

operation is demonstrated in Figure 4. In this example, the record

(Alice, Austin) is deleted (similar to the deleted record in Figure

3). Regardless of deleted record markings, DBSanitizer overwrites

the record and its metadata with NULL and updates the checksum.

7.2 Value Erasure

After index values are sorted and deleted record pointers are col-

lected, index pages are considered for erasure. If the page belongs

to an active index, then it is evaluated for stale values (presented in

Section 4). DBSanitizer finds stale index values by mapping the

reconstructed pointer from the table data to the index value-pointer

pairs. Similar to a record erasure, DBSanitizer overwrites a stale

value, its pointer, and any metadata with NULL. Finally, the page

checksum is updated.

7.3 Unallocated Pages Erasure

If a page cannot be associated with an active object (table or index),

then the entire page is assumed to be unallocated storage. An unal-

located page may either have an ObjectID that is NULL or not in the

system catalog. Unallocated pages are the result of a deleted object

(i.e., DROP), object rebuild, or object defragmentation. To erase a

page, DBSanitizer overwrites the entire page row data with NULL.

For an unallocated table page, the index pointers do not need

to be reconstructed, unlike for deleted records. This is because the

page either belongs to a deleted or rebuilt table. If the table was

deleted, then all indexes for that table were also deleted creating

unallocated index pages. If the table was rebuilt, then the index was

rebuilt, again, causing unallocated index pages.

8 ADDITIONAL COPIES OF DATA

Additional data copies may exist in storage outside of DBMS control,

caused by activity that causes DBMS storage to be released to the

OS, such as a deleted file from dropping a table. Since these pieces of

data are not at risk of corruption, the entire page can be overwritten.

Transaction Logs. Write-ahead logs (WAL) record DBMS modifi-

cations in order to support transactional (ACID) guarantees, main-

taining a history of transactions. WAL files do not store data in

pages as other database objects. WALs cannot normally be disabled

or easily modified, and require a special-purpose tool to be read

(e.g., Oracle LogMiner or PostgreSQL pg_xlogdump). DBMSes (in-

cluding Oracle, MySQL, PostgreSQL, and SQL Server) allow the

administrator to switch to a new WAL file and delete old WAL files.

These deleted WAL files can then be erased using methods of file

erasure at the OS level without concern of corrupting storage. For

example, an administrator can switch from log file A to log file B.

To implement this operation in Oracle:

1) ALTER DATABASE ADD LOGFILE (`path/logB.rdo')

2) Executed transaction logs are placed in logB.rdo file

3) ALTER DATABASE DROP LOGFILE MEMBER `path/logA.rdo'

The file path/logA.rdo can then be erased from storage using stan-

dard OS-level sanitization methods.

9 EXPERIMENTS

This section evaluates DBSanitizer with three experiments. Sec-

tion 9.1 uses PostgreSQL 9.6 to demonstrate that DBMS files can be

directly modified without corrupting storage. Section 9.2 uses sev-

eral SQLite instances to compare DBSanitizer to secure delete.

Section 9.3 uses PostgreSQL 9.6 to measure the costs associated with

DBSanitizer. Tables Lineorder and Customer at Scale 4 (2.4M

and 120K rows, respectively) were generated from the Star Schema
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Benchmark SSBM [20]. SSBM combines a realistic distributed data

(maintaining data types and cross-column correlations) with a syn-

thetic data generator that creates datasets at different scale.

9.1 DBSanitizer Demonstration

This experiment demonstrates that DBSanitizer can effectively

erase deleted data without corruption. Although we anticipate the

storage to be quiesced during erasure, it is also possible to erase

contents of a live DBMS. If DBSanitizer can alter live storage, we

expect a DBMS vendor (with access to source code) to have no

difficulty applying the same techniques.

We created a database file containing the Customer table. We

overwrote the values from a deleted record with NULL and updated

the page checksum. The modification was performed directly in the

PostgreSQL file using a Python script with sudo privileges. Note

that this change did not remove the record from storage but just

made it blank (our goal is to erase deleted data, not to alter records).

As a result, the values were completely removed from the file. The

erased values were not found by reading the file with Python or

using grep. In order to stress-test DBSanitizer, we performed this

experiment on a live (rather than a read-only) database instance.

Thus, it retained the cached page in RAM and SELECT queries ini-

tially still returned the original record values based on cached pages.

We simulated a page refresh by loading a large new table into the

DBMS. When the cached copy of the page was discarded, the SQL

queries started to return blank values consistent with disk contents.

This experiment illustrated that erasure is possible on a live

system without corrupting storage. Moreover, performing this op-

eration on a quiesced (i.e., read-only) DBMS is simpler. Data saniti-

zation on disk is reliable and instantaneous ś as soon as wemodified

the page, the values were no longer recoverable from the file.

9.2 Effectiveness

This experiment compares the erasure capabilities of DBSanitizer’s

batched approach and the erase-on-commit approach used in SQLite’s

secure delete. Both of these approaches are intended to only

erase data within DBMS storage. Section 4 discussed actions that

can create copies of (erased) records. Note that copies of table

records may also exist outside of DBMS storage in paging files (i.e.,

copies of RAM written to disk) or deleted file storage released back

to the file system (e.g., dropping table in a DBMS such as Post-

greSQL deletes the corresponding file). Both in-DBMS and outside

of DBMS control value copies are accounted for in our experiment.

Setup & Procedure. We created a total of three SQLite DBMS

instances: I1 used DBSanitizer, and I2 & I3 enabled secure delete

at different points in time. The secure delete feature was initially

turned off upon instance creation since this is the default for SQLite.

Each instance ran on a separate 100MB partition on a external

hard drive previously never used. We note that since SQLite is a

lightweight DBMS, it uses a single file to store all objects - other

transaction log files exist only when the instance is open. Finally,

table CUSTOMER (Scale 4, 120K rows) was loaded into each instance

with indexes on the Name and City columns.

We next describe experimental steps. For each step, the database

instance was opened, the described operation(s) was performed,

the instance connection was closed to flush the DBMS buffer cache,

the partition was imaged using the dd command, and the SQLite

file was copied to a separate storage device.

T1 Initial instance setup.

→ Secure delete enabled for I3.

T2 Table CUSTOMER was created with indexes on the Name &

City columns. The data was loaded.

T3 24K (20%) rows updated on a column with no index.

→ Secure delete enabled for I2.

T4 455 City records deleted:

DELETE FROM CUSTOMER WHERE City = 'CANADA␣5';

T5 The same records updated in T3 updated again on a column

with no index.

T6 A SELECT query (using a full table scan) was ran.

→ DBSanitizer was ran against I1
T7 The instance was opened with no further activity.

Results. Table 2 summarizes the distribution of data copies for

two sample deleted values found in the SQLite file (i.e., under DBMS

control) and across the disk image (released by the DBMS to the OS).

City refers to the value ‘CANADA 5’, the delete predicate condition

at T4. Name refers to a value, ‘CUSTOMER#000000434’, which was

in a record deleted at T4.

T2. I3 resulted in a different number of City and Name values

versus I1 and I2. Since data was loaded after the indexes were cre-

ated, the B-Tree was forced to rebuild as data was loaded. Therefore,

we conclude that secure delete in I3 successfully erased the stale

index values left behind by the index rebuilds.

T3.We observed two interesting changes at T3. First, copies of

updated records were generated in the SQLite file for I1 and I2.

This is explained by an UPDATE that writes the new version of the

record to a new location in storage and marks the old version as

deleted. The secure delete in I3 successfully erased these old

record versions within the SQLite file. Second, we found a large

number of value copies on the disk image. This is explained by the

fact that in most cases, the new version of the page is not written to

the same disk sector (thereby creating a new copy of the page). A

new page version written to a new sector was often compacted and

no longer included the deleted records. The old version of the page

is no longer part of the SQLite file. In this case, the deleted values in

old pages were not erased by secure delete for I3 until the next

instance startup (likely due to file system caching). Note that the

active records in an old discarded page (outside of the SQLite file)

were not erased by secure delete, remaining vulnerable to theft.

T4. Following the DELETEs, secure delete successfully erased

all of the deleted data in the I3 SQLite file. Secure delete did not

erase all of the deleted data in I2. This is because deleted values

were created at T3, before secure deletewas enabled, and secure

delete does not retroactively erase data. Some deleted data was

overwritten in I1 by the page compaction we observed, which was

previously mentioned in the discussion of T3. An increase in deleted

data was found in the disk image, which is similar to what was

observed at T3; some pages were written to different sectors on

disk, and secure delete did not erase some of the deleted data

until the next instance startup.

T5. Following the UPDATEs some updated records written to new

locations, overwriting the previous unallocated space. These newly

written records erased some of the deleted data in the I1 and I2
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SQLite File Disk Image

City Name City Name

Time I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3
T1 0 0 0 0 0 0 0 0 0 0 0 0

T2 921 921 910 3 3 2 921 921 910 3 3 2

T3 944 944 910 3 3 2 1399 1399 1365 4 4 3

T4 672 25 0 3 1 0 1943 1295 1250 6 4 2

T5 218 16 0 2 1 0 846 42 3 3 1 0

T6 218 16 0 2 1 0 846 42 3 3 1 0

T7 0 16 0 0 1 0 846 42 3 3 1 0

Table 2: Experiment 2 deleted values. I1 applies DBSanitizer at T6. I2 and I3 enable secure delete at T3 and T3, respectively.

SQLite files. Therefore, we observed a drop in number of the de-

tected values in the I1 and I2 database files between T4 and T5.

T6. No notable changes for read-only queries.

T7. Finally, DBSanitizer successfully removed all of the deleted

data from the I1 SQLite file. No deleted data remained in I3, which

began with secure delete enabled. I2 still had deleted data in the

SQLite file because secure delete does not retroactively erase

existing deleted data.

Conclusion. SQLite’s secure delete was effective at erasing

data within DBMS storage when enabled at the instance initializa-

tion. However, if this feature is not enabled at initialization time

(or disabled at any point) deleted data can persist in storage since

secure delete does not retroactively erase data. DBSanitizer can

be invoked to erase all currently deleted data at a specified point in

time, without synchronizing with other database operations. After

executing DBSanitizer, the amount of deleted data was at zero,

identical to secure delete in I3.

While DBSanitizer had the most deleted data remain outside

of the SQLite file across the disk partition, all partitions (I1, I2, and

I3) had some deleted data persist outside of the DBMS-controlled

storage. Therefore, each approach (including a permanently enabled

secure delete in I3) requires continuous disk-level sanitization.

A software tool that meets the data erasure guidelines of the

International Data Sanitization Consortium [12] can be used to

erase unallocated storage areas on disk. Since it may not be possible

to identify released DBMS data in disk storage, we recommend

periodically sanitizing the entire unallocated disk storage. This

sanitization cost is similar for all three instances, regardless of the

amount of deleted data; the entire disk image must be scanned for

sectors containing deleted data.

9.3 Feasibility of DBSanitizer

This experiment measures DBSanitizer costs. Part-A provides run-

times measured against database files containing a different number

of deleted table records. Part-B provides index sorting runtimes

(in order to sanitize index values, we join indexes and tables they

reference ś index is sorted to speed up the join performance). This

experiment used table Lineorder Scale 4 (24M records, 2.4 GB). We

created a secondary index on the Orderdate and Revenue columns.

We did not compare our runtimes to the secure delete in

SQLite for a few reasons. First, the cost of our approach can be in-

creased or reduced by changing the sanitization batching frequency.

Second, SQLite is not representative of a robust DBMS that handles

many users and large quantities of data.

Deleted Records Affected Pages Runtime(MB/s)

0.0% 0.0% 0.96

0.1% 7.4% 0.98

0.2% 14.3% 1.00

0.5% 32.0% 1.03

1.0% 53.5% 1.06

5.0% 97.2% 1.10

Table 3: DBSanitizer Page carving and writing costs.

Part-A.. We created a series of PostgreSQL files containing ta-

ble Lineorder. We deleted different sets of records from each

Lineorder table. Records were chosen randomly for deletion based

on their primary key values. Table 3 summarizes the deletes per-

formed and the results. Our implemented carving processed the

SQLite file containing no deletes at .96 MB/s. Each 4 KB page con-

tained about 78 records, thus not every deleted record occurred in

a separate page. For example, when 5% of the records were deleted,

97% of the table pages were modified. Our results show that the

cost to sanitize the tables is primarily based on the number of pages

modified rather than the amount of deleted records in the file. A

targeted sensitive data erase operation would access fewer pages

(out of all pages with deleted data), reducing the sanitization cost.

Bucket Size Buckets Orderdate Revenue

5K pages 63 1366 sec 1380 sec

10K pages 32 1121 sec 1131 sec

50K pages 7 932 sec 945 sec

100K pages 4 909 sec 926 sec

200K pages 2 903 sec 918 sec

Table 4: Index sorting costs with varying bucket sizes.

Part-B.. To evaluate approximate sorting with respect to bucket

size, we used the carved output from PostgreSQL files containing

table Lineorder, a secondary index on Revenue column, and a

secondary index on Orderdate column. Table 4 summarizes the

performance results. As the number of buckets decreases the time

to sort the data decreases. However, a bucket must fit into memory,

so increasing of bucket sizes is limited by available RAM.
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10 CONCLUSION

This paper presented DBSanitizer, a batched data erasure ap-

proach, as a template for DBMS vendors to support data erasure.

DBSanitizer is executed at a time specified by the user and does

not require any maintenance. Our experiments demonstrated that

DBSanitizer is a cost effective alternative to the łerase-on-commitž

approach. We have also compared the erasure capabilities of both

DBSanitizer and SQLite’s secure delete. If secure delete is

enabled from instance creation, it is effective at erasing data and has

the same end result as DBSanitizer. However, if secure delete is

temporarily disabled, any deleted data in storage cannot be retroac-

tively erased with secure delete.

While our goal in this paper is to prevent data exposure to theft,

it is possible for these methods to be used maliciously. Two specific

actions include record removal and erasure of active records. Record

removal marks the metadata of a record fooling the DBMS into

recognizing it as unallocated storage. Erasure of an active record

not only creates unallocated storage, but also explicitly overwrites

the record leaving behind little evidence of tampering. Our future

work will seek to detect these malicious operations.
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