)]
Check for
Updates

Forget About It: Batched Database Sanitization

James Wagner
University of New Orleans
New Orleans, LA, USA
jwagner4@uno.edu

ABSTRACT

In file systems and database management systems (DBMSes), delet-
ing data marks it as unallocated storage rather than explicitly eras-
ing data. This data can be reconstructed from raw storage, making it
vulnerable to data theft and exposing organizations to liability and
compliance risks, violating data retention and destruction policies.
The problem is further magnified in DBMSes because (unlike in file
systems) DBMS backups are performed in pages and will include
such deleted records. Data erasure (or sanitization) is a process
that eliminates this vulnerability, providing users with “the right
to be forgotten”. However, most of the work in data sanitization
is only relevant to erasing data at the file system level, and not in
DBMSes. Limited existing work in database sanitization takes an
erase-on-commit approach, which can introduce significant I/O
bottlenecks.

In this paper, we describe a novel data sanitization method,
DBSanitizer, that 1) is DBMS agnostic, 2) can batch value era-
sure, and 3) targets specific data to erase. DBSanitizer is designed
as a template for DBMS vendors to support backup sanitization and
ensure that no undesirable data is retained in backups. In this paper,
we demonstrate how our approach can be used in any row-store re-
lational DBMS (including Oracle, PostgreSQL, MySQL, and SQLite).
As there are no backup sanitization tools available on the market or
in research literature, we evaluate DBSanitizer, in a live database
that supports erase-on-commit sanitization approach.

CCS CONCEPTS

« Security and privacy — Data anonymization and sanitiza-
tion; Information accountability and usage control.

KEYWORDS

Data erasure, sanitization, secure deletion, data wiping, database
forensics, anti-forensics

ACM Reference Format:

James Wagner and Alexander Rasin. 2024. Forget About It: Batched Database
Sanitization. In Proceedings of ACM SAC Conference (SAC’24). ACM, New
York, NY, USA, Article 4, 10 pages. https://doi.org/10.1145/3605098.3636054

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC °24, April 8-12, 2024, Avila, Spain

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0243-3/24/04. .. $15.00
https://doi.org/10.1145/3605098.3636054

1441

Alexander Rasin
DePaul University
Chicago, IL, USA
arasin@cdm.depaul.edu

1 INTRODUCTION

The ultimate goal of security systems is to prevent and detect un-
wanted data access. Accessible data includes not only the obvious
stand-alone files (e.g., PDFs, JPEGs) or active records in a database,
but also data that resides in unallocated storage. File systems and
DBMSes do not explicitly overwrite data upon deletion. Instead,
data becomes unallocated storage that is free-listed and eventually
overwritten. The deleted data that resides in unallocated storage
is retrievable with plain-text searches (e.g., GREP), or it can be re-
constructed with digital forensics methods (e.g., file carving [26] or
database page carving [39]).

DBMSes are used to manage data both in a corporate and in
personal setting. A lightweight DBMS, such as SQLite, is commonly
used to manage personal data stored on mobile phones or web
browsers. Whereas, a DBMS that supports more robust access con-
trol and storage management, such as Oracle, PostgreSQL, MySQL,
or Microsoft SQL Server, is better suited to manage corporate data.
Post-deletion data can become a long term liability in a DBMS.
Lenard et al. [14] demonstrated that a significant number of deleted
records can be copied into (read-only) DBMS backups where it will
be retained in perpetuity, until the backup is destroyed.

Data erasure is an anti-forensics method that overwrites data
in a storage medium so that it is no longer reconstructable. Data
erasure offers “the right to be forgotten” [44], and its importance is
evident in the many laws and regulations that prohibit the disclo-
sure of sensitive data including HIPAA [34], FERPA [35], Canada’s
PIPEDA [21], and GDPR [3]. Furthermore, many government agen-
cies have procedures for the proper deletion and destruction of
sensitive data [17, 18, 36]. Failing to comply with data governance
rules and policies creates real liability risks. For example, in Feb-
ruary 2022, EyeMed Vision Care was fined $600,000 for failing to
comply with New York’s Stop Hacks and Improve Electronic Data
Security Act [31]. Among the violations, EyeMed failed to comply
with the data retention requirements. Data erasure approaches are
also referred to as data wiping [11, 13], sanitization [8, 17, 18], and
secure deletion [16, 24].

Traditional sanitization techniques (e.g., [8, 15]) overwrite entire
sectors on disk to eliminate deleted files. This approach cannot be
used for DBMS records because a deleted record is marked “deleted”
in a live DBMS file (which is not deleted from the OS perspective).
Current DBMSes do not offer a secure delete feature (except SQLite)
because a typical implementation of erase-on-commit is considered
too costly. We demonstrate that our system, DBSanitizer, which
uses a batched erasure approach, can be efficiently implemented
by any DBMS vendor. This paper evaluates DBSanitizer against
PostgreSQL and SQLite. We expect that a DBMS vendor (with a
better understanding of their own storage) can implement a more

SAC’24, April 8 -April 12, 2024, Avila, Spain

J. Wagner et al.

Summary

Database storage concepts and terminology.

Related work in database forensics and erasure.

An overview of deleted data behavior within DBMS storage.

Considerations that must be taken when directly modifying DBMS storage.

An overview of DBSanitizer. Deleted records and objects, stale auxiliary data, and unallocated pages are evaluated for erasure.

Considerations for data erasure in DBSanitizer approach.

Overview of all storage areas where additional data copies may be found.

O 0| N[x| WD

Experiments that demonstrate the capabilities and advantages of the batched approach used by DBSanitizer.

Table 1: Summary of the remaining paper.

efficient native version of DBSanitizer. This approach can be ap-
plied to backups or live DBMS storage. Table 1 summarizes the
contributions of this paper.

1.1 DBSanitizer Approach

DBMSes were traditionally designed to favor performance, with
security as a secondary consideration. Secure deletion (i.e., erase
the data immediately when it is deleted) increases I/O costs which
will negatively affect performance. DBMSes also have to consider
auxiliary structures (indexes, materialized views) that contain extra
copies of data. Furthermore, cloud based DBMSes pay a high cost
for increased I/O demands — a cost that applies both to magnetic and
SSD drives. Because of the high overhead, DBMS vendors have been
unwilling to support sanitization. In fact, SQLite is the only DBMS
to support secure deletion, but it is disabled by default because it
negatively impacts performance [32].

In a file system, users can use third party tools (surveyed in [8])
to perform data sanitization. However, due to the tight control
of DBMSes over their internal storage, they must instead rely on
the DBMS vendor to supply such a feature. This paper proposes
a data erasure system, DBSanitizer, which mitigates most of the
performance concerns. DBSanitizer validates a batched “search
and destroy” approach rather than the immediate erase-on-commit
approach used by the SQLite secure deletion and related work
(see Section 3). DBSanitizer has the following properties:

(1) Database Agnostic. It can be adopted by any (open or
closed-source) relational row-store DBMS.

(2) Batched Execution. Data is erased in batches at a user-
controlled frequency. Information about deleted data does
not need to be maintained.

(3) Targeted Erasure. Users can specify the data to erase (i.e.,
erase only sensitive data values).

Database Agnostic. DBSanitizer operates independently of the
DBMS (i.e., source code modification or vendor support is not re-
quired). However, we believe users would be skeptical to trust a
third-party data erasure tool that has the potential to corrupt DBMS
storage. Therefore, this system is intended to provide a template
for DBMS vendors to introduce their own erasure functionality.
DBSanitizer is meant to demonstrate that vendors can realisti-
cally introduce this functionality in a DBMS.

Batched Execution. DBSanitizer’s batched approach to Erasure
is consistent with the majority of related work in data erasure at

1442

the file system level [8]. To operate independently of the DBMS,
DBSanitizer uses page carving (Section 3) to interpret and modify
storage (Section 5). Rather than maintaining information about
deleted data, page carving is used to find and reconstruct this data.

Target Erasure. Deleted data is scattered throughout DBMS stor-
age, but users can specify which data are sensitive (e.g., SSN versus
publicly available office phone #) to erase. Focused erasure fur-
ther limits the overhead associated with the secure delete solution.
DBSanitizer illustrates targeted erasure of sensitive data in DBMS
storage and cost savings that it achieves.

2 DATABASE STORAGE CONCEPTS

This paper incorporates proof-of-concept experiments that modify
internal DBMS storage to erase data. Internal storage is, by design,
hidden from users. Thus, it is helpful to have an understanding
of some internal details specific to DBMS storage. This section
provides a generalized description of page-level storage for all (re-
lational) DBMSes and terminology used in the paper. The concepts
in this section apply (but are not limited) to IBM Db2, Microsoft
SQL Server, Oracle, PostgreSQL, MySQL, Apache Derby, MariaDB,
SQLite, and Firebird.

2.1 Database Pages

A DBMS storage layer partitions all physical structures (e.g., tables,
indexes, and system catalogs) into fixed-size pages (typically 4, 8,
or 16 KB). Fixed-size pages across an entire instance also simplify
storage and cache management.

When data is inserted or modified, the DBMS controls data place-
ment within pages and internally maintains additional metadata.
Across all DBMSes on the market, many commonalities exist for
how data is stored and maintained at the page level. Every row-
store DBMS uses pages with three main structures: header, row
directory, and row data. Figure 1.A displays a high-level breakdown
of a page with all three of these structures.

The page header stores metadata describing the user records
stored in the page. The page header metadata of interest to this
paper are the checksum, object identifier, page identifier, and row
count. Figure 1.B demonstrates how this metadata could be posi-
tioned in a page header. The checksum detects page corruption;
whenever a page is modified, the checksum is updated. The object
identifier represents the object to which the page belongs. The
plaintext object name (e.g., table name) is not stored in a page, but
the object identifier can be mapped to the system catalog data to

Forget About It: Batched Database Sanitization

(A)

Checksum

ObjectID

PagelD

Row Cou

©

nt

Row1 Address

Row2 Address

RowN Address

SAC’24, April 8 —April 12, 2024, Avila, Spain

Row Delimiter
RowlD = 2
Column Count = 2
Value Sizes = [3, 6]
Valuel = Bob

Value2 = Boston
Row Delimiter
RowlID =1
Column Count =2
Value Sizes = [5, 6]
Valuel = Alice
Value2 = Austin

<«— Rowl—» " «—Row2 — RowN

Figure 1: Page examples: A) high-level, B) header, C) row directory, and D) row data.

retrieve it. Depending on a DBMS, the page identifier is unique to
each page for either each object, within a file, or across all DBMS
files. The row count refers to the number of active records within a
page. If a record is deleted in a page, the row count is decremented
by one; if a record is added, it is incremented.

The row directory stores pointers to each record. When a record
is added to a page, a corresponding pointer is added to the row
directory. Figure 1.C shows an example row directory. The row data
segment stores user data along with metadata, describing record
layout. Figure 1.D shows an example row data structure (with minor
DBMS-specific variations). In this example, each record stores a
row delimiter, row identifier, column count, value sizes, and user
data values. The row delimiter marks the start of a record. The row
identifier is an internal DBMS pseudo-column. The column count
represents the number of record columns. Value sizes are typically
stored for strings, but not other data types (e.g., integers).

System Catalog. The system catalog refers to the data and meta-
data maintained by the DBMS. The system catalog is stored in
tables and pages similar to user data. Sometimes the system catalog
tables use domain datatypes that are not available to the user (e.g.,
the Object Name datatype in PostgreSQL). Examples of data and
metadata stored in the system catalog are object types (e.g., table
or index), object plaintext name (e.g., customer or employee), and
object identifier, which is a unique identifier for each object (also
stored in the user data page headers).

2.2 Database Auxiliary Objects

Users interact with DBMS tables; however, multiple copies of user
data are stored in many other internal objects. Copies are stored
in auxiliary objects (e.g., indexes, materialized views) that improve
query performance or enforce constraints. Note: indexes are created
both by explicit user commands or automatically by the DBMS itself
(e.g., primary key or unique constraints).

1443

Index value-pointer pairs are stored in pages just as table data in
Figure 1. Index storage is structurally similar to a table that stores
(value, pointer) records. Figure 2 displays an example of an index
page, and how it references a table page. A table record pointer is
stored with each city value. In this example, the pointer stores the
table page identifier, 8, and the respective row identifier, 25.

Index Organized Tables. MySQL and SQLite create index orga-
nized tables (IOTs) by default, and IOTs are often used in other
DBMSes under different names (e.g., IOT table in Oracle or index
included columns in Microsoft SQL Server), so we incorporated
10Ts into our data erasure method. An IOT is structured as a tradi-
tional B-Tree index on the primary key, and all remaining columns
are included columns (or not used for ordering).

3 RELATED WORK

Retention of Deleted Database Data. Stahlberg et al. [33] demon-
strated how deleted data remains in storage after table defragmen-
tation and SQL DELETE, UPDATE, and INSERT commands. Their work
was tested on PostgreSQL, MySQL, DB2, and SQLite. Lenard et
al. [14] have investigated how deleted data propagates into data-
base backups, showing that depending on a workload, a significant
fraction of already-deleted rows can be backed up and permanently
retained. Scope et al. [27, 30] have designed a data purging frame-
work which relied on cryptographic erasure to destroy data across
all backups. Their system generated encryption keys based on reten-
tion and purging policies; these keys could then be independently
managed [28] in order to “remotely” erase associated data in back-
ups by making it unrecoverable. Although Scope et al. approach
was not limited to relational databases [29], it would was only de-
stroy data that was covered by a purging policy (e.g., “erase after
3 years”) and only after the expiration time. Wagner et al. [38, 40]
analyzed what operations cause deleted data (or data abandoned

SAC’24, April 8 -April 12, 2024, Avila, Spain

City Index Page

PagelD=8 B~ o
‘ :
RowlID =59 ~< c;
:

PointerN

J. Wagner et al.

Table Page

PagelD =8

Figure 2: An example of how an index value references a table record.

in unallocated storage) including non-delete user actions, mainte-
nance of auxiliary structures, and object rebuilds. Their work was
evaluated across multiple relational databases.

Database Artifact Reconstruction. Related work explored the re-
construction of (deleted) database data. Forensic tools, such as
Sleuth Kit [1] and EnCASE Forensic [6], are commonly used by
digital investigators, but they reconstruct file system data and can-
not parse DBMS files. While a multitude of built-in and 3"¢ party
recovery tools (e.g., [19, 22, 23]) can extract database storage, these
tools only recover table records that are “active” (non-deleted).
Frithwirt et al. presented a reconstruction method specifically for
MySQL in [5]. Reconstruction of database content was later gen-
eralized across relational DBMSes with page carving [39, 41-43].
Page carving is similar to traditional file carving [7, 26] in that data,
including deleted data, is reconstructed from disk images or RAM
snapshots without using a live system. In this paper, we implement
database-specific page carving steps to carve deleted data.

Data Erasure. Many solutions for disk-level data erasure exist
[2, 8, 10, 25], but these cannot erase values or records in DBMS
files. A few DBMS-specific erasure solutions were previously pro-
posed. SQLite is the only DBMS that supports data erasure with
the secure_delete setting [32], which is disabled by default. If
enabled, secure_delete explicitly overwrites deleted data with
zeros. Stahlberg et al. presented a well-founded method of data era-
sure for MySQL [33]. Their method modified MySQL source code
to overwrite records as soon as they are free-listed. Both [33] and
SQLite secure_delete use an erase-on-commit approach. Alterna-
tively, DBSanitizer performs a batched erasure at a user-specified
time. We evaluate both approaches in Section 9.

Grebhahn et al. proposed a set of SQL commands that, if sup-
ported, could overwrite unallocated storage [9]. Miklau et al. de-
scribed the challenges facing a DBMS that supports targeted over-
writes, including the lack of storage transparency [16]. Furthermore,
Wagner et al. [40] emphasized the importance of transparency for

1444

data erasure by demonstrating deleted data that is created unbe-
known to the user. DBSanitizer provides storage transparency
giving users the knowledge of unallocated storage. Thus, users can
be selective of which data is erased.

4 DELETED DATA

This section describes types of deleted data that we seek to erase:
records, values, and pages. Deleted database data has been explored
in more detail by related work (e.g., [5, 37, 40]); this section provides
a brief overview. Section 2 discusses some of the terms and concepts
fundamental to storage principles in a DBMS.

Records are the minimum deletion unit for a DELETE command;
deleted records also arise from other operations, such as an UPDATE
or a table rebuild. When a record is deleted, a DBMS either erases
the record’s directory pointer on the page or marks the record as
“deleted”. Figure 3 shows examples of a record, Rowl, marked as
deleted in the row data or in the row directory. In each scenario,
modified page parts are labeled with a star; deletion always updates
the row count and the checksum.

Deleted records are eventually overwritten based on a particular
DBMS and its settings. For example, Oracle uses a percent page uti-
lization threshold (user-configured) to determine when unallocated
storage is reclaimed. Alternatively, PostgreSQL reclaims storage
sooner if a new record fits into the unallocated space.

In practice, index values are not marked as unallocated space
when a corresponding table record is deleted. Stale index values
persist in storage, until the B-Tree index is explicitly rebuilt (with
a special user command(s)); thus index copies survive long after
the table record is overwritten. To identify stale index values, table
records can be mapped back to index value-pointer pairs.

Unallocated pages occur when an object is deleted (DROP), rebuilt
(e.g., ALTER INDEX Name REBUILD ONLINE in Oracle, REINDEX TABLE
Customer in PostgreSQL), or defragmented (e.g., the PostgreSQL
VACUUM command). DBMS storage architecture and operations dic-
tate when unallocated pages are disassociated from DBMS files or

Forget About It: Batched Database Sanitization

SAC’24, April 8 —April 12, 2024, Avila, Spain

Deleted Record Marked in:

Initial Page Row Data Row Directori
Checksum % Checksum’ W Checksum’
Row Count =2 yqRow Count=1| yqRow Count=1

Row1 Address Row1 Address NULL
Row?2 Address Row?2 Address Row?2 Address

SQL operation
causes delete

Metadata Row? Metadata Metadata
Bob,Boston | Bob, Boston | | Bob, Boston
Metadata Rowl % Delete Mark Metadata
Alice, Austin | "~ Alice, Austin | | Alice, Austin

Figure 3: An example of a deleted record marked in either the row data or row directory.

reclaimed and overwritten by new objects. The page itself is typi-
cally not marked as unallocated. Instead, the table’s record in the
system catalog is marked as deleted, and the pages containing the
table records are either free-listed in DBMS storage or reclaimed
by the file system. Therefore, a page’s object identifiers can be com-
pared to the object identifier in the system catalog to determine if
a page is unallocated.

Example: Unallocated Pages. An index rebuild results in a differ-
ent representative storage-level outcomes for Oracle, MySQL, and
PostgreSQL. All three build a new index structure. In Oracle, both
the old and the new index structures remain in storage, leaving
many old unallocated pages. In MySQL, the new index structure im-
mediately overwrites the old index structure. If the new index needs
less storage (which is very likely, because index is compacted), some
old, “deleted” index pages remain. In PostgreSQL, the new index
version is stored in a new file and the old index file is reclaimed by
the file system. In all cases, old index pages have a different object
identifier than the new index version pages.

5 DBMS FILE MODIFICATION

DBSanitizer directly modifies DBMS files without using the DBMS
API (e.g., SQL). DBMSes do not provide an API to modify or even
directly inspect the storage at the page level. When a DBMS file is
modified, correct format and all relevant metadata must be consid-
ered to avoid corrupting the page (or the entire DBMS instance).
Three things must be considered to perform live DBMS file modifi-
cation correctly: 1) page checksum, 2) committed transactions, and
3) dirty pages. Taking into consideration committed transactions
and dirty pages, we recommend that our erasure approach is ap-
plied to quiesced (i.e., not actively used by users) data structures
(e.g., [4] in Oracle).

Page Checksum. Section 2 discussed that any page modification
requires updating the corresponding checksum, even if DBMS is

1445

shut down. Figure 3 demonstrated that the checksum is updated
when a record is deleted.

Transactions. Transactions help manage concurrent access to
the DBMS and are used for recovery. All relational DBMSes guar-
antee that transactions are atomic, consistent, isolated, and durable
(ACID). If page modifications are performed on a live DBMS struc-
ture, logs can identify any uncommitted transactions. Note that
SQL DDL commands (e.g., CREATE, DROP, and ALTER) are automati-
cally committed.

Dirty Pages. DBMSes do not immediately write modified pages
from RAM to disk; a page that contains pending changes in RAM
is known as dirty page. This is significant because a (manually)
modified page can be overwritten when a dirty page is flushed to
disk. This does not prevent our approach from working or pose any
corruption risk, but may undo some of the work by DBSanitizer;
Section 6 discusses how to address this possibility.

Example: Transactional Rollback Effect. A transaction can fail due
to a conflict with another transaction or because user explicitly
issued an ABORT command. This causes a ROLLBACK, restoring the
database to the pre-transaction state. We loaded the Supplier ta-
ble from SSBM benchmark (see Section 9) into an Oracle DBMS,
started, and aborted a transaction that inserted 1000 rows. For all
intents and purposes, an aborted insert transaction never happened.
However, all 1000 records had their values copied into the indexes.
Furthermore, after the DBMS was stopped, a (deleted) copy of all
1000 records could be recovered from the table files as well. This
exemplifies just one of several non-obvious operations that create
many additional (inaccessible) copies of user data.

6 DBSANITIZER

The remainder of the paper describes DBSanitizer in Algorithm 1,
followed by an experimental evaluation in Section 9.

SAC’24, April 8 -April 12, 2024, Avila, Spain

J. Wagner et al.

Algorithm 1 DBSanitizer Overview

1: ActiveTables < alist of active user/system tables queried from the system catalog.
2. Activelndexes « a list of active indexes queried from the system catalog.

3: N « the number of table pages to be read

4: ErasedRecords « an empty list for erased table record pointers and hash values
5. SortedIndex < an empty dictionary to store approximately sorted indexes.

6: for each NPages € DatabaseTableFiles do
7:
8:
9:

for each Page € Carved do
if Page.ObjectID € ActiveTables then

Carved < NPages page carving output: PagelDs, Slot#s, and Records

> Section 7.1

10: for each Record € Page do

1 if RecordStatus = Deleted then

12: Pointer < ReconstructPointer()

13: ErasedRecords.append(Pointer, HashFunction(Record.V alues))
14: EraseRecord()

15: else

16: ErasePage()

-

7: for each IndexPage € DatabaseIndexFiles do

18: Carved « page carving output of IndexPage.

19: if Carved.ObjectID € IndexTables then

20: for each Value € Carved do

21: HashValue < HashFunction(V alue)

22: SortedIndex.update(Value.Pointer, HashV alue)
23: else

24: ErasePage()

25: for each Bucket € SortedIndex do

26: NPages « carved pages where PageID € Bucket

27: for each IndexValue € Bucket do

28: Pointer < IndexValue.PagelD + IndexV alue.Slot#
29:

30: EraseIndexValue()

> Section 7.3

> Section 3

> Section 7.3

if (Pointer € NPages A IndexValue # NPages.Pointer.Value) V (Pointer € ErasedRecords) V (Pointer ¢ NPages) then

> Section 7.2

Deployment Considerations. DBMSes support a restricted state
(e.g., quiesced state in Oracle [4]), preventing ongoing transactions.
For example, a quiesced state is enabled during backup to ensure
backup integrity. However, as we demonstrate, file modifications
can also be performed against a live DBMS if desired. Since dirty
pages in a live system can overwrite changes made by DBSanitizer,
some data may survive in RAM until it is evicted from cache.

Initialization: Alg 1, Lines 1 - 5. DBSanitizer first retrieves a list
of tables and indexes from the system catalog (Section 2), and stores
their object identifiers in the lists ActiveTables and Activelndexes.
A number of table pages (parametrized by N) is read into memory
at a given time. An empty list (ErasedRecords) for pointers and
hash values from tables and an empty dictionary (SortedIndex) for
approximately sorted indexes are initialized.

Table Data Erasure: Alg 1, Lines 6 - 16. The DBMS files are first
evaluated for table data to erase. N number of pages are recon-
structed using our implementation of page carving (Section 3) and
stored as Carved. The object identifier, ObjectID, from each page in
Carved determines if the page belongs to a table. If ObjectID is in
ActiveTables, then the page is evaluated for deleted records. When
a deleted record is found, the index pointer is reconstructed. The
value and its pointer are then appended to ErasedRecords. We store

1446

a hash of the value instead of the value itself to avoid the risk of
leaking data while erasing it. Next, the deleted record is erased
(described in Section 7.1). If ObjectID is not in ActiveTables, then
the page is an unallocated page, and the entire page is erased as
described in Section 7.3.

Index Sorting: Alg 1, Lines 17 - 24. Next, the index value-pointer
pairs are reconstructed, collected, sorted, and stored in Carved. The
ObjectID from Carved determines if the page belongs to an index.
If ObjectID is in Activelndexes, then index value-pointer pairs are
parsed and sorted; If the ObjectID is not in ActiveTables, then the
page is assumed to be unallocated page and erased (Section 7.3).

Index Data Erasure: Alg 1, Lines 25 - 30. The DBMS files are next
evaluated for index data to erase. For each Bucket from SortedIndex
the relevant table pages are carved. For each IndexValue within the
Bucket, the index value is erased if the value-pointer pairs do not
match between the table and index, its pointer is in ErasedRecords,
or its pointer does not point to a valid record structure.

Forget About It: Batched Database Sanitization SAC’24, April 8 April 12, 2024, Avila, Spain

Deleted Record Marked in:
Row Data

Row Directory Erased Record

Checksum’

DBSanitizer wipes

Row Count =1

Checksum’
Row Count =1

deleted record

Row1 Address
Row2 Address

Row Delimiter

NULL
Row?2 Address

Row Delimiter

Row?2 Address

Row Delimiter

Metadata

NULL

Row1Addr/NULL
N

Row2
(Active) Metadata Metadata
_____ Bob, Boston _ Bob, Boston
Delete Mark Row Delimiter
Metadata Metadata
Alice, Austin Alice, Austin

NULL

Figure 4: An example erasing a deleted record.

7 DATA ERASURE
7.1 Table Records

Once a page’s ObjectID is associated with an active table, the page
is evaluated for deleted records marked in the carved page output,
Carved. Section 4 discussed deleted record identification.

To erase a record (regardless of how DBMS signifies row dele-
tion in page storage), DBSanitizer overwrites the entire record
(including the metadata) with NULL (decimal value 0). To avoid data
corruption, DBSanitizer also updates the page checksum to re-
flect the change. Since the record was already marked deleted by
a SQL command, no other page metadata must be updated. This
operation is demonstrated in Figure 4. In this example, the record
(Alice, Austin) is deleted (similar to the deleted record in Figure
3). Regardless of deleted record markings, DBSanitizer overwrites
the record and its metadata with NULL and updates the checksum.

7.2 Value Erasure

After index values are sorted and deleted record pointers are col-
lected, index pages are considered for erasure. If the page belongs
to an active index, then it is evaluated for stale values (presented in
Section 4). DBSanitizer finds stale index values by mapping the
reconstructed pointer from the table data to the index value-pointer
pairs. Similar to a record erasure, DBSanitizer overwrites a stale
value, its pointer, and any metadata with NULL. Finally, the page
checksum is updated.

7.3 Unallocated Pages Erasure

If a page cannot be associated with an active object (table or index),
then the entire page is assumed to be unallocated storage. An unal-
located page may either have an ObjectID that is NULL or not in the
system catalog. Unallocated pages are the result of a deleted object
(i-e., DROP), object rebuild, or object defragmentation. To erase a
page, DBSanitizer overwrites the entire page row data with NULL.

For an unallocated table page, the index pointers do not need
to be reconstructed, unlike for deleted records. This is because the
page either belongs to a deleted or rebuilt table. If the table was

1447

deleted, then all indexes for that table were also deleted creating
unallocated index pages. If the table was rebuilt, then the index was
rebuilt, again, causing unallocated index pages.

8 ADDITIONAL COPIES OF DATA

Additional data copies may exist in storage outside of DBMS control,
caused by activity that causes DBMS storage to be released to the
OS, such as a deleted file from dropping a table. Since these pieces of
data are not at risk of corruption, the entire page can be overwritten.

Transaction Logs. Write-ahead logs (WAL) record DBMS modifi-
cations in order to support transactional (ACID) guarantees, main-
taining a history of transactions. WAL files do not store data in
pages as other database objects. WALs cannot normally be disabled
or easily modified, and require a special-purpose tool to be read
(e.g., Oracle LogMiner or PostgreSQL pg_xlogdump). DBMSes (in-
cluding Oracle, MySQL, PostgreSQL, and SQL Server) allow the
administrator to switch to a new WAL file and delete old WAL files.
These deleted WAL files can then be erased using methods of file
erasure at the OS level without concern of corrupting storage. For
example, an administrator can switch from log file A to log file B.
To implement this operation in Oracle:

1) ALTER DATABASE ADD LOGFILE (" path/logB.rdo")

2) Executed transaction logs are placed in logB. rdo file

3) ALTER DATABASE DROP LOGFILE MEMBER ~path/logA.rdo’

The file path/logA.rdo can then be erased from storage using stan-
dard OS-level sanitization methods.

9 EXPERIMENTS

This section evaluates DBSanitizer with three experiments. Sec-
tion 9.1 uses PostgreSQL 9.6 to demonstrate that DBMS files can be
directly modified without corrupting storage. Section 9.2 uses sev-
eral SQLite instances to compare DBSanitizer to secure delete.
Section 9.3 uses PostgreSQL 9.6 to measure the costs associated with
DBSanitizer. Tables Lineorder and Customer at Scale 4 (2.4M
and 120K rows, respectively) were generated from the Star Schema

SAC’24, April 8 -April 12, 2024, Avila, Spain

Benchmark SSBM [20]. SSBM combines a realistic distributed data
(maintaining data types and cross-column correlations) with a syn-
thetic data generator that creates datasets at different scale.

9.1 DBSanitizer Demonstration

This experiment demonstrates that DBSanitizer can effectively
erase deleted data without corruption. Although we anticipate the
storage to be quiesced during erasure, it is also possible to erase
contents of a live DBMS. If DBSanitizer can alter live storage, we
expect a DBMS vendor (with access to source code) to have no
difficulty applying the same techniques.

We created a database file containing the Customer table. We
overwrote the values from a deleted record with NULL and updated
the page checksum. The modification was performed directly in the
PostgreSQL file using a Python script with sudo privileges. Note
that this change did not remove the record from storage but just
made it blank (our goal is to erase deleted data, not to alter records).
As a result, the values were completely removed from the file. The
erased values were not found by reading the file with Python or
using grep. In order to stress-test DBSanitizer, we performed this
experiment on a live (rather than a read-only) database instance.
Thus, it retained the cached page in RAM and SELECT queries ini-
tially still returned the original record values based on cached pages.
We simulated a page refresh by loading a large new table into the
DBMS. When the cached copy of the page was discarded, the SQL
queries started to return blank values consistent with disk contents.

This experiment illustrated that erasure is possible on a live
system without corrupting storage. Moreover, performing this op-
eration on a quiesced (i.e., read-only) DBMS is simpler. Data saniti-
zation on disk is reliable and instantaneous — as soon as we modified
the page, the values were no longer recoverable from the file.

9.2 Effectiveness

This experiment compares the erasure capabilities of DBSanitizer’s
batched approach and the erase-on-commit approach used in SQLite’s
secure delete. Both of these approaches are intended to only
erase data within DBMS storage. Section 4 discussed actions that
can create copies of (erased) records. Note that copies of table
records may also exist outside of DBMS storage in paging files (i.e.,
copies of RAM written to disk) or deleted file storage released back
to the file system (e.g., dropping table in a DBMS such as Post-
greSQL deletes the corresponding file). Both in-DBMS and outside
of DBMS control value copies are accounted for in our experiment.

Setup & Procedure. We created a total of three SQLite DBMS
instances: I; used DBSanitizer,and I, & I3 enabled secure delete
at different points in time. The secure delete feature was initially
turned off upon instance creation since this is the default for SQLite.
Each instance ran on a separate 100MB partition on a external
hard drive previously never used. We note that since SQLite is a
lightweight DBMS, it uses a single file to store all objects - other
transaction log files exist only when the instance is open. Finally,
table CUSTOMER (Scale 4, 120K rows) was loaded into each instance
with indexes on the Name and City columns.

We next describe experimental steps. For each step, the database
instance was opened, the described operation(s) was performed,
the instance connection was closed to flush the DBMS buffer cache,

1448

J. Wagner et al.

the partition was imaged using the dd command, and the SQLite
file was copied to a separate storage device.

T; Initial instance setup.
— Secure delete enabled for I5.
Table CUSTOMER was created with indexes on the Name &
City columns. The data was loaded.
24K (20%) rows updated on a column with no index.
— Secure delete enabled for I,.
T4 455 City records deleted:
DELETE FROM CUSTOMER WHERE City = 'CANADA_5';
Ts The same records updated in T3 updated again on a column
with no index.
Te A SELECT query (using a full table scan) was ran.
— DBSanitizer was ran against I;
T7 The instance was opened with no further activity.

—_

T

[

T

w

Results. Table 2 summarizes the distribution of data copies for
two sample deleted values found in the SQLite file (i.e., under DBMS
control) and across the disk image (released by the DBMS to the OS).
City refers to the value ‘CANADA 5’, the delete predicate condition
at T4. Name refers to a value, ‘CUSTOMER#000000434’, which was
in a record deleted at Ty.

Ts. I3 resulted in a different number of City and Name values
versus I; and I,. Since data was loaded after the indexes were cre-
ated, the B-Tree was forced to rebuild as data was loaded. Therefore,
we conclude that secure delete in I3 successfully erased the stale
index values left behind by the index rebuilds.

T3. We observed two interesting changes at T3. First, copies of
updated records were generated in the SQLite file for I; and I5.
This is explained by an UPDATE that writes the new version of the
record to a new location in storage and marks the old version as
deleted. The secure delete in I3 successfully erased these old
record versions within the SQLite file. Second, we found a large
number of value copies on the disk image. This is explained by the
fact that in most cases, the new version of the page is not written to
the same disk sector (thereby creating a new copy of the page). A
new page version written to a new sector was often compacted and
no longer included the deleted records. The old version of the page
is no longer part of the SQLite file. In this case, the deleted values in
old pages were not erased by secure delete for I3 until the next
instance startup (likely due to file system caching). Note that the
active records in an old discarded page (outside of the SQLite file)
were not erased by secure delete, remaining vulnerable to theft.

T4. Following the DELETESs, secure delete successfully erased
all of the deleted data in the I3 SQLite file. Secure delete did not
erase all of the deleted data in I5. This is because deleted values
were created at T3, before secure delete was enabled, and secure
delete does not retroactively erase data. Some deleted data was
overwritten in I; by the page compaction we observed, which was
previously mentioned in the discussion of T3. An increase in deleted
data was found in the disk image, which is similar to what was
observed at T3; some pages were written to different sectors on
disk, and secure delete did not erase some of the deleted data
until the next instance startup.

Ts. Following the UPDATEs some updated records written to new
locations, overwriting the previous unallocated space. These newly
written records erased some of the deleted data in the I; and I

Forget About It: Batched Database Sanitization

SAC’24, April 8 —April 12, 2024, Avila, Spain

SQLite File Disk Image
City Name City Name
Time Il 12 13 11 12 I3 11 12 I3 11 12 I3
T 0 0 0 0 0 0 0 0 0 0 0 0
Tz 921 921 910 3 3 2 921 921 910 3 3 2
T3 944 944 910 3 3 2 1399 1399 1365 4 4 3
Ty 672 25 0 3 1 0 1943 1295 1250 6 4 2
Ts 218 16 0 2 1 0 846 42 3 3 1 0
Te 218 16 0 2 1 0 846 42 3 3 1 0
Ty 0 16 0 0 1 0 846 42 3 3 1 0

Table 2: Experiment 2 deleted values. I; applies DBSanitizer at Ts. I; and I3 enable secure delete at T3 and T3, respectively.

SQLite files. Therefore, we observed a drop in number of the de-
tected values in the Iy and I database files between T4 and Ts.

Ts. No notable changes for read-only queries.

T7. Finally, DBSanitizer successfully removed all of the deleted
data from the I; SQLite file. No deleted data remained in I3, which
began with secure delete enabled. I still had deleted data in the
SQLite file because secure delete does not retroactively erase
existing deleted data.

Conclusion. SQLite’s secure delete was effective at erasing
data within DBMS storage when enabled at the instance initializa-
tion. However, if this feature is not enabled at initialization time
(or disabled at any point) deleted data can persist in storage since
secure delete does not retroactively erase data. DBSanitizer can
be invoked to erase all currently deleted data at a specified point in
time, without synchronizing with other database operations. After
executing DBSanitizer, the amount of deleted data was at zero,
identical to secure delete inI3.

While DBSanitizer had the most deleted data remain outside
of the SQLite file across the disk partition, all partitions (I3, I, and
I3) had some deleted data persist outside of the DBMS-controlled
storage. Therefore, each approach (including a permanently enabled
secure delete in I3) requires continuous disk-level sanitization.
A software tool that meets the data erasure guidelines of the
International Data Sanitization Consortium [12] can be used to
erase unallocated storage areas on disk. Since it may not be possible
to identify released DBMS data in disk storage, we recommend
periodically sanitizing the entire unallocated disk storage. This
sanitization cost is similar for all three instances, regardless of the
amount of deleted data; the entire disk image must be scanned for
sectors containing deleted data.

9.3 Feasibility of DBSanitizer

This experiment measures DBSanitizer costs. Part-A provides run-
times measured against database files containing a different number
of deleted table records. Part-B provides index sorting runtimes
(in order to sanitize index values, we join indexes and tables they
reference - index is sorted to speed up the join performance). This
experiment used table Lineorder Scale 4 (24M records, 2.4 GB). We
created a secondary index on the Orderdate and Revenue columns.

We did not compare our runtimes to the secure delete in
SQLite for a few reasons. First, the cost of our approach can be in-
creased or reduced by changing the sanitization batching frequency.

1449

Second, SQLite is not representative of a robust DBMS that handles
many users and large quantities of data.

Deleted Records Affected Pages | Runtime(MB/s)
0.0% 0.0% 0.96
0.1% 7.4% 0.98
0.2% 14.3% 1.00
0.5% 32.0% 1.03
1.0% 53.5% 1.06
5.0% 97.2% 1.10

Table 3: DBSanitizer Page carving and writing costs.

Part-A.. We created a series of PostgreSQL files containing ta-
ble Lineorder. We deleted different sets of records from each
Lineorder table. Records were chosen randomly for deletion based
on their primary key values. Table 3 summarizes the deletes per-
formed and the results. Our implemented carving processed the
SQLite file containing no deletes at .96 MB/s. Each 4 KB page con-
tained about 78 records, thus not every deleted record occurred in
a separate page. For example, when 5% of the records were deleted,
97% of the table pages were modified. Our results show that the
cost to sanitize the tables is primarily based on the number of pages
modified rather than the amount of deleted records in the file. A
targeted sensitive data erase operation would access fewer pages
(out of all pages with deleted data), reducing the sanitization cost.

Bucket Size Buckets Orderdate | Revenue
5K pages 63 1366 sec 1380 sec
10K pages 32 1121 sec 1131 sec
50K pages 7 932 sec 945 sec
100K pages 4 909 sec 926 sec
200K pages 2 903 sec 918 sec

Table 4: Index sorting costs with varying bucket sizes.

Part-B.. To evaluate approximate sorting with respect to bucket
size, we used the carved output from PostgreSQL files containing
table Lineorder, a secondary index on Revenue column, and a
secondary index on Orderdate column. Table 4 summarizes the
performance results. As the number of buckets decreases the time
to sort the data decreases. However, a bucket must fit into memory,
so increasing of bucket sizes is limited by available RAM.

SAC’24, April 8 -April 12, 2024, Avila, Spain

10 CONCLUSION

This paper presented DBSanitizer, a batched data erasure ap-
proach, as a template for DBMS vendors to support data erasure.
DBSanitizer is executed at a time specified by the user and does
not require any maintenance. Our experiments demonstrated that
DBSanitizer isa cost effective alternative to the “erase-on-commit”
approach. We have also compared the erasure capabilities of both
DBSanitizer and SQLite’s secure delete. If secure delete is
enabled from instance creation, it is effective at erasing data and has
the same end result as DBSanitizer. However, if secure deleteis
temporarily disabled, any deleted data in storage cannot be retroac-
tively erased with secure delete.

While our goal in this paper is to prevent data exposure to theft,
it is possible for these methods to be used maliciously. Two specific
actions include record removal and erasure of active records. Record
removal marks the metadata of a record fooling the DBMS into
recognizing it as unallocated storage. Erasure of an active record
not only creates unallocated storage, but also explicitly overwrites
the record leaving behind little evidence of tampering. Our future
work will seek to detect these malicious operations.

ACKNOWLEDGMENTS

This work was partially funded by the Louisiana Board of Regents
Grant AWD-10000153 and by US National Science Foundation Grant
1IP-2016548.

REFERENCES

[1] Brian Carrier. 2011. The Sleuth Kit. http://www.sleuthkit.org/sleuthkit/ (2011).
[2] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. 2005. Shredding
Your Garbage: Reducing Data Lifetime Through Secure Deallocation.. In USENIX
Security Symposium. 22-22.

European Union. 2018. The General Data Protection Regulation (GDPR). https:
//www.eugdpr.org/

Steve Fogel. 2010. Oracle Database Administrator’s Guide: Quiescing a Database.
\https://docs.oracle.com/cd/E18283_01/server.112/e17120/start004.htm

Peter Frihwirt, Marcus Huber, Martin Mulazzani, and Edgar R Weippl. 2010.
InnoDB database forensics. In Advanced Information Networking and Applications
(AINA), 2010 24th IEEE International Conference on. IEEE, 1028-1036.

Lee Garber. 2001. Encase: A case study in computer-forensic technology. IEEE
Computer Magazine January (2001).

Simson L Garfinkel. 2007. Carving contiguous and fragmented files with fast
object validation. digital investigation 4 (2007), 2-12.

Simson L Garfinkel and Abhi Shelat. 2003. Remembrance of data passed: A study
of disk sanitization practices. IEEE Security & Privacy 99, 1 (2003), 17-27.
Alexander Grebhahn, Martin Schiler, and Veit Képpen. 2013. Secure Deletion:
Towards Tailor-Made Privacy in Database Systems.. In BTW Workshops. 99-113.
Peter Gutmann. 1996. Secure deletion of data from magnetic and solid-state
memory. In Proceedings of the Sixth USENIX Security Symposium, San Jose, CA,
Vol. 14. 77-89.

Ryan Harris. 2006. Arriving at an anti-forensics consensus: Examining how
to define and control the anti-forensics problem. digital investigation 3 (2006),
44-49.

International Data Sanitization Consortium. 2017. Data Sanitization Termi-
nology and Definitions. https://www.datasanitization.org/data-sanitization-
terminology/

Gary C Kessler. 2007. Anti-forensics and the digital investigator. In Australian
Digital Forensics Conference. Citeseer, 1.

Ben Lenard, Alexander Rasin, Nick Scope, and James Wagner. 2021. What is
lurking in your backups?. In ICT Systems Security and Privacy Protection: 36th
IFIP TC 11 International Conference, SEC 2021, Oslo, Norway, June 22-24, 2021,
Proceedings. Springer, 401-415.

Ming Di Leom, Kim-Kwang Raymond Choo, and Ray Hunt. 2016. Remote wiping
and secure deletion on mobile devices: A review. Journal of forensic sciences 61, 6
(2016), 1473-1492.

Gerome Miklau, Brian Neil Levine, and Patrick Stahlberg. 2007. Securing history:
Privacy and accountability in database systems.. In CIDR. Citeseer, 387-396.

(3]
(4]
(5]

[15]

[16

1450

J. Wagner et al.

(17

National Institute of Standards and Technology. 2006. Guidelines for Media

Sanitization.

National Security Agency Central Security Service. 2014. NSA/CSS Storage

Sanitization Manual.

OfficeRecovery. 2017. Recovery for MySQL. \http://www.officerecovery.com/

mysql/

Patrick O.Neil, Elizabeth O.Neil, Xuedong Chen, and Stephen Revilak. 2009. The

star schema benchmark and augmented fact table indexing. In Performance

evaluation and benchmarking. Springer, 237-252.

Parliament of Canada. 2000. The Personal Information Protection and Electronic

Documents Act (PIPEDA). \https://www.priv.gc.ca/en/privacy-topics/privacy-

laws-in-canada/

Percona. 2018. Percona Data Recovery Tool for InnoDB.

https://launchpad.net/percona-data-recovery-tool-for-innodb.

Stellar Phoenix. 2018. DB2 Recovery Software. http://www.stellarinfo.com/

database-recovery/db2-recovery.php.

Joel Reardon, David Basin, and Srdjan Capkun. 2013. Sok: Secure data deletion.

In Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 301-315.

Joel Reardon, Srdjan Capkun, and David Basin. 2012. Data node encrypted file

system: Efficient secure deletion for flash memory. In Proceedings of the 21st

USENIX conference on Security symposium. USENIX Association, 17-17.

Golden G Richard IIT and Vassil Roussev. 2005. Scalpel: A Frugal, High Perfor-

mance File Carver.. In DFRWS. Citeseer.

Nick Scope, Alexander Rasin, Ben Lenard, Karen Heart, and James Wagner. 2022.

Harmonizing Privacy Regarding Data Retention and Purging. In Proceedings of the

34th International Conference on Scientific and Statistical Database Management.

1-12.

Nick Scope, Alexander Rasin, Ben Lenard, and James Wagner. 2023. Compliance

and Data Lifecycle Management in Databases and Backups. In International

Conference on Database and Expert Systems Applications. Springer, 281-297.

Nick Scope, Alexander Rasin, Ben Lenard, James Wagner, and Karen Heart. 2022.

Purging Compliance from Database Backups by Encryption. Journal of Data

Intelligence 3, 1 (2022).

Nick Scope, Alexander Rasin, James Wagner, Ben Lenard, and Karen Heart.

2021. Purging data from backups by encryption. In Database and Expert Systems

Applications: 32nd International Conference, DEXA 2021, Virtual Event, September

27-30, 2021, Proceedings, Part I 32. Springer, 245-258.

Damon W Silver and Gregory C Brown. 2022. $600,000 reasons to

review your shield act compliance program: NY attorney general

announces significant settlement stemming from email data breach.
https://www.natlawreview.com/article/600000-reasons- to-review-your-
shield-act-compliance-program-ny-attorney-general

SQLite. 2018. PRAGMA statements. \{https://www.sqlite.org/

pragma.html#pragma_secure_delete}

Patrick Stahlberg, Gerome Miklau, and Brian Neil Levine. 2007. Threats to

privacy in the forensic analysis of database systems. In Proceedings of the 2007

ACM SIGMOD international conference on Management of data. ACM, Citeseer,

91-102.

U.S. Centers for Disease Control and Prevention. 1996. Health Insurance Portabil-

ity and Accountability Act (HIPAA). \https://www.hhs.gov/hipaa/index.html

U.S. Department of Education. 1974. The Family Educational Rights and Privacy

Act (FERPA). \https://www2.ed.gov/policy/gen/guid/fpco/ferpa/index.html

USS. Internal Revenue Service. 2017. Media Sanitization Methods. \https:

//www.irs.gov/privacy-disclosure/media- sanitization-methods

James Wagner. 2020. Auditing database systems through forensic analysis. (2020).

James Wagner, Alexander Rasin, Boris Glavic, Karen Heart, Jacob Furst, Lucas

Bressan, and Jonathan Grier. 2017. Carving database storage to detect and trace

security breaches. Digital Investigation 22 (2017), S127-S136.

[39] James Wagner, Alexander Rasin, and Jonathan Grier. 2015. Database forensic
analysis through internal structure carving. Digital Investigation 14 (2015), S106—
S115.

[40] James Wagner, Alexander Rasin, and Jonathan Grier. 2016. Database image
content explorer: Carving data that does not officially exist. Digital Investigation
18 (2016), S97-5107.

[41] James Wagner, Alexander Rasin, Karen Heart, Rebecca Jacob, and Jonathan Grier.
2019. Db3f & df-toolkit: The database forensic file format and the database
forensic toolkit. Digital Investigation 29 (2019), S42-S50.

[42] James Wagner, Alexander Rasin, Karen Heart, Tanu Malik, and Jonathan Grier.

2020. DF-toolkit: interacting with low-level database storage. Proceedings of the

VLDB Endowment 13, 12 (2020).

James Wagner, Alexander Rasin, Tanu Malik, Karen Heart, Hugo Jehle, and

Jonathan Grier. 2017. Database forensic analysis with DBCarver. In CIDR 2017,

8th Biennial Conference on Innovative Data Systems Research.

Ben Wolford. 2020. Everything you need to know about the “Right to be forgotten”.

https://gdpr.eu/right-to-be-forgotten/

[18

(19]

[20

[21

~
0,

[23

[24

[25]

[26

[27

[28

[29

[30

(31]

[32

[33

[43]

[44]

	Search
	Print
	View Full Page
	View Page Width

