Detecting hidden states in stochastic dynamical systems
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Inferring the number of states of a stochastic system from partial measurements is a fundamental
problem in physics, for which methodological tools remain scarce. It is difficult to distinguish the
stochastic dynamical states from measurements, deceiving us into incorrect models and flawed un-
derstanding of natural phenomena. Here, we propose a model-free, statistical framework, grounded
in network and control theory, to estimate the number of states of a stochastic system from percep-
tible dynamics. The framework extends previous techniques for deterministic systems, based on the
rank of ancillary matrices. We show applications of our approach to a variety of physics domains,

such as statistical mechanics, biophysics, physical chemistry, and epidemiology.

I. INTRODUCTION

The study of network dynamical systems has fasci-
nated scientists for centuries [1, 2]. From climate net-
works [3] to fish schooling [4] and human mobility [5],
physicists, mathematicians, biologists, and social scien-
tists have sought to describe and understand the com-
plex, emergent behaviors that arise from interactions of
individual units.

The advent of large-scale data acquisition systems has
allowed the development of new techniques for the study
of network dynamical systems [6]. Starting from the
time-series of the dynamics of individual units, these
tools offer a potent lens through which one can reveal
and detail their interactions. However, these techniques
often rely on the assumption that the number of states of
the considered system is known, a condition seldom ver-
ified in practice. For example, neuroscientists can recon-
struct inter-neuronal connections in the brain, but may
not have an accurate estimate of the number of neurons
involved [7].

Several methodological advancements have been made
in recent years to address the problem of inferring the
number of states of a system from measurements on a
subset of its units. Haehne et al. [8], Porfiri [9], and
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Tang et al. [10] proposed the assembly of representative
matrices from the time-series of the unforced dynamics
of perceptible nodes, whose rank would be related to
the size of the largest observable component of the sys-
tem. Tyloo and Delabays [11] reconstructed the size of
a network system by probing it with sinusoidal inputs
and measuring the response of selected units. These ap-
proaches are exclusively applicable to deterministic dy-
namics. Only recent efforts have started leveraging noise-
induced stochasticity to estimate the size of an otherwise
deterministic system [12], for very specific collective dy-
namics that are only seen in some real-world systems.

While the dichotomy between a deterministic or a ran-
dom world still exists in theoretical physics, randomness
is unavoidable, as the failed attempt to establish order-
liness in celestial mechanics by Henri Poincaré taught
us. Since the work of Poincaré, randomness has been
embraced in many fields of physics [13-16], from sta-
tistical mechanics [17] to quantum mechanics [18] and
nuclear physics [19], which led to greater understanding
of the physical word. For example, the classical exper-
iments of Perrin [20] that led to the estimation of the
Avogadro’s number involved the Brownian motion of a
particle suspended in a liquid, building on the theories of
Einstein [21] and Smoluchowski [22].

Here, we propose a novel statistical framework to infer
the number of states of systems that are stochastic by na-
ture and have hidden states. Our approach makes very
general assumptions about the dynamics of the system



as a hidden Markov chain [23, 24], which are satisfied
by many real-world stochastic phenomena, from thermo-
dynamics to epidemiology [25, 26]. We extend previous
work on deterministic dynamics [8-10] by relating the
number of states of a stochastic system to the rank of
a detection matrix, assembled from realizations of the
system. Due to the noisy nature of the matrix, we de-
sign a statistical test to correctly reconstruct its rank.
The proposed approach can be used in denoising any ma-
trix corrupted by noise with known structure, consider-
ably overperforming state-of-the-art techniques for ma-
trix denoising [27]. The proposed framework combines
and builds on techniques from statistics, control theory,
and perturbation theory to contribute to the fields of
general Markovian processes and stochastic network sys-
tems. We first demonstrate our methodology with the
classical Ehrenfest urn model of diffusion in statistical
mechanics [28], and then we show applications to other
domains of physics, including biophysics, physical chem-
istry, and epidemiology.

The remainder of this paper is organized as follows.
In Section II, we present the mathematical formulation
of the detection matrix and introduce a novel statistical
test designed to identify the accurate rank of a noisy ma-
trix. Moving on to practical applications, Section III A
demonstrates our approach in the context of the classi-
cal Ehrenfest urn model problem. In Section IIIB, we
showcase the application of our method to unveil hidden
behavioral states of bacteria through their swimming mo-
tion. Therein, we also validate the noise model employed
in our statistical test. In Section III C, we highlight how
our approach can effectively detect the number of chemi-
cal compounds in an enzyme reaction using partial mea-
surements of enzyme states. We also provide numeri-
cal evidence supporting the applicability of our approach
to perturbed Markov chains. In Section IIID, we illus-
trate the potential of our approach to identify hidden ex-
posed states in an epidemic, even in scenarios where some
properties of Markov chains are violated. Section IIIE
presents a numerical comparison between our proposed
statistical test for denoising matrices and state-of-the-art
method developed by Gavish and Donoho [27]. Finally,
Section IV brings the paper to a close, summarizing lim-
itations and key findings.

II. THEORY

Let X be a first-order, time-homogeneous Markov
chain, where k indicates the discrete time-step (k =
1,...,K). The Markov chain has N € N, states, such
that X has a finite alphabet s1, -+ ,sy. We define the
probability mass function (pmf) of X as 7w, = [Pr(X B =
s1), -, Pr(Xg = sN)]T. The time evolution of the pmf
is governed by

Tk4+1 = PTﬂ'k, (1)

where P € [0, 1]V*¥ is the row-stochastic transition ma-
trix.

We do not have access to realizations of X}, but only
to an output stochastic process Yj, with M < N states
and finite alphabet §i,---,8). The perceptible dy-
namics Y is not necessarily a first-order Markov pro-
cess, but its probability depends on X only, such that
Pr(Yk | X]canflw-le) = Pr(Yk ‘ Xk) We define
the pmf of Yy as ¢ = [Pr(Yi = §1), -+, Pr(Vi = 5u)]
Without loss of generality, we consider cases in which the
realizations of Y}, are deterministically related to those of
X}.. In this vein, we establish

¢k = C7Tk‘7 (2)

where C € {0,1}M*¥ is a column-stochastic, Boolean
emission matrix, with each column containing only one
“1”. We note that the emission matrix can generally have
real elements (C € [0, 1]™*") without any modification
to the approach (the proof in the Methods does not im-
pose any conditions on C), so that the realizations of Y}
can be stochastically related to those of X;. Each row of
C corresponds to a symbol of Y}, such that the non-zero
elements in the row identify the states of X mapped into
that Y3 symbol. When more than one non-zero element
is present in the row, the mapping cannot be inverted
and the corresponding states of X, are indistinguishable
from each other from the measurement of Y.

As a prototypical example, we consider the classical
Ehrenfest urn model of diffusion [28], which has long
served as a benchmark for statistical mechanics concepts
[29, 30]. At each time step, a ball is independently picked
from one urn and moved to the other, resulting in a
Markovian process. As a thought experiment, we hypoth-
esize that there are three balls in the urns (N = 4) and
only a simple, binary sensor in one of the urns that can
reveal whether that urn is empty or not (Fig. la and 1b).
The sensor cannot distinguish between one, two, or three
balls in that urn (M = 2). The corresponding matrices
are

0 1 0 0

|13 0 23 0 1000

P= 02/301/3’0[0111} ®)
00 1 0

The alphabet of the hidden Markov chain is {s; = 0, 53 =
1,83 = 2,84 = 3}, while the alphabet of the observed
process is {51, 32}. s1 always provide §; as output, while
S2, 83, and s4 are indistinguishable from the output since
they are all mapped to 32 (Fig. 1b).

The system in (1) and (2) constitutes a discrete-
time, linear shift-invariant (LSI) system with unmea-
sured states. Taking inspiration from deterministic sys-

tems [8, 9], we assemble a detection matrix T € R}/**F

of the evolution of ¢,(cl) from different initial pmfs W(()l),
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FIG. 1: Hlustration of the approach. (a) Representation of the Ehrenfest urns with a binary sensor in one urn that
detects whether there are balls in the urn and the corresponding hidden Markov diagram (system (3)). Subsets of
states that map to the same output symbol are indicated with the same color. (b) Sampled time-series of the output
process. (c) Estimate T of the detection matrix, and illustration of the inference of rank(T) through the statistical
test for the singular values. (d) Number of states detected from the statistical test for different values of R; the error
bar represents the standard deviation over 50 trials.
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Proposition 1 Under loose assumptions on the size of
T, the rank of the detection matriz is equal to the size
of the largest observable subspace of the LSI system [9],
that is, rank(T) = rank(0), O € RYM*N being the
observability matriz of the LSI system [31].

Proof We consider the LSI system in (1) and (2). Let
us define the vector of the initial probability distribution
of the hidden Markov chain as I = [77%, e ,W%L)] , which
we assume to be full-rank. Through (1) and (2), the de-
tection matriz can be expressed in terms of the initial
probability distributions ng) as

C7r§1) C7T§2) Cﬂ”
carlV  carl? CAr
CAK- 17V CcAK-17{Y . cAK-17{M)

(5)

Thus, we can rewrite the detection matriz in the form

T = Ok, (6)

where

C
CA
Ok = . : (7)

CA'K71
Given that X1 is full row-rank, we have
rank (T) = rank (Ok) . (8)

By invoking the Cayley—Hamilton theorem [32] and as-
suming K > N, the rank of Ok is equal to that of Op.
Hence, we determine

rank (T) = rank (Op), (9)
where
C
CA
CA.N_l

which proves that the ranks of the detection matriz and
the observability matrix are equal.

Contrary to the deterministic case, we do not have ac-
cess to the detection matrix, but only to a noisy estimate
T = T + E from realizations of Y} (Fig. 1b), where E
is the noise matrix. Matrix T has almost surely a higher
rank than the corresponding T for a finite number of
realizations, such that we cannot directly infer the num-
ber of states from singular values (for example, by using
the largest gap between them [8]). Preliminary evidence
pointing at a chief challenge in correctly assessing the
rank of T can be found in [33].



A. Statistical test

The problem is equivalent to that of identifying the cor-
rect number of non-zero singular values of a matrix cor-
rupted by noise. The optimal hard thresholding method
to overcome such a problem was discussed in [27]. A
critical assumption of the optimal threshold is the inde-
pendence between the elements of the noise matrix. In
our case, these elements are correlated with others in the
same column. To overcome such an issue and leverage
these correlations in the denoising process, we propose a
statistical test based on eigen-perturbation theory.

Let 0;(-) be the i-th singular value of a matrix, sorted
in a non-increasing order. According to Weyl’s additive
inequality [34, 35], ai+j_1(T) < O'I(T) + O'j(E), for 1 <
1,7 <min(MK,L),i+j <min(MK, L) + 1, so that

0i(T) > Gy, with G, == m?x{aw,l(T) —o;(E)}. (11)

The probability density function fg, of G; is numerically
estimated through Monte Carlo simulations [36], using a
model of the noise matrix (established in what follows)

and the pertinent ¢;(T)s computed from the estimate of
the detection matrix [37].

We compute a p-value corresponding to the probability
of G; being non-positive,

0
p=PiGi<0= [ jaarn ()

A small p-value (below a significance level that we set
at 0.05) is used to reject Hy — the null hypothesis that
0;(T) = 0, given the observations (Fig. 1c) — and con-
clude that the rank of T is at least i. By executing the
statistical test for each i, we estimate the rank of T.

Noise model — Let us focus on the /-th column of
matrices T, T, and E, dropping the index [ for ease of
notation. The element (k—1)M +m of the I-th column of
each matrix (that is, the m-th element of the k-th time-
step block) is denoted as (-);,.. In particular, Ty, is the
estimate of Tj,, = Pr(Yy = §,,) from the I-th initial prob-
ability distribution. This element can be approximated
through a plug-in estimator from R realizations Y} of the
output stochastic process.

To this end, we define an indicator variable Z} , which
is 1 when Y;” = 5, and 0 otherwise. Z,:m is a Bernoulli
random variable with probability T}, of being 1 and 1 —
Ty, of being 0, such that E[Z} | =T}, and Var[Z] |=
Tk, (1=Tk, ), where E[-] and Var[-] are the expected value
and variance operators, respectively. Thus, the plug-in
estimator can be written as Tkm = Zle Z | R, while
the noise is Ey,, = Y1, Z; /R—E[Z} ]. Since the ZJ,
are independent identically distributed random variables,
Ey,, — N(0,Ty, (1 —Ty, )/R) as R — oo according
to the central limit theorem [38]. Hence, the noise matrix
elements are marginally Gaussian with zero means.

In practice, the elements within each column of the er-
ror matrix are correlated, as elements at the same k-th

time-step should sum to zero and elements at future time-
steps depend on elements at previous ones (Columns of
E are uncorrelated when different realizations are used to
estimate each column. One can utilize the same realiza-
tions for estimating multiple columns of T, at the price
of correlating the columns of E). The covariance between
any two elements of the same column can be expressed
as

Cov(E,,, Ep,)
= E[Ekm qu]
_ =
sz_l 25, (05 Z;Q} . { (2 Z;:M>RTPQ]
R2 R?
o BTk (0, 25,) B[ BT BTy,
R2 R2

=E

1 R R
= %2 ZZE[ngzgq] — Ty, T,

r=1p=1
(since Zj, and ZJ are independent for r # p)

R
(RQ - R)Tk'mqu + Z E[Z]:yn Z;q]) - Tanqu

r=1

1

1 ZR 1
= R2 E[Z]:m Z;q] - ETkrnqu
r=1

1 .o
=5 (Pr(Yk =5m,Y, =38;) — Tkapq>7

(13)

where we used the fact that E[E) ] = 0 for any & and
m. As a first approximation for Monte Carlo simulations,
we generate the random noise matrices by assuming that
the first M — 1 elements of each time-step k are jointly
Gaussian, with covariance matrices estimated from real-
izations through plug-in estimators, since the covariance
is a function of T (as given in (13)) to which we do not
have access. The M-th elements are found by imposing
that all elements at the same k-th time-step sum to zero.
In the numerical experiment, the empirical distributions
of the singular values of the noise matrix were generated
from 5,000 random noise matrices (see below for numer-
ical evaluation of the noise model and validation of the
joint normality assumption).

III. RESULTS AND DISCUSSION
A. Ehrenfest urn model
We simulate (3) to generate realizations of the out-

put variable. We assemble an estimate T of the detec-
tion matrix with a varying number of realizations R for



each initial probability distribution. When enough real-
izations are used to estimate T, we can conclude that
rank(T) = 4 according to the statistical test (Fig. 1d).
The same experiment was repeated for two balls (N = 2)
and four balls (N = 4) where our approach was able to
detect the total number of balls in the urns, by using only
binary readings from a sensor in one of the urns that tells
whether that urn is empty is not. At each time step, a
ball is independently picked from one urn and moved to
the other. The resulting process is a Markov chain with
the number of states N equal to the number of particles
plus one, and reads as follows

(001 0 0 -~ 0 0 0 0]
N—

%(Q)Tquz 0 0 00
0% 0 52 0 0 00
P=|: : S - (9
N—

00 0 0 N2 0 20
00 0 0 0 &2 o %
00 0 0 0 0 1 0]

Under the assumption that we rely on binary sensor
telling us whether there exist at least one ball in one
urn or not, the C matrix would read

10000
C:[01 1.1 1] (15)

The numerical experiments were performed with L = 15
and K = 30 for all three cases (Fig. 2).
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FIG. 2: Number of detected states from the statistical
test as a function of the number of realizations R.
Results of the Ehrenfest model with two (blue circles),
three (orange square), and four (green diamonds) balls
in the system. The error bars represent the standard
deviation over 50 trials.

B. Biophysics

Hidden Markov chains are a fundamental mathemat-
ical model for several microscopic processes of interest
in the biophysics community, including ion channels [39]
and genetic sequences [40]. An example of the use of hid-
den Markov chains in biophysics involves the swimming
behavior of Escherichia coli (E. coli), the cornerstone of
our understanding of how peritrichous bacteria with flag-
ella all above their bodies move in a fluid [41]. Recent
work [42] has studied surface exploration of a pathogenic
strain of F. coli resulting in a complex interplay between
motility and transient surface adhesion events. These ex-
perimental results hint at the presence of hidden states,
in addition to the two states that could be seen by the
naked eye: running and stopping. The third, hidden
state is suggested to be a tethered state where the bac-
terium use adhesion events to the surface to regulate the
surface motion. The presence of a hidden state was in-
ferred from a combination of model fitting and survival
analysis; however, this approach is model-based and not
scalable.

To explore the possibility of employing our approach
to discover such a hidden state, we consider numerical
simulations of a hidden Markov chain model where we
cannot distinguish between the stopping state and the
tethered state. The corresponding Markov chain con-
sists of three states: the bacterium is not moving and
is in a non-tethered state (S := 1); the bacterium is in
a tethered state (T := 2); and the bacterium is running
(R := 3). The transition probability matrix reads

q11 412 Q913
P=|0 g2 ¢s]. (16)
g31 0 gs3

If one cannot distinguish between the non-running states,

the C matrix is
110
o-[i1. )

Our approach successfully detects the hidden, tethered
state (Fig. 3). The numerical experiments were per-
formed with L = 15, K = 30, ¢11 = 0.2, g2 =
0.3, q13 = 0-57 422 = 03, q23 = 07, q31 = 0.8, and
433 = 0.2.

Validation of the noise model — To validate our noise
model, we compared the empirical probability density
function of the singular values of the true noise matrix
against those of our noise model, for the biophysics exam-
ple. To this end, we computed 1,000 true noise matrices
by taking the difference between 1,000 estimates of the
detection matrix from R = 1,000 realizations and the ex-
act detection matrix (with L = 4 and K = 2). Second, we
generated 1, 000 noise matrices from our noise model. For
all of these matrices, we computed their singular values to
obtain their empirical distributions. Fig. 4 compares the
true noise singular values with the modeled noise singu-
lar values. Kolmogorov-Smirnov statistical tests [43] on
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FIG. 3: Number of detected states from the statistical
test as a function of the number of realizations R.
Results of the inference of three behavioral states from
the motion of the bacteria. The error bars represent the
standard deviation over 50 trials.

each couple of distributions failed to reject the null that
the empirical distributions are sampled from the same
distributions (p > 0.12 for all pairwise comparisons).

Testing the assumption of joint Gaussianity — We
showed that the elements in each column are marginally
Gaussian. However, to generate realizations of the noise
matrix for Monte Carlo simulations, we assumed that the
elements in each column are also jointly Gaussian. Given
that the elements are not independent, the accuracy of
this assumption should be verified.

For a jointly Gaussian multivariate distribution of di-
mension d, the Manhabolis distance (between each sam-
ple of the distribution and the distribution) follows a x?
distribution with d degrees of freedom [44]. Hence, to
test for multivariate Gaussianity, we first generated 1,000
noise samples of dimension two. We compared the exact
detection matrix for the biophysics example with 1,000
estimates from a plug-in estimator, based on R = 5,000
realizations with L = 1 (since we are only interested
in the multivariate distribution within one column) and
K = 2. Then, we computed the associated Manhabolis
distances and compared them with a y? distribution with
d = K(M — 1) = 2, using a Quantiles-Quantile (Q-Q)
plot, a common way to quantify the similarity between
two distributions, observed and theoretical.

Fig. 5 shows the Q-Q plot comparing the theoreti-
cal quantiles from the y? distribution and the empiri-
cal quantiles from the measured Manhabolis distances.
The quantiles match perfectly over the whole range, with
small deviations toward the tails. This indicates that the
assumption of joint normality is verified, at least for small
errors. We acknowledge that the assumption of joint nor-
mality could be violated in other scenarios, beyond the
examples considered in this work. In principle, failing
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FIG. 4: Comparison between the probability density
function (pdf) of the singular values of the true noise
matrix and of the singular values from our noise model
for the biophysics problem with L =4 and K = 2.

to satisfy the assumption may generate random matrices
that do not capture the underlying noise distribution.
The extent to which an inaccurate representation of the
noise would strain the algorithm is presently unknown.

C. Physical chemistry

Chemical reactions are often characterized and under-
stood through the lens of stochastic models [45]. En-
zyme reactions, for example, are modeled as Markov
chains [46], where the state of an enzyme molecule varies
stochastically between free enzyme and enzyme attached
to different molecules, such as substrates or products.
We consider the simplest example where there is only one
subtract and one product, such that the Markovian states
are F =1 (free enzyme), EP := 2 (enzyme attached to
product), and ES := 3 (enzyme attached to substrate).
An experimentalist can only distinguish if an enzyme is
free or bonded to another molecule, so that ES and EP
are indistinguishable, such that the model is written as

rqp
P=|pr q|, (18)
qp ]
and the C matrix is
10 0]
C=lo11 (19)
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FIG. 6: Number of detected states from the statistical
test as a function of the number of realizations R.
Results of the inference of the presence of substrate and
product within an enzyme chemical reaction. The error
bars represent the standard deviation over 50 trials.

Our approach allows to infer the presence of substrate
and product within the reaction (Fig. 6). The framework
can be extended to other enzyme kinetics, where multiple
substrates and products interact with the enzyme [47].
The numerical experiments were performed with L =
15, K =30, p=0.5,¢=02,andr=1—p—gq.
Oscillating enzyme reactions — In practice, the dynam-
ics of chemical reactions may be prone to random fluc-
tuations that might change the transition probabilities.
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FIG. 7: Number of states detected using our approach
on a time-inhomogeneous Markov chain describing a
perturbed enzyme reaction. The error bar represents

the standard deviation over 50 trials.

While our framework was derived for time-homogenous
Markov chains, it can be applied to time-inhomogeneous
chains, drawing inspiration from previous efforts on time-
varying deterministic systems [9] that showed that de-
tection matrix-based methods would work even for lin-
ear time-varying systems. We numerically tested our ap-
proach to the enzyme reaction with perturbations to the
transition matrices that will render the Markov chain
time-inhomogeneous. At each time step, we perturbed
matrix P in (18) by adding noise from the uniform dis-
tribution U(0,0.5) and normalizing the rows to ensure
row-stochasticity, thus re-scaling differently the different
transition probabilities. Our approach is able to detect
the presence of a hidden state as shown in Fig. 7. The nu-
merical experiments were performed with L = 15, K =
30, p=05,¢=02,andr=1—p—gq.

D. Epidemiology

We seek to understand whether our methodology can
unravel the presence of unobserved states in a compart-
mental model of a disease. This task is useful in the
early stages of new epidemics, when the infectious dis-
ease is still unknown; for example, during the first wave
of COVID-19, the possibility of infections from asymp-
tomatic individuals was overlooked [48].

We focus on understanding whether a disease has an
“exposed” epidemic state, where a subject is contagious
but does not show symptoms, such that it is indistin-
guishable from a susceptible individual by only moni-
toring symptoms. We consider a susceptible-exposed-
infected-susceptible (SEIS) [49] model, in which exposed
and susceptible epidemic states map to the same output
(that is, no symptoms).



The corresponding hidden Markov chain has three
states (N = 3). Only two states are distinguishable
from measurements of the symptoms (M = 2), such
that the output process would resemble a susceptible-
infected-susceptible (SIS) epidemic spreading [49]. The
Markovian states of the SEIS model are defined as fol-
lows: S =1, F := 2, and [ := 3. The corresponding
transition matrix reads

1-8 B 0
P=| 0 l-a «a |. (20)
A 0 1-2AX

When only observing the symptoms, we cannot distin-
guish between the susceptible and the exposed states,
such that the matrix C is

-l w

Since the system is fully observable for any o # 0
(rank(©) = 3), we can infer the presence of the ex-
posed epidemic state. With R ~ 102 realizations, one
can safely claim that the process is not an SIS and that
there is some hidden state (Fig. 8). We also applied our
statistical framework to a true SIS model, in which all
states are distinguishable (Fig. 8), to ensure that the test
would not overestimate the size of the system. The SIS
Markovian states are defined as S := 1 and I := 2. The
corresponding transition matrix is

P:[1;ﬂ1fA}’ (22)

and the corresponding C is the identity of dimension
two, since both states are observable. Both numerical
experiments were performed with L = 15, K = 30, a =
1/7, 5 =0.3,and A =0.1.

Non-geometrically distributed waiting time — The
waiting time between states in a Markov chain is geo-
metrically distributed [50]. To illustrate the robustness
of the method with respect to other distributions of wait-
ing time (and thus to other stochastic models), we con-
sider an epidemic model where the waiting time has a
Zipf distribution. The corresponding stochastic process
can be regarded as a renewal process, that is, “a Markov
chain whose time scale is randomly transformed” [51].
In particular, we impose that the waiting times between
transitions follow a Zipf distribution. Specifically, we set

1 1

Ny 1/n
where Pr(WT.) = N) is the probability that the system
will remain N € {1,--- ,k¢)} time steps in state (-) and
k(y is the maximum waiting time in state (-). For the
numerical experiment, we set L = 15, K = 30,k =
5, k(g = 10 and k() = 15. Similar to the regular Markov
chains, we tested both SEIS and SIS models. We were
able to detect a hidden state in the SEIS model while no
hidden states were detected from the SIS one, as shown
in Fig. 9.

Pr(WT(y = N) (23)
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FIG. 8: Number of detected states from the statistical
test as a function of the number of realizations R.
Results for the inference of exposed states in epidemic
models. Blue circles correspond to observing SIS from
SEIS dynamics, while orange squares correspond to
observing an actual SIS chain. The error bars represent
the standard deviation over 50 trials.
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FIG. 9: Number of states detected using our approach
on the epidemic models where the transition time does
not follow a geometric distribution. Blue circles
correspond to observing SIS from SEIS dynamics, while
orange squares correspond to observing an actual SIS
chain. The error bar represents the standard deviation
over 50 trials.

E. Comparison of our approach and hard
thresholding to denoise matrices with structured
noise

In our framework, we proposed a method to detect the
correct rank of a matrix corrupted by structured noise.
Here, we numerically demonstrate that our method out-
performs the state-of-the-art, optimal hard thresholding



method developed by Gavish and Donoho when consid-
ering Markov systems [27]. The comparison is performed
by generating random square matrices D € R?*4 of rank
N < d. We then corrupt them with structured noise
to obtain matrices D € R4 on which we apply the
two denoising techniques. To generate a random ma-
trix of specific rank, we first sample a random matrix
D € R¥? with elements from independent uniform dis-
tributions ~ U(0,1), which in general has rank d. We
performed the SVD to get D = UXVT. The diagonal
matrix ¥ contains the ordered singular values. We de-
fine a new diagonal matrix ¥ by setting to zero all the
singular values of 3 after the first N ones. The resulting
matrix D = UXVT is a random matrix of rank N.

After generating a random matrix with a specific rank,
we add a noise matrix with a specific structure to obtain
the final noisy matrices D. The columns of the addi-
tive noise matrix are sampled from a multivariate nor-
mal distribution with zero means and RRT covariance
matrix, where R € R?*? is a random matrix whose ele-
ments are generated from independent uniform distribu-
tions ~ U(—c, ¢), where ¢ modulates the degree to which
the element are correlated. To simulate the structure of
noise of a hidden Markov chain with N states of which
only M are distinguishable, we set subsequent blocks of
length M in each column of the noise matrix to sum to
zero (that is, the first M elements of each column sum
to zero, the following M elements in the column sum to
zero, and so on).

For our numerical experiments, we set N =4, M = 3,
and d = 18. We ran 8,000 simulations while varying c
from 0.01 to 0.3 in 200 equidistant steps, such that for
each ¢ we ran 40 experiments. Out of the 8,000 exper-
iments, our method overestimated the rank only three
times and never underestimated it. The hard threshold
overestimated the rank in 456 experiments (mostly in
low correlation settings) and underestimated it in 5,600
experiments (in high correlation settings), see Table I.
The major difference in the performance is due to the
assumption of independence between the elements of the
additive noise matrix for the optimal hard thresholding
method, an assumption that is not valid for detection
matrices.

Our Approach | Gavish & Donoho [27]

Overestimation rate 0.037 % 5.700 %

Underestimation rate 0.000 % 70.000 %

TABLE I: Comparison of our approach and hard
thresholding to denoise matrices with structured noise.

While the detection matrix we are interested in will al-
ways have a correlated noise structure, the proposed sta-
tistical test is versatile to other noise structures. We of-
fer a fair comparison between the proposed approach and
the hard thresholding method of Gavish and Donoho [27]
where we do not violate their assumptions. Specifically,
to generate a noisy matrix D, we corrupt a matrix D with
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FIG. 10: Inference of the rank of random matrix D, of
true rank equals to 4, from D (D corrupted by white
noise of level o). The orange line represents our
approach while the blue line represents Gavish and
Donoho’s [27]. The shaded region corresponds to the
95% confidence interval.

independently sampled elements from a normal distribu-
tion N (0, 02). For these numerical experiments, we keep
N =4 and d = 18, where we ran 8,000 simulations while
varying o from 0.1 to 0.3 in 200 equidistant steps, such
that for each o we have 40 experiments. The results show
that our method outperforms state-of-the-art for moder-
ate and high levels of noise (o g 0.15) as illustrated in
Fig. 10.

IV. CONCLUSIONS

Inferring the number of states of a stochastic system
is a fundamental problem in physics, for which method-
ological tools are still lacking. In this work, we propose a
statistical technique to estimate the number of states of
a hidden Markov chain from perceptible dynamics. This
approach offers a viable framework not only to infer the
number of states of a stochastic system, but also to de-
noise any matrix corrupted by known structured noise.
Potential extensions of our work could address problems
in quantum mechanics, such as quantum communication
channels [52].

We showed through examples that we can detect the
presence of a hidden state with about R =~ 10? realiza-
tions. To reliably infer the total number of states, more
realizations are sometimes needed (typically, R ~ 103).
We acknowledge that these figures might not be easy to
get from observational data, but, for example, are feasi-
ble in laboratory conditions with automated experimen-
tal apparatuses that allow for generating independent re-
alizations. We recognize that the number of realizations
needed for convergence is not readily available since it de-
pends on the degree of observability of the hidden system



(that is, even if the system is observable, some states are
harder to reconstruct than others). The degree of observ-
ability can be quantitatively evaluated in different ways,
such as the observability Gramian [32] and radius [53].
All the examples considered herein suggest that conver-
gence is monotonic, so that, even if the number of needed
realizations is unknown, the algorithm never overesti-
mates the number of states. Despite these limitations,
our work constitutes a critical first step toward solving a
foundational issue in stochastic dynamical systems.
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