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ABSTRACT

Federated Learning (FL) is a privacy-preserving distributed ma-
chine learning technique that enables individual clients (e.g., user
participants, edge devices, or organizations) to train a model on
their local data in a secure environment and then share the trained
model with an aggregator to build a global model collaboratively. In
this work, we propose FEDDEFENDER, a defense mechanism against
targeted poisoning attacks in FL by leveraging differential testing.
FEDDEFENDER first applies differential testing on clients’ models
using a synthetic input. Instead of comparing the output (predicted
label), which is unavailable for synthetic input, FEDDEFENDER fin-
gerprints the neuron activations of clients’ models to identify a
potentially malicious client containing a backdoor. We evaluate
FEDDEFENDER using MNIST and FashionMNIST datasets with 20
and 30 clients, and our results demonstrate that FEDDEFENDER ef-
fectively mitigates such attacks, reducing the attack success rate
(ASR) to 10% without deteriorating the global model performance.
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1 INTRODUCTION

Federated Learning (FL) trains a global model on decentralized
data from multiple clients without directly accessing their individ-
ual data samples. FL improves model accuracy by leveraging the
combined data from multiple clients and also improves privacy by
keeping individual data samples on the clients’ devices. However,
the decentralized nature of FL makes it vulnerable to targeted poi-
soning attacks (often called backdoor attacks). In such attacks, an
adversarial client manipulates its training data to inject a backdoor
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into a global model. Since the server does not have access to the
raw training data of the clients, such attacks remain hidden until a
trigger is injected into the input. Therefore, it is highly challenging
to detect and defend against backdoor attacks in FL [8, 12].

Prior work [10] on defending against targeted poisoning attacks

in FL has focused on using norm clipping (NormClipping) to detect
and mitigate these attacks. Norm clipping involves computing the
norms of model updates received from clients and rejecting updates
that exceed a certain threshold. This technique has been shown
to be effective in some cases, but it has limitations. For example,
if an attacker carefully crafts the attack such that the norm of
the gradient is not noticeably large, the norm clipping approach
will not be effective in detecting the attack. Therefore, alternative
approaches are needed to defend against targeted poisoning attacks.
Contribution and Key Insight. In this work, we propose FEDDE-
FENDER, a defense against backdoor attacks in federated learning by
leveraging differential testing for FL [4]. FEDDEFENDER minimizes
the impact of a malicious client on the global model by limiting its
contribution to the aggregated global model. Instead of comparing
the predicted label of an input, which is often unavailable in FL,
FEDDEFENDER fingerprints the neuron activations of clients’ models
on the same input and uses differential testing to identify poten-
tial malicious clients. Our insight is that since clients in FL have
homogeneous models trained on similar concepts, their neuron
activations should have some similarities on a given input [4]. At
the central server, if a client’s model displays neuron activation
patterns that significantly differ from other clients (i.e., majority
of clients), such a client’s model may contain a trigger pattern and
can be flagged as potentially malicious.
Evaluations. We evaluate FEDDEFENDER with 20 and 30 FL clients
on MNIST and FashionMNIST datasets. Our results demonstrate
that compared to the norm clipping defense [10], FEDDEFENDER ef-
fectively defends against backdoor attacks and reduces the at-
tack success rate (ASR) to 10% without negatively impacting the
global model accuracy. FEDDEFENDER’s artifact is available at https:
//github.com/warisgill/FedDefender.

2 BACKGROUND AND RELATED WORK

Federated Learning. In Federated Learning (FL), multiple clients
(e.g., mobile devices, smart home devices, and autonomous vehi-
cles) locally train models on their private training data. The trained
client’s model is sent back to a central server (also called an aggrega-
tor). A client’s model comprises a collection of weights connecting
neurons in a neural network. All client models work on structurally
(same number of neurons and layer) same neural network. After
the participating clients’ models are received, the aggregator uses
a fusion algorithm to merge all models into a single global model. A
round in FL starts with the client’s training and ends once a global
model is constructed. Federated Averaging (FedAvg) [7] is a popular
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fusion algorithm that uses the following equation to build a global
model using the client’s models at each round.

K
Withat = 2w )
k=1

Wk(t) and ny represent weights and size of training data of client
k in a given round t, respectively. The variable n represents the
total number of data points from all clients, and it is calculated as
n= lele ng. At the end of the round, the global model is sent back
to all participating clients to be used as a pretrained model in their
local training during the next round. A malicious client sends its
incorrect model after injecting a backdoor during its local training
to manipulate the global model.
Differential Testing. Differential testing is a software testing tech-
nique. It executes two or more comparable programs on the same
test input and compares resulting outputs to identify unexpected
behavior [5]. In prior work, it is used to find bugs in compilers [14],
deep neural networks [9], and faulty clients in FL[4].
Backdoor Attack and Defense. Backdoor attacks in the context
of computer vision refer to a specific type of malicious behavior in
which an attacker injects a “backdoor” into a machine learning (ML)
model during its training [11]. This backdoor allows the attacker to
gain control over the model by providing a specific input that trig-
gers the model to behave in a way that is beneficial to the attacker.
This type of attack is particularly concerning as models are often
used for tasks such as object recognition, and the ability to manip-
ulate these models can have significant real-world consequences.
For example, an attacker could train a model to recognize a stop
sign but also include a hidden trigger that causes misclassification,
leading to unsafe situations in the real world.

In FL, a malicious client k can inject a backdoor to the global
model (W**1) by manipulating its local model Wk(t) . Prior approaches
[8, 12] propose defenses by changing the underlying FL training pro-
tocol (e.g., changes in the FedAvg protocol). Such defenses require
special alterations to work with other FL training protocols such as
FedProx [6] and FedAvg [7]. Sun et al. [10] propose norm clipping
to detect and mitigate these attacks. Norm clipping can degrade
the performance of a global model, and it can be easily bypassed
with carefully crafted attacks. Therefore, alternative approaches
are needed that can be integrated with any fusing algorithm (e.g.,
FedAvg [7], FedProx [6]) without requiring any changes to fusion
protocols and, at the same time, do not impact the performance of
the global model while still protecting against backdoor attacks.

3 THREAT MODEL

We consider a single malicious client (i.e., attacker) participating
in each round (¢). The malicious client k injects a square trigger
pattern (4 x 4) to its nj training images to manipulate its local model
(Wk(t)) during local training. The attacker can increase the strength
of a backdoor attack X times by scaling up its number of training
data points ny (e.g., ng < ng-20) to successfully inject the backdoor
into the global model (W**!) during aggregation (Equation 1). The
goal of the attacker in this threat model is to gain control over the
federated learning model by injecting a backdoor trigger and using
it to manipulate the model’s behavior.
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4 FEDDEFENDER DESIGN

Algorithm 1: FEDDEFENDER Defense

Input: Let client2weights = {wy, wa, ... Wi } be a dictionary that maps k clients to
their models’ parameters

Input: Let N = {ny, ny, ...ng } be number of training examples of k clients

Input: Let test_inputs be a list of inputs

Input: Let 6 be a threshold for malicious confidence

Output: Wi, global model for the next round

client2mal_confidence = Dictionary() // An empty dictionary

min_ny =min(N) // Get a minimum number of training examples
among k clients

for each input_i € test_inputs do

// Find the potential malicious client using FL
differential testing technique [4]

4 potential_mal_client =

FL_Dif ferentialTesting(client2weights, input_i,0)
// Increment the confidence of a potential malicious client
5 | client2mal_confidence[potential_mal client]+ =1

[

@

// Defense by restricting potential malicious clients

contribution

6 for each client € client2mal_confidence do

// Normalize the confidence of each client

7 client2mal_confidence[client] =

client2mal_confidence[client]/len(test_inputs)

// If threshold satisfied, discard malicious client’s
contribution by setting their number of training
examples to @

8 if client2mal_confidence[client] > 0 then

9 | Nlclient] =0

10 else

1 Nclient] = int(min_ng * (1 — client2mal_confidence|client]))

// Reduce training examples if the client seems
less malicious to penalize their contribution to
the global model.

12 W = FedAuvg(client2weights,N) // Compute the global model using
FedAvg
13 return Wi+l

To achieve optimal performance of the global model and protect

its integrity, it is critical to correctly identify the potential malicious
clients and restrict their participation in the global model W*+!
before the aggregation step (Equation 1). Access to clients’ data is
prohibited in FL, and collecting new test data at the central server
has its own challenges. Such challenges make existing backdoor
detection techniques [11] impractical. Thus, backdoor detection in
FL requires a novel solution to mitigate the backdoor attack without
any dependence on real-world test data.
Differential Testing FL Clients. Gill et al. [4] propose a differential
technique to find faulty clients in an FL round training without
requiring access to real-world test inputs. It generates inputs ran-
domly at the central server and compares the behaviors of clients’
models at the neuron level to localize a faulty client. The internal
neuron values of the models are used as a fingerprint of the be-
havior on the given input, and a client is flagged as malicious if its
behavior deviates significantly from the majority of the clients. The
key insight is that the behavior of a malicious client’s model will
be different from that of benign clients, as malicious executions
are inherently different from correct ones. We use a neuron acti-
vation threshold equal to zero to profile the behavior (i.e., neuron
activations) of a client model.

FEDDEFENDER adapts differential testing technique for FL [4] to
detect behavioral discrepancies among clients’ models, with the
aim of identifying potential malicious clients in a given FL training
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Figure 1: The scaling factor increases the strength of the ma-
licious client by increasing the number of training examples,
ng, by a factor of X. This enhances the chances of successfully
injecting a backdoor in the global model W**1,
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(b) FL Setting: FashionMNIST, 30-clients

Figure 2: Comparison of FEDDEFENDER, with the baseline
FedAvg and NormClipping defense mechanisms. Figures in-
dicate that FEDDEFENDER successfully mitigates the attack
and lowers the ASR close to 10% .

round. Algorithm 1 outlines the defense strategy of FEDDEFENDER
against backdoor attacks in FL. The inputs to Algorithm 1 include
the clients’ models (client2weights), a list containing the number of
training examples for each client (N), a set of randomly generated
test inputs (test_inputs), and a threshold for malicious confidence
0. FEDDEFENDER first employs the differential execution technique,
as outlined in [4], to identify a potential malicious client on each
input. It then updates the corresponding client’s malicious score
(lines 3-5). Subsequently, FEDDEFENDER limits the contribution of
a client if its malicious confidence exceeds the specified threshold
0 (lines 6-11). Finally, the global model is computed using the up-
dated contribution of clients (line 12). As an illustration, consider a
scenario in which ten clients are participating in a given FL training
round, the malicious threshold is set at 0.5, and 100 test inputs are
generated. FEDDEFENDER computes the malicious confidence of
all clients. Clients 1, 3, and 7 have malicious confidence scores of
20/100, 60/100, and 20/100, respectively. The remaining clients have
a malicious confidence score of zero. FEDDEFENDER discards the
contribution of client 3 as it exceeds the malicious threshold and
accordingly limits the contributions of the other clients.

5 EVALUATION
We evaluate FEDDEFENDER on (1) Attack Success Rate (ASR) [11]
and (2) classification performance of the global model.
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Dataset, Model, FL Framework. We use MNIST [3] and Fashion-
MNIST [13] datasets. Each dataset contains 60K training and 10K
testing grayscale, 28x28 images spanning ten different classes. The
data is randomly distributed without any overlapping data points
among FL clients. Each client trains a convolutional neural network
(CNN). The CNN architecture is outlined in [1]. We set the learning
rate to 0.001, epochs equal to 5 and 15, batch size of 32, and trained
each configuration for at least 10 rounds. We implement our ap-
proach in Flower FL framework [2]. We run our experiments on
AMD 16-core processor with 128 GB RAM.

Evaluation Metrics. We used the attack success rate (ASR) [11]
and classification accuracy of the global model to compare FEDDE-
FENDER with norm clipping defense [10].

Backdoor Attack Strength. The strength of a backdoor attack
(on the global model W¥*1) can be evaluated by considering the
injection of a 4x4 trigger pattern into the training data of a mali-
cious client, as well as the scaling of the number of examples used
for such injection. Figure 1 demonstrates the effect of varying at-
tack scales on the attack success rate (ASR) in an FL configuration
consisting of 20 clients with the FashionMNIST dataset. Without
scaling, i.e., Attack Scale = 5%, a malicious client is unable to inject
a backdoor into the global model successfully. For the remaining
experiments, a 20X scale is used to represent the maximum strength
of the backdoor attack.

Backdoor Defense Evaluation. We compare FEDDEFENDER with
the baseline Federated Averaging (FedAvg) algorithm (i.e., without
any defense) [7] and the NormClipping defense mechanism [10],
using 30 FL clients configurations. The MNIST and FashionMNIST
datasets are used in these experiments. Each setting is trained for
14 rounds, with 5 epochs in each round. The results of these experi-
ments are illustrated in Figure 2, with the x-axis representing the
number of training rounds and the y-axis representing the accuracy.
The attack success rate (ASR) and classification accuracy are used
to compare FEDDEFENDER with the baseline and NormClipping
defense mechanisms. A lower ASR indicates that the malicious
client is unable to manipulate the global model behavior using its
backdoor. As shown in Figures 2, the NormClipping defense fails
to provide any defense against the backdoor attack and also nega-
tively impacts the global model’s (W**1) classification accuracy. In
contrast, FEDDEFENDER successfully mitigates the attack and low-
ers the ASR close to 10% without deteriorating the global model’s
classification accuracy.

Malicious Confidence Threshold (0). The impact of the malicious
confidence threshold () in Algorithm 1 on the mitigation of the
backdoor attack is also examined. Figure 3 shows the results of
this analysis, using an FL configuration of 20 clients trained on the
MNIST dataset. Each client model is trained for 15 epochs. Figure 3
illustrates that unless the potential malicious client is penalized
aggressively, FEDDEFENDER is incapable of mitigating the attack. To
aggressively penalize a client, the client’s contribution is ignored
before aggregation (lines 8-11 of Algorithm 1).

attacks without impacting the global model accuracy.

Takeaway: FEDDEFENDER successfully protects against backdoor]

FEDDEFENDER False Positive Rate. We evaluate the false positive
rate to assess the impact of FEDDEFENDER on the global model’s



SE4SafeML ’23, December 4, 2023, San Francisco, CA, USA

classification accuracy using a federated learning (FL) setting of 20
clients and the FashionMNIST dataset. In this scenario, all clients
are benign, that is, there is no malicious client present. As shown
in Figure 4, FEDDEFENDER hardly produces any false positives and
demonstrates similar performance as the baseline Federated Aver-
aging (FedAvg) and NormClipping defense mechanisms.

Takeaway: FEDDEFENDER does not impact the global model
accuracy, even if there is no malicious client.

Threat to Validity. To address potential threats to external va-
lidity, we perform experiments on two standardized FL datasets.
Additionally, to mitigate potential threats arising from randomness
in the FEDDEFENDER’s random input generation, we evaluate each
configuration on at least 100 random test inputs to compute the
malicious confidence of a client. Despite these measures, certain
threats to the validity of the experiments, such as variations in data
distribution across clients, neuron activation threshold (default is
zero), size of random test input, and type of convolutional neural
networks (CNNs) may still exist. Future research will explore these
potential threats in greater detail.

[ Attack Success Rate (ASR) - Model Classification Accuracy |

a) Baseline FedAvg b) FedAvg + NormClipping ¢) FedAvg + FedDefender
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Figure 3: Evaluation of the impact of the malicious confi-
dence threshold. FEDDEFENDER is unable to mitigate the
attack if the potential malicious client is not aggressively
penalized.
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Figure 4: FEDDEFENDER performs similarly to FedAvg and
NormClipping without penalizing benign clients.

6 FUTURE WORK AND CONCLUSION

Future Work. In future work, we propose to evaluate the poten-
tial of FEDDEFENDER by assessing its performance under various
FL training settings. This could include varying the number of
malicious clients, the number of training epochs, and data distri-
bution across clients (i.e., non-IID data distributions). Additionally,
efforts could be made to further improve the detection capabilities
of FEDDEFENDER, allowing precise identification of multiple mali-
cious clients and reverse engineering their corresponding backdoor
trigger patterns.
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Another avenue of research would be to analyze the aggregation

overhead of FEDDEFENDER compared to traditional aggregation pro-
tocols in FL. Extending the applicability of FEDDEFENDER to other
model architectures, such as Transformers, which are commonly
used in natural language processing tasks and speech recognition
models, could be explored. Finally, incorporating realistic synthetic
test inputs generated using generative adversarial networks (GANs)
into the evaluation process could provide further insight into the
performance of FEDDEFENDER.
Conclusion. Our position is that traditional software testing prin-
ciples have matured over the years and have provably improved the
state of testing software; therefore, FL should benefit from similar
advancements. In this work, we propose FEDDEFENDER, a defense
mechanism against targeted poisoning attacks in FL that utilizes
random test generation with differential testing. We demonstrate
that FEDDEFENDER effectively detects and mitigates such attacks,
reducing the ASR to 10% without negatively impacting the global
model accuracy. Our results show that FEDDEFENDER is more ef-
fective than the norm clipping defense and the baseline Federated
Averaging (FedAvg) algorithm.
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