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ABSTRACT

Federated Learning (FL) is a privacy-preserving distributed ma-

chine learning technique that enables individual clients (e.g., user

participants, edge devices, or organizations) to train a model on

their local data in a secure environment and then share the trained

model with an aggregator to build a global model collaboratively. In

this work, we propose FedDefender, a defense mechanism against

targeted poisoning attacks in FL by leveraging di�erential testing.

FedDefender �rst applies di�erential testing on clients’ models

using a synthetic input. Instead of comparing the output (predicted

label), which is unavailable for synthetic input, FedDefender �n-

gerprints the neuron activations of clients’ models to identify a

potentially malicious client containing a backdoor. We evaluate

FedDefender using MNIST and FashionMNIST datasets with 20

and 30 clients, and our results demonstrate that FedDefender ef-

fectively mitigates such attacks, reducing the attack success rate

(ASR) to 10% without deteriorating the global model performance.
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1 INTRODUCTION

Federated Learning (FL) trains a global model on decentralized

data from multiple clients without directly accessing their individ-

ual data samples. FL improves model accuracy by leveraging the

combined data from multiple clients and also improves privacy by

keeping individual data samples on the clients’ devices. However,

the decentralized nature of FL makes it vulnerable to targeted poi-

soning attacks (often called backdoor attacks). In such attacks, an

adversarial client manipulates its training data to inject a backdoor
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into a global model. Since the server does not have access to the

raw training data of the clients, such attacks remain hidden until a

trigger is injected into the input. Therefore, it is highly challenging

to detect and defend against backdoor attacks in FL [8, 12].

Prior work [10] on defending against targeted poisoning attacks

in FL has focused on using norm clipping (NormClipping) to detect

and mitigate these attacks. Norm clipping involves computing the

norms of model updates received from clients and rejecting updates

that exceed a certain threshold. This technique has been shown

to be e�ective in some cases, but it has limitations. For example,

if an attacker carefully crafts the attack such that the norm of

the gradient is not noticeably large, the norm clipping approach

will not be e�ective in detecting the attack. Therefore, alternative

approaches are needed to defend against targeted poisoning attacks.

Contribution and Key Insight. In this work, we propose FedDe-

fender, a defense against backdoor attacks in federated learning by

leveraging di�erential testing for FL [4]. FedDefender minimizes

the impact of a malicious client on the global model by limiting its

contribution to the aggregated global model. Instead of comparing

the predicted label of an input, which is often unavailable in FL,

FedDefender �ngerprints the neuron activations of clients’ models

on the same input and uses di�erential testing to identify poten-

tial malicious clients. Our insight is that since clients in FL have

homogeneous models trained on similar concepts, their neuron

activations should have some similarities on a given input [4]. At

the central server, if a client’s model displays neuron activation

patterns that signi�cantly di�er from other clients (i.e., majority

of clients), such a client’s model may contain a trigger pattern and

can be �agged as potentially malicious.

Evaluations. We evaluate FedDefender with 20 and 30 FL clients

on MNIST and FashionMNIST datasets. Our results demonstrate

that compared to the norm clipping defense [10], FedDefender ef-

fectively defends against backdoor attacks and reduces the at-

tack success rate (ASR) to 10% without negatively impacting the

global model accuracy. FedDefender’s artifact is available at https:

//github.com/warisgill/FedDefender.

2 BACKGROUND AND RELATEDWORK
Federated Learning. In Federated Learning (FL), multiple clients

(e.g., mobile devices, smart home devices, and autonomous vehi-

cles) locally train models on their private training data. The trained

client’s model is sent back to a central server (also called an aggrega-

tor). A client’s model comprises a collection of weights connecting

neurons in a neural network. All client models work on structurally

(same number of neurons and layer) same neural network. After

the participating clients’ models are received, the aggregator uses

a fusion algorithm to merge all models into a single global model. A

round in FL starts with the client’s training and ends once a global

model is constructed. Federated Averaging (FedAvg) [7] is a popular

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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fusion algorithm that uses the following equation to build a global

model using the client’s models at each round.

, C+1
6;>10;

=

 ∑

:=1

=:
=
,
(C )

:
(1)

,
(C )

:
and =: represent weights and size of training data of client

: in a given round C , respectively. The variable = represents the

total number of data points from all clients, and it is calculated as

= =

∑ 
:=1

=: . At the end of the round, the global model is sent back

to all participating clients to be used as a pretrained model in their

local training during the next round. A malicious client sends its

incorrect model after injecting a backdoor during its local training

to manipulate the global model.

Di�erential Testing. Di�erential testing is a software testing tech-

nique. It executes two or more comparable programs on the same

test input and compares resulting outputs to identify unexpected

behavior [5]. In prior work, it is used to �nd bugs in compilers [14],

deep neural networks [9], and faulty clients in FL[4].

Backdoor A�ack and Defense. Backdoor attacks in the context

of computer vision refer to a speci�c type of malicious behavior in

which an attacker injects a “backdoor” into a machine learning (ML)

model during its training [11]. This backdoor allows the attacker to

gain control over the model by providing a speci�c input that trig-

gers the model to behave in a way that is bene�cial to the attacker.

This type of attack is particularly concerning as models are often

used for tasks such as object recognition, and the ability to manip-

ulate these models can have signi�cant real-world consequences.

For example, an attacker could train a model to recognize a stop

sign but also include a hidden trigger that causes misclassi�cation,

leading to unsafe situations in the real world.

In FL, a malicious client : can inject a backdoor to the global

model (, C+1) bymanipulating its localmodel,
(C )

:
. Prior approaches

[8, 12] propose defenses by changing the underlying FL training pro-

tocol (e.g., changes in the FedAvg protocol). Such defenses require

special alterations to work with other FL training protocols such as

FedProx [6] and FedAvg [7]. Sun et al. [10] propose norm clipping

to detect and mitigate these attacks. Norm clipping can degrade

the performance of a global model, and it can be easily bypassed

with carefully crafted attacks. Therefore, alternative approaches

are needed that can be integrated with any fusing algorithm (e.g.,

FedAvg [7], FedProx [6]) without requiring any changes to fusion

protocols and, at the same time, do not impact the performance of

the global model while still protecting against backdoor attacks.

3 THREAT MODEL

We consider a single malicious client (i.e., attacker) participating

in each round (C ). The malicious client : injects a square trigger

pattern (4 x 4) to its=: training images to manipulate its local model

(,
(C )

:
) during local training. The attacker can increase the strength

of a backdoor attack - times by scaling up its number of training

data points=: (e.g.,=: ← =: ·20) to successfully inject the backdoor

into the global model (, C+1) during aggregation (Equation 1). The

goal of the attacker in this threat model is to gain control over the

federated learning model by injecting a backdoor trigger and using

it to manipulate the model’s behavior.

4 FEDDEFENDER DESIGN

Algorithm 1: FedDefender Defense

Input: Let 2;84=C2F486ℎCB = {F1, F2, ...F: } be a dictionary that maps k clients to
their models’ parameters

Input: Let # = {=1, =2, ...=: } be number of training examples of k clients
Input: Let C4BC_8=?DCB be a list of inputs
Input: Let \ be a threshold for malicious con�dence

Output:, C+1 : global model for the next round

1 2;84=C2<0;_2>=5 834=24 = �82C8>=0A~ ( ) // An empty dictionary

2 <8=_=: =<8= (# ) // Get a minimum number of training examples

among k clients

3 for each 8=?DC_8 ∈ C4BC_8=?DCB do

// Find the potential malicious client using FL

differential testing technique [4]

4 ?>C4=C80;_<0;_2;84=C =

�!_�85 5 4A4=C80;)4BC8=6 (2;84=C2F486ℎCB, 8=?DC_8, 0)

// Increment the confidence of a potential malicious client

5 2;84=C2<0;_2>=5 834=24 [?>C4=C80;_<0;_2;84=C ]+ = 1

// Defense by restricting potential malicious clients

contribution

6 for each 2;84=C ∈ 2;84=C2<0;_2>=5 834=24 do

// Normalize the confidence of each client

7 2;84=C2<0;_2>=5 834=24 [2;84=C ] =

2;84=C2<0;_2>=5 834=24 [2;84=C ]/;4= (C4BC_8=?DCB )

// If threshold satisfied, discard malicious client’s

contribution by setting their number of training

examples to 0

8 if 2;84=C2<0;_2>=5 834=24 [2;84=C ] > \ then
9 # [2;84=C ] = 0

10 else
11 # [2;84=C ] = 8=C (<8=_=: ∗ (1 − 2;84=C2<0;_2>=5 834=24 [2;84=C ] ) )

// Reduce training examples if the client seems

less malicious to penalize their contribution to

the global model.

12 , C+1
= �43�E6 (2;84=C2F486ℎCB, # ) // Compute the global model using

FedAvg

13 return, C+1

To achieve optimal performance of the global model and protect

its integrity, it is critical to correctly identify the potential malicious

clients and restrict their participation in the global model, C+1

before the aggregation step (Equation 1). Access to clients’ data is

prohibited in FL, and collecting new test data at the central server

has its own challenges. Such challenges make existing backdoor

detection techniques [11] impractical. Thus, backdoor detection in

FL requires a novel solution to mitigate the backdoor attack without

any dependence on real-world test data.

Di�erential Testing FL Clients.Gill et al. [4] propose a di�erential

technique to �nd faulty clients in an FL round training without

requiring access to real-world test inputs. It generates inputs ran-

domly at the central server and compares the behaviors of clients’

models at the neuron level to localize a faulty client. The internal

neuron values of the models are used as a �ngerprint of the be-

havior on the given input, and a client is �agged as malicious if its

behavior deviates signi�cantly from the majority of the clients. The

key insight is that the behavior of a malicious client’s model will

be di�erent from that of benign clients, as malicious executions

are inherently di�erent from correct ones. We use a neuron acti-

vation threshold equal to zero to pro�le the behavior (i.e., neuron

activations) of a client model.

FedDefender adapts di�erential testing technique for FL [4] to

detect behavioral discrepancies among clients’ models, with the

aim of identifying potential malicious clients in a given FL training

7
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Figure 1: The scaling factor increases the strength of the ma-

licious client by increasing the number of training examples,

=: , by a factor of- . This enhances the chances of successfully

injecting a backdoor in the global model, C+1.
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(a) FL Setting: MNIST, 30-clients
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(b) FL Setting: FashionMNIST, 30-clients

Figure 2: Comparison of FedDefender, with the baseline

FedAvg and NormClipping defense mechanisms. Figures in-

dicate that FedDefender successfully mitigates the attack

and lowers the ASR close to 10% .

round. Algorithm 1 outlines the defense strategy of FedDefender

against backdoor attacks in FL. The inputs to Algorithm 1 include

the clients’ models (2;84=C2F486ℎCB), a list containing the number of

training examples for each client (# ), a set of randomly generated

test inputs (C4BC_8=?DCB), and a threshold for malicious con�dence

\ . FedDefender �rst employs the di�erential execution technique,

as outlined in [4], to identify a potential malicious client on each

input. It then updates the corresponding client’s malicious score

(lines 3-5). Subsequently, FedDefender limits the contribution of

a client if its malicious con�dence exceeds the speci�ed threshold

\ (lines 6-11). Finally, the global model is computed using the up-

dated contribution of clients (line 12). As an illustration, consider a

scenario in which ten clients are participating in a given FL training

round, the malicious threshold is set at 0.5, and 100 test inputs are

generated. FedDefender computes the malicious con�dence of

all clients. Clients 1, 3, and 7 have malicious con�dence scores of

20/100, 60/100, and 20/100, respectively. The remaining clients have

a malicious con�dence score of zero. FedDefender discards the

contribution of client 3 as it exceeds the malicious threshold and

accordingly limits the contributions of the other clients.

5 EVALUATION
We evaluate FedDefender on (1) Attack Success Rate (ASR) [11]

and (2) classi�cation performance of the global model.

Dataset, Model, FL Framework.We use MNIST [3] and Fashion-

MNIST [13] datasets. Each dataset contains 60K training and 10K

testing grayscale, 28x28 images spanning ten di�erent classes. The

data is randomly distributed without any overlapping data points

among FL clients. Each client trains a convolutional neural network

(CNN). The CNN architecture is outlined in [1]. We set the learning

rate to 0.001, epochs equal to 5 and 15, batch size of 32, and trained

each con�guration for at least 10 rounds. We implement our ap-

proach in Flower FL framework [2]. We run our experiments on

AMD 16-core processor with 128 GB RAM.

Evaluation Metrics. We used the attack success rate (ASR) [11]

and classi�cation accuracy of the global model to compare FedDe-

fender with norm clipping defense [10].

Backdoor A�ack Strength. The strength of a backdoor attack

(on the global model, C+1) can be evaluated by considering the

injection of a 4x4 trigger pattern into the training data of a mali-

cious client, as well as the scaling of the number of examples used

for such injection. Figure 1 demonstrates the e�ect of varying at-

tack scales on the attack success rate (ASR) in an FL con�guration

consisting of 20 clients with the FashionMNIST dataset. Without

scaling, i.e.,�CC02: (20;4 = 5×, a malicious client is unable to inject

a backdoor into the global model successfully. For the remaining

experiments, a 20× scale is used to represent the maximum strength

of the backdoor attack.

Backdoor Defense Evaluation.We compare FedDefender with

the baseline Federated Averaging (FedAvg) algorithm (i.e., without

any defense) [7] and the #>A<�;8??8=6 defense mechanism [10],

using 30 FL clients con�gurations. The MNIST and FashionMNIST

datasets are used in these experiments. Each setting is trained for

14 rounds, with 5 epochs in each round. The results of these experi-

ments are illustrated in Figure 2, with the x-axis representing the

number of training rounds and the y-axis representing the accuracy.

The attack success rate (ASR) and classi�cation accuracy are used

to compare FedDefender with the baseline and #>A<�;8??8=6

defense mechanisms. A lower ASR indicates that the malicious

client is unable to manipulate the global model behavior using its

backdoor. As shown in Figures 2, the #>A<�;8??8=6 defense fails

to provide any defense against the backdoor attack and also nega-

tively impacts the global model’s (, C+1) classi�cation accuracy. In

contrast, FedDefender successfully mitigates the attack and low-

ers the ASR close to 10% without deteriorating the global model’s

classi�cation accuracy.

Malicious Con�dence Threshold (\ ). The impact of the malicious

con�dence threshold (\ ) in Algorithm 1 on the mitigation of the

backdoor attack is also examined. Figure 3 shows the results of

this analysis, using an FL con�guration of 20 clients trained on the

MNIST dataset. Each client model is trained for 15 epochs. Figure 3

illustrates that unless the potential malicious client is penalized

aggressively, FedDefender is incapable of mitigating the attack. To

aggressively penalize a client, the client’s contribution is ignored

before aggregation (lines 8-11 of Algorithm 1).

Takeaway: FedDefender successfully protects against backdoor

attacks without impacting the global model accuracy.

FedDefender False Positive Rate.We evaluate the false positive

rate to assess the impact of FedDefender on the global model’s

8
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classi�cation accuracy using a federated learning (FL) setting of 20

clients and the FashionMNIST dataset. In this scenario, all clients

are benign, that is, there is no malicious client present. As shown

in Figure 4, FedDefender hardly produces any false positives and

demonstrates similar performance as the baseline Federated Aver-

aging (FedAvg) and #>A<�;8??8=6 defense mechanisms.

Takeaway: FedDefender does not impact the global model

accuracy, even if there is no malicious client.

Threat to Validity. To address potential threats to external va-

lidity, we perform experiments on two standardized FL datasets.

Additionally, to mitigate potential threats arising from randomness

in the FedDefender’s random input generation, we evaluate each

con�guration on at least 100 random test inputs to compute the

malicious con�dence of a client. Despite these measures, certain

threats to the validity of the experiments, such as variations in data

distribution across clients, neuron activation threshold (default is

zero), size of random test input, and type of convolutional neural

networks (CNNs) may still exist. Future research will explore these

potential threats in greater detail.

2 4 6 8 10 12 14 16
0

20

40

60

80

100

Training Round

A
cc
u
ra
cy

(%
)

a) Baseline FedAvg

2 4 6 8 10 12 14 16
0

20

40

60

80

100

Training Round

b) FedAvg + NormClipping

Attack Success Rate (ASR) Model Classi�cation Accuracy

2 4 6 8 10 12 14 16
0

20

40

60

80

100

Training Round

c) FedAvg + FedDefender

Figure 3: Evaluation of the impact of the malicious con�-

dence threshold. FedDefender is unable to mitigate the

attack if the potential malicious client is not aggressively

penalized.
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Figure 4: FedDefender performs similarly to FedAvg and

NormClipping without penalizing benign clients.

6 FUTUREWORK AND CONCLUSION

Future Work. In future work, we propose to evaluate the poten-

tial of FedDefender by assessing its performance under various

FL training settings. This could include varying the number of

malicious clients, the number of training epochs, and data distri-

bution across clients (i.e., non-IID data distributions). Additionally,

e�orts could be made to further improve the detection capabilities

of FedDefender, allowing precise identi�cation of multiple mali-

cious clients and reverse engineering their corresponding backdoor

trigger patterns.

Another avenue of research would be to analyze the aggregation

overhead of FedDefender compared to traditional aggregation pro-

tocols in FL. Extending the applicability of FedDefender to other

model architectures, such as Transformers, which are commonly

used in natural language processing tasks and speech recognition

models, could be explored. Finally, incorporating realistic synthetic

test inputs generated using generative adversarial networks (GANs)

into the evaluation process could provide further insight into the

performance of FedDefender.

Conclusion. Our position is that traditional software testing prin-

ciples have matured over the years and have provably improved the

state of testing software; therefore, FL should bene�t from similar

advancements. In this work, we propose FedDefender, a defense

mechanism against targeted poisoning attacks in FL that utilizes

random test generation with di�erential testing. We demonstrate

that FedDefender e�ectively detects and mitigates such attacks,

reducing the ASR to 10% without negatively impacting the global

model accuracy. Our results show that FedDefender is more ef-

fective than the norm clipping defense and the baseline Federated

Averaging (FedAvg) algorithm.
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