
Statistical Privacy and Consent in Data Aggregation
Nick Scope

DePaul University
Chicago, IL, USA

nscope52884@gmail.com

Alexander Rasin
DePaul University
Chicago, IL, USA

arasin@cdm.depaul.edu

Ben Lenard
DePaul University

Argonne National Laboratory
Chicago, IL, USA
blenard@anl.gov

James Wagner
University of New Orleans
New Orleans, LA, USA
jwagner4@uno.edu

Abstract
As new laws governing management of personal data are intro-
duced, e.g., the European Union’s General Data Protection Regu-
lation of 2016 and the California Consumer Privacy Act of 2018,
compliance with data governance legislation is becoming an in-
creasingly important aspect of data management. An important
component of many data privacy laws is that they require compa-
nies to only use an individual’s data for a purpose the individual
has explicitly consented to. Prior methods for enforcing consent
for aggregate queries either use access control to eliminate data
without consent from query evaluation or apply differential privacy
algorithms to inject synthetic noise into the outcomes of queries
(or input data) to ensure that the anonymity of non-consenting
individuals is preserved with high probability. Both approaches
return query results that differ from the ground truth results cor-
responding to the full input containing data from both consenting
and non-consenting individuals. We present an alternative frame-
work for group-by aggregate queries, tailored for applications, e.g.,
medicine, where even a small deviation from the correct answer
to a query cannot be tolerated. Our approach uses provenance to
determine, for each output tuple of a group-by aggregate query,
which individual’s data was used to derive the result for this group.
We then use statistical tests to determine how likely it is that the
presence of data for a non-consenting individual will be revealed
by such an output tuple. We filter out tuples for which this test fails,
i.e., which are deemed likely to reveal non-consenting data. Thus,
our approach always returns a subset of the ground truth query
answers. Our experiments successfully return only 100% accurate
results in instances where access control or differential privacy
would have either returned less total or less accurate results.

CCS Concepts
• Security and privacy→ Data anonymization and sanitiza-
tion; Information accountability and usage control; • Mathematics
of computing → Probability and statistics; Statistical software.

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only. Request permissions
from owner/author(s).
SSDBM 2024, July 10–12, 2024, Rennes, France
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1020-9/24/07
https://doi.org/10.1145/3676288.3676298

Keywords
GDPR, Compliance, Processing consent, Privacy

ACM Reference Format:
Nick Scope, Alexander Rasin, Ben Lenard, and James Wagner. 2024. Statis-
tical Privacy and Consent in Data Aggregation. In 36th International Con-
ference on Scientific and Statistical Database Management (SSDBM 2024),
July 10–12, 2024, Rennes, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3676288.3676298

1 Introduction
Laws are currently being passed and refined, placing new restric-
tions on how organizations have to store, process, and destroy cus-
tomer data to improve consumer privacy. Two examples of these
new laws are the European General Data Protection Regulation
(GDPR) [2] and the California Consumer Privacy Act (CCPA) [1].
Among other restrictions, these laws require that organizations
only use an individual’s data for purposes the individual has explic-
itly consented to. Organizations which do not comply with these
consent requirements are subject to heavy fines. For example, in
2020 a e28.7 million fine was imposed on the Italian communica-
tions company TIM [3] for (among other things) using customer
data for marketing without having customer’s consent for using
their data for marketing purposes. To avoid such fines and comply
with legislation, organizations must implement data privacy sup-
port for compliant data processing. For example, GDPR outlines
multiple requirements for processing customer data. Any business
with customers in the European Union must comply with GDPR
requirements, regardless of where the organization is headquar-
tered [2]. GDPR Article 6 outlines when and how an organization
can process customer’s personal data: “the data subject has given
consent to the processing of his or her personal data for one or more
specific purposes;”. Only in a few cases can consent be assumed;
for example, one may use customer’s address to ship the order for
which the address was provided without collecting explicit consent.
GDPR is one of several laws that may apply to data processing
in an organization. Many organizations target satisfying GDPR
requirements as a way to ensure compliance with all other policy
sources, because GDPR typically has the strictest requirements.

In this paper, we propose and evaluate a statistical privacy-
preserving framework for group-by aggregate queries over data
from individuals that have consented for their data to be used for

SSDBM 2024, July 10–12, 2024, Rennes, France Scope et al.

SQL

DBMS

GProM
GSQL

Test for
Compliance

Figure 1: Summary of consent validation steps. GProM is a
middleware created by Arab et al. [8] that computes prove-
nance in relational databases.

specific purposes. We consider the following setting. An organiza-
tion has collected data from a set of individuals I. Each individual
I whose data 𝐷𝐼 was collected by the organization, has consented
for this data to be used for a set of purposes 𝑃𝐼 which is a subset
of a set P of possible purposes relevant to the organization.1 Each
query 𝑄 run by the organization is associated with a purpose 𝑝 . 2
Based on each individual’s set of consented purposes 𝑃𝐼 , we can
now distinguish between tuples from individuals that consented to
the query’s purpose (𝐷C =

⋃
𝐼 ∈I:𝑝∈𝑃𝐼 𝐷𝐼) and those who do not

(𝐷N = 𝐷 − 𝐷C). Thus, each tuple from the database 𝐷 falls into
either of these two categories:

𝐷 = 𝐷C ∪ 𝐷N

We define consent-abiding query processing for a group-by query
𝑄 as returning a filtered answer 𝐴C ⊆ 𝑄 (𝐷) such that for each
tuple 𝑡 ∈ 𝐴C (the result for one group) we can demonstrate that it
is unlikely that information from any non-consenting individuals
that contributed to the result 𝑡 (i.e., that belong to the provenance
of 𝑡 , get exposed by 𝑡). We test for leakage of information from
non-consenting individuals by analyzing whether the inclusion of
data from the individual can be inferred from the distribution of
input values for the aggregation of the group for tuple 𝑡 . While the
user issuing the query will only observe the aggregated result 𝑡 ,
testing that the existence of data from a non-consenting individ-
ual is unlikely to be inferred from the input data for a group is a
strictly stronger condition that prevents privacy violations when
the user running the query has background knowledge about the
distribution of values in a group. We test whether it is safe to return
𝑡 as follows. First, we verify the number of individuals contributing
to the aggregation result for 𝑡 is sufficiently large, so that subse-
quent calculations have a large enough dataset to execute reliable
statistical testing to verify privacy. If so, we perform a statistical
test on the distributions used in query’s aggregations to verify that
the distribution for any single non-consenting individual does not
meaningfully differ from the other individuals in the correspond-
ing group for 𝑡 . Although this framework is agnostic, we use both
sample size and goodness-of-fit tests to ensure privacy is preserved
for non-consenting customers.

1We assume here that the set P is static. However, the techniques we develop are also
applicable when new purposes are added to P over time.
2Our approach can trivially be extended to allow queries that are associated with
multiple purposes 𝑃𝑄 . The only impact this change would have on our approach is
that we would have to test whether 𝑃𝑄 ⊆ 𝑃

Prior work (e.g., [22, 23]) has approached the problem of consent-
abiding query processing as an extension to access control. For ex-
ample, if the query purpose is 𝑝 =“marketing”, the records of individ-
uals I which do not have consented for marketing (𝑚𝑎𝑟𝑘𝑒𝑡𝑖𝑛𝑔 ∉ 𝑃𝐼)
are excluded from the query’s input. Although this guarantees com-
pliance, this approach will produce results for a group that differ
significantly from the ground truth, the result computed for the
group over the full database containing data from both consenting
and non-consenting customers. In some domains (e.g., healthcare),
inaccurate query results (even those off by fractions of a percent),
may not satisfy data accuracy requirements. In contrast, our ap-
proach excludes results that are deemed privacy risks with regard
to consent, but every tuple returned is part of the ground truth
query answer 𝑄 (𝐷).

Figure 1 shows our consent verification process. UsingGProM [8],
for each group (corresponding to a result tuple 𝑡), we calculate its
provenance, i.e., the input tuples from 𝐷 that contributed to the
group. Furthermore, we determine which of these tuples belong
to data from consenting / non-consenting individuals. Using the
source tuples, we implement the necessary statistical testing to
determine whether each aggregation calculation can be considered
sufficiently privacy preserving. In sum, our contributions are:

(1) We outline the requirements a database must support to
guarantee consent compliance in data processing

(2) We develop a framework for consent-abiding query process-
ing that preserves privacy of non-consenting individuals
with high probability by removing query result tuples for
which we cannot guarantee with high likelihood that the pri-
vacy of non-consenting individuals is preserved. Instead of
perturbing query results, as is the case for DP mechanisms
and access control based solutions, we return a subset of
the ground truth query results. Our approach utilizes well-
known statistical tests to determine whether the distribution
of input values for aggregation for a group is significantly
affected by the data of a non-consenting individual.

(3) We implement this framework in a relational DBMS (Post-
greSQL) to evaluate its overhead and validate compliant
processing.

2 Privacy Requirements
2.1 Domain Terminology
Anonymous Data: GDPR Recital 26 defines anonymized data as
“information which does not relate to an identified or identifiable
natural person or to personal data rendered anonymous in such
a manner that the data subject is not or no longer identifiable”
[2]. Therefore, in this paper, we check whether a customer can be
statistically detected (by identifying the presence of their value in
aggregate output) without using additional information [2].

Business Record: Data governance policies operate in terms of
“business record” units. In a database, a business record may span
combinations of rows across multiple tables (e.g., a purchase order
consisting of a buyer, a product, and the purchase transaction from
three different tables). In this paper, we use select-project-join (SPJ)
views to define business record units.

Statistical Privacy and Consent in Data Aggregation SSDBM 2024, July 10–12, 2024, Rennes, France

2.2 GDPR Processing
Not all types of processing of customer data requires explicit con-
sent. For example, an organization does not need consent to use
a customer’s address for the purpose of shipping the order, after
the customer placed the order and provided their shipping address.
Thus, not all queries will require consent validation.

Storage requirements with privacy laws are different than pro-
cessing requirements. An organization can store data to process it
for the purpose for which it was collected, but this does not neces-
sarily mean that the organization can process the data for another
purpose. For example, a company may store a customer’s address to
ship them an order; conversely, using this address to send market-
ing materials may result in a privacy compliance violation (without
explicit permission). We consider data storage privacy compliance
functionality research to be beyond the scope of this paper.

With respect to processing, GDPR defines pseudonymisation as
“the processing of personal data in such a manner that the personal
data can no longer be attributed to a specific data subject without
the use of additional information, [and] the personal data are not
attributed to an identified or identifiable natural person” [2]. If the
underlying customers are not identified by the query output, there is
no need to verify consent for the business records used in processing.
However, simply because customer data is aggregated does not
automatically mean that their data is sufficiently unidentifiable. A
sufficiently small or sufficiently skewed input sample may allow
inferring identifying information about the underlying customers.
This framework provides a statistical approach to probabilistically
determine if there is a risk of being able to infer information about
the customers contributing to an aggregation.

2.3 Related Work
Ataullah et al. [9] developed a compliance framework that enforces
data retention policies, blocking the deletion of records that are
protected by data retention rules. They defined protection policies
as a SQL query, using SPJ views. Scope et al. [24] used a similar
approach to define compliance policies for purging of data. Neither
of these frameworks limit how business records can be used.

Wuyts et al. [27] implemented access control to achieve consent
compliance in healthcare data. Although this does guarantee that
non-consenting data is not processed, access control may overly
filter data, affecting the output query’s correctness and usefulness.
Our framework only filters out data of the entire aggregation if the
result would risk the privacy of the contributing customers. With
access control, either the result would be filtered (matching our
restrictiveness) or a subset of the input would be filtered, biasing the
results. Pappachan et al. [23] used a framework to rewrite queries to
enforce privacy processing compliance via access control, limiting
query access to data whose owner has not given consent.We expand
on access control mechanisms by implementing statistical testing
to verify exposure risk. Our goal is to maximize query correctness
by returning precise aggregation results or excluding the individual
non-compliant aggregation results if that’s not possible.

Brahem et al. [10], discussed how to protect consent by requiring
a ℓ-completeness. They used a system similar to 𝑘-anonymity with
multiple data sources. Specifically, this differs from our research
by aiming to maintain privacy across multiple sources, where our

framework focuses on maximally compliance of a single aggrega-
tion query in a database. Furthermore, our consent-abiding query
processing framework uses statistics to determine identifiability
among other customers instead of some determined k amount used
with k-anonymity approaches.

Hozel [18] investigated how differential privacy may satisfy
GDPR processing requirements. Differential privacy ensures cus-
tomer anonymity by adding synthetic noise into the data. Depend-
ing on the technique, some apply this noise post calculation, while
other research adds noise before the aggregation; regardless, nei-
ther is guaranteed to return completely accurate results. The overall
goal of differential privacy is to balance privacy with accuracy (i.e.,
injecting a higher volume of noise into the data should increase the
privacy of the customer data). In instances where introducing out-
put noise is considered acceptable, differential privacy may satisfy
both organizational priorities and privacy compliance requirements.
In settings like the medical field, the tolerance for any intentional
error is deemed unacceptable. For example, injecting noise into the
weight of a patient may bias the results of a study.

In real-world setting, the habits of malicious attackers may not be
easily discernible from user activity. Multiple works of research that
focus on the identification of malicious attackers behavior patterns
(e.g., Stevanovic et al. [25]). However, our framework focuses on
protecting privacy from non-malicious user behavior (and thus we
do not need to differentiate between the two).

Cheney et al. [12] provide a comprehensive overview of prove-
nance in databases. They describe provenance information as, “[the]
origins and the history of data in its life cycle.” Ni et al. [22] used
provenance to develop an access control framework. In their so-
lution, they developed a system to determine how data evolves
within a database which supports fine-grained access policies that
are based on data provenance, e.g., all data derived from sensitive
data should be subject to the same access control restrictions.

Konstantinidis et al. [20] investigated how provenance can be
used to achieve consent compliance in databases. Their framework
used query rewrites to achieve policy-compliant query outputs by
filtering out values whose inclusionwould result in a non-compliant
output. Specifically, they use provenance to map a type of access
control to remove outputs whose sources are not permissioned.
Our framework expands on this work with statistical tests to de-
termine if query aggregations sufficiently preserve privacy before
applying any (potentially unnecessary) filtering. Drien et al. [16]
implemented consent compliance by comparing output tuples to
the input tuples to determine if the output tuples of a query can
be mapped to the inputs used. Their research achieves the level
of fine-grained compliance necessary to minimally remove tuples
whose inclusion would result in non-compliance. Unlike our re-
search, the work by Drien et al. [16] does not apply to aggregations
but select-project-join queries.

Arab et al. [8] developed GProM, a provenance middleware for
relational databases. We use GProM to compute provenance of
queries in our framework to determine which input data was used
to computed a query result tuple. This information is then used to
test for consent compliance (see Section 6).

SSDBM 2024, July 10–12, 2024, Rennes, France Scope et al.

3 Privacy and Threat Model
We present the privacy model on which our framework is based and
discuss the threat model, i.e., what kind of background knowledge
we assume that the user issuing the query has access to.

3.1 Privacy Model
GDPR requires that data belonging to a non-consenting customer
is excluded from processing. However, as per Article 4 of GDPR,
customer records may be used for processing as long as customer
anonymity is preserved. We define anonymity as the inability to
associate personal data with a specific underlying customer and
the inability to discover the presence of a single customer’s data
from query results. Chaudhuri and Mishra [11] defined the privacy
of two tables as “[...] for any pair of tables T and T′ that differ in
only one position, privacy is preserved if a hypothetical attacker upon
seeing the transcript is unable to distinguish between the case when
the actual table is T or T′”. Non-consenting data can still be used
in an aggregate (e.g., average income per state), as long as the
underlying customer data is not identifiable without sources of
additional information (i.e., additional queries or knowledge from
outside the database). As mentioned earlier we target group-by
aggregate queries. Specifically, we support queries 𝑄 of the form
where 𝑓 is an aggregation function (we support MEAN, MEDIAN, MODE,
MIN, and MAX), 𝑎 is the attribute we are aggregating over and𝐺 is a set
of group-by attributes (e.g., SELECT f(a), G FROM R GROUP BY G;).

We assume that the organization’s database stores information
about a set of individuals: I = {𝐼1, . . . , 𝐼𝑛 }. Each individual 𝐼 ∈ I has
consented for their data to be utilized for a specific set of purposes
𝑃𝐼 ⊆ P where P is a set of purposes of interest to the organization.
For an individual I, we use 𝐷𝐼 to denote the set of tuples from the
organizations database 𝐷 that contain information about I. Thus,
we assume that 𝐷𝐼1 ∩ 𝐷𝐼2 = ∅if 𝐼1 ≠ 𝐼2.

An SQL extension for specifying consent will be discussed in
Section 4.We assume that each query𝑄 is associated with a purpose
𝑝 ∈ P. Given such a purpose, the database can be divided into two
subsets 𝐷C , which contains data from consenting individuals wrt.
𝑝 and all data that is not associated with any individual (e.g., the
inventory of an organization), and 𝐷N , which contain data from
individuals I which have not consented for their data to be used for
the purpose 𝑝 of the query (𝑝 ∉ 𝑃𝐼). Formally,

𝐷N =
⋃

𝐼 ∈I:𝑝∉𝑃𝐼
𝐷𝐼 𝐷C = 𝐷 − 𝐷N

For a query 𝑄 and database 𝐷 , consider the answer of the query
evaluated over the full database (containing data from both con-
senting and non-consenting individuals):

𝐴 = 𝑄 (𝐷)
Consider a tuple 𝑡 ∈ 𝐴, we use 𝑃𝑟𝑜𝑣 (𝑄, 𝐷, 𝑡) to denote the Lin-

eage [8] of 𝑡 which is the set of input tuples from 𝐷 that were
used to compute 𝑡 by 𝑄 . For a group-by aggregation query these
are all tuples from 𝑅 that belong to the group for 𝑡 , i.e., that have
the same values in the group-by attributes. We use G[𝑡] to denote
this set of tuple and GC [𝑡] (GN [𝑡]) to denote the subsets of G[𝑡]
corresponding to consenting (non-consenting) individuals.

G[𝑡] = {𝑡 ′ | 𝑡 ′ ∈ 𝐷 ∧ 𝑡 ′ .𝐺 = 𝑡 .𝐺}

GC [𝑡] = G[𝑡] ∩ 𝐷C GN [𝑡] = G[𝑡] ∩ 𝐷N

Weuse a predicate𝑝𝑟𝑖𝑣𝑎𝑡𝑒 (𝑄, 𝛼, 𝑡,GC [𝑡],GN [𝑡]) that determines
whether 𝑡 is statically unlikely (with confidence 𝛼) to leak infor-
mation about any data from GC [𝑡], i.e., data from individuals that
have not consented to the purpose of the query. We will provide a
concrete realization of this predicate based on statistical tests in ??.
With the predicate we are ready to define a concrete semantics for
consent-abiding query processing.

Definition 3.1 (Consent-abiding Query Processing). Consider a
group-by query 𝑄 of the form shown above with purpose 𝑝 evalu-
ated over a database 𝐷 with individuals I. We define the consent-
abiding answer 𝐴C of 𝑄 for a given confidence threshold 𝛼 to be:

𝐴C = {𝑡 | 𝑡 ∈ 𝑄 (𝐷) ∧ 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 (𝑄, 𝛼, 𝑡,GC [𝑡],GN [𝑡])}

We define query correctness Γ as the fraction of ground truth
query results that are returned by consent-abiding query process-
ing:

Γ =
| 𝐴C |
| 𝐴 |

Most of related work focused on filtering non-consenting cus-
tomer data from queries; in this paper, we seek to return as many
correct query output records as possible. We connect this definition
of privacy to statistical techniques by arguing that sufficiently large
and balanced groups in aggregations preserve the anonymity of
the underlying customers (and, by extension, their privacy). Our
framework allows organizations to apply statistical techniques to
set thresholds for privacy compliance in their aggregations. Specif-
ically, by having aggregations calculated on groups of sufficient
size and balanced contributions from the underlying members, we
argue that these groups are able to sufficiently protect the identifia-
bility and privacy of their underlying members. Figure 2 illustrates
sample steps of refining query aggregation.

SELECT race, AVG(weight)
FROM patient NATURAL JOIN vital
GROUP BY race;

B ?

C ?

X ?

Y ?

Z ?

100

20

56

3

44

Group size
< threshold?

Outlier
detected?

No

No

Yes

-

No

B 190.03

C 189.91

X NULL

Y NULL

Z 190.26

Query Output

Figure 2: Anonymity-preserving query processing.

3.2 Motivation and Threat Model
Differential privacy approaches (see Section 2.3) by their inherent
nature inject some level of noise into data in order to maintain the
privacy of the underlying individuals. Although various approaches
inject the minimum amount of noise possible, in instances where
any level of inaccuracy is not allowed, a differential privacy ap-
proach will not satisfy zero accuracy compromise requirements.
Instead, an approach is needed to ensure that a query can be com-
puted without any noise injection, while still guaranteeing the
privacy of the underlying contributing individuals.

Statistical Privacy and Consent in Data Aggregation SSDBM 2024, July 10–12, 2024, Rennes, France

The approach outlined in this paper ensures privacy by applying
statistical techniques to data used in the aggregation. Intuitively, if
a customer cannot be identified (via inclusion and impact) within a
group, their identifiability has been masked. First, we ensure that
aggregate group sizes are sufficiently large to prevent the deter-
mination of whether a particular customer’s data is included in
the computation. Second, we ensure each group’s non-consenting
contributing members cannot be detected because they bias the
aggregation results by a statistically detectable amount. Finally,
we ensure that each customer is not detectable because it is not
overly represented in aggregate computation, independent of their
individual value’s statistical impact on the aggregation. If a sin-
gle non-consenting customer’s inclusion would detectably change
aggregation output, it may be possible to identify the underlying
individual’s input and risk their privacy.

We assume that a user is well-intentioned and has a general
domain knowledge of the underlying data. Furthermore, that user
has access to the data for legitimate business purposes but is not
permitted (due to privacy rules), to have access to all customer data
for all purposes. Therefore, the user who has a rough understanding
of what an outlier would look like must not be able to identify
underlying customers within the aggregation results. For example,
if the user expected an average of 10 with a standard deviation of 1,
if the average returned were 14, the user could safely assume the
presence of an extreme outlier in the group.

Our analysis only considers computations done in an individual
single query. Additional information can be discovered by compar-
ing the results of multiple queries. One current limitation of this
framework is the database has no way of verifying the purpose
(e.g., “marketing”) of the query provided at execution time, thus we
assume no nefarious users attempting to circumvent the controls.

4 Business Records and Consent
Our framework uses a business record to map customer consent
for their data; we use SPJ definitions, previously used in [9, 24] for
defining business records with additional requirements, such as
defining the “primary key”. CREATE CONSENT (a new SQL statement
type, similar to CREATE VIEW) defines a business record to corre-
sponding consent permissions. Our implementation requires that a
business record definition includes a primary key using CUSTOMER

command to determine how an individual is reflected in the schema:
CREATE CONSENT customerweights CUSTOMER c.custID, v.vitalID

SELECT c.custID, c.fullname, c.race, v.vitalID, v.weight

FROM customer AS c NATURAL JOIN vital AS v;

We then store consent collected per customer in the database
(which is ultimately a parameter that is collected and maintained
throughout a customers lifecycle in the database). This is done by
using an INSERT CONSENT command to denote the business record,
customers, and type of consent given (with other similar comm-
mands for deleltion and updates).From this, we use provenance of
a query to determine when a customer’s data is included in a query
and what consent they have given by determining the overlap of
the returned source tuples with the customer’s business records.

5 Determining Privacy Leakage
We now are ready to discuss how, given a result tuple 𝑡 ∈ 𝑄 (𝐷) of a
query 𝑄 , GC [𝑡] and GN [𝑡], and a confidence level 𝛼 , to determine
whether exposing 𝑡 to the user issuing the query does not violate
privacywith a confidence of at least𝛼 . With respect to𝛼 , we use this
value as the corresponding p-value threshold used to either reject
or accept the null hypothesis (i.e., if a customer’s presence risks
identifiability). We apply two categories of statistical tests: Group
Size (Section 5.1) and Group Balance (Section 5.2). The aggregation
is considered sufficiently anonymous with level 𝛼 if it passes an
appropriate test in both categories. Group refers to the cohorts
defined by the GROUP BY. We measure group size with respect to
the number of customers within each cohort. With balance, we
measure the number of business records (i.e., output tuples) of each
member to the aggregation calculations for each cohort.

With respect to group size, a larger sample size naturally offers
some basic anonymity protection for its members due to the impact
of each member decreasing as the sample size increases (per the
central limit theorem). For example, organizations that execute
employee surveys typically will not give a manager the results of
their direct reports if a group is too small.

With group balance, even with sufficiently large groups, a single
member’s inclusion may change the distribution of their group by
a statistically significant margin (and thus impact the subsequent
aggregations on the distribution). This may risk privacy leakage,
letting database user infer if an individual is a member of an aggre-
gated group. Therefore, we claim that by insuring a non-consenting
individual does not impact a metric’s distribution by a statistically
significant margin (and that the same group has a sufficiently large
sample), that privacy has been preserved.

For example, suppose an organization has a customer who is a
CEO at another organization and does not consent to marketing.
Marketing wants to determine the average salary of their customers
by occupation. Assuming this organization has a sufficiently large
number of CEOs to satisfy the minimum group size requirement,
we claim that the addition of a single CEO does not introduce
a statistically significant impact. Using statistical testing with a
significance level (i.e., 𝛼) of 0.05, if the CEO’s salary were replaced
with another CEO’s salary, the average of the resulting distribution
would not differ significantly enough to conclude a divergence in
the calculated aggregation; therefore, wewould fail to reject that the
mean salary of that specific group with and without the particular
CEO are different. Thus, the CEO’s identifiability (due to inclusion
of the aggregation) has not been violated, offering evidence for
privacy preserving processing.

A distribution preserves the privacy of its members when it
ensures that the individual contributions to the dataset are indis-
tinguishable to a well-intentioned observer, thereby safeguarding
personal information. An aggregation performed over such distri-
bution would also be privacy preserving because the aggregation
results would not reveal contributions of individual data points.
This framework offers statistical guarantees that when data is ana-
lyzed in aggregate, no additional information about any individual
can be inferred, maintaining the privacy of all members of the
dataset, as long as our statistical testing conditions are satisfied.

SSDBM 2024, July 10–12, 2024, Rennes, France Scope et al.

This differs from access control methods (where data may be unnec-
essarily filtered) and differential privacy techniques (which inject
artificial noise) by simply returning 100% correct and inclusive re-
sults or filtering out the aggregations who would risk disclosing
information about non-consenting members.

5.1 Group Sizes
In statistical analysis, larger samples result in more accurate calcu-
lations. Thus, individual members of a sample have a lesser impact
on the calculations as the sample size grows. We connect this to
the concept of consent compliance by arguing that larger groups
better protect the privacy of the underlying data elements (as the
influence of outliers is reduced). With a group of significant size,
any single customer’s data value would not observably impact the
aggregate calculation and allowe the underlying customer to be
identified. Therefore, by using a similar definition of privacy by
Chaudhuri and Mishra [11], we use size of the aggregated dataset
(instead using statistical testing) as a consideration for protecting
underlying customer privacy.

Assuming a balanced group, drawing conclusions or deriving
any single underlying value is statistically improbable. We use
population to refer to an organization’s entire customer base and
group to refer to a subset of customers (which belong to the same
GROUP BY bucket). Although these groups are not randomly selected
from the population, our goal of privacy compliance aims to ensure
that we can neither determine if a customer is in a given group nor
what their contributions were (for an individual query). Since we
do not attempt to use the groups to draw statistical conclusions
about the overall customer base population, the absence of sample
randomness does not invalidate our process.

We use Yamane’s Formula [28] to determine aminimum GROUP BY

size required to guarantee that an underlying customer’s business
record privacy is sufficiently preserved to process the data without
explicit consent. Using 𝑁 (the population size of an organization’s
customers) and 𝑒 (the precision parameter), Yamane’s Formula of
𝑛 = 𝑁

1+(𝑁×𝑒2) provides the recommended group size we use as the
minimum threshold for group size compliance.Because a recom-
mended sample size is used as guidance for stability in a distribution,
we argue this provides guidance for when a single new observation
(i.e., customer) will not drastically alter the distribution.

Setting 𝛼 scores or precision threshold in statistics has many
considerations. For general statistical studies, an 𝛼 of 0.05 is consid-
ered the default (i.e., most domains use this as a best practice value).
By having a standardized accepted 𝛼 , there is a lower probability
of an individual changing the score until their finding becomes
“statistically significant” (i.e., p-value hacking).In some domains, a
less sensitive (e.g., smaller 𝑒 or 𝛼 value) is considered acceptable (re-
sulting in a higher group size requirement). Furthermore, research
by Di at al. [15] has led to the suggestion that the default should
be set closer or at 0.005. Making a less sensitive precision comes
with the cost of requiring a larger group size, but it also lowers the
influence that each value in the group has on an aggregation.

Overall, we recommend a default precision value 𝑒 set at a
maximum of 0.05; a larger value risks an unacceptable amount
of privacy leakage (which interacts with the other function param-
eters).Moreover, this value should never be changed to achieve a

specific result in a query; the precision must remain consistent for
all queries (which is set by an organizations privacy requirements
determined by their legal and data experts). The precision parame-
ter of 0.05 translates to: after sampling a population 20 times, the
aggregate output of a sample would negligibly differ that of the pop-
ulation 19 out of 20 times. In this case, we use this to compare the
stability of the group.From this, we argue that the different groups
would have a statistically insignificant difference when compared
to each other (19 out of 20 times), thereby preserving the privacy
of the underlying customers used to calculate the aggregate.

Depending on an organization’s policies, an alternative formula
for the group size threshold calculation may be preferred. For ex-
ample, some policies have a specific threshold recommendation
(e.g., HIPAA [17] explicitly recommends a minimum of 20,000 “in-
habitants” for data aggregations). Although we default to Yamane’s
Formula due to its low amount of input parameters, there are in-
stances when a more complex formula (e.g, Cochran’s Formula [13])
results in the ability to process a lower group size. One trade-off is a
more computationally intensive calculation (i.e., a higher overhead)
for equations which require additional information (e.g., standard
deviation).Our framework allows both a pre-set threshold and al-
ternative group size formula calculations to be used.

We default to using Yamane’s Formuala, which simply requires
a count calculation on the data. Running the group size before
the group balance allows us to potentially skip the more costly
group balance calculations if the group size requirement is not
met.Therefore, running group size before group balance offers opti-
misation benefits. While statistical tests that we subsequently apply
offer protections, they offer more statistical power using sufficiently
large sample sizes.A foundational element of statistical testing is
understanding the power of a statistical test [14]. The power of a
statistical test is the probability of rejecting𝐻0 (i.e., the null hypoth-
esis) when the null hypothesis is false. The power of a statistical
test is—in part—determined by the sample size.If the sample size
is too small, any subsequent statistical test may not have enough
power to accurately derive results. In this case, we do not apply
tests for distribution balance testing if the underlying group size is
not large enough to guarantee a statistically stable result.

5.2 Group Balance
Once sufficient group size has been verified, we further test to
see if anon-consenting customer stands out in their group as an
outlier or due to contributing a disproportionate amount of values
in the aggregation. If group size was not verified, this step is not
executed. For group balance, we apply two types of tests: 1) no
non-consenting customer has a statistically discernable difference
in data distribution (compared to the aggregate) and 2) no non-
consenting customer is over-represented in the aggregation. For
example, consider the following SQL query:

SELECT p.race, MEAN(v.weight)

FROM patient AS p NATURAL JOIN vital AS v GROUP BY race;

If we have a sufficient group size of patients within a race to
meet our anonymity threshold, we test for a possibility that a single
non-consenting patient may overly influence the result or make up
a disproportionate amount of the weight measurements within a
race (thus risking their privacy by identifiability).

Statistical Privacy and Consent in Data Aggregation SSDBM 2024, July 10–12, 2024, Rennes, France

Statistical Discernability of Outlier Customer Distribu-
tions: To determine whether a single customer’s records are sta-
tistically differentiable from the other records in their group, we
use a Two-Sample Kolmogorov-Smirnov (KS) test [21]. A KS test
determines the probability that two observed groups originate from
the same underlying population distribution. If the results are sta-
tistically significant (i.e., the probability is less than the accepted
alpha), we can conclude that the underlying distributions are dif-
ferent and it is possible to derive information about the underlying
groups (potentially leaking personal information of a customer).

A KS test has the basic assumptions that the groups are inde-
pendent and identically distributed within each group. Although
we accept that there is a bias simply by defining each group (e.g.,
the definition of the GROUP BY). Because the two groups of indi-
viduals are mutually exclusive with their data (i.e., the customer
in one group does not appear in the other group), we believe the
first assumption is at least minimally satisfied.Although the values
themselves are not independent (e.g., the weight of a customer at
one time is not independent from their weight at another time),
because our intent is to judge the distributions to each other, we
do not believe this hinders the application of the test. In instances
where the data was captured over time, a time-series model with
differencing may be more appropriate. Furthermore, we believe the
identically distribution within each group is satisfied due to the
aforementioned purpose. The KS test does require a distribution of
data (i.e., a single data point would not satisfy this requirement).
In instances where an outlier non-consenting customer only has a
single value of data, an alternative test (i.e., other goodness-of-fit
test) is necessary). For the purposes of this initial research and our
experiments, we assume that this criteria has been satisfied.

Our framework compares the following groups: 1) the records
belonging to the single non-consenting customer and 2) the entire
group (with the exception of the aforementioned non-consenting
customer). The KS test does not require any specific distribution
nor equal variances in the underlying data.

Whitenall et al. [26] analyzed information leakage using a KS
test and compared these results to other entropy-based Mutual In-
formation testing techniques. Under our requirements, information
leakage of a non-consenting customer would violate privacy com-
pliance; thus, applying a KS test as a means to test for information
leakage is considered a standard use-case. Overall, Whitenall et
al. [26] found that a KS test detected information leakage even with
a weak signal difference (although there are instances where other
tests perform similarly or may be preferable).

For example, consider a single non-consenting customer with
five weight measurements. The customer’s average weight was
200 while the total average of their corresponding group was 180
(with a standard deviation of 40). These distributions are illustrated
in Figure 3. Our framework runs the KS test on the entire group
without the customer’s inclusion compared to the single customer’s
data to examine if there is a statistically significant difference of
the underlying distributions. If there is a statistically significant
difference, there is a risk of information leak. Consequently, we
do not allow the group’s aggregate calculation to be returned. In
this example, the test did not yield a statistically significant result,
allowing the group calculation to proceed.

Figure 3: Distribution Comparison Example

To determine the customer, one would need to find the worst-
case customer that is non-consenting. This would be done by ap-
plying the test using a leave-one-out approach using the desired
statistical test (which we default to the KS test). For our initial per-
formance evaluation, we assume the furthest aggregation from the
remainder of the group is the most likely to risk privacy leakage.

Identifying Over-Represented Customers:We further evalu-
ate the number of records each customer contributes to an aggrega-
tion function. If a customer contributes a disproportionate number
of records to an aggregation, there is a risk information leakage
about the customer. We define outliers as customers who contribute
a disproportionate number of records to the aggregate.

We use the interquartile range rule (IQR) for detecting outliers
(using the number of records contributed). This IQR rule does not
require any particular data distribution. We determine how many
records each customer contributes and determine what is consid-
ered the typical amount. Customers who contribute a number of
record that fall above the allowed number are classified as outliers
(low contributing non-consenting customers are not a concern).

Given 𝑄3 as the value of the third quartile, 𝑄1 as the value of
the first quartile, and M as the value of the median, the IRQ is
computed using 𝐼𝑄𝑅 = 𝑀 ± (𝑄3 − 𝑄1) ∗ 1.5. Although typically
the IQR rule logic uses 𝑄1 and 𝑄3 as a method for calculating the
acceptable range for non-outliers,𝑄1 and𝑄3 may be adjusted to use
alternative quantiles (depending on an organization’s privacy needs
and requirements). If a non-consenting customer is considered an
outlier on the upper bounds, we consider the query’s group to be
imbalanced and, consequently, in violation of consent processing
rules. For this, only need to compare the non-consenting customer
with the most business records to the rest of the customers in
the aggregate group. We use the IQR rule due to its generalizable
application and a relatively simple formula. As with group size
calculations, this formula may be substituted with another outlier
detection technique depending on organizational needs, privacy
threshold, and underlying data distributions.

In addition to the prior statistical evaluation, identifying over-
represented customers is essential for privacy, particularly when
considering certain aggregates, such as the mode. Even if a cus-
tomer’s data distribution aligns with the overall distribution of
their aggregate group, a disproportionate representation can pose
a privacy risk for that customer.

SSDBM 2024, July 10–12, 2024, Rennes, France Scope et al.

5.3 Verifying Privacy
We propose a new command SELECT CONSENT [consent type] to ac-
tivate our framework. Our framework is currently implemented as
a Python-based middleware. Regular SELECT queries (i.e., queries
without CONSENT) would not require additional computation and
thus do not impact performance. Only the queries with the input
SELECT CONSENT [consent type] activate our consent verification
computations, calculate the provenance of the query (and corre-
sponding data), intercept the output of the query, and remove data
from the output whose inclusion would lead to non-compliance.
Using our previous business record example, the following query
would be used to verify consent compliance for a marketing query:

SELECT CONSENT MARKETING customer.race, AVG(vital.weight)

FROM customer NATURAL JOIN vital GROUP BY customer.race;

First, our framework determines if the input query targets any
columns defined under a customer business record definition (e.g.,
if a weight column is aggregated and covered by consent rules). If
none were targeted, the query would proceed as normal. Otherwise,
our framework must verify that the GROUP BYs contain a sufficient
number of records and that each groups is sufficiently balanced (i.e.,
no non-consenting customer makes up a disproportionate amount
of contributing records). Any groupwhich only contains consenting
customers may proceed without the group size and group balance
checks. With Yamane’s Formula, we use the total number of records
defined under the applicable business record policy to determine the
minimum group size required. For example, given an organization
which has 10,000 customers (and each customer makes up a single
business record), with a precision of 0.05, each group is required
to have at least 385 customers (regardless of the number of tuples
used for the aggregation). Any group which does not meet this
requirement would have their aggregate calculation excluded.

For the groups which do contain a sufficient number of records,
we examine whether any single non-consenting customer overly
influences a groups distribution. If so, we conclude that privacy
leakage is possible, and thus, we do not proceed to calculate and
return the corresponding aggregation. If a KS test determines the
distributions of the customer and the other group data are statisti-
cally indistinguishable, we conclude that there is no risk of privacy
leakage and thus, the calculation can proceed.

Finally, for the groups which passed the previous verification
steps, we determine if a non-consenting customer makes up a dis-
proportionate number of the records. If no customers are considered
outliers or a consenting customer is considered the most egregious
outlier, the computation can proceed; if a non-consenting customer
is an outlier, the framework returns NULL instead of the aggregate.

5.4 Supported Aggregations
Our framework supports numerical aggregations (e.g., string aggre-
gations are beyond the scope of this paper). We currently support
MEAN, MEDIAN, MODE, MIN, and MAX. The nature of COUNT aggregation
prevents a single customer from being overly influential. Thus,
to support COUNT, we still require a sufficient sample size and an
adequately balanced number of underlying records contributed
per customer, but do not evaluate the underlying customer data
distribution influence.

Our framework is designed to be customizable, allowing organi-
zations to incorporate various statistical functions and parameters.
Tests can be chosen based on the required aggregations and organi-
zational needs. Typically, a KS test or another goodness-of-fit test
meets the privacy testing requirements supported by this frame-
work. For other specific needs (e.g., a domain specific testing ap-
proach), alternative statistical tests can be used. For example, a KS
test would not sufficiently analyze the difference of the maximums
of two groups. Although the KS test is designed to test for overall
distribution distinguishability, organizations may wish to imple-
ment an alternative information leakage test (e.g., an alternative
mutual information differential power analysis).

An alternative statistical test supported by this framework for
a MIN, and MAX aggregation is a different goodness-of-fit test on
the customer’s data. In that test, the framework excludes the non-
consenting customer whose values are the minimum or maximum
of the data. It then would compare whether or not the customer’s
data appears to be drawn from the same underlying population (in
this case, the corresponding GROUP BY group). For a goodness-of-fit
test, the null hypothesis (i.e., the default) is that the customer’s data
might belong to the same distribution of the group; the alternative
hypothesis is the customer’s data does not belong to the same
pattern distribution of the group. If the goodness-of-fit test fails to
reject that the customer belongs to the group, we then can safely use
the customer’s data in the aggregate calculation. These alternative
tests were implemented but not evaluated in this paper.

In this paper, simple statistical tests (specifically, IQR and KS
tests) were chosen to provide a proof-of-concept for this frame-
work’s process. In specific domains, other statistical approach may
be preferred due to industry best practices. The tests we chose were
designed to be general (i.e., domain agnostic) with the least amount
of underlying assumptions (i.e., non-parametric).

6 Experiments
6.1 Framework Integration in a Database
We implemented a prototype system in PostgreSQL to demonstrate
how our framework enforces consent compliance and to evaluate
the associated overhead costs. Since databases do not support trig-
gers on SELECT queries, this framework is implemented as a proxy
(see Figure 1). In our evaluation, we implemented the framework in
Python as a standalone application. The application co-existed on
the same virtual machine as the database; while it is not required
for it to be co-located on the same system, we chose this setup in
order to minimize network traffic. Most databases (e.g., Db2 LUW)
allow invoking User Defined Functions in languages other then
PL/SQL (e.g., C/C++) [7], which facilitate better performance if the
fucntionality were developed directly in the database.

We use GProM [8] to determine the input tuples which con-
tributed to each output GROUP BY. Using this information, our frame-
work passes the output of the GProM query (which contains both
the original requested columns and the additional input tuple columns)
to a Python script to run our privacy analysis.

6.2 Experimental Setup
For our experiments, we used a server with dual Intel Xeon E5645,
each with 6 physical cores and Hyper Threading enabled, and 64GB

Statistical Privacy and Consent in Data Aggregation SSDBM 2024, July 10–12, 2024, Rennes, France

Figure 4: Experimental Schema (based on MIMIC)
of RAM, and a SSD for storage; the server was running CentOS 8
Stream x86_64 with Kernel Virtual Machine [5] (KVM) as the hy-
pervisor software. Within this setup, there was a Virtual Machine
(VM) used for our experiments. The VM was built with CentOS 8
Stream x86_64 and Postgres 14.4, 1 x vNIC and a 25GB QEMU Copy
On Write [4] (QCOW2) disk image file on an SSD. The QCOW2 file
was partitioned into: 350MB/boot, 2GB swap, and the remaining
storage was used for the / partition; this was done with standard
partitioning and ext4 filesystem. While the experiments were run-
ning, only this VM was running on the hypervisor to ensure the
least amount of fluctuation in the runtime measurements.

Using the schema in Figure 4, we simulated the performance of
a real-world system. This schema design was derived from a subset
of the MIMIC schema [19]. Some design elements which may not
intuitively make sense (e.g., a patient’s race being collected upon
every hospital visit) are from the MIMIC database which is based
on a real-world medical database. Note that we refer to patients as
customers for the purposes of this paper. Additionally, we did not
include our full consent-compliant schema, but focused only on the
minimum number of tables and fields required to evaluate query
performance. For all database sizes used, we assume only 25% of
our customers consent to marketing processing. Throughout our
experiments, we used synthetically generated data designed to en-
sure some groups in our query processing are removed while others
remain due to having a sufficiently large and balanced samples.

Because this database contains a mix of consenting and non-
consenting customers, if an access control mechanism that filtered
out any non-consenting customers or differential privacy applica-
tion were applied, then none of the aggregation results would have
been guaranteed accurate.

6.3 Adjusting Table Counts
In this analysis, we run 3 different queries on the database loading
with 3 different data set sizes (table sizes are summarized in Table 1).
The “realistic” database size was determined based on the size of
the original MIMIC tables. Our three queries (with inner joins) were
as follows (with post consent filtering):

(1) 2T: Average weight by race
83% were not filtered
vital ⊲⊳ hospitalVisit

(2) 3T: Average weight by race and prescription
97% were not filtered
vital ⊲⊳ hospitalVisit ⊲⊳ prescriptionIssued

(3) 4T: Average weight by race, prescription, and doctor
99% were not filtered
vital ⊲⊳ hospitalVisit ⊲⊳ prescriptionIssued ⊲⊳ doctor

With the large memory requirements of “realistic” data, Postgres
was unable to run 2T’s GSQL and, therefore, it was not evaluated.

We analyze our framework capturing the runtimes for: 1) the
original query (to use as a baseline), 2) the provenance analysis
(i.e., running the GProM query), 3) sample size confirmation, and 4)
sample balance verification. For all queries, we verified the results
met our compliance requirements of sample size and sample balance
and were correctly processed to ensure compliant processing.

Provenance Analysis. In order to determine the full provenance
of a requested query, we input a SQL query into GProM [8], which
rewrites the SQL into a provenance computation (which we refer to
as GSQL) to include the input tuples alongside the original query’s
output (i.e., calculating the query provenance). Because this rewrite
would only change if the underlying schema or SQL changes, the
process of running GProM’s rewrite would only need to occur once.
In other words, this step is not required during every query execu-
tion but instead only during the set-up of a new query. Thus, we do
not include the process of GProM query rewrite in our overhead
analysis. Instead, we discuss the overhead of running the GSQL
compared to the original SQL independently.

GProMwas developed as a generalized tool for calculating prove-
nance, which “[does not] require any changes to the backend data-
base system.” [8] Thus, per the authors’ discussion on GProM’s
current development, an alternative provenance framework with
a more dedicated purpose (and less generalized implementation),
would have a lower performance cost. For the purposes of this
paper, we used GProM to validate our framework and compute
an upper bound of compliance evaluation performance without a
dedicated compliance provenance approach. Any provenance cal-
culation mechanism which provides the source data required by
our analysis may be implemented as an alternative approach.

The average cost of running the GSQL was an overhead factor
of approximately 23.6X compared to the original query runtime.
An investigation of provenance framework optimization is beyond
the scope of this paper. Although we later detail opportunities for

SSDBM 2024, July 10–12, 2024, Rennes, France Scope et al.

Database
Size

Memory Size
(MB)

Total
Customers

Business
Records

2T
Records

3T
Records

4T
Records

Small 1,011 40,002 241,002 6 (87% returned) 31 (97% returned) 7,995 (99% returned)
Large 1,321 400,002 2,201,002 6 (87% returned) 30 (97% returned) 73,954 (99% returned)
Realistic 3,583 400,002 24,000,002 6 (87% returned) 30 (97% returned) 73,954 (99% returned)

Table 1: Experimental Database Sizes

performance improvement in Section 7.1, the execution time for
the provenance analysis provided by GProM makes up the majority
of overhead incurred by our framework.

Group Size. We evaluate the computation cost of determining
whether a GROUP BY in a query met the required size output by
Yamane’s formula. For each of the queries, this consisted of the
following steps:

(1) Calculating the total population size (i.e., number of weight
measurements)

(2) Inputting the population size into Yamane’s Formula to cal-
culate the sample size required for statistical anonymity

(3) Determine the sample size for each group
(4) Replacing the calculation with NULL for groups that did not

meet the sample size requirements
The runtimes of the Group Size computation step are shown in

Figure 5. The largest cost visualized is associated with the 2T Large
combination. This is due to the framework having to calculate larger
number of records per GROUP BY – the number of input records
is the same, while 2T queries has the fewest number of groups.
When the number of groups increases in 3T and 4T queries, the
framework has more groups to determine whether or not they
meet the criteria for the group size threshold. Additionally, with
the Realistic database, because fewer groups fall below the required
size output by Yamane’s Formula, fewer groups have the additional
step of removing their aggregation calculation from the output. As
the database size increases, the cost of the computation increases
as well. This is particularly noticeable in 2T query (with only 6
groups), which causes GSQL computation to run out of memory
in 8G VM; therefore, we were unable to run this combination with
our current set up of hardware, data, and experimental parameters
resulting in not having enough RAM. The average overhead for the

Figure 5: Group Size Runtimes

Group Size step across our tested combinations took approximately
40% as long as the original SQL runtime.

Group Balance. For the groups that met the minimum sample size
threshold, we proceed to evaluate the sample size balance. In our
analysis, we assume that the customer whose average is furthest
from the rest of their group is the most likely to have their privacy
exposed. However, in some instances, a customer who has a smaller
divergence but a larger number of observations may have a more
statistically significant KS test p-value. Therefore, in practice (and
future research), we recommend using (and optimizing) an approach
to test all non-consenting customers for group balance. We evaluate
each group defined by the GROUP BY clause to determine if it meets
our defined balance criteria. Figure 6 illustrates the runtimes of the
framework’s balancing process (for both the influence and record
contributions as discussed in Section 5.2).

Influence: For the influence, we compared each group’s dis-
tribution against the distribution of their most differentiable non-
consenting customer (using the two-sample KS test from SciPy).
With each group we identified the non-consenting customer whose
average weight is furthest from their group’s overall mean com-
puted with their weight included (assuming the highest probability
of identifiability belongs to the customer most divergent from their
group). We used the same precision value for our alpha score (0.05)
in order to determine the threshold for statistical significance.

Record Contributions: As with the influence, we determined
the non-consenting customer who had the highest number of
records (per group). We calculated the adjusted IQR (adjusting
the percentiles to be 0.025 and 0.975 instead of the default 𝑄1 and
𝑄3) to capture all but 0.05 percent of the data in the adjusted IQR.
We then multiplied that range by 1.5 and determined if any non-
consenting customer contributed a great number of records than
the calculated threshold. Groups who did have a non-consenting

Figure 6: Group Balance Runtimes

Statistical Privacy and Consent in Data Aggregation SSDBM 2024, July 10–12, 2024, Rennes, France

customer who contributed more than the calculated threshold did
not return an aggregate calculation.

Balance Performance Overhead: The cost of balancing was,
on average, 1.8𝑥 that of the original SQL runtime. For query 2T
with our large database, because there was relatively few groups,
many groups met the minimum required Group Size requirement,
resulting in a higher number of groups requiring group balance
verification. With query 4T, because many of the groups did not
meet the group size requirement, less groups required a balance
check (thus reducing the performance cost). For query 3T, this cost
was above 4𝑥 the original SQL due to the data size and the high
amount of groups which required group balance analysis (as a result
of the large number of columns used in the GROUP BY).

6.4 Modified 2T Queries
To further evaluate how our framework works across different
queries, we adjust our 2T query (Average weight by race). We ran
two different modified queries across our Small and Large databases:

(1) Average weight by race and gender with 18 groups and 94%
remain after compliance filtering

(2) Average weight by race filtered on an individual gender
resulting in one group which was not filtered

By modifying the original query, we can examine the impact of
the framework on queries that have smaller groups (but consistent
tables corresponding tuples). Furthermore, the second additional
query that filters on an individual gender should return the same
results but with only a subset of the data. Again, the realistic data
was unable to be run due to Postgres and hardware constraints.
For both queries, we verified that any data processing that would
result in risking customer privacy has been properly filtered from
the outputs. The plots shown in Figure 7 illustrate the runtimes of
the two sizes and queries across three steps.

GProM. The first step was running GProM to rewrite the query
to return the necessary provenance calculations. With this, we can
see that GProM depends more on the schema of the database and
not the size of the data. Furthermore, because the queries being run
required the same data, the cost was negigible between the two.

GSQL Execution. Next, the database must rerun the modified
query to run the query and return the provenance of the source
tuples (denoted as GSQL Execution in Figure 7). For both queries,
when comparing the small to the large, both averaged an approxi-
mate increase by a factor of 3.5. This is more due to the complexity
of the query combined with the schema then the framework (and as
such, would be more of an evaluation of the performance of GProM
which is beyond the scope of this paper). When adjusting the data
that is considered in-scope, we can see that a limited dataset using
the gender filter query does greatly reduce the overall runtime for
both small and large databases.

Python Testing and Filtering. The Python element of this frame-
work applies the statistical testing and filters out any data whose
inclusion would result in a policy violation. As with the Output
Rewrite, we can see that a reduced dataset (even with the same
columns) drastically reduces the overall runtime. Therefore, even
with a larger database size, if a user were to have more precise
query, the runtime can be reduced drastically.

Figure 7: GProM, GSQL Execution, and Python Filtering Run-
times

7 Discussion
7.1 Performance Optimization Opportunities
Due to the lack of SELECT triggers in RDBMS platforms, we imple-
ment the filtering logic as a proxy using a Python implementa-
tion. While Postgres has the ability to implement Python within
PL/SQL [6], our framework depends on additional Python packages
(e.g., NumPy, Pandas, SciPy). There is a high potential for perfor-
mance optimizations with a dedicated compliance functionality.

Currently, the framework overhead performance uses Python
3.6.8 with Pandas 1.1.5 (using NumPy as the underlying memory
store). In full scale implementation, we would either implement
this framework directly using NumPy or Arrow to reduce overhead.
During the execution of the KS test, we used Python’s SciPy package.
This package calculates additional metrics during the test, which
are not necessary for our framework. Reducing the function to the
minimally required calculations would reduce overhead cost.

Depending on the business needs of the organization, one can
run our logic against a static set of queries and store the results as
a materialized view; by doing so, the performance of the external
application could be minimized to an infrequent activity. Addition-
ally, we did not alter GProM’s original output GSQL. Thus, the
output GSQL includes full provenance functionality which results

SSDBM 2024, July 10–12, 2024, Rennes, France Scope et al.

in additional columns being calculated that are not used during our
frameworks consent verification process. These additional columns
come with a potentially significant processing cost (an evaluation
of the full performance metrics of GProM is beyond the scope of
this paper). Although we do later remove these additional columns
during our Python processing, the cost of calculating these fields is
still incurred. Thus, designing and developing a provenance func-
tionality to calculate input tuples (but with the minimum columns
required) would offer significant performance benefits.

7.2 Statistical Considerations
In this paper, we leverage Yamane’s Formula, the KS test, and the
IQR Rule for detection of sample size and sample balance. In prac-
tice, many statistical techniques and tests have assumptions that
must be verified before implementation. For example, a common
t-test requires normally distributed data. Thus, when incorporat-
ing advanced statistical techniques into this framework, additional
verification steps may be required (unless using non-parametric
statistical tests). Overall, organizations must have their DBAs, legal
experts, and statisticians determine what the appropriate needs are
for their organization in order to ensure compliant processing.

Although we use a KS test for our implementation, because a
KS test evaluates the entire distribution, it may detect differences
that are not applicable to a particular aggregate function. For ex-
ample, a KS is given two distributions with equal averages but
extremely different variances may yield a statistically significant
result. Thus, one may want to limit the comparison of influence and
distinguishability to a narrower scope on individual aggregation
functions instead of a comprehensive comparison of distributions.

8 Future Work and Conclusion
Although in this paper we use a KS test and the IQR rule for bal-
ance verification baseline, a further analysis of other techniques
would provide stronger guidance for which techniques organiza-
tions should implement. GProM was never intended to be used for
this purpose and performs more computation than strictly neces-
sary. Other tools may satisfy the processing requirements with a
lower overhead cost (requiring fewer calculations for the statistical
analysis) by retrieving the minimum amount of data from the in-
put tuples required to facilitate the statistical tests. Furthermore,
developing the same functionality within the database application
would reduce the amount of third-party framework dependencies.

Automated solutions must be developed to guarantee compli-
ance without requiring a system overhaul or rewriting all queries.
In this paper, we outlined a framework which determines when
customer anonymity has been preserved in aggregate computa-
tions. This framework automatically adjusts the query outputs to
achieve compliance while returning a maximally correct query (by
removing the rows with non-compliant results). Our paper has
shown how this framework can be incorporated into an existing
database, automating the processing with a non-intrusive changes.

Acknowledgments
This work was partially funded by US National Science Founda-
tion Grant IIP-2016548, CME Group, Argonne National Laboratory,
and Louisiana Board of Regents Grant AWD-10000153. Argonne

National Laboratory’s work was supported by the U.S. Department
of Energy, Office of Science, under contract DE-AC02-06CH11357.

References
[1] 2020. California Consumer Privacy Act. oag.ca.gov/privacy/ccpa
[2] 2020. GDPR Archives. gdpr.eu/tag/gdpr/
[3] 2021. €27,8 million GDPR fine for Italian Telecom -TIM. dataprivacymanager.n

et/e278-million-gdpr-fine-for-italian-telecom-tim/
[4] 2022. Qcow. en.wikipedia.org/wiki/Qcow
[5] 2023. www.linux-kvm.org/page/Main_Page
[6] 2023. 46.1. PL/Python Functions. www.postgresql.org/docs/current/plpython-

funcs.html
[7] 2023. Create function (external scalar) statement. www.ibm.com/docs/en/db2/

11.5?topic=statements-create-function-external-scalar
[8] Bahareh Sadat Arab, Su Feng, Boris Glavic, Seokki Lee, Xing Niu, and Qitian Zeng.

2018. GProM-a swiss army knife for your provenance needs. A Quarterly bulletin
of the Computer Society of the IEEE Technical Committee on Data Engineering 41,
1 (2018).

[9] Ahmed A Ataullah, Ashraf Aboulnaga, and Frank Wm Tompa. 2008. Records
retention in relational database systems. In Proceedings of the 17th ACM conference
on Information and knowledge management. 873–882.

[10] Mariem Brahem, Guillaume Scerri, Nicolas Anciaux, and Valerie Issarny. 2021.
Consent-driven data use in crowdsensing platforms: When data reuse meets
privacy-preservation. In 2021 IEEE International Conference on Pervasive Comput-
ing and Communications (PerCom). IEEE, 1–10.

[11] Kamalika Chaudhuri and Nina Mishra. 2006. When random sampling preserves
privacy. In Advances in Cryptology-CRYPTO 2006: 26th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 20-24, 2006. Proceedings
26. Springer, 198–213.

[12] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. 2009. Provenance in
databases: Why, how, and where. Now Publishers Inc.

[13] William G Cochran. 1977. Sampling techniques. John Wiley & Sons.
[14] Jacob Cohen. 1992. Statistical power analysis. Current directions in psychological

science 1, 3 (1992), 98–101.
[15] Giovanni Di Leo and Francesco Sardanelli. 2020. Statistical significance: p value,

0.05 threshold, and applications to radiomics—reasons for a conservative ap-
proach. European radiology experimental 4, 1 (2020), 1–8.

[16] Osnat Drien, Antoine Amarilli, and Yael Amsterdamer. 2021. Managing Consent
for Data Access in Shared Databases. In 2021 IEEE 37th International Conference
on Data Engineering (ICDE). IEEE, 1949–1954.

[17] Centers for Medicare & Medicaid Services et al. 1996. The health in-
surance portability and accountability act of 1996 (hipaa). Online at
http://www.cms.hhs.gov/hipaa (1996), 158.

[18] Julian Holzel. 2019. Differential Privacy and the GDPR. Eur. Data Prot. L. Rev. 5
(2019), 184.

[19] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng,
Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger GMark. 2016. MIMIC-III, a freely accessible critical care database. Scientific
data 3, 1 (2016), 1–9.

[20] George Konstantinidis, Jet Holt, and Adriane Chapman. 2021. Enabling personal
consent in databases. Proceedings of the VLDB Endowment 15, 2 (2021), 375–387.

[21] Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit. Journal
of the American statistical Association 46, 253 (1951), 68–78.

[22] Qun Ni, Shouhuai Xu, Elisa Bertino, Ravi Sandhu, and Weili Han. 2009. An access
control language for a general provenance model. InWorkshop on Secure Data
Management. Springer, 68–88.

[23] Primal Pappachan, Roberto Yus, Sharad Mehrotra, and Johann-Christoph Freytag.
2020. Sieve: A middleware approach to scalable access control for database
management systems. arXiv preprint arXiv:2004.07498 (2020).

[24] Nick Scope, Alexander Rasin, James Wagner, Ben Lenard, and Karen Heart.
2021. Purging Data from Backups by Encryption. In International Conference on
Database and Expert Systems Applications. Springer, 245–258.

[25] Dusan Stevanovic, Natalija Vlajic, and Aijun An. 2013. Detection of malicious
and non-malicious website visitors using unsupervised neural network learning.
Applied Soft Computing 13, 1 (2013), 698–708.

[26] Carolyn Whitnall, Elisabeth Oswald, and Luke Mather. 2011. An exploration of
the kolmogorov-smirnov test as a competitor to mutual information analysis. In
Smart Card Research and Advanced Applications: 10th IFIP WG 8.8/11.2 Interna-
tional Conference, CARDIS 2011, Leuven, Belgium, September 14-16, 2011, Revised
Selected Papers 10. Springer, 234–251.

[27] Kim Wuyts, Riccardo Scandariato, Griet Verhenneman, and Wouter Joosen. 2011.
Integrating patient consent in e-health access control. International Journal of
Secure Software Engineering (IJSSE) 2, 2 (2011), 1–24.

[28] Taro Yamane. 1967. An introductory analysis of Statistics.

