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Abstract: Molecular Ag(Il) complexes are super-oxidizing photoredox catalysts capable of
generating radicals from redox reticent substrates. Herein, we exploit the electrophilicity of Ag(Il)
centers in [Ag(bpy)2(TFA)]J[OTf] and Ag(bpy)(TFA). complexes to activate trifluoroacetate
(TFA) by visible-light-induced homolysis. The resulting trifluoromethyl radicals may react with a
variety of arenes to forge C(sp?)~CF3 bonds. This methodology is general and extends to other
perfluoroalkyl carboxylates of higher chain length (RFCO2"; Rr = CF2CF3 or CF2CF2CF3). The
photoredox reaction may be rendered electrophotocatalytic by regenerating the Ag(Il) complexes
electrochemically during irradiation. Electrophotocatalytic perfluoroalkylation of arenes at
turnover numbers exceeding 20 is accomplished by photoexciting the Ag(II)-TFA ligand-to-metal
charge transfer (LMCT) state followed by electrochemical re-oxidation of the Ag(I) photoproduct
back to the Ag(Il) photoreactant.

One-Sentence Summary: Ligand-to-metal charge transfer excitation of electrophilic Ag(Il)
complexes coupled to electrochemical oxidation provides entry to a potent electrophotocatalytic
method for the perfluoroalkylation of arenes.
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Photoredox methodologies have emerged as indispensable tools in organic synthesis, employing
photons as a clean and selective source of energy to drive challenging chemical reactions under
relatively mild conditions (/). Of the various photoredox strategies, ligand-to-metal charge transfer
(LMCT) processes have been exploited for the generation of reactive intermediates from inert
substrates (2,3). As LMCT processes involve the transfer of electron density to the metal center,
typically only electrophilic metals in higher-valent oxidation states engage in LMCT
photochemistry. A variety of complexed metal ions including Cu(Il) (4,5), Co(III) (6, 7), Fe(IIT)
(8,9), Ni(IlT) (10-12), V(V) (13) and Ce(1V) (14—16) centers photochemically generate open-
shell intermediates upon LMCT excitation (Fig. 1), including chlorine, azidyl, alkoxy, acyl, and
alkyl radicals generated from the homolysis of M—Cl (8,11,12,16), —N3 (5,9), —OR (15), -COR
(7), and —R (R = alkyl) (6) bonds. In addition, photolysis of M—O>CR bonds is known to induce
decarboxylation of the generated carboxyl radical which can provide a source of alkyl or aryl
radicals (4,14,17,18). Noticeably absent from the palette of electrophilic metals is Ag(Il). While
Ag(1) is a strong oxidant (E° = 0.799 V vs NHE), Ag(II) with its d* electronic configuration wields
even greater oxidative power (E° = 1.980 V vs NHE) (/9) by virtue of the hole in its 4d subshell
(20). As schematically shown in Fig. 1, we envisioned that filling this hole by visible light
excitation of the LMCT transition would position the underutilized Ag(I1) metal center as a potent
photo-oxidant for the activation of challenging substrates.
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Fig. 1. LMCT chemistry of molecular compounds. Comparison of LMCT photochemistry of
typical metal centers versus the highly electrophilic Ag(II) center.

We targeted trifluoroacetate (TFA) as it is an ideal source of the pharmaceutically relevant
trifluoromethyl group (27), which imparts dramatically enhanced pharmacokinetic properties to
drug molecules (22). As compared to common CF3 sources such as the Ruppert—Prakash or
Umemoto reagents (23), TFA is an ideal CF3 source due to its low cost and high annual production
(24). However, the demanding oxidation potential of TFA (>2.2 V vs SCE (25)) necessitates
forcing conditions for the liberation of its CF3 group. Thus, previous methods for the
decarboxylation of TFA have required either high-energy ultraviolet (UV) irradiation (TiO2
catalyst, Aexe < 365 nm) (26,27), high temperatures (77> 120 °C with Ag salts (28) or 7> 140 °C
with Cu salts (29)), or harsh chemical oxidants such as XeF> (30). Other strategies rely on the pre-
activation of TFA or trifluoroacetic anhydride with exogenous reactants such as pyridine N-oxides
(31), sulfoxides (32), or hypervalent iodine reagents (33) in order to effectively lower the redox
potential of TFA within range of traditional photocatalysts. Although functionalization of alkyl
carboxylates with N-hydroxyphthalimide to form N-acyloxyphthalimides allows for the reductive
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fragmentation of the N—O bond under mild conditions to liberate carbon dioxide (CO.) and an
alkyl radical, when TFA is employed, the strongly electron withdrawing CF3 group biases the
reductive fragmentation towards the generation of an N-centered radical and the TFA anion
leading to amination rather than the desired trifluoromethylation (34). Direct Kolbe-type
electrolysis of TFA requires large operating cell potentials and the employment of oxidatively
resistant substrates; even with unactivated arenes such as benzene, competitive electrochemical
oxidation of the arene leads to trifluoroacetoxylation side products (PhO>CCF3) in addition to the
desired trifluoromethylated aromatics (PhCF3) (35). LMCT excitation of well-defined Ag(Il)-
TFA complexes with visible light would represent a milder and more chemoselective pathway for
harnessing the trifluoromethyl group from the redox-reticent TFA substrate.

We now report the synthesis, isolation, and structural characterization of [Ag(bpy)2][OTf]> and
[Ag(bpy)n(O2CCF3)m][OTf]2-m (bpy = 2,2 -bipyridine, OTf = CF3SO3) complexes. Photolysis of
these Ag(II)-TFA complexes with light at wavelengths Aexe > 400 nm results in rapid
decarboxylation to generate trifluoromethyl radicals with the concomitant extrusion of CO2. We
extend this methodology to perfluoroalkyl carboxylates of higher chain length (RFCO27; Rr =
CF2CF3, CF2.CF2CF3), demonstrating the generality of this platform. The suite of Ag(II)-CO2Rr
complexes are shown to be competent perfluoroalkylating agents of arenes. By performing the
photochemistry under an applied potential (Eappl > E°(Ag(II/1)), the system may be turned over
catalytically. The electrophotocatalytic perfluoroalkylation of a variety of (hetero)arenes is
demonstrated with low Ag loadings and turnover numbers exceeding 20. While
electrophotocatalytic C—H trifluoromethylation has been accomplished previously using the
Langlois reagent (NaO2SCF3) as a specialized CF3 source due to its accessible oxidation potential
(36), the described Ag(Il)-mediated electrophotocatalytic system enables the direct use of TFA.
Whereas the work described herein highlights the activation of TFA, our results suggest that
molecular Ag(Il) complexes are superior, yet underutilized, super-oxidizing catalysts that are
capable of activating a variety of inert substrates using visible light.

Synthesis and characterization of Ag(II) complexes. Addition of AgO to a solution of bpy in
aqueous triflic acid (50% v/v) gives a deep red solution that furnishes [Ag(bpy)2][OTf]> (1[OTH]2)
as a red microcrystalline powder upon precipitation with water. The tetrafluoroborate salt, 1{BF4]a,
may be prepared similarly by replacing triflic acid with terafluoroboric acid. The synthesis can be
performed on a multi-gram scale (8 mmol) and 1[OTf]; is isolated in 64% yield. We note that
1{OTf]2 has been synthesized previously, requiring either a multi-step electrochemical synthesis
or one-pot procedures that give impure product or low yields, and the compound has not been
structurally characterized (37). Unique among other known Ag(Il) molecular complexes is the
solubility of 1[OTf]> or 1[BF4]» in organic solvents, allowing us to avoid aqueous solution and
thus circumvent the oxidation of water. Dissolution of the isolable microcrystalline powder in
acetonitrile (MeCN) followed by vapor diffusion of benzene resulted in the formation of deep red
crystals. Crystal structure analysis reveals Ag(Il) to reside in a tetragonally distorted bpy ligand
field (Fig. 2A). 1[OTf]z is characterized by an EPR signal that is an axial doublet (fig. S1) and an
effective magnetic moment of 1.97 ug, consistent with a d° ground state.
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Fig. 2. Crystal structures of Ag(II) complexes and a Cu(II) congener. Atomic displacement
parameter plot of (A) 1[OTf]> at 15 K, (B) 2[OTf] at 15 K, (C) 3 at 15 K, (D) 4[PFs] at 100 K, (E)
5 at 100 K and (F) 6 at 15 K, drawn at 50% probability level as ascertained by single-crystal X-
ray diffraction analysis. Color scheme for structures 1-6: Ag (light gray), Cu (dark orange), F
(yellow green), O (red), N (blue), C (dark gray). Counterions, hydrogen atoms, and solvent
molecules omitted for clarity. Selected crystallographic bond metrics are provided in Table S3.

Treatment of a slurry of 1[OTf]> in dichloromethane (CH>Cly) with bis(triphenyl-
phosphine)iminium trifluoroacetate ([PPN][TFA]) leads to the introduction of TFA into the
primary coordination sphere of Ag(Il). 1{OTf]> reacts with one equivalent of [PPN][TFA] in the
presence of an additional equivalent of bpy to furnish a solid which may be crystallized as black
needles by layering CH>Cl solutions with pentane at —36 °C. The crystal structure establishes
[Ag(bpy)2(02CCF3)][OTH] (2[OTH]) (Fig. 2B), obtained in 48% yield, as a rare example of Ag(1l)
in a distorted trigonal bipyramidal ligand field in which TFA binds via essentially a k! coordination
mode (d(Ag—O1) = 2.4814(15) A, d(Ag-02) = 2.7104(14) A). The bpy ligands in 2[OTf] distort
to assume a nearly linear axial N1-Ag—N4 bond angle of 178.65(5)° in order to accommodate TFA
in the primary coordination sphere. The relative similarity in the C21-O1 and C21-O2 bond
distances in the TFA ligand point to delocalization of the negative charge on the carboxylate group.
When a slurry of 1[OTf]; in CH2Cl, is treated with excess [PPN][TFA], the orange solid
Ag(bpy)(O2CCF3)2 (3) (Fig. 2C), in which one bpy ligand in 1[OTf], is substituted by two
monodentate TFA ligands, is obtained in 59% yield. The neutral square planar coordination
geometry draws similarities to Ag(4,4’-dimethyl-bpy)(NO3)2 in which nitrate anions serve as
anionic ligands (38). 3 packs in the crystalline lattice as sets of symmetrically equivalent dimers,
forming diamond-core like structures with a weak apical Ag--O interaction. Both 2[OTf] and 3
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show no resolvable '"H NMR signals for bpy due to paramagnetic broadening. The compounds
display axial EPR signals consistent with a paramagnetic S = 2 ground state (fig. S1), which is
consistent with effective magnetic moments of 2.06 (2[OTf]) and 1.78 (3) us. 3 is '°F NMR silent
while 2[OT{] displays a single resonance corresponding to unbound triflate.

LMCT photogeneration of CF3 radical from Ag(II)-TFA complexes. LMCT photochemistry
of 2[OTf] and 3 was accessed using visible light. Photolysis (Aexc = 450 nm) of 2[OTf] in MeCN
at 21.3 °C resulted in the complete bleaching of all visible absorption features within 30 min
whereas 3 exhibits growth of a band at 700 nm that disappears upon continued irradiation (Figs.
3A and 3B); under identical conditions, 1[OTf]> was found to be photostable as compared to
2[OTf] and 3 (fig. S2). Compound 2[OTf] converts to 3 with excess TFA, and similarly the
addition of excess bpy to 3 results in conversion to 2[OTf] (fig. S3). Thus, in the case of 3, we
believe that there is an initial equilibrium established between 2[OT{] and 3, thus accounting for
the initial appearance of the 700 nm absorption band in Fig. 3B. The loss of absorption bands in
the visible spectral region as well as the disappearance of the initial axial EPR signal of 2[OTf]
and 3 with irradiation (fig. S4) are consistent with the photoreduction of the Ag(II) center to form
the d'° Ag(I). Additionally, the '"H NMR signals of Ag(I) bpy complexes appear over the time
course of photolysis. For 3, clean conversion to the trigonal planar Ag(I)(bpy)(TFA) complex (39)
is observed after photolysis via 'H NMR and UV-vis spectroscopy (fig. S5). Concomitant to the
formation of Ag(I), photoinduced cleavage of the Ag(II)-TFA bond should furnish the TFA radical
(TFA-*), decarboxylation of which to yield CO; and CF3e is highly exergonic (40).
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Fig. 3. LMCT photochemistry of Ag(Il) complexes. Steady-state photolysis of 1 mM solutions
of (A) 2[OT{] and (B) 3 in MeCN under 450 nm irradiation at 21.3 °C. Spectra were recorded at 2
min intervals. (C) Action spectrum of 2[OTT]; quantum yields (red circles) are superimposed on
the UV spectrum of 2[OT{] (black line) with error bars determined from the least squares fit of the
photolytic conversion at different time points.

The decarboxylation of TFA« to CO; was observed by steady-state and time-resolved vibrational
spectroscopy. Fig. 4A shows the steady-state IR spectrum of photolyzed solutions of 3. Signals
associated with the TFA ligand in 3 (asymmetric and symmetric carboxyl stretches at 1693 and
1408 cm™!, respectively) and CF3 (1196 cm™") disappear upon irradiation of solutions of 3 with the
concomitant growth of the vibrational signature of CO, (2341 cm™). A similar decarboxylation
process is observed for photolyzed solutions of 2[OTf] (fig. S6). Figure 4C shows the time-
resolved infrared (TRIR) spectrum upon laser excitation of 3. On a nanosecond timescale, bleach
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signals are observed due to the disappearance of the asymmetric carboxyl and CF3 stretching
vibrations of TFA with the concomitant growth of CO;. The time evolution of the vibrational
signatures in Fig. 4C approaches the instrument response function, placing a lower limit of k> 2.5
x 107 s7! for TFA« decarboxylation.
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Fig. 4. Steady-state and time-resolved infrared spectra of photolyzed solutions of 3. (A)
Steady state FTIR spectral changes of a photolyzed solution (Aexe = 467) of 3 in CD3CN. (B)
Difference spectrum of FTIR traces in (A) recorded at 150 s and 0 s of irradiation. (C) Time
resolved infrared spectra measured in the energy ranges indicated by the shaded boxes in (B).
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The decarboxylation of TFA« to CF3e was established with '°’F NMR spectroscopy. Photolysis of
2[OT{] generates CF3e radicals, which react with bpy ligands in the absence of a substrate to
produce CF3-derivatized bpy and with solvent to produce fluoroform (in MeCN), fluoroform-D
(in CD3CN), and chlorotrifluoromethane (in CH>Cl) (fig. S7). We note that heating (60 °C) either
2[OTf] or 3 in CD3CN solutions protected from ambient light does not produce Ag(I) or CF3e as
ascertained by 'H and '°F NMR spectroscopy, respectively (fig. S8).

The importance of Ag(Il) in mediating the challenging decarboxylation of TFA via LMCT
excitation is revealed by a comparative study using the less electrophilic Cu(Il) center in the same
ligand field afforded by [Cu(bpy)2(TFA)][PFs] (4[PF¢]). The solid-state structure of 4[PF¢] (Fig.
2D) is similar to 2[OTf] with the TFA ligand engaging in a shorter contact to the Cu center (d(Cu—
0O1) =2.0703(19) A). Irradiation of 4[PFs] with Aexe = 370 nm in CD3CN exhibits no observable
changes as monitored by UV-vis-NIR, '°F NMR, and FTIR spectroscopies (fig. S9).

Reactivity of photogenerated perfluoroalkyl radicals. The CFse radical readily reacts with
arenes to form C(sp?)-CFs linkages. Photolysis of 2[OTf] in the presence of excess benzene (75
equiv) results in the formation of trifluorotoluene (PhCF3) (36%) and a mixture of TFA and
trifluoroacetic acid (TFAH) (52%), as was confirmed by spiking samples with either [PPN][TFA]
or TFAH (fig. S10). The generation of approximately half an equivalent of PhCF3 for each
equivalent of 2[OT{] suggests that after radical addition of CF3e to benzene, the resultant arene
radical is oxidized by a second equivalent of Ag(Il) with TFA acting as a base to furnish PhCF3;
and TFAH (Fig. 5). As shown by the action spectrum in Fig. 3C, the photoreaction quantum yield
of 2[OTf] as ascertained by ferrioxalate actinometry is appreciable; the increase and levelling of
the quantum yield with wavelength (4.2%, 6.8% and 14.9% at 450, 405 and 340 nm, respectively)
establishes the energy of the LMCT transition to occur at ~350 nm; similar photochemistry and
quantum efficiency trends were observed for 3. We note that the isolation of 2[OTf{] (or 3) is not
necessary to perform perfluoroalkylations. The 1[OTf]> complex competently binds RrFCO:™ in situ
to provide entry into the LMCT photochemistry. Irradiating (450 nm) a mixture containing
Na(TFA) as the limiting reagent (12.5 mM) and 2 equiv of 1[JOTf]> in combination with one
equivalent of benzene for 1 h produced PhCF3 in 27% yield, as detected by '°F NMR spectroscopy
and gas chromatography (GC). The remainder of the mass balance can be ascribed to H-atom
abstraction of the solvent by CFze to produce fluoroform as a byproduct as well as the
trifluoromethylation of bpy ligands as opposed to the benzene substrate (fig. S7). The side
reactions of CF3* may be minimized by performing the photolysis with excess substrate; the PhCF3
yield increases to 78% upon using 20 equiv of benzene (fig. S11). No PhCF3 is observed upon
irradiation of 1[OTf], with benzene in the absence of a TFA source (fig. S12).
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Fig. 5. Photo-/electro- chemical reaction mechanism. Mechanism of Ag(Il)-mediated
perfluoroalkylation of arenes via LMCT excitation under an applied potential to engender a
catalytic cycle.

As shown in Fig. 6 a variety of arenes as well as heteroarenes such as 1-methylpyrazole are
compatible and trifluoromethylated aromatic compounds may be produced in moderate to high
yields with LMCT irradiation of 1{OTf]> in the presence of TFA. The use of an inorganic base
(K2HPO4) does not significantly alter reaction yields. The observed product ratios for
chlorobenzene, methyl benzoate, 4-chloroanisole, methyl 4-chlorobenzoate, 1-methylpyrazole,
and benzamide reflect the radical nature of the reaction. Interestingly, pre-saturating the reaction
mixture with Oy prior to irradiation led to trifluoromethoxylation, as evidenced by the production
of (trifluoromethoxy)benzene when O is present. The trifluoromethoxy group is an important
motif in pharmaceutical chemistry, yet trifluoromethoxylation reactions remain underdeveloped
and relatively few radical-based trifluoromethoxylations have been reported (47,42). The
mechanism of this novel O2/Ag(Il)-mediated radical trifluoromethoxylation is currently under
study.

To further demonstrate the generality of the current approach, perfluoro groups beyond the parent
CF; group may be installed. Such higher order perfluoroalkylations are important to
pharmaceutical chemistry, though with far fewer demonstrations as compared to
trifluoromethylations  (43).  Single crystals of  Ag(bpy)(O.CCF2CF3), (5) and
Ag(bpy)(O2CCF2CF2CF3), (6) were obtained, and these compounds were shown to be structural
analogs to 3 (Figs. 2E and 2F). Photoinduced perfluoroalkylations of benzene could be performed
by irradiating solutions of 1[OTf] with the sodium salts of pentafluoropropionate and
heptafluorobutyrate (Fig. 6).
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Fig. 6. Ag(Il)-mediated trifluoromethylation of arenes.**Yields for trifluoromethylated products
determined by F NMR spectroscopy. fSolution was saturated with O prior to irradiation,
reaction time: 6 h. }Electrophotocatalysis performed at 1.1 V vs F¢'/Fc.

Electrophotocatalysis. The photoredox reaction may be rendered electrophotocatalytic by
regenerating 1{OTT] electrochemically during irradiation (Fig. 5). Cyclic voltammetry reveals a
reversible one-electron redox wave for 1[OTf]> at E® = 930 mV vs ferrocenium/ferrocene (Fc*/Fc)
(fig. S13). The trifluoromethylation of benzene was thus achieved with 21.2 turnovers upon
performing the photoredox reaction (Aexc = 440 nm) with 2.5 mol % 1[{OTf]2, 0.5 equiv of bpy, 1
equiv of benzene, and 10 equiv of Na(TFA) in a three-electrode divided cell under an applied bias
of 1.3 V vs Fc'/Fc. Bis(trifluoromethylated) benzene products were also observed in 11% yield.
Of note is the absence of phenyl trifluoroacetate (PhO>CCF3) side product in the reaction mixture,
which arises from the direct oxidation of benzene (35). This highlights the mildness of this
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electrophotocatalytic method, as oxidation of arenes is avoided in contrast to direct electrolysis
methods. Additionally, the lack of this side-product is consonant with the TRIR measurements,
which establishes that the short-lived TFA radical will decarboxylate before diffusing to arene
substrates. Extension of the electrophotocatalytic method to the pentafluoroethylation and
heptafluoropropylation of benzene resulted in similar reaction efficiency (27.2 and 20.8 turnovers,
respectively). Application of the electrophotocatalysis to other arenes resulted in their successful,
catalytic trifluoromethylation with moderate turnover numbers. Any potential anodic of the
Ag(II/T) couple but cathodic of the substrate oxidation potential may be applied. Figure S14 shows
the permissible potential window for electrophotocatalysis of substrates with oxidation potentials
more anodic than TFA. In the case of chloroanisole, the reaction was run at an applied potential of
1.1 V vs Fc'/Fc to avoid direct oxidation of the electron-rich substrate.

We have detailed a new electrophotoredox method to deliver perfluoroalkyl radicals to arenes
utilizing the LMCT photochemistry of Ag(Il) coupled to Ag(I) oxidation. The homolysis of the
Ag(II)-O2CRF bond smoothly leads to Ag(I) and the perfluoroalkyl radical, which may be
harnessed for C(sp?)~CF; bond formations. The high electrophilicity of the Ag(Il) center is
essential for generating perfluoroalkyl radicals from their corresponding carboxylates under mild
photochemical conditions (44,45). The electrophotoredox method described herein is direct and
requires only visible light to drive the LMCT activation of TFA or higher perfluoroalkyl
carboxylates without the need for the pre-functionalization of TFA or using the forcing potentials
for Kolbe electrolysis. By performing the LMCT photochemistry under electrochemical conditions
in which Ag(]l) is re-oxidized to Ag(Il), an electrophotocatalytic cycle may be established where
perfluoroalkyl carboxylates are directly employed as perfluoroalkylating agents under mild
conditions. Considering the inertness of perfluoroalkyl carboxylates towards oxidation, the
chemistry described herein may be generalized to a variety of inert substrates that are capable of
ligating to a Ag(II) center.
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