
Efficient Object Manipulation Planning with Monte Carlo Tree Search

Huaijiang Zhu1, Avadesh Meduri1, Ludovic Righetti1

Abstract— This paper presents an efficient approach to ob-
ject manipulation planning using Monte Carlo Tree Search
(MCTS) to find contact sequences and an efficient ADMM-
based trajectory optimization algorithm to evaluate the dy-
namic feasibility of candidate contact sequences. To accelerate
MCTS, we propose a methodology to learn a goal-conditioned
policy-value network and a feasibility classifier to direct the
search towards promising nodes. Further, manipulation-specific
heuristics enable to drastically reduce the search space. Sys-
tematic object manipulation experiments in a physics sim-
ulator and on real hardware demonstrate the efficiency of
our approach. In particular, our approach scales favorably
for long manipulation sequences thanks to the learned policy-
value network, significantly improving planning success rate.
All source code including the baseline can be found at https:
//hzhu.io/contact-mcts.

I. INTRODUCTION

The ability to plan sequences of contacts and movements

to manipulate objects is central to endow robots with suf-

ficient autonomy to perform complex tasks. This remains,

however, particularly challenging. Indeed, finding dynami-

cally feasible sequences of contacts between the manipulator

and an object typically leads to intractable combinatorial and

nonlinear problems. Consider a simple task of reorienting an

object resting on a table with a two-fingered hand. To plan

suitable contacts, it is necessary to reason about interaction

forces. For example, a cube can be rotated by applying forces

from the sides; however, if the object is a thin plate, the

fingers must “press down” the object to create friction to

achieve the same task. More importantly, as the fingers reach

their respective kinematic limits, they need to break and

re-establish contacts to rotate the object further. These two

aspects, interaction forces and contact switches, have been

the main challenges of object manipulation planning.

Over the past decade, trajectory optimization has been

favored for multi-contact motion planning as this leads to

efficient formulations to reason about interaction forces [1]–

[4]. Yet, it remains unclear how the planning of contact

modes should be efficiently incorporated, primarily due to its

discrete nature that results in discontinuity in the dynamics

at contact switch. To handle this discontinuity under the

trajectory optimization framework, two main streams of

methodologies have emerged:

1) the contact-invariant or contact-implicit approach en-

forces contact complementarity either as hard con-

straints [5], [6], penalty terms in the cost function [7]–

[9], or with differentiable contact models [10], [11], and

1Tandon School of Engineering, New York University, USA
This work was in part supported by the National Science Foundation

(grants 1932187, 1925079, 2026479 and 2222815) and Meta Platforms, Inc.

2) the hybrid approach treats contact switches as discrete

decisions and incorporates them in the continuous tra-

jectory optimization problem [12]–[16].

In the context of robot manipulation, one representative

work is Contact-Trajectory Optimization proposed in [13],

where contact scheduling is modeled as binary decision

variables and the non-convexity of the dynamics due to

cross products is relaxed using McCormick envelopes [17].

The problem can then be formulated as Mixed-Integer

Quadratic Programming (MIQP) [18]. However, the usage

of the McCormick envelopes leads to a relaxed problem

instead of the original one. As a result, applying the planned

contact forces and locations may incur undesired torques.

To date, the approach has only been demonstrated on 2D

object manipulation with very short manipulation sequences,

probably because its complexity grows exponentially with

respect to the number of discrete variables due to the mixed-

integer formulation.

Recent research has made progress towards speeding

up Mixed-Integer Programming (MIP) [19] by leveraging

machine learning techniques. For example, Nair et al. use

neural networks to learn branch-and-bound heuristics and

partial assignment for the discrete variables [20]; CoCo [21]

finds feasible solution to MIP by learning to assign discrete

variables and solving the resulted convex optimization prob-

lem. While such methodology greatly improves the solution

speed at inference time, it assumes that the original MIP

can be solved in a reasonable amount of time to construct

the training set. If the original problem is prohibitive to

solve, collecting a large dataset for this problem may not

be practical without abundant computational resources or

additional learning of a problem reduction [22].

In this work, we approach the problem from a different

angle. Instead of modeling and solving it as a MIP, we for-

mulate a tree search problem to find dynamically consistent

contact sequences. Specifically, we use Monte Carlo Tree

Search (MCTS) [23] to explore potential contact surfaces;

then we formulate the underlying continuous optimization

problem as a Biconvex Program [24] to allow efficient

solution via the Alternating Direction Method of Multipliers

(ADMM) [25] that has been adopted in online whole-body

motion planning due to its guaranteed sublinear rate of

convergence [26]. This leads to a formulation in which

the discrete search space can be significantly reduced by

introducing domain-specific heuristics for robot manipulation

and the continuous problem can be solved efficiently without

relaxation. More importantly, we show that learning-based

MCTS trained on short-horizon tasks generalizes directly to

long-horizon tasks. This removes the need for collecting data

on large-scale problems, which can be time consuming. The

contributions of the paper are as follows:

1) formulation of dynamically consistent contact planning

for manipulation using learning-based MCTS,

2) efficient resolution of the underlying continuous opti-

mization problem as a Biconvex Program with ADMM,

and

3) extensive simulation including comparisons with MIQP

approaches as well as real robot experiments to demon-

strate the capabilities of our approach.

To our best knowledge, this is the first application of

learning-based MCTS to dynamically consistent contact

planning for manipulation.

II. PROBLEM STATEMENT

A. Inputs

We aim to solve an object manipulation task similar to the

Contact-Trajectory Optimization problem proposed in [13]

where the following quantities are given:

1) a rigid object with known geometry, friction coefficient

µ, mass m, moment of inertia I, and NΩ pre-defined

contact surfaces, each of which can be described as the

convex span of its vertices vΩ,i,

2) a trajectory with discretization step ∆t of length T
that consists of the desired object pose, velocity, and

acceleration ξ = [q(t), q̇(t), q̈(t)]Tt=1, where q(t) =
[p(t), R(t)] ∈ SE(3) consists of the position and ori-

entation, q̇(t) = [v(t), ω(t)] ∈ se(3) consists of the

linear and angular velocity, and q̈(t) = [v̇(t), ω̇(t)] is

the acceleration,

3) an environment with known geometry and friction co-

efficient µe, and

4) a robot with Nc end-effectors that are able to make point

contact with the object.

At the t-th time step, given the object motion and the

object dynamics, we can compute the desired total force

fdes(t) and torque τdes(t) to be applied to the object
[

fdes(t)
τdes(t)

]

=

[

m(v̇(t) + ω(t)× v(t)− g(t))
Iω̇(t) + ω(t)× Iω(t)

]

, (1)

where all quantities, including the gravity term g(t) are

expressed in the object frame.

In addition, as the geometry of the object and the envi-

ronment as well as the object motion are known, we can

obtain Ne(t) environment contact locations re(t) for e ∈
{Nc+1, . . . , Nc+Ne(t)} at each time step t by checking the

collisions between the object and the environment, assuming

uniform pressure distribution.

B. Outputs

We aim to find the following:

1) the contact surface Ωc(t) ∈ {0, 1, . . . , NΩ}, the contact

force fc(t) and the contact location rc(t) for each end-

effector c of the robot; Ωc(t) = 0 indicates that the c-th
end-effector is not in contact, and

2) the environment contact force fe(t)

such that the forces and torques sum to the desired ones.

Fig. 1 illustrates the outputs of our method for a double-

finger manipulator pivoting a 2D square. Note that this is

f3(t)

f1(t)

r1(t)

Ω1(t)

f2(t)

r2(t)

Ω2(t)

Fig. 1: Illustration of the outputs of the method. f1(t), f2(t)
are the manipulator contact forces and r1(t), r2(t) are the

respective contact locations (marked by the pink dots.) f3(t)
is the environment reaction force while the environment

contact location is known beforehand. The thick lines on

the object depict pre-defined contact surfaces and the green

ones are the selected contact surfaces Ω1(t),Ω2(t) at time t.

only for illustrative purpose and our method is applicable to

and tested on 3D objects and SE(3) poses as we will show

in the experiments.

III. METHOD

The problem described above is difficult even though the

desired object motion is provided, as the solver needs to

decide not only the contact force and location, but also

the timing of contact switches. To address this challenge,

we use learning-based MCTS to discover promising contact

sequences and then evaluate their dynamical feasibility using

an ADMM-based trajectory optimization algorithm. Fig. 2

provides an overview of our approach.

A. Continuous Contact Optimization via ADMM

First, let us consider a simpler sub-problem where

we already obtained a sequence of contact surfaces

[Ω1(t), . . . ,ΩNc
(t)]Tt=1 for each end-effector c. We can find

the exact contact forces and locations by solving a non-

convex continuous optimization problem. However, this non-

convex problem, as we will show, can be formulated as a

Biconvex Program and solved efficiently with ADMM. In

contrast to [13], our formulation does not require piecewise

linear approximation of the cross product and solves the

exact original non-convex problem instead of a relaxed one.

The optimization problem can be described by the following

constraints and cost function:

1) Dynamics: The contact forces and torques must sum

to the desired ones

Nc
∑

c=1

fc(t) +

Nc+Ne(t)
∑

e=Nc+1

fe(t) = fdes(t) (2a)

Nc
∑

c=1

rc(t)× fc(t) +

Nc+Ne(t)
∑

e=Nc+1

re(t)× fe(t) = τdes(t) . (2b)

(

Fig. 2: An overview of the proposed method. First, candi-

date contact sequences are proposed by MCTS. Then, they

are evaluated by an ADMM-based trajectory optimization

algorithm to find dynamically feasible contact forces and

locations to realize the desired object motion. At inference

time, this repeats until the first feasible solution is found; at

training time, we let the algorithm discover multiple solutions

and collect both feasible and infeasible contact sequences to

construct a diverse training set.

2) Contact location: The contact location must be inside

the given contact surface Ωc(t) for Ωc(t) ̸= 0

∀c ∈ {c|Ωc(t) ̸= 0} ,

Nv,Ωc(t)
∑

i=1

αc,i(t)vΩc(t),i = rc(t) , (3a)

Nv,Ωc(t)
∑

i=1

αc,i(t) = 1 , (3b)

where vΩc(t),i is the i-th vertex of the contact surface Ωc(t)
for the end-effector c and αc,i(t) g 0 is the corresponding

coefficient of the convex span; Nv,Ωc(t) denotes the number

of vertices.

3) Contact force: If the c-th end-effector is not in contact

with any contact surface, hence Ωc(t) = 0, the contact force

is set to zero

∀c ∈ {c|Ωc(t) = 0} , fc(t) = 0 . (4)

Note that this is not a complementarity constraint as Ωc(t)
is already given by MCTS.

4) Sticking contact: To prevent the end-effector from

sliding on the object, we impose that if the end-effector is

in contact at time step t, it must remain sticking at time step

t+ 1

∀c ∈ {c|Ωc(t) ̸= 0} , rc(t+ 1) = rc(t). (5)

Note that this constraint also implies that the end-effector

cannot change its contact surface in one step; it has to break

the current contact before switching to a new surface.

5) Coulomb friction: We assume all contact forces satisfy

the Coulomb friction model. Hence, the sticking contact

should stay inside the linearized friction cone of the given

contact surface. The sliding contact (only environment con-

tacts can slide) should satisfy f
∥
e (t) = −µe

∥

∥f§
e (t)

∥

∥ ˆ̇r
∥
e(t),

where f
∥
e (t) is the tangential force, f§

e (t) the normal force,

and ˆ̇r
∥
e(t) the unit direction of the contact point velocity

projected onto the contact surface, which can be obtained

from the given object motion. For notational simplicity, we

denote these constraints by the respective feasible set, hence

fc(t) ∈ Fc(t) , fe(t) ∈ Fe(t) (6)

6) Cost function: Finally, we minimize a quadratic ob-

jective function that avoids applying large forces at the

boundary of the contact surface

J =
T
∑

t=1

Nc
∑

c=1

∥fc(t)∥
2
+ ∥rc(t)∥

2
(7)

7) Biconvex Decomposition: The optimization problem

described above has an interesting feature that the only non-

convex constraint (2b) due to the cross product rc(t)×fc(t) is

in fact biconvex. That is, when rc(t) is fixed, this constraint

is convex with respect to fc(t); when fc(t) is fixed, this

constraint is convex with respect to rc(t). Note that in both

cases, the environment contact location re(t) is known and

thus the cross product re(t)× fe(t) does not pose any non-

convexity. In fact, when we group the decision variables into

two sets x = [rc(t), αc(t)]
T
t=1 and z = [fc(t), fe(t)]

T
t=1, we

can re-write the original problem into the standard ADMM

form with the constraint

G(x, z) =

Nc
∑

c=1

rc(t)× fc(t) +

Nc+Ne(t)
∑

e=Nc+1

re(t)× fe(t)− τdes(t)

= 0 ,

and the iteration

xk+1 = argmin
x

T
∑

t=1

Nc
∑

c=1

∥rc(t)∥
2
+

ρ

2

∥

∥G(x, zk) + yk
∥

∥

(8a)

s.t. (3), (5)

zk+1 = argmin
z

T
∑

t=1

Nc
∑

c=1

∥fc(t)∥
2
+

ρ

2

∥

∥G(xk+1, z) + yk
∥

∥

(8b)

s.t. (2a), (4), (6)

yk+1 = yk +G(xk+1, zk+1) , (8c)

where y is the scaled dual variable and ρ > 0 is a penalty

parameter that is tuned to 2 × 106 in the experiments.

The ADMM iteration initializes with α0
c,i(t) = 1/Nv,Ωc(t),

r0c (t) =
∑Nv,Ωc(t)

i=1 α0
c,i(t)vΩc(t),i, f0

c (t) = 0, f0
e (t) = 0

and y0 = 0. Note that both the optimization problems (8a)

and (8b) are just Quadratic Programs (QPs) [27] which are

simple to solve. Throughout our experiments, we only run

one ADMM iteration as we observe satisfactory convergence

in this setting. Hence, solving this non-convex optimization

problem only requires solving two QPs.

a ∈ "(s)

v
θ
(s′) = 0

p
θ
(s, a) = 1/"(s)

Q(s, a), U(s, a)

s

a =
a∈"(s)

U(s, a)

r(s′)

s′ ∈ { (s, a)}s′ ∈ $∞

Fig. 3: Action selection in the MCTS search process. The

actions are evaluated by both domain-specific heuristics and

trained neural networks to enable efficient search. As the

search reaches a terminal state, the reward is computed by

ADMM. For readability, recursions are omitted.

B. Discrete Contact Planning via MCTS

Now that we have shown the contact locations and forces

can be found efficiently if the contact surfaces are known, we

focus on the missing piece: finding these contact surfaces.

To do this, we adopt MCTS that was behind many recent

advances in reinforcement learning [23], [28] as well as in

robotic applications such as gait discovery [29], task and

motion planning [30], and object rearrangement [31], [32].

To solve the contact sequence discovery problem via MCTS,

we first model it as a Markov-decision Process (MDP) with

states s ∈ S and actions a ∈ A(s), where S is the set

of states and A(s) is the set of legal actions at the state

s. At time step k, the action ak = [Ω1(k), . . . ,ΩNc
(k)]

represents which object surface each end-effector needs to

be in contact with (or not) and the state sk contains the

current desired object pose q(k) and the history of the

object surfaces that were in contact with each end-effector

[Ω1(t), . . . ,ΩNc
(t)]kt=1. Note that the state transition sk+1 =

NEXTSTATE(sk, ak) in this MDP is deterministic as the

desired pose is known a priori and thus fixed. With this

formulation, we modify the MCTS algorithm by utilizing

both domain-specific heuristics and neural networks trained

from past experience to improve search efficiency. As the

search reaches the end, an optimization problem is con-

structed and solved by ADMM to provide a terminal reward.

Fig. 3 previews these modifications that will be elaborated

in the remainder of this section.

Let us first recall the standard learning-based MCTS

algorithm as summarized in Algorithm 1. It constructs a

search tree T = (V, E) where the set of vertices V contains

the visited states and the set of edges E contains the visited

transitions (s
a
→ s′). For each transition, it maintains the

state-action value Q(s, a) that estimates future rewards to be

accumulated and the number of occurrences N(s, a) of this

state-action pair during the search. To update the state-action

value Q(s, a), learning-based MCTS uses a policy-value net-

work (parameterized by θ) to provide a value estimate vθ(s
′)

for the possible next states s′ ∈ {NEXTSTATE(s, a)|a ∈
A(s)}

Q(s, a)←
N(s, a)Q(s, a) + vθ(s

′)

N(s, a) + 1
. (9)

The same network also outputs an action probability pθ(s, a)
to calculate a heuristic score for the state-action pair

U(s, a) = Q(s, a) + γpθ(s, a)

√
∑

b N(s, b)

1 +N(s, a)
, (10)

where γ > 0 is a hyper-parameter controlling the degree

of exploration; in our experiments, it is manually tuned to

0.1. This score is used by MCTS to select promising actions

a = argmaxa∈A(s) U(s, a) while balancing exploration

with exploitation. Once the search reaches a terminal state

s ∈ S∞, the contact surfaces found by MCTS are used to

construct the optimization problem described in Sec. III-A.

Its solution will then be evaluated to return a reward r to

update the state-action value and guide future search.

To calculate the reward, we integrate the solution to obtain

the final object pose q̂(T) = [p̂(T), R̂(T)] with the semi-

implicit Euler method. We then compare it with the desired

final pose q(T) = [p(T), R(T)] to compute a weighted

distance

D(q, q̂) = ∥p− p̂∥+ β
∥

∥

∥
log(R̂TR)

∥

∥

∥
, (11)

where β > 0 scales the angular distance; in the experiments,

it is set to 0.1. Note that this distance does not always

equal zero as we terminate ADMM only one iteration. The

weighted distance within a threshold D f Dth is then

normalized to [0, 1] to obtain the reward. In our experiments,

the threshold Dth is set to 0.03 which allows a maximal

object position error of 3 cm or an orientation error of

0.3 rad. Note that we set a relatively high threshold in order

to collect diverse training data; after training, the MCTS

almost always discovers solutions with near zero error as will

be shown in the experiments. If the contact sequence found

by MCTS does not lead to a dynamically feasible solution

or has a higher error above the threshold, the reward will

be set to zero. Hence, the EVALUATE(s) function in MCTS

entails the ADMM iteration (8) and computing the reward.

At inference time, the procedure MCTS(s; θ) is repeated

until the first feasible solution is found; at training time, we

let it discover multiple solutions and collect both feasible and

infeasible contact sequences to construct a diverse training

set D = {(v̄(s), p̄(s, a))|s ∈ V} for all visited states, where

p̄(s, a) = N(s, a)/
∑

b N(s, b) is the empirical action prob-

ability and v̄(s) =
∑

a∈A(s) p̄(s, a)Q(s, a) is the expected

state value. The network is then updated using the sum of a

Algorithm 1 Learning-Based Monte Carlo Tree Search

1: procedure MCTS(s; θ)
2: if s ∈ S∞ then
3: r ← EVALUATE(s)
4: return r
5: else if s /∈ V then
6: V ← V ∪ {s}
7: for a ∈ A(s) do
8: Q(s, a)← 0
9: N(s, a)← 0

10: end for
11: return vθ(s)
12: else
13: a← argmaxa∈A(s) U(s, a)
14: s′ ← NEXTSTATE(s, a)
15: v ← MCTS(s′; θ)

16: Q(s, a)←
N(s,a)Q(s,a)+v

N(s,a)+1
17: N(s, a)← N(s, a) + 1

18: E ← E ∪ {(s
a
→ s′)}

19: return v
20: end if
21: end procedure

mean-square loss lv for the value head and a cross-entropy

loss lp for the policy head

l(D) =
1

|D|

∑

s∈V

(

lv(s) + lp(s)
)

, (12)

where

lv(s) =
(

vθ(s)− v̄(s)
)2

(13a)

lp(s) = −
∑

a∈A(s)

p̄(s, a) log pθ(s, a) . (13b)

1) Assumptions and Heuristics: One major advantage of

using MCTS over MIQP is that it is straightforward to

incorporate domain-specific assumptions and heuristics to

reduce the search space. In this work, we apply the following

assumptions and heuristics:

• Contact surface: Each contact surface can only be

touched by at most one end-effector and each end-

effector can touch at most one contact surface.

• Persistent contact: While the downstream continuous

optimization problem may have a small discretization

step, for example ∆t = 0.1 s, most manipulation tasks

do not require decisions of contact switch at such a

high resolution. Thus, we assume that an end-effector

must remain on the same surface for d time steps, which

means a trajectory of length T can admit at most T/d−1
contact switches.

• Kinematic feasibility: For each end-effector c, a con-

tact surface will only be considered if inverse kinematics

can find a robot configuration that reaches the center of

this surface within an error threshold of 2 cm and does

not result in any undesired collision (e.g. between non-

end-effector links and the object). Note that this cannot

be imposed in a MIQP formulation as it introduces

nonlinear constraints.

• Contact switch: We allow at most one end-effector to

make or break the contact at each time step. Moreover,

the end-effector can only break the contact if the desired

object velocity and acceleration is zero.

s

λ

v
θ
(s, λ)

p
θ
(s, λ)

(

Fig. 4: Schematic diagram of the policy-value network

architecture. Activation functions and regularization layers

such as Dropout and BatchNorm are omitted.

2) Feasibility classifier: One key difference between our

task and generic game-play is that our dataset is highly

imbalanced—many contact sequences explored by the MCTS

are dynamically infeasible, resulting in zero reward. Directly

training on such a dataset leads to underestimation of the

value function. Instead, we first train on the dataset D a

binary classifier Cφ(s) with logistic regression where dynam-

ically feasible samples are given more weights. At inference

time, a state is only fed into the policy-value network if

the classifier labels it as dynamically feasible; otherwise, we

output zero value vθ(s) = 0 and uniformly distributed action

probability pθ(s, a) = 1/|A(s)|. This feasibility classifier

screens out dynamically infeasible contact sequences before

the MCTS completes the search, thus greatly improves search

efficiency.

3) Goal-conditioned policy-value network: Note that each

MCTS instance only searches for the contact sequence for a

given object motion ξ, thus the rewards are motion-specific.

If we were to learn from the data collected for this object

motion only, it is unlikely that the network would generalize

to other motions. Thus, we generate multiple object motions

in the training phase and additionally input an intermediate

goal variable to the network. It is defined as the difference

between the current desired pose and the one h steps in the

future λ(t) = q(t+h)¸q(t), where ¸ denotes subtraction in

SE(3). Fig. 4 depicts the policy-value network architecture:

it takes as inputs the state s and the goal λ, and outputs

the goal-conditioned value vθ(s, λ) and action probabilities

pθ(s, λ). Since the sequence of contact surfaces has varying

lengths, we use a Recurrent Neural Network (RNN) to

encode this information and concatenate it with the pose and

the goal processed by a Multilayer Perceptron (MLP). Due

to the usage of the feasibility classifier mentioned above, we

only train our policy-value network on a subset D+ ¦ D
with positive samples V+ = {s ∈ V|v̄(s) > 0} to avoid

underestimating the value function.

IV. EXPERIMENTS

We conduct experiments in simulation and on real hard-

ware to show that our method 1) is capable of finding high

quality dynamically feasible solutions much faster than a

MIQP baseline. 2) scales to long-horizon tasks even when

trained only on data collected from shorter-horizon tasks.

A. Experiment Setup

1) Tasks: Throughout all experiments, we consider a

manipulator composed of two modular robot fingers similar

to the ones used in [33] and a 10 cm × 10 cm × 10 cm
cube with mass m = 0.5 kg on an infinitely large plane.

The cube and the plane have the same friction coefficient

µ = µe = 0.8. We consider one contact surface for each

face of the cube except for the bottom one; each contact

surface is a 8 cm × 8 cm square to avoid contact locations

at the corner. The object motion trajectory is generated with

spline interpolation in SE(3) between the initial object pose

and a desired pose parameterized as the following primitives:

1) sliding (S) on the xy-plane by −10 cm to 10 cm 2) sliding

with curvature (SC) on the xy-plane by −5 cm to 5 cm with

a rotation about the z-axis by −45◦ to 45◦ 3) rotating (R)

about the z-axis by −90◦ to 90◦ 4) lifting (L) along the

z-axis by 0 cm to 10 cm, and 5) pivoting (P) about the y-axis

by 0◦ to 45◦. The xy-axes span the plane that the object is

placed on and the z-axis points to the opposite gravity direc-

tion. Finally, the initial object position is randomly sampled

on the xy-plane within a [−5 cm, 5 cm]2 area centered at the

origin and the initial orientation about the z-axis by −90◦

to 90◦.

2) Baselines: We compare our method (MCTS) with two

baselines:

• the MIQP baseline is implemented following [13]. We

did not use the authors’ open-source implementation

as it was only implemented for 2D objects. But the

same formulation can be directly extended to 3D. To

facilitate a fair comparison, we also implemented all

heuristics described in Sec III-B.1 except the kinematic

feasibility check. For the McCormick envelope relax-

ation of the cross product, we partition the contact

location into 4 intervals and the contact force into 2
intervals. In all experiments, we terminate the MIQP

solver at the first feasible solution instead of waiting

for the global optimum which may take extremely long

time. In addition, we implement the constraint (2a) as

a penalty term in the cost function. This accelerates the

MIQP solver significantly from our observation during

the experiments. We note that our implementation has

comparable computation time as reported in [13].

• the MCTSU baseline represents an untrained model and

constantly outputs zero values vθ(s) = 0 and uniform

action probability pθ(s, a) = 1/|A(s)|.

3) Software and hardware: We conduct all experiments

on a single GeForce RTX 2080 TI GPU and an Intel Xeon

CPU at 3.7GHz using Python and PyTorch. We model and

solve the QPs with CVXPY [34] and OSQP [35] and use

Gurobi [36] for MIQP. All source code including the baseline

can be found at https://hzhu.io/contact-mcts.

B. Evaluation metrics

We examine two metrics to evaluate the effectiveness and

efficiency of our method: 1) the force and torque error

between the desired and the solution. The error is averaged

over the horizon T and scaled by the object mass and inertia

respectively. The smaller this error is, the better the solution

tracks the desired object motion. 2) The computation time

needed to find the first dynamically feasible solution.

C. Training procedure

We generate 300 object motion trajectories, each compris-

ing two primitives with randomly sampled parameters. In

particular, 200 trajectories are composed of two SC primi-

tives; 50 trajectories of one SC and one L; 50 trajectories of

one SC and one P. For the i-th trajectory, we let an untrained

MCTS run until it evaluates 200 candidate contact sequences;

then we construct the dataset D = D∪{(v̄(s), p̄(s))|s ∈ Vi}
where Vi contains all the states the MCTS visited for the i-th
trajectory. The policy-value network and the value classifier

are then trained via Adam [37] for 300 epochs.

D. Single motion primitives

In this experiment, we consider object motion trajectories

that consist of one single primitive. Each primitive has a

desired pose uniformly randomly sampled from its respective

parameter range described in Sec. IV-A.1. Each trajectory

consists of T = 10 time steps with step size ∆t = 0.1 s;
each contact persists as well at least 0.1 s, hence a trajectory

can admit at most 9 contact switches. We run 50 trials for

each primitive to collect the performance statistics.

Table I shows that our method is capable of finding

dynamically feasible solutions consistently faster than the

MIQP baseline thanks to the MCTS formulation. Especially

for primitives that require non-zero torques (R, SC, P), the

MIQP baseline is not only an order of magnitude slower,

but also produces solutions with large errors. We note

that the force error can be reduced by letting the MIQP

solver explore more feasible solutions, while the torque

error remains high nonetheless. This might be due to its

usage of the McCormick envelopes to approximate cross

products, which not only introduces approximation error but

also adds additional discrete variables. In contrast, thanks

to the ADMM formulation, our method solves the original

problem instead of a relaxed one and has thus near-zero

average force and torque error.

We also note that while the solutions found by the MIQP

baseline are dynamically feasible, they are not necessarily

kinematically feasible or collision-free since these conditions

cannot be incorporated as linear constraints. While it is

possible to collect multiple dynamically feasible solutions

and pick the kinematically feasible one from them, it may

further increase the computation time.

E. Long-horizon tasks

In the previous experiments, we have shown the effec-

tiveness of our method for short motion primitives. Let us

now consider tasks that last a longer period of time. First,

we extend the primitive to T = 30 time steps by stipulating

each contact persists for d = 3 steps. Note that there are still

at most 9 contact switches for a single primitive. However,

such extended primitives may be useful for tasks that require

longer execution time but not necessarily more contact

switches; for instance, sliding a cube for a long distance

TABLE I: Task performance for object motion primitives.

Values f 0.005 are rounded to zero.

Method
Time [s] Error [N, N · m]

Mean Worst Mean Worst

S

MIQP 0.65 0.79 0.66, 0.00 2.90, 0.00
MCTS 0.10 0.18 0.00, 0.00 0.00, 0.00

MCTSU 0.24 1.23 0.00, 0.03 0.06, 1.14

L

MIQP 0.25 0.51 6.29, 0.00 6.87, 0.00
MCTS 0.15 0.23 0.24, 0.05 0.86, 0.18

MCTSU 0.53 2.23 0.53, 0.11 0.88, 0.35

R

MIQP 4.83 29.46 8.36, 16.64 30.72, 45.57
MCTS 0.12 0.27 0.00, 0.00 0.00, 0.00

MCTSU 0.41 1.22 0.00, 0.00 0.00, 0.00

SC

MIQP 2.19 4.41 11.73, 22.39 49.61, 88.27
MCTS 0.11 0.24 0.00, 0.00 0.00, 0.00

MCTSU 0.20 0.81 0.00, 0.00 0.03, 0.07

P

MIQP 6.69 50.41 7.65, 15.31 26.85, 53.65
MCTS 0.15 0.34 0.01, 1.23 0.23, 14.01

MCTSU 0.17 0.45 0.01, 1.46 0.33, 19.55

or rotating it very slowly. In the following experiments, we

concatenate such extended primitives to form a even longer

trajectory. In particular, we consider the primitive SC as it

represents typical planar repositioning/reorienting tasks.

Table II reports the performance metrics for each method.

A task is considered failed if no dynamically feasible solution

is found within 60 s. We can immediately see that the

trained MCTS efficiently solves all the tasks regardless of the

trajectory length, while the MIQP baseline and the untrained

MCTS struggle in long-horizon tasks (the errors decrease

because they are computed only on successful trials). Indeed,

the MIQP baseline cannot solve any tasks containing more

than two primitives in 60 s. Interestingly, even for the task

with a single extended primitive, where the number of

possible contact switches does not change compared to the

previous tasks in Sec. IV-D, the MIQP baseline still need

significantly more time to find a feasible solution. This could

again be attributed to the McCormick envelopes as they add

additional discrete variables to each time step regardless of

the underlying number of contact switches.

Finally, we highlight that the MCTS training dataset only

contains object motion trajectories consisting of at most

two primitives. However, Table II shows that our method

is able to efficiently solve the longer-horizon tasks without

being explicitly trained on them as our MCTS formulation

exploits the intrinsic compositionality of the task by learning

a goal-conditioned policy-value network. Hence, we do not

need to collect training data on large-scale, time-consuming

problems as opposed to the learning-based MIP method

proposed in [20].

F. Executing the contact plan

To validate the contact plans found by our method, we ex-

ecute them in an open-loop fashion with a simple impedance

controller in the PyBullet simulator [38] and on a real robot

τ = JT
(

K(rw
c − rw) +D(ṙw

c − ṙw) + fw
c

)

, (14)

where J is the end-effector Jacobian; K,D are manually

tuned gain matrices; rw, ṙw are the position and velocity of

TABLE II: Task performance for object motions composed

of SC primitives. Errors are computed only on successful

trials. Values f 0.005 are rounded to zero.

#
Method

Success Time [s] Error [N, N · m]
SC rate Mean Worst Mean Worst

1
MIQP 94% 10.15 60.00 3.40, 11.72 19.93, 41.68
MCTS 100% 0.21 0.41 0.00, 0.00 0.00, 0.00

MCTSU
100% 0.91 3.67 0.00, 0.00 0.03, 0.07

2
MIQP 42% 40.93 60.00 4.96, 4.38 16.61, 22.54
MCTS 100% 0.47 1.56 0.00, 0.00 0.01, 0.03

MCTSU
100% 3.08 12.84 0.00, 0.00 0.03, 0.07

3
MIQP 0% − − − −
MCTS 100% 1.35 8.84 0.00, 0.00 0.01, 0.03

MCTSU 90% 20.87 60.00 0.00, 0.00 0.01, 0.04

d e

f g

Fig. 5: Exemplary execution of rotating the cube by 90◦.

For a video compilation of various tasks, please refer to the

supplemental materials.

the end-effector and fw
c , r

w
c , ṙ

w
c are the planed contact force,

location and velocity, all expressed in the world frame.

Fig. 5 shows an example of the contact plan execution

of rotating a cube by 90◦. The robot is able to move the

object towards the target pose if the object is placed at the

desired initial position. We note that the same impedance

is used for all tasks with different primitives. This would

not be possible for us without applying the planed contact

forces; for example, the fingers would drop the cube if they

were to lift it with purely position commands and too low

of a position gain. This shows the benefits and importance

of planning accurate forces and torques. However, we do

observe failure cases when the reality differs too much from

the model, especially for the pivoting primitive P which is

sensitive to the discrepancy between the modeled and actual

friction. We show this in the supplementary materials and

point out the necessity of incorporating sensory feedback

for online re-planning, which we leave for future work.

V. CONCLUSION

In this work, we proposed a framework that combines

data-driven MCTS and efficient non-convex optimization

via ADMM to find dynamically feasible contact forces and

locations to realize a given object motion. We show that the

capability of learning from data allows our method to achieve

great scalability for long-horizon tasks even when the dataset

only contains short-horizon data.

The most limited aspect of our approach is that the object

motion must be provided. True dexterity requires automatic

discovery of object motion together with the contact plan.

One potential way to achieve this is to jointly enumerate

manipulator and environment contacts [15]. Another problem

is that we represent contact surfaces as integers. While this

is natural with the MCTS formulation, it makes the learned

networks object-specific. To address this issue, it might be

helpful to map the integer-valued surfaces to its geometric

center before feeding them into the neural networks. Finally,

our approach assumes perfect knowledge of the object and

the environment, which is not possible in the real world.

Thus, it is necessary to explore ways of integrating percep-

tion, for example, as done in [39].

REFERENCES

[1] A. Escande and A. Kheddar, “Contact planning for acyclic motion with
tasks constraints,” IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2009. IROS 2009., p. 435–440, Oct 2009.

[2] Y.-C. Lin, L. Righetti, and D. Berenson, “Robust humanoid contact
planning with learned zero- and one-step capturability prediction,”
IEEE Robotics and Automation Letters, vol. 5, no. 2, 2020.

[3] B. Ponton, M. Khadiv, A. Meduri, and L. Righetti, “Efficient multi-
contact pattern generation with sequential convex approximations of
the centroidal dynamics,” IEEE Transactions on Robotics, vol. 37,
no. 5, p. 1661–1679, 2021.

[4] J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, and N. Mansard,
“A versatile and efficient pattern generator for generalized legged
locomotion,” in IEEE-RAS International Conference on Robotics and
Automation, 2016.

[5] D. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for
rigid body dynamics with coulomb friction,” in IEEE International
Conference on Robotics and Automation, 2000, pp. 162–169.

[6] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” The Int J of Robotics
Research, vol. 33, no. 1, pp. 69–81, 2014.

[7] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, pp. 1–8, 2012.

[8] I. Mordatch, J. M. Wang, E. Todorov, and V. Koltun, “Animating
human lower limbs using contact-invariant optimization,” ACM Trans-
actions on Graphics (TOG), vol. 32, no. 6, pp. 1–8, 2013.

[9] I. Mordatch, Z. Popović, and E. Todorov, “Contact-invariant opti-
mization for hand manipulation,” in ACM SIGGRAPH/Eurographics
symposium on computer animation, 2012, pp. 137–144.

[10] M. Neunert et al., “Whole-body nonlinear model predictive control
through contacts for quadrupeds,” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 1458–1465, 2018.

[11] T. Pang, H. Suh, L. Yang, and R. Tedrake, “Global planning for
contact-rich manipulation via local smoothing of quasi-dynamic con-
tact models,” arXiv preprint arXiv:2206.10787, 2022.

[12] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

[13] B. Aceituno-Cabezas and A. Rodriguez, “A global quasi-dynamic
model for contact-trajectory optimization,” in Robotics: Science and
Systems (RSS), 2020.

[14] N. Doshi, F. R. Hogan, and A. Rodriguez, “Hybrid differential
dynamic programming for planar manipulation primitives,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 6759–6765.

[15] X. Cheng, E. Huang, Y. Hou, and M. T. Mason, “Contact mode guided
motion planning for quasidynamic dexterous manipulation in 3d,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 2730–2736.

[16] C. Chen, P. Culbertson, M. Lepert, M. Schwager, and J. Bohg,
“Trajectotree: Trajectory optimization meets tree search for planning
multi-contact dexterous manipulation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2021, pp. 8262–8268.

[17] G. P. McCormick, “Computability of global solutions to factorable
nonconvex programs: Part i—convex underestimating problems,”
Mathematical programming, vol. 10, no. 1, pp. 147–175, 1976.

[18] R. Lazimy, “Mixed-integer quadratic programming,” Mathematical
Programming, vol. 22, pp. 332–349, 1982.

[19] C. A. Floudas, Nonlinear and mixed-integer optimization: fundamen-
tals and applications. Oxford University Press, 1995.

[20] V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov,
B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang, et al.,
“Solving mixed integer programs using neural networks,” arXiv
preprint arXiv:2012.13349, 2020.

[21] A. Cauligi et al., “Coco: Online mixed-integer control via supervised
learning,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp.
1447–1454, 2021.

[22] X. Lin, G. I. Fernandez, and D. W. Hong, “Reduce: Reformulation
of mixed integer programs using data from unsupervised clusters
for learning efficient strategies,” in 2022 International Conference on
Robotics and Automation (ICRA). IEEE, 2022, pp. 4459–4465.

[23] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[24] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimiza-
tion with biconvex functions: a survey and extensions,” Mathematical
methods of operations research, vol. 66, no. 3, pp. 373–407, 2007.

[25] S. Boyd et al., “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Foundations and Trends®
in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[26] A. Meduri, P. Shah, J. Viereck, M. Khadiv, I. Havoutis, and L. Righetti,
“Biconmp: A nonlinear model predictive control framework for whole
body motion planning,” IEEE Transactions on Robotics, 2023.

[27] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[28] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al.,
“Mastering atari, go, chess and shogi by planning with a learned
model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[29] L. Amatucci, J.-H. Kim, J. Hwangbo, and H.-W. Park, “Monte carlo
tree search gait planner for non-gaited legged system control,” in 2022
International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 4701–4707.

[30] T. Ren, G. Chalvatzaki, and J. Peters, “Extended tree search for robot
task and motion planning,” arXiv preprint arXiv:2103.05456, 2021.

[31] Y. Labbé, S. Zagoruyko, I. Kalevatykh, I. Laptev, J. Carpentier,
M. Aubry, and J. Sivic, “Monte-carlo tree search for efficient visu-
ally guided rearrangement planning,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 3715–3722, 2020.

[32] H. Song, J. A. Haustein, W. Yuan, K. Hang, M. Y. Wang, D. Kragic,
and J. A. Stork, “Multi-object rearrangement with monte carlo tree
search: A case study on planar nonprehensile sorting,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 9433–9440.

[33] M. Wüthrich et al., “Trifinger: An open-source robot for learning
dexterity,” arXiv preprint arXiv:2008.03596, 2020.

[34] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016.

[35] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
an operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[36] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2022. [Online]. Available: https://www.gurobi.com

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[38] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” http://pybullet.
org.

[39] D. Driess, J.-S. Ha, and M. Toussaint, “Learning to solve sequential
physical reasoning problems from a scene image,” The Int. J of
Robotics Research, vol. 40, no. 12-14, pp. 1435–1466, 2021.

	Introduction
	Problem Statement
	Inputs
	Outputs

	Method
	Continuous Contact Optimization via ADMM
	Dynamics
	Contact location
	Contact force
	Sticking contact
	Coulomb friction
	Cost function
	Biconvex Decomposition

	Discrete Contact Planning via MCTS
	Assumptions and Heuristics
	Feasibility classifier
	Goal-conditioned policy-value network

	Experiments
	Experiment Setup
	Tasks
	Baselines
	Software and hardware

	Evaluation metrics
	Training procedure
	Single motion primitives
	Long-horizon tasks
	Executing the contact plan

	Conclusion
	References

